Low Quiescent Current, PFM/PWM Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option #### Features: - Up to 96% Typical Efficiency - · 650 mA Typical Peak Input Current Limit: - $I_{OLIT} > 100 \text{ mA} @ 3.3 \text{V}_{OLIT}, 1.2 \text{V}_{IN}$ - $I_{OUT} > 250 \text{ mA} @ 3.3 \text{V}_{OUT}, 2.4 \text{V}_{IN}$ - I_{OUT} > 225 mA @ 5.0V V_{OUT} , 3.3V V_{IN} - · Low Device Quiescent Current: - Output Quiescent Current: < 4 μA typical, device is not switching (V_{OUT} > V_{IN}, excluding feedback divider current) - Input Sleep Current: 1 μA - No Load Input Current: 14 µA typical - Shutdown Current: 0.6 μA typical - · Low Start-up Voltage: 0.82V, 1 mA load - Low Operating Input Voltage: down to 0.35V - Adjustable Output Voltage Range: 1.8V to 5.5V - Maximum Input Voltage ≤ V_{OUT} < 5.5V - · Automatic PFM/PWM Operation: - PWM Operation: 500 kHz - PFM Output Ripple: 150 mV typical - Feedback voltage: 1.23V - · Internal Synchronous Rectifier - · Internal Compensation - Inrush Current Limiting and Internal Soft Start (1.5 ms typical) - · Selectable, Logic Controlled, Shutdown States: - True Load Disconnect Option (MCP16251) - Input to Output Bypass Option (MCP16252) - · Anti-Ringing Control - Overtemperature Protection - · Available Packages: - SOT-23-6 - 2 x 3 8-Lead TDFN #### **Applications:** - One, Two and Three Cell Alkaline and NiMH/NiCd Portable Products - Solar Cell Applications - · Personal Care and Medical Products - · Bias for Status LEDs - · Smartphones, MP3 Players, Digital Cameras - · Remote controllers, Portable Instruments - · Wireless Sensors - · Bluetooth Headsets - +3.3V to +5.0V Distributed Power Supply #### **General Description** The MCP16251/2 is a compact, high-efficiency, fixed frequency, synchronous step-up DC-DC converter. This family of devices provides an easy-to-use power supply solution for applications powered by either one-cell, two-cell or three-cell alkaline, NiCd, NiMH, one-cell Li-lon or Li-Polymer batteries. A low-voltage technology allows the regulator to start up without high inrush current or output voltage overshoot from a low voltage input. High efficiency is accomplished by integrating the low-resistance N-Channel boost switch and synchronous P-Channel switch. All compensation and protection circuitry are integrated to minimize external components. MCP16251/2 operates and consumes less than 14 μA from battery, while operating at no load (V $_{OUT}=3.3V,$ V $_{IN}=1.5V$). The devices provide a true disconnect from input to output (MCP16251) or an input-to-output bypass (MCP16252), while in shutdown (EN = GND). Both options consume less than 0.6 μA from battery. Output voltage is set by a small external resistor divider. Two package options, SOT-23-6 and 2 x 3 TDFN-8, are available. #### Package Types | MCP162
6-Lead S | | MCP16251/2
2x3 TDFN* | |--------------------------|--|--------------------------------| | SW 11 °
GND 2
EN 3 | 6 V _{IN}
5 V _{OUT}
4 V _{FB} | V _{FB} 1. ° | | * Includes Exp | osed Therm | al Pad (EP); see Table 3-1. | # 1.0 ELECTRICAL CHARACTERISTICS #### **Absolute Maximum Ratings †** † Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. #### DC CHARACTERISTICS **Electrical Characteristics:** Unless otherwise indicated, $V_{IN} = 1.5V$, $C_{OUT} = C_{IN} = 10 \mu F$, $L = 4.7 \mu H$, $V_{OUT} = 3.3V$, $I_{OUT} = 0 mA$, $I_{A} = +25^{\circ}C$. **Boldface** specifications apply over the I_{A} range of -40°C to +85°C. | TA = 120 C. Boldidoc specified | ations apply ever th | o i A rang | 7 01 10 0 10 | 100 0. | 1 | | |---|----------------------|------------|--------------|--------|-------|--| | Parameters | Sym | Min | Тур | Max | Units | Conditions | | Input Characteristics | | | | | | | | Minimum Start-Up Voltage | V_{IN} | | 0.82 | _ | V | Note 1 | | Minimum Input Voltage
After Start-Up | V _{IN} | | 0.35 | _ | V | Note 1 | | Output Voltage Adjust Range | V _{OUT} | 1.8 | | 5.5 | V | V _{OUT} ≥ V _{IN} ; Note 2 | | Maximum Output Current | l _{out} | | 150 | _ | mA | 1.2V V _{IN} , 2.0V V _{OUT} | | | | 100 | 125 | _ | | 1.5V V _{IN} , 3.3V V _{OUT} | | | | | 225 | _ | | 3.3V V _{IN} , 5.0V V _{OUT} | | Feedback Voltage | V_{FB} | 1.1931 | 1.23 | 1.2669 | V | | | Feedback Input
Bias Current | I _{VFB} | | 10 | _ | nA | | | V _{OUT} Quiescent Current | Ιαουτ | | 4.0 | 8 | μА | I_{OUT} = 0 mA, device is not
switching, EN = V_{IN} = 4.0V,
V_{OUT} = 5.0V,
does not include feedback
divider current; Note 3 | | V _{IN} Sleep Current | I _{QIN} | _ | 1.0 | 2.3 | μA | I _{OUT} = 0 mA, EN = V _{IN} ;
Note 3, Note 5 | | No Load Input Current | I _{INO} | _ | 14 | 25 | μA | I _{OUT} = 0 mA,
device is switching | | Quiescent Current –
Shutdown | I _Q SHDN | | 0.6 | _ | μA | V _{OUT} = EN = GND;
includes N-Channel and
P-Channel Switch Leakage | - **Note** 1: $3.3 \text{ k}\Omega$ resistive load, $3.3 \text{V}_{\text{OUT}}$ (1 mA). - **2:** For $V_{IN} > V_{OUT}$, V_{OUT} will not remain in regulation. - 3: I_{QOUT} is measured at V_{OUT}, V_{OUT} is external supplied for V_{OUT} > V_{IN} (device is not switching), I_{QIN} is measured at V_{IN} pin during Sleep period, no load. - **4:** 220Ω resistive load, $3.3V_{OUT}$ (15 mA). - **5:** Determined by characterization, not production tested. #### DC CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, V_{IN} = 1.5V, C_{OUT} = C_{IN} = 10 μF, L = 4.7 μH, V_{OUT} = 3.3V, I_{OUT} = 0 mA, T_A = +25°C. Boldface specifications apply over the T_A range of -40°C to +85°C. | Parameters | Sym | Min | Тур | Max | Units | Conditions | |-------------------------------------|--|------|------|-----|---------------------|---| | NMOS Switch Leakage | I _{NLK} | _ | 0.15 | _ | μА | $V_{IN} = V_{SW} = 5V$
