
BOURNS®

- Designed for Complementary Use with the BD245 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

MDTRAAA

1

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	BD246		-55	
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD246A	V	-70	v
	BD246B	V _{CER}	-90	v
	BD246C		-115	
	BD246		-45	
Collector emitter voltage (I = 20 mA)	BD246A	V	-60	V
Collector-emitter voltage (I _C = -30 mA)	BD246B	V _{CEO}	-80	
	BD246C		-100	
Emitter-base voltage	V _{EBO}	-5	V	
Continuous collector current			-10	Α
Peak collector current (see Note 1)			-15	Α
Continuous base current			-3	Α
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			80	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			3	W
Unclamped inductive load energy (see Note 4)			62.5	mJ
Operating junction temperature range			-65 to +150	°C
Storage temperature range			-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds			250	°C

NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.

- 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
- 3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.
- 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

electrical characteristics at 25°C case temperature

	PARAMETER		TEST CONDITION	ONS	MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = -30 mA (see Note 5)	I _B = 0	BD246 BD246A BD246B BD246C	-45 -60 -80 -100			V
I _{CES}	Collector-emitter cut-off current	$V_{CE} = -55 V$ $V_{CE} = -70 V$ $V_{CE} = -90 V$ $V_{CE} = -115 V$	$V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$	BD246 BD246A BD246B BD246C			-0.4 -0.4 -0.4 -0.4	mA
I _{CEO}	Collector cut-off current	$V_{CE} = -30 \text{ V}$ $V_{CE} = -60 \text{ V}$	I _B = 0 I _B = 0	BD246/246A BD246B/246C			-0.7 -0.7	mA
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	I _C = 0				-1	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = -4 V$ $V_{CE} = -4 V$ $V_{CE} = -4 V$	$I_C = -1 A$ $I_C = -3 A$ $I_C = -10 A$	(see Notes 5 and 6)	40 20 4			
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = -0.3 \text{ A}$ $I_B = -2.5 \text{ A}$	$I_C = -3 A$ $I_C = -10 A$	(see Notes 5 and 6)			-1 -4	V
V _{BE}	Base-emitter voltage	$V_{CE} = -4 V$ $V_{CE} = -4 V$	$I_C = -3 A$ $I_C = -10 A$	(see Notes 5 and 6)			-1.6 -3	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = -10 V	I _C = -0.5 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%.

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.56	°C/W
$R_{\theta,JA}$	Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = -1 A	$I_{B(on)} = -0.1 A$	$I_{B(off)} = 0.1 A$		0.2		μs
t _{off}	Turn-off time	$V_{BE(off)} = 3.7 \text{ V}$	$R_1 = 20 \Omega$	$t_{\rm p} = 20 \ \mu s, \ dc \le 2\%$		0.8		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

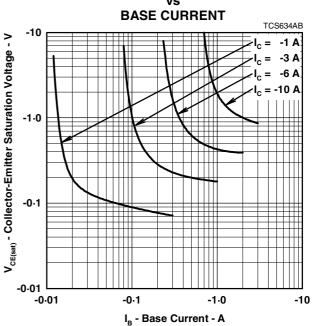
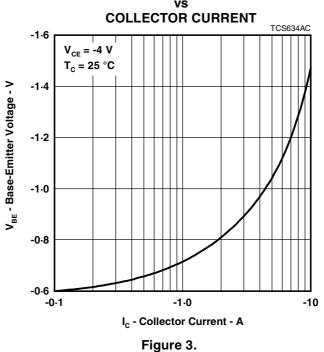
^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

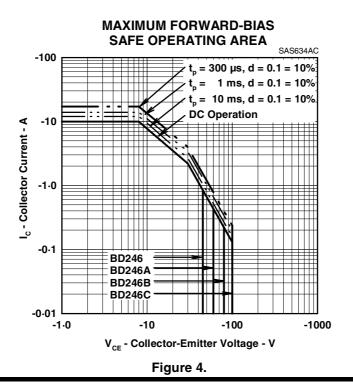
TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT $T_{CS634AG}$ $T_{C} = 25^{\circ}C$ $T_{C} = 300 \, \mu s, \, duty \, cycle < 2\%$ $T_{C} = 25^{\circ}C$ T

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE vs


Figure 2.

BASE-EMITTER VOLTAGE

PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

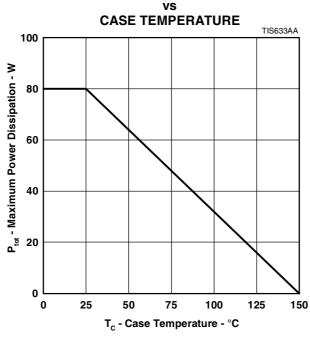


Figure 5.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Bourns:

BD246C BD246A BD246B BD545C BD545B BD545A BD245 BD246 BD245C BD245B BD245A BD246B-S BD546C-S BD546A-S BD546A-S BD546B-S BD546C-S BD546C-S BD546C-S