

DATA SHEET

THICK FILM CHIP RESISTORS
AUTOMOTIVE GRADE

AC series ±5%, ±1%, ±0.5%

Sizes 0201/0402/0603/0805/1206/ 1210/1218/2010/2512

RoHS compliant & Halogen free

YAGEO Phícomp

SCOPE

This specification describes AC0201 to AC2512 chip resistors with leadfree terminations made by thick film process.

APPLICATIONS

- All general purpose applications
- Car electronics, industrial application

FEATURES

- AEC-Q200 qualified
- Moisture sensitivity level: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
 - Products with lead-free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AC XXXX X X X XX XXXX L

(2) (3) (4) (5) (7)(1)

(I) SIZE

0201/0402/0603/0805/1206/1210/1218/2010/2512

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $= \pm 5\%$ (for Jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reel K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel	10 = 10 inch dia. Reel
13 = 13 inch dia. Reel	7W = 7 inch dia. Reel & 2 x standard power

(6) RESISTANCE VALUE

I Ω to 22 M Ω

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

number						
Example						
$10R = 10\Omega$ $97R6 = 97.6\Omega$						
$100R = 100\Omega$ $976R = 976\Omega$						
$1K = 1,000\Omega$ $9K76 = 9760\Omega$						
$IM = 1,000,000\Omega$ $9M76 = 9,760,000\Omega$						
$10M = 10,000,000\Omega$						

Desistance mule of global part

ORDERING EXAMPLE

The ordering code for an AC0402 chip resistor, value 100 K Ω with ±1% tolerance, supplied in 7-inch tape reel is: AC0402FR-07100KL.

NOTE

- I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process".
- 2. On customized label, "LFP" or specific symbol can be printed.
- 3. AC series with ±0.5% tolerance is also available. For further information, please contact sales.

12

Chip Resistor Surface Mount

AC SERIES

0201 to 2512

AC0201 / AC0402

No marking

--Fig. I

AC0603 / AC0805 / AC1206 / AC1210 / AC2010 / AC2512

E-24 series: 3 digits, ±5%

First two digits for significant figure and 3rd digit for number of zeros

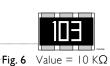
AC0603

E-24 series: 3 digits, ±1% & ±0.5% One short bar under marking letter

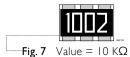
Fig. 3 Value = 24Ω

E-96 series: 3 digits, ±1% & ±0.5%

First two digits for E-96 marking rule and 3rd letter for number of zeros


AC0805 / AC1206 / AC1210 / AC2010 / AC2512

Both E-24 and E-96 series: 4 digits, ±1% & ±0.5%


First three digits for significant figure and 4th digit for number of zeros

AC1218

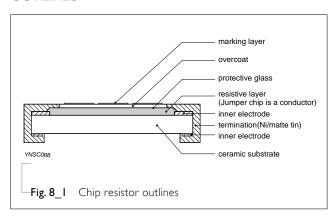
E-24 series: 3 digits, ±5%

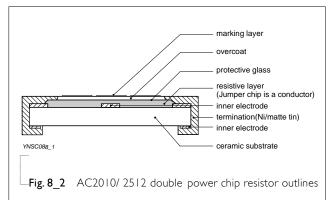
First two digits for significant figure and 3rd digit for number of zeros

Both E-24 and E-96 series: 4 digits, ±1% & ±0.5%

First three digits for significant figure and 4th digit for number of zeros

NOTE

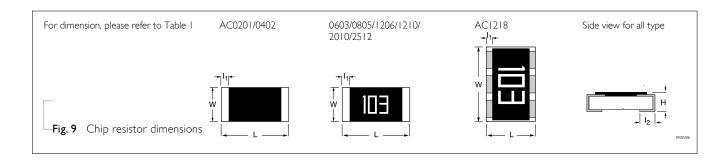

 $For further marking information, please \ refer \ to \ data \ sheet \ ``Chip \ resistors \ marking". \ Marking \ of \ AC \ series \ is \ the \ same \ as \ RC \ series.$


CONSTRUCTION

The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a protective glass. The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this

resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added, as shown in Fig.8.

OUTLINES



DIMENSIONS

Table I For outlines, please refer to Fig. 9

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
AC0201	0.60±0.03	0.30±0.03	0.23±0.03	0.12±0.05	0.15±0.05
AC0402	1.00 ±0.05	0.50 ±0.05	0.32 ±0.05	0.20 ±0.10	0.25 ±0.10
AC0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
AC0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
AC1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20
AC1210	3.10 ±0.10	2.60 ±0.15	0.55 ±0.10	0.45 ±0.15	0.50 ±0.20
AC1218	3.10 ±0.10	4.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20
AC2010	5.00 ±0.10	2.50 ±0.15	0.55 ±0.10	0.55 ±0.15	0.50 ±0.20
AC2512	6.35 ±0.10	3.10 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20