$V_{OUT} = 5.5V$
$V_{EN} = V_{FB} = GND$ | | PMOS Switch Leakage | I _{PLK} | _ | 0.15 | _ | μΑ | $V_{IN} = V_{SW} = GND;$
$V_{OUT} = 5.5V$ | | NMOS Switch
ON Resistance | R _{DS(ON)N} | _ | 0.45 | _ | Ω | $V_{IN} = 3.3V$, $I_{SW} = 100 \text{ mA}$ | | PMOS Switch
ON Resistance | R _{DS(ON)P} | _ | 0.9 | _ | Ω | $V_{IN} = 3.3V$, $I_{SW} = 100 \text{ mA}$ | | NMOS Peak
Switch Current Limit | I _{N(MAX)} | _ | 650 | _ | mA | Note 5 | | V _{OUT} Accuracy | V _{OUT} % | -3 | _ | +3 | % | Includes Line and Load
Regulation; V _{IN} = 1.5V | | Line Regulation | $ (\Delta V_{OUT}/V_{OUT})$
$ \Delta V_{IN} $ | -0.4 | 0.3 | 0.4 | %/V | V _{IN} = 1.5V to 2.8V
I _{OUT} = 50 mA | | Load Regulation | $ \Delta V_{OUT}/V_{OUT} $ | -1.5 | 0.1 | 1.5 | % | I _{OUT} = 25 mA to 100 mA;
V _{IN} = 1.5V | | Maximum Duty Cycle | DC _{MAX} | 87 | 89 | 91 | % | Note 5 | | Switching Frequency | f _{SW} | 425 | 500 | 575 | kHz | | | EN Input Logic High | V _{IH} | 70 | _ | _ | %of V _{IN} | I _{OUT} = 1 mA | | EN Input Logic Low | V_{IL} | _ | _ | 20 | %of V _{IN} | I _{OUT} = 1 mA | | EN Input Leakage Current | I _{ENLK} | _ | 5.0 | _ | nA | V _{EN} = 5V | | Soft Start Time | t _{SS} | _ | _ | 1.5 | ms | EN Low to High,
90% of V _{OUT} ; Note 4, Note 5 | | Thermal Shutdown
Die Temperature | T _{SD} | _ | 160 | _ | °C | I _{OUT} = 20 mA, V _{IN} > 1.4V | | Die Temperature
Hysteresis | T _{SDHYS} | _ | 20 | _ | °C | | - Note 1: $3.3 \text{ k}\Omega$ resistive load, $3.3 \text{V}_{\text{OUT}}$ (1 mA). - **2:** For $V_{IN} > V_{OUT}$, V_{OUT} will not remain in regulation. - 3: I_{QOUT} is measured at V_{OUT}, V_{OUT} is external supplied for V_{OUT} > V_{IN} (device is not switching), I_{QIN} is measured at V_{IN} pin during Sleep period, no load. - **4:** 220Ω resistive load, $3.3V_{OUT}$ (15 mA). - **5:** Determined by characterization, not production tested. #### **TEMPERATURE SPECIFICATIONS** | Electrical Characteristics: Unless otherwise indicated, $V_{IN} = 1.5V$, $C_{OUT} = C_{IN} = 10 \mu F$, $L = 4.7 \mu H$, $V_{OUT} = 3.3V$, $I_{OUT} = 0 mA$. | | | | | | | | |---|----------------|-----|-------|------|------|-----------------------|--| | Parameters Sym Min Typ Max Units Conditions | | | | | | | | | Temperature Ranges | | | | | | | | | Operating Temperature Range | TJ | -40 | _ | +85 | °C | Steady State | | | Storage Temperature Range | T _A | -65 | _ | +150 | °C | | | | Maximum Junction Temperature | TJ | _ | _ | +150 | °C | Transient | | | Package Thermal Resistances | | | | | | | | | Thermal Resistance, 5L-SOT-23 | θ_{JA} | _ | 220.7 | _ | °C/W | EIA/JESD51-3 Standard | | | Thermal Resistance, 8L-2x3 TDFN | θ_{JA} | _ | 52.5 | _ | °C/W | | | #### 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 100 Note: Unless otherwise indicated, V_{IN} = EN = 1.5V, C_{OUT} =
C_{IN} = 10 μ F, L = 4.7 μ H, V_{OUT} = 3.3V, I_{LOAD} = 0 mA, $T_A = +25$ °C, SOT-23 package. FIGURE 2-1: V_{OUT} I_Q vs. Ambient Temperature. I_{OUT} FIGURE 2-2: No Load Input Current vs. Temperature. FIGURE 2-5: 3.3V V_{OUT} Efficiency vs. I_{OUT} FIGURE 2-3: No Load Input Current vs. V_{IN} . FIGURE 2-6: 5.0V V_{OUT} Efficiency vs. I_{OUT}. **Note:** Unless otherwise indicated, V_{IN} = EN = 1.5V, C_{OUT} = C_{IN} = 10 μ F, L = 4.7 μ H, V_{OUT} = 3.3V, I_{LOAD} = 0 mA, T_A = +25°C, SOT-23 package. FIGURE 2-7: Temperature. 3.3V V_{OUT} vs. Ambient FIGURE 2-8: Temperature. 3.3V V_{OUT} vs. Ambient FIGURE 2-9: 3.3V V_{OUT} vs. V_{IN}. **FIGURE 2-10:** Maximum I_{OUT} vs. V_{IN}, After Start-up, V_{OUT} Maximum 5% Below Regulation Point. FIGURE 2-11: Temperature. Current. F_{OSC} vs. Ambient **FIGURE 2-12:** V_{IN} Start-up vs. Temperature into Resistive Load and Constant **Note:** Unless otherwise indicated, V_{IN} = EN = 1.5V, C_{OUT} = C_{IN} = 10 μ F, L = 4.7 μ H, V_{OUT} = 3.3V, I_{LOAD} = 0 mA, T_A = +25°C, SOT-23 package. **FIGURE 2-13:** 1.8 V_{OUT} Minimum Start-up and Shutdown V_{IN} into Resistive Load vs. I_{OUT} . **FIGURE 2-14:** 3.3 V_{OUT} Minimum Start-up and Shutdown V_{IN} into Resistive Load vs. I_{OUT} . **FIGURE 2-15:** 5.0 V_{OUT} Minimum Start-Up and Shutdown V_{IN} into Resistive Load vs. I_{OUT} . **FIGURE 2-16:** N-Channel and P-Channel R_{DSON} vs. the maximum V_{IN} or V_{OUT} . **FIGURE 2-17:** Average PFM/PWM Threshold Current vs. V_{IN}. FIGURE 2-18: MCP16251 3.3V V_{OUT} PFM Mode Waveforms. **Note:** Unless otherwise indicated, V_{IN} = EN = 1.5V, C_{OUT} = C_{IN} = 10 μ F, L = 4.7 μ H, V_{OUT} = 3.3V, I_{LOAD} = 0 mA, T_A = +25°C, SOT-23 package. FIGURE 2-19: MCP16251 3.3V V_{OUT} PWM Mode Waveforms FIGURE 2-20: 3.3V Start-up After Enable. **FIGURE 2-21:** 3.3V Start-Up When $V_{IN} = V_{ENABLE}$. **FIGURE 2-22:** MCP16251 3.3V V_{OUT} Load Transient Waveforms. **FIGURE 2-23:** 3.3V V_{OUT} Line Transient Waveforms. **FIGURE 2-24:** MCP16251 3.3V No Load V_{OUT} PFM Mode Output Ripple. #### 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE | MCP16251/2
SOT-23 | MCP16251/2