5 12

Chip Resistor Surface Mount AC SERIES 0201 to 2512

ELECTRICAL CHARACTERISTICS

Table 2

	CHARACTERISTICS							
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
						5% (E24)	$1\Omega \le R \le 10\Omega$	Rated Current
						$ \Omega \le R \le 10M\Omega$	-100/+350ppm°C	0.5A
		− 55 °C to				1% (E24/E96)	$10\Omega < R \le 10M$	Maximum
AC0201	1/20 W	155 °C	25V	50V	50V	$1\Omega \le R \le 10M\Omega$	±200ppm°C	Current
		155 C				0.5% (E24/E96)		1.0A
						$10\Omega \le R \le IM\Omega$		
						Jumper $\!<$ 50m $\!\Omega$		
						5% (E24)	$1\Omega \le R \le 10\Omega$	Rated Current
	1/16 W	-55 °C to 1/16 W 155 °C	50V			$I\Omega \le R \le 22M\Omega$	±200ppm°C	IA
				100V	100V	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
						$1\Omega \le R \le 10M\Omega$	±100ppm°C	Current
						Jumper<50mΩ	$10M\Omega < R \le 22M\Omega$	2A
AC0402							±200ppm°C	
		-55 °C to 1/8W 155 °C	50V	100V	100V 100V	5% (E24)	$1\Omega \le R \le 10\Omega$	
	I /O\ A /					$1\Omega \le R \le 10M\Omega$	±200 ppm°C	
	1/0 V V					0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
						$ \Omega \le R \le 10M\Omega$	±100 ppm°C	
						5% (E24)	$1\Omega \le R \le 10\Omega$	Rated Current
						$1\Omega \le R \le 22M\Omega$	±200ppm°C	IA
		− 55 °C to				0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
	1/10 W	155 °C	75V	150V	150V	$1\Omega \le R \le 10M\Omega$	±100ppm°C	Current
						Jumper<50mΩ	$10M\Omega < R \le 22M\Omega$	2A
AC0603							±200ppm°C	
						5% (E24)	IΩ≤R≤I0Ω	
	1/5 \ \ /	− 55 °C to	75.	150	1501	$1\Omega \le R \le 10M\Omega$	±200 ppm°C	
	1/5 W	155 °C	75V	150V	150V	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
						$1\Omega \le R \le 10M\Omega$	±100 ppm°C	

1/8 W -55 °C to 150 V 300 V			CHARACTERISTICS									
1/8 W	TYPE	POWER	Temperature	Working	Overload	Withstanding			Jumper Criteria			
1/8 W							5% (E24)	IΩ≤R≤ I0Ω	Rated Current			
1/8 W							$1\Omega \le R \le 22 M\Omega$	±200ppm°C	2A			
AC0805 AC080			-55 °C to	1501	2001	2001/	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum			
AC0805 1/4 W	AC0805	1/8 W	155 °C	150V	300V	300V	$1\Omega \le R \le 10M\Omega$	±100ppm°C	Current			
1/4 W							Jumper $<$ 50m Ω	$10M\Omega < R \le 22M\Omega$	5A			
1/4 \rangle -55 °C to 150 \rangle 300 \rangle 300 \rangle 10 \rangle \rangle \rangle 10 \rangle \rangle \rangle 100 \rangle \rangle \rangle \rangle 100 \rangle \								±200ppm°C				
1/4 W							5% (E24)	$ \Omega \le R \le 0\Omega $				
155 °C 0.5% 1% (E24/E96) 10Ω < R ≤ 10MΩ ±100 ppm°C 1/4 W		1/4 W	− 55 °C to	150V	300V	300V	$1\Omega \le R \le 10M\Omega$	±200 ppm°C				
1/4 W		17 1 VV	155 °C	155 °C	1501	3001	3001	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$			
AC1206							$1\Omega \le R \le 10M\Omega$	±100 ppm°C				
AC1206 AC120		1/4 W	1/4 W	200V	400V		5% (E24)	$1\Omega \le R \le 10\Omega$	Rated Current			
AC1206 AC120							$I\Omega \le R \le 22M\Omega$	±200ppm°C	2A			
AC1206 AC120						500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum			
AC12106 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						300	$1\Omega \le R \le 10M\Omega$	±100ppm°C	Current			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AC1204						Jumper $\!<$ 50m Ω	$10M\Omega < R \le 22M\Omega$	10A			
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	AC1200							±200ppm°C				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				200V	400V	OV 500V	5% (E24)	$ \Omega \le R \le 0\Omega $				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/2 W	− 55 °C to				$1\Omega \le R \le 10M\Omega$	±200 ppm°C				
AC1210			155 °C				0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$				
AC1210							$1\Omega \le R \le 10M\Omega$	±100 ppm°C				
AC1210 AC1210							5% (E24)	$1\Omega \le R \le 10\Omega$	Rated Current			
AC1210 AC1210 $155 ^{\circ}\text{C}$ $155 ^{\circ}\text{C}$ $155 ^{\circ}\text{C}$ $100 \text{M} \Omega \leq \text{R} \leq 10 \text{M} \Omega \qquad \pm 100 \text{ppm} \text{°C} \qquad 100 \text{M} \Omega \leq \text{R} \leq 22 \text{M} \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 22 \text{M} \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{R} \leq 100 \Omega \qquad 100 \text{M} \Omega \leq \text{M} \Omega \qquad 100 \Omega \leq \text$							$1\Omega \le R \le 22M\Omega$	±200ppm°C	2A			
AC1210 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/2 W	− 55 °C to	200V	500V	500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum			
AC1210 $ \frac{\pm 200 \text{ppm}^{\circ}\text{C}}{1 \text{ W}} = \frac{5\% \text{ (E24)}}{155 \text{ °C}} = \frac{5\% \text{ (E24)}}{500 \text{ V}} = \frac{5\% \text{ (E24)}}{500 \text{ V}} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{0.5\%, 1\% \text{ (E24/E96)}} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \text{M}\Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = \frac{1 \Omega \leq \text{R} \leq 10 \Omega}{10 \Omega \leq \text{R} \leq 10 \Omega} = 1 \Omega \leq \Omega \leq 1$			155 °C				$1\Omega \le R \le 10M\Omega$	±100ppm°C	Current			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AC1210						Jumper $\!<$ 50m Ω	$10M\Omega < R \le 22M\Omega$	10A			
-55 °C to 200V 500V $1Ω ≤ R ≤ 10MΩ$ ±200 ppm°C 0.5%, 1% (E24/E96) $10Ω < R ≤ 10MΩ$	ACIZIO							±200ppm°C				
1 W 200V 500V 500V 500V 155 °C 0.5%, 1% (E24/E96) 10Ω < R ≤ 10MΩ							5% (E24)	$1\Omega \le R \le 10\Omega$				
155 °C 0.5%, 1% (E24/E96) 10Ω < R ≤ 10MΩ		IW		200V	200V 500V	500V	$1\Omega \le R \le 10M\Omega$	±200 ppm°C				
10 20 21040			155 °C				0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$				
177 ≥ K ≥ 101 pbm C							$1\Omega \le R \le 10M\Omega$	±100 ppm°C				