2x3 TDFN | Symbol | Description | |----------------------|------------------------|-------------------|--| | 4 | 1 | V_{FB} | Feedback Voltage Pin | | _ | 2 | S _{GND} | Signal Ground Pin | | _ | 3 | P_{GND} | Power Ground Pin | | 3 | 4 | EN | Enable Control Input Pin | | 1 | 5 | SW | Switch Node, Boost Inductor Input Pin | | _ | 6 | V _{OUTP} | Output Voltage Power Pin | | _ | 7 | V _{OUTS} | Output Voltage Sense Pin | | 6 | 8 | V _{IN} | Input Voltage Pin | | _ | 9 | EP | Exposed Thermal Pad (EP); must be connected to V _{SS} . | | 2 | | GND | Ground Pin | | 5 | _ | V _{OUT} | Output Voltage Pin | #### 3.1 Feedback Voltage Pin (V_{FB}) The V_{FB} pin is used to provide output voltage regulation by using a resistor divider. Feedback voltage will typically be 1.23V, with the output voltage in regulation. #### 3.2 Signal Ground Pin (S_{GND}) The signal ground pin is used as a return for the integrated V_{REF} and error amplifier. In the 2x3 TDFN package, the S_{GND} and power ground (P_{GND}) pins are connected externally. #### 3.3 Power Ground Pin (P_{GND}) The power ground pin is used as a return for the high-current N-Channel switch. In the 2x3 TDFN package, the P_{GND} and signal ground (S_{GND}) pins are connected externally. #### 3.4 Enable Pin (EN) The EN pin is a logic-level input used to enable or disable device switching and lower quiescent current while disabled. A logic high (>70% of V_{IN}) will enable the regulator output. A logic low (<20% of V_{IN}) will ensure that the regulator is disabled. #### 3.5 Switch Node Pin (SW) Connect the inductor from the input voltage to the SW pin. The SW pin carries inductor current and can be as high as 650 mA typical peak. The integrated N-Channel switch drain and integrated P-Channel switch source are internally connected at the SW node. #### 3.6 Output Voltage Power Pin (V_{OUTP}) The output voltage power pin connects the output voltage to the switch node. High current flows through the integrated P-Channel and out of this pin to the output capacitor and output. In the 2x3 TDFN package, V_{OUTS} and V_{OUTP} are connected externally. #### 3.7 Output Voltage Sense Pin (V_{OUTS}) The output voltage sense pin connects the regulated output voltage to the internal bias circuits. In the 2x3 TDFN package, V_{OUTS} and V_{OUTP} are connected externally. #### 3.8 Power Supply Input Voltage Pin (V_{IN}) Connect the input voltage source to $V_{\text{IN}}.$ The input source should be decoupled to GND with a 4.7 μF minimum capacitor. #### 3.9 Exposed Thermal Pad (EP) There is no internal electrical connection between the Exposed Thermal Pad (EP) and the P_{GND} and S_{GND} pins. They must be connected to the same potential on the Printed Circuit Board (PCB). #### 3.10 Ground Pin (GND) The ground or return pin is used for circuit ground connection. Length of trace from input cap return, output cap return and GND pin should be made as short as possible to minimize noise on the GND pin. In the SOT23-6 package, a single ground pin is used. #### 3.11 Output Voltage Pin (V_{OUT}) The output voltage pin connects the integrated P-Channel MOSFET to the output capacitor. The feedback voltage divider is also connected to the V_{OUT} pin for voltage regulation. #### 4.0 DETAILED DESCRIPTION #### 4.1 Device Overview The MCP16251/2 family of devices is capable of low start-up voltage and delivers high efficiency over a wide load range for single-cell, two-cell, three-cell alkaline, NiMH, NiCd and single-cell Li-lon battery inputs. A high level of integration lowers total system cost, eases implementation and reduces board area. The devices feature low quiescent current, low start-up voltage, adjustable output voltage, PWM/PFM mode operation, integrated synchronous switch, internal compensation, low noise anti-ring control, inrush current limit and soft start. There are two options for the MCP16251/2 family: True Output Disconnect and Input-to-Output Bypass (see Table 4-1). #### 4.1.1 PFM/PWM OPERATION The MCP16251/2 devices use an automatic switchover from PWM to PFM mode for light load conditions, to maximize efficiency over a wide range of output current. During PFM mode, a controlled peak current is used to pump the output up to the threshold limit. While operating in PFM or PWM mode, the P-Channel switch is used as a synchronous rectifier, turning off when the inductor current reaches 0 mA to maximize efficiency. In PFM mode, a comparator is used to terminate switching when the output voltage reaches the upper threshold limit. Once switching has terminated, the output voltage will decay or coast down. During this period, which is called Sleep period, 1 µA is typically consumed from the input source, which keeps power efficiency high at light load. PWM/PFM mode has higher output ripple voltage than PWM mode, and variable frequency. The PFM mode frequency is a function of input voltage, output voltage and load. While in PFM mode, the boost converter periodically pumps the output with a fixed switching frequency of 500 kHz. Figure 2-17 represents the load current versus input voltage for the PFM-to-PWM threshold. ## 4.1.2 TRUE OUTPUT DISCONNECT OPTION The MCP16251 device incorporates a true output disconnect feature. With the EN pin pulled low, the output of the MCP16251 is isolated or disconnected from the input by turning off the integrated P-Channel switch and removing the switch bulk diode connection. This removes the DC path typical in boost converters, which allows the output to be disconnected from the input. During this mode, less than 0.6 μA of current is consumed from the input (battery). True output disconnect does not discharge the output; the output voltage is held up by the external C_{OUT} capacitance. #### 4.1.3 INPUT BYPASS OPTION The MCP16252 device incorporates the input-to-output bypass shutdown option. With the EN input pulled low, the output is connected to the input using the internal P-Channel MOSFET. In this mode, the current draw from the input (battery) is less than 0.6 μA with no load. The Input Bypass mode is used when the input voltage range is high enough for the load to operate in Standby or Low I_Q mode. When a higher regulated output voltage is necessary to operate the application, the EN input is pulled high, enabling the boost converter. In this mode, the current through the P-Channel MOSFET must not be higher than 400 mA. TABLE 4-1: PART NUMBER SELECTION | Part
Number | True Output
Disconnect | Input to Output
Bypass | |----------------|---------------------------|---------------------------| | MCP16251 | Х | | | MCP16252 | | Х | #### 4.2 Functional Description The MCP16251/2 is a compact, high-efficiency, fixed frequency, step-up DC-DC converter that provides an easy-to-use power supply solution for applications powered by either one-cell, two-cell, or three-cell alkaline, NiCd, or NiMH, or one-cell Li-lon or Li-Polymer batteries. Figure 4-1 depicts the functional block diagram of the MCP16251/2. FIGURE 4-1: MCP16251/2 Block Diagram. #### 4.2.1 LOW-VOLTAGE START-UP The MCP16251/2 is capable of starting from a low input voltage. Start-up voltage is typically 0.82V for a 3.3V output and 1 mA resistive load. When enabled, the internal start-up logic turns the rectifying P-Channel switch on until the output capacitor is charged to a value close to the input voltage. The rectifying switch is current limited during this time. After charging the output capacitor to the input voltage, the device starts switching. If the output voltage is below 60-70% of
the desired $V_{\rm OUT}$, the device runs in open-loop with a fixed duty cycle of 70-75% until the output reaches this threshold. During start-up, the inductor peak current is limited (see Figure 2-21) to allow a correct start from a weak power supply, such as a solar cell, small coin battery or a discharged battery. Once the output voltage reaches 60-70% of the desired $V_{\rm OUT}$, normal closed-loop PWM operation is initiated. The MCP16251/2 charges an internal capacitor with a very weak current source. The voltage on this capacitor, in turn, slowly ramps the current limit of the boost switch to its nominal value. The soft-start capacitor is completely discharged in the event of a commanded shutdown or a thermal shutdown. There is no undervoltage lockout feature for the MCP16251/2. The device will start switching at the lowest voltage possible, and run down to the lowest possible voltage. For a minimum 0.82V typical input, the device starts with regulated output under 1 mA resistive load. Real world loads are mostly non-resistive and allow device start-up at lower values, down to 0.65V. Working at very low input voltages may result in "motor-boating" for deeply discharged batteries. #### 4.2.2 PFM/PWM MODE The MCP16251/2 devices are capable of automatically operating in normal PWM mode and PFM mode to maintain high efficiency at all loads. In PFM mode, the output ripple has a variable frequency component that changes with the input voltage and output current. The value of the output capacitor changes the low frequency component ripple. Output ripple peak-topeak values are not affected by the output capacitor. With no load, the input current drawn from the battery is typically 14 μA . The device itself is powering from the output after start-up, the quiescent current drawn from output being less than 4 μA (typical, without feedback resistors divider current). PFM operation is initiated if the output load current falls below an internally programmed threshold. The output voltage is continuously monitored. When the output voltage drops below its nominal value, PFM operation pulses one or several times to bring the output back into regulation. If the output load current rises above the upper threshold, the MCP16251 enters smoothly into the PWM mode. In PWM operation, the MCP16251/2 operates as a fixed frequency, synchronous boost converter. The switching frequency is internally maintained with a precision oscillator, typically set to 500 kHz. By operating in PWM-only mode, the output ripple remains low and the frequency is constant. Lossless current sensing converts the peak current signal to a voltage to sum with the internal slope compensation signal. This summed signal is compared to the voltage error amplifier output to provide a peak current control command for the PWM signal. The slope compensation is adaptive to the input and output voltage. Therefore, the converter provides the proper amount of slope compensation to ensure stability, but is not excessive, which causes a loss of phase margin. The peak current limit is set to 650 mA typical. ## 4.2.3 ADJUSTABLE OUTPUT VOLTAGE AND MAXIMUM OUTPUT CURRENT The MCP16251/2 output voltage is adjustable with a resistor divider over a 1.8V minimum to 5.5V maximum range. High value resistors are recommended to minimize quiescent current to keep efficiency high at light loads. When an application runs below -20°C, smaller values for feedback resistors should be used to avoid any alteration of V_{OUT}, because of the leakage path on PCBs. The maximum device output current is dependent upon the input and output voltage. For example, to ensure a 100 mA load current for $V_{OUT} = 3.3V$, a minimum of 1.1-1.2V input voltage is necessary. If an application is powered by one Li-lon battery (V_{IN} from 3.0V to 4.2V), the maximum load current the MCP16251/2 can deliver is close to 200 mA at 5.0V output (Figure 2-10). #### 4.2.4 ENABLE The enable pin is used to turn the boost converter on and off. The enable threshold voltage varies with input voltage. To enable the boost converter, the EN voltage level must be greater than 70% of the V_{IN} voltage. To disable the boost converter, the EN voltage must be less than 20% of the V_{IN} voltage. #### 4.2.5 INTERNAL BIAS The MCP16251/2 gets its start-up bias from $V_{\rm IN}$. Once the output exceeds the input, bias comes from the output. Therefore, once started, operation is completely independent of $V_{\rm IN}$. Operation is limited only by the output power level and the input source series resistance. Once started, the output will remain in regulation down to 0.35V input with 1 mA output current for low source impedance inputs. #### 4.2.6 INTERNAL COMPENSATION The error amplifier, with its associated compensation network, completes the closed-loop system by comparing the output voltage to a reference at the input of the error amplifier, and feeding the amplified and inverted signal to the control input of the inner current loop. The compensation network provides phase leads and lags at appropriate frequencies to cancel excessive phase lags and leads of the power circuit. All necessary compensation components and slope compensation are integrated. #### 4.2.7 SHORT CIRCUIT PROTECTION Unlike most boost converters, the MCP16251/2 allows its output to be shorted during normal operation. The internal current limit and overtemperature protection limit excessive stress and protect the device during periods of short circuit, overcurrent and overtemperature. While operating in Input-to-output Bypass mode, the P-Channel current limit is inhibited to minimize quiescent current. #### 4.2.8 LOW NOISE OPERATION The MCP16251/2 integrates a low noise anti-ring switch that damps the oscillations typically observed at the switch node of a boost converter when operating in the discontinuous inductor current mode. This removes the high frequency radiated noise. ## 4.2.9 OVERTEMPERATURE PROTECTION Overtemperature protection circuitry is integrated in the MCP16251/2 devices. This circuitry monitors the device junction temperature and shuts the output off if the junction temperature exceeds the typical +160°C. If this threshold is exceeded, the device will automatically restart once the junction temperature drops by 20°C. During the thermal shutdown, the device is periodically looking for temperature; once the temperature of the die drops, the device restarts. Because the device takes its bias from the output (to achieve lower $\rm I_Q$ current) while in thermal shutdown state, there is no low reference band gap and the output may be higher than zero for inputs below 1.4V typical. The soft start is reset during an overtemperature condition. #### 5.0 APPLICATION INFORMATION #### 5.1 Typical Applications The MCP16251/2 synchronous boost regulator operates over a wide input voltage and output voltage range. The power efficiency is high for several decades of load range. Output current capability increases with the input voltage and decreases with the increasing output voltage. The maximum output current is based on the N-Channel peak current limit. Typical characterization curves in this data sheet are presented to display the typical output current capability. # 5.2 Adjustable Output Voltage Calculations To calculate the resistor divider values for the MCP16251/2, use Equation 5-1, where R_{TOP} is connected to $V_{OUT},\ R_{BOT}$ is connected to GND and both are connected to the V_{FB} input pin. #### **EQUATION 5-1:** $$R_{TOP} = R_{BOT} \times \left(\frac{V_{OUT}}{V_{FB}} - 1\right)$$ #### **EXAMPLE 1:** $V_{OUT} = 2.0V$ $V_{FB} = 1.23V$ $R_{BOT} = 1 M\Omega$ R_{TOP} = 626.01 kΩ (with a standard value of 620 k Ω V_{OUT} is 1.992V) #### **EXAMPLE 2:** $V_{OUT} = 3.3V$ $V_{FB} = 1.23V$ $R_{BOT} = 1 M\Omega$ $R_{TOP} = 1.68 M\Omega$ (with a standard value of 1.69 M Ω V_{OUT} is 3.308V) #### **EXAMPLE 3:** $V_{OUT} = 5.0V$ $V_{FB} = 1.23V$ $R_{BOT} = 1 M\Omega$ $R_{TOP} = 3.065 M\Omega$ (with a standard value of $3.09 \text{ M}\Omega \text{ V}_{OUT} \text{ is } 5.03 \text{V})$ The internal Error Amplifier is a transconductance type; its gain is not related to the resistors' value. There are some potential issues with higher value resistors. For small surface mount resistors, environment contamination can create leakage paths that significantly change the resistor divider ratio and change the output voltage tolerance. Designers should use resistors that are larger than 1 $\mathrm{M}\Omega$ with precaution; they can be used on limited temperature range (-20 to +85°C). For a lower temperature (down to -40°C), resistors from Examples 1 or 2 are calculated as following: #### **EXAMPLE 4:** $V_{OUT} = 2.0V$ $V_{FB} = 1.23V$ $R_{BOT} = 309 k\Omega$ $R_{TOP} = 193.44 \text{ k}\Omega$ (with a standard value of 191 k Ω V_{OUT} is 1.99V) #### **EXAMPLE 5:** $V_{OUT} = 3.3V$ $V_{FB} = 1.23V$ $R_{BOT} = 309 k\Omega$ $R_{TOP} = 520.024 \text{ k}\Omega$ (with a standard value of 523 k Ω V_{OUT} is 3.311V) Smaller feedback resistor values will increase the quiescent current drained from the battery by a few μA , but will result in good regulation over the entire temperature range. For boost converters, the removal of the feedback resistors during operation must be avoided. In this case, the output voltage will increase above the absolute maximum output limits of the MCP16251/2 and damage the device (for additional informations, see AN1337 Application Note). #### 5.3 Input Capacitor Selection The boost input current is smoothed by the boost inductor, reducing the amount of filtering necessary at the input. Some capacitance is recommended to provide decoupling from the source. Low ESR X5R or X7R are well suited, since they have a low temperature coefficient and small size. For most applications, 4.7 μF of capacitance is sufficient at the input. For high-power applications that have
high-source impedance or long leads, connecting the battery to the input 10 μF of capacitance is recommended. Additional input capacitance can be added to provide a stable input voltage Table 5-1 contains the recommended range for the input capacitor value. #### 5.4 Output Capacitor Selection The output capacitor helps provide a stable output voltage during sudden load transients and reduces the output voltage ripple. As with the input capacitor, X5R and X7R ceramic capacitors are well suited for this application. Using other capacitor types (aluminum or tantalum) with large ESR has impact for the converter's efficiency (see AN1337) and maximum output power. The MCP16251/2 is internally compensated, so the output capacitance range is limited. See Table 5-1 for the recommended output capacitor range. An output capacitance higher than 10 μ F adds a better load step response and high-frequency noise attenuation, especially while stepping from light current loads (PFM mode) to heavy current loads (PWM mode). A minimum of 20 μ F output capacitance is mandatory while the output drives load steps between heavy load levels. In addition, 2 x 10 μ F output capacitors ensure a better recovery of the output after a short period of overloading. While the N-Channel switch is on, the output current is supplied by the output capacitor C_{OUT} . The amount of output capacitance and equivalent series resistance will have a significant effect on the output ripple voltage. While C_{OUT} provides load current, a voltage drop also appears across its internal ESR that results in ripple voltage. #### **EQUATION 5-2:** $$I_{OUT} = C_{OUT} \times \left(\frac{dV}{dt}\right)$$ Where: dV = the ripple voltage and dt - ON time of the N-Channel switch (D x 1/F_{SW}, D is duty cycle) Table 5-1 contains the recommended range for the input and output capacitor value. TABLE 5-1: CAPACITOR VALUE RANGE | | C _{IN} | C _{OUT} | |---------|-----------------|------------------| | Minimum | 4.7 μF | 10 μF | | Maximum | none | 47 µF | #### 5.5 Inductor Selection The MCP16251/2 is designed to be used with small surface mount inductors; the inductance value can range from 2.2 μ H to 6.8 μ H. An inductance value of 4.7 μ H is recommended to achieve a good balance between the inductor size, converter load transient response and minimized noise. TABLE 5-2: MCP16251/2 RECOMMENDED INDUCTORS | INDUCTORS | | | | | | | | | |--------------------------|---------------|---|-------------------------|--------------------|--|--|--|--| | Part
Number | Value
(µH) | $\begin{array}{c} \textbf{DCR} \\ \Omega \text{ (typ)} \end{array}$ | I _{SAT}
(A) | Size
WxLxH (mm) | | | | | | Coiltronics [®] | | | | | | | | | | SD3112 | 4.7 | 0.246 | 0.80 | 3.1x3.1x1.2 | | | | | | SD3114 | 4.7 | 0.251 | 1.14 | 3.1x3.1x1.4 | | | | | | SD3118 | 4.7 | 0.162 | 1.31 | 3.8x3.8x1.2 | | | | | | SD25 | 4.7 | 0.0467 | 1.83 | 5.0x5.0x2.5 | | | | | | Wurth [®] Groเ | ıp | • | | | | | | | | WE-TPC
Type Tiny | 4.7 | 0.100 | 1.7 | 2.8x2.8x2.8 | | | | | | WE-TPC
Type TH | 4.7 | 0.200 | 0.8 | 2.8x2.8x1.35 | | | | | | WE-TPC
Type S | 4.7 | 0.105 | 0.90 | 3.8x3.8x1.65 | | | | | | WE-TPC
Type M | 4.7 | 0.082 | 1.65 | 4.8x4.8x1.8 | | | | | | Sumida Corp | ooration | 1 | | | | | | | | CMD4D06 | 4.7 | 0.216 | 0.75 | 3.5x4.3x2 | | | | | | CDRH4D | 4.7 | 0.09 | 0.800 | 4.6x4.6x1.5 | | | | | | Coilcraft | | | | | | | | | | XPL2010 | 4.7 | 0.336 | 0.75 | 1.9x2x1.0 | | | | | | ME3220 | 4.7 | 0.190 | 1.5 | 2.5x3.2x2.0 | | | | | | XFL3010 | 4.7 | 0.217 | 1.1 | 3x3x1.0 | | | | | | XFL3012 | 4.7 | 0.143 | 1.0 | 3x3x1.2 | | | | | | EPL3012 | 4.7 | 0.165 | 1.0 | 3x3x1.3 | | | | | | LPS4018 | 4.7 | 0.125 | 1.8 | 4x4x1.8 | | | | | | XFL4020 | 4.7 | 0.052 | 2.0 | 4x4x2.1 | | | | | | TDK Corpora | ation | | | | | | | | | VLS3015ET
-4R7M | 4.7 | 0.113 | 1.1 | 3x3x1.5 | | | | | | B82462
G4472M | 4.7 | 0.04 | 1.8 | 6x6x3 | | | | | | B82462
A4472M | 4.7 | 0.08 | 2.8 | 6x6x3 | | | | | Several parameters are used to select the correct inductor: maximum rated current, saturation current and copper resistance (ESR). For boost converters, the inductor current can be much higher than the output current. The lower the inductor ESR, the higher the efficiency of the converter, a common trade-off in size versus efficiency. The saturation current typically specifies a point at which the inductance has rolled off a percentage of the rated value. This can range from a 20% to 40% reduction in inductance. As the inductance rolls off, the inductor ripple current increases, as does the peak switch current. It is important to keep the inductance from rolling off too much, causing switch current to reach the peak limit. #### 5.6 Thermal Calculations The MCP16251/2 is available in two different packages (SOT-23-6 and 2 x 3 TDFN-8). By calculating the power dissipation and applying the package thermal resistance (θ_{JA}), the junction temperature is estimated. The maximum continuous junction temperature rating for the MCP16251/2 family of devices is +125°C. To quickly estimate the internal power dissipation for the switching boost regulator, an empirical calculation using measured efficiency can be used. Given the measured efficiency, the internal power dissipation is estimated by Equation 5-3. #### **EQUATION 5-3:** $$\left(\frac{V_{OUT} \times I_{OUT}}{Efficiency}\right) - \left(V_{OUT} \times I_{OUT}\right) = P_{Dis}$$ The difference between the first term, input power, and the second term, power delivered, is the internal MCP16251/2's power dissipation. This is an estimate assuming that most of the power lost is internal to the MCP16251/2 and not C_{IN} , C_{OUT} and the inductor. There is some percentage of power lost in the boost inductor, with very little loss in the input and output capacitors. For a more accurate estimation of internal power dissipation, subtract the $I_{INRMS}{}^2$ x L_{ESR} power dissipation. #### 5.7 PCB Layout Information Good printed circuit board layout techniques are important to any switching circuitry, and switching power supplies are no different. When wiring the switching high current paths, short and wide traces should be used. Therefore, it is important that the input and output capacitors be placed as close as possible to the MCP16251/2 to minimize the loop area. The feedback resistors and feedback signal should be routed away from the switching node and the switching current loop. When possible, ground planes and traces should be used to help shield the feedback signal and minimize noise and magnetic interference. FIGURE 5-1: MCP16251/2 SOT-23-6 Recommended Layout. FIGURE 5-2: MCP16251/2 TDFN-8 Recommended Layout. #### 6.0 TYPICAL APPLICATION CIRCUITS FIGURE 6-1: Manganese Lithium Coin Cell Application using I/O Bypass Mode. | | _ | _ | _ | \sim | | |---|-----|---|---|--------|---| | N | () | | _ | • | - | | | | | | | | #### 7.0 PACKAGING INFORMATION #### 7.1 **Package Marking Information** 6-Lead SOT-23 | Part Number | Code | |----------------|------| | MCP16251T-I/CH | MBNN | | MCP16252T-I/CH | MCNN | #### Example: #### 8-Lead TDFN (2x3x0.75) | Part Number | Code | |-----------------|------| | MCP16251T-I/MNY | ABP | | MCP16252T-I/MNY | ABQ | #### Example: Legend: XX...X Customer-specific information Year code (last digit of calendar year) YYYear code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) (e3) This package is Pb-free. The Pb-free JEDEC designator (can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. #### 6-Lead Plastic Small Outline Transistor (CH) [SOT-23] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | | 3 | |--------------------------|------------------|------|----------|------| | | Dimension Limits | MIN | NOM | MAX | | Number of Pins | N | | 6 | | | Pitch | е | | 0.95 BSC | | | Outside Lead Pitch | e1 | | 1.90 BSC | | | Overall Height | A | 0.90 | _ | 1.45 | | Molded Package Thickness | A2 | 0.89 | _ | 1.30 | | Standoff | A1 | 0.00 | _ | 0.15 | | Overall Width | E | 2.20 | _ | 3.20 | | Molded Package Width | E1 | 1.30 | - | 1.80 | | Overall Length | D | 2.70 | _ | 3.10 | | Foot Length | L | 0.10 | _ | 0.60 | | Footprint | L1 | 0.35 | _ | 0.80 | | Foot Angle | ф | 0° | - | 30° | | Lead Thickness | С | 0.08 | - | 0.26 | | Lead Width | b | 0.20 | _ | 0.51 | #### Notes: - 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side. - 2. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-028B #### 6-Lead Plastic Small Outline Transistor (CH) [SOT-23] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Units MILLIMETERS Dimension Limits MIN NOM MAX Contact Pitch 0.95 BSC Ε Contact Pad Spacing С 2.80 Contact Pad Width (X6) Х 0.60 Contact Pad Length (X6) Υ 1.10 Distance Between Pads G 1.70 Distance Between Pads 0.35 GΧ Overall Width 3.90 #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2028A #### 6-Lead Plastic Small Outline Transistor (CHY) [SOT-23] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | Units | | MILLIMETERS | | | |--------------------------
------------------|-------------|-----|------| | Dimen: | Dimension Limits | | NOM | MAX | | Number of Pins | N | 6 | | | | Pitch | е | 0.95 BSC | | | | Outside Lead Pitch | e1 | 1.90 BSC | | | | Overall Height | Α | 0.90 | _ | 1.45 | | Molded Package Thickness | A2 | 0.89 | _ | 1.30 | | Standoff | A1 | 0.00 | _ | 0.15 | | Overall Width | Е | 2.20 | _ | 3.20 | | Molded Package Width | E1 | 1.30 | _ | 1.80 | | Overall Length | D | 2.70 | _ | 3.10 | | Foot Length | L | 0.10 | _ | 0.60 | | Footprint | L1 | 0.35 | _ | 0.80 | | Foot Angle | ф | 0° | _ | 30° | | Lead Thickness | С | 0.08 | _ | 0.26 | | Lead Width | b | 0.20 | _ | 0.51 | #### Notes: - 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side. - 2. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-028B #### 6-Lead Plastic Small Outline Transistor (CHY) [SOT-23] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | Units | | MILLIMETERS | | | |-------------------------|----|-------------|------|------| | Dimension Limits | | MIN | NOM | MAX | | Contact Pitch | E | 0.95 BSC | | | | Contact Pad Spacing | С | | 2.80 | | | Contact Pad Width (X6) | Х | | | 0.60 | | Contact Pad Length (X6) | Υ | | | 1.10 | | Distance Between Pads | G | 1.70 | | | | Distance Between Pads | GX | 0.35 | | | | Overall Width | Z | | | 3.90 | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2028A ### 8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75mm Body [TDFN] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging **BOTTOM VIEW** Microchip Technology Drawing No. C04-129C Sheet 1 of 2 #### 8-Lead Plastic Dual Flat, No Lead Package (MN) – 2x3x0.75mm Body [TDFN] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | Units | | MILLIMETERS | | | | |------------------------|----|----------------|------|------|--| | Dimension Limits | | MIN | NOM | MAX | | | Number of Pins | N | 8 | | | | | Pitch | е | 0.50 BSC | | | | | Overall Height | Α | 0.70 0.75 0.80 | | | | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | | Contact Thickness | A3 | 0.20 REF | | | | | Overall Length | D | 2.00 BSC | | | | | Overall Width | Е | 3.00 BSC | | | | | Exposed Pad Length | D2 | 1.20 | - | 1.60 | | | Exposed Pad Width | E2 | 1.20 | - | 1.60 | | | Contact Width | b | 0.20 | 0.25 | 0.30 | | | Contact Length | L | 0.25 | 0.30 | 0.45 | | | Contact-to-Exposed Pad | K | 0.20 | | | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package may have one or more exposed tie bars at ends. - 3. Package is saw singulated - 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing No. C04-129C Sheet 2 of 2 #### 8-Lead Plastic Dual Flat, No Lead Package (MN) - 2x3x0.75 mm Body [TDFN] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | Units | | MILLIMETERS | | | | |----------------------------|----|-------------|------|------|--| | Dimension Limits | | MIN | NOM | MAX | | | Contact Pitch | Е | 0.50 BSC | | | | | Optional Center Pad Width | W2 | | | 1.46 | | | Optional Center Pad Length | T2 | | | 1.36 | | | Contact Pad Spacing | C1 | | 3.00 | | | | Contact Pad Width (X8) | X1 | | | 0.30 | | | Contact Pad Length (X8) | Y1 | | | 0.75 | | | Distance Between Pads | G | 0.20 | | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2129A **NOTES:** #### **APPENDIX A: REVISION HISTORY** #### Revision A (March 2013) • Original Release of this Document. **NOTES:** #### PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. | PART NO. | <u> Ұ</u> <u>-х</u> <u>/ҳх</u> | Exa | amples: | | |--------------------|---|-----|------------------|---| | |
ape Temperature Package
 Reel Range | a) | MCP16251T-I/CH: | Tape and Reel,
Industrial Temperature,
6LD SOT-23 package | | Device: | MCD16251T: Low Ouisecont Current DEM/DMM | b) | MCP16251T-I/MNY: | Tape and Reel,
Industrial Temperature,
8LD 2x3 TDFN package | | Device. | Device: MCP16251T: Low Quiescent Current, PFM/PWM Synchronous Boost Regulator, True Disconnect Output Shutdown Option (Tape and Reel) MCP16252T: Low Quiescent Current, PFM/PWM | | MCP16252T-I/CH: | Tape and Reel,
Industrial Temperature,
6LD SOT-23 package | | | Synchronous Boost Regulator, Input-to-Output
Bypass Shutdown Option (Tape and Reel) | b) | MCP16252T-I/MNY: | Tape and Reel,
Industrial Temperature,
8LD 2x3 TDFN package | | Temperature Range: | I = -40°C to+85°C(Industrial) | | | | | Package: | CH = Plastic Small Outline Transistor (SOT-23), 6-lead
MNY= Lead Plastic Dual Flat, No Lead Package
(2x3x0.75 mm TDFN), 8-lead | | | | | | *Y = Nickel palladium gold manufacturing designator. | | | | **NOTES:** #### Note the following details of the code protection feature on Microchip devices: - · Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-62077-122-8 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and
wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. ## **Worldwide Sales and Service** #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC **Asia Pacific Office** Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 **China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 **China - Hangzhou** Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 **China - Nanjing** Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tal: 86-523-8563-7355 Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 **China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 **China - Shenyang** Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 **China - Shenzhen** Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 **China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 **China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130 **China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 **Japan - Osaka** Tel: 81-66-152-7160 Fax: 81-66-152-9310 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 **Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302 **Korea - Seoul** Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 **Taiwan - Hsin Chu** Tel: 886-3-5778-366 Fax: 886-3-5770-955 **Taiwan - Kaohsiung**Tel: 886-7-536-4818 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 **Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Tel: 31-416-690399 Fax: 31-416-690340 **Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820 11/29/11 ## **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: ## Microchip: MCP16252T-I/CH MCP16251T-I/CH MCP16251T-I/MNY MCP16252T-I/MNY