7 12

CHARACTERISTICS								
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
						5% (E24)	$1\Omega \le R \le 10\Omega$	Rated Current
		-55 °C to				$I\Omega \le R \le IM\Omega$	±200ppm°C	6A
	IW	155 °C	200V	500V	500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 1M\Omega$	Maximum
4.61010		133 C				$I\Omega \le R \le IM\Omega$	±100ppm°C	Current
AC1218						Jumper $<$ 50m Ω		10A
						5% (E24)	$1\Omega \le R \le 10\Omega$	
	1.5W	− 55 °C to	200V	500V	500V	$1\Omega \le R \le 1M\Omega$	±200 ppm°C	
	1,5 V V	155 °C	200 v	300 v	300 V	0.5%, 1% (E24/E96)	$10\Omega < R \le 1M\Omega$	
						$ \Omega \le R \le M\Omega $	±100 ppm°C	
	3/4 W	–55 °C to 3/4 W I55 °C				5% (E24)	$1\Omega \le R \le 10\Omega$	Rated Current
			200V	500V	500V 500V	$1\Omega \le R \le 22M\Omega$	±200ppm°C	2A
						0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
						$1\Omega \le R \le 10M\Omega$	±100ppm°C	Current
A C2010						Jumper<50mΩ	$10M\Omega < R \le 22M\Omega$	10A
AC2010							±200ppm°C	
			200V		500V	5% (E24)	$1\Omega \le R \le 10\Omega$	
	1.25W	− 55 °C to		500V		$1\Omega \le R \le 10M\Omega$	±200 ppm°C	
	1.23 V V	.23 vv		300V		0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
						$1\Omega \le R \le 10M\Omega$	±100 ppm°C	
						5% (E24)	$1\Omega \le R \le 10\Omega$	Rated Current
						$1\Omega \le R \le 22M\Omega$	±200ppm°C	2A
	IW	− 55 °C to	200V	500V	500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
	1 **	155 °C	200 V	300 V	300 V	$1\Omega \le R \le 10M\Omega$	±100ppm°C	Current
A C 2 E 1 2						Jumper $\!<$ 50m Ω	$10M\Omega < R \le 22M\Omega$	10A
AC2512							±200ppm°C	
						5% (E24)	$1\Omega \le R \le 10\Omega$	
	2W	− 55 °C to	200V	400V	500V	$1\Omega \le R \le 10M\Omega$	±200 ppm°C	
	∠ ٧٧	155 °C	200 V	+00∀	3000	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
						$1\Omega \le R \le 10M\Omega$	±100 ppm°C	

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AC0201	AC0402	AC0603	AC0805	AC1206	AC1210	AC1218	AC2010	AC2512
Paper taping reel (R)	7" (178 mm)	10,000	10,000	5,000	5,000	5,000	5,000			
	10" (254 mm)	20,000	20,000	10,000	10,000	10,000	10,000			
	13" (330 mm)	50,000	50,000	20,000	20,000	20,000	20,000			
Embossed taping reel (K)	7" (178 mm)							4,000	4,000	4,000

NOTE

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C:

AC0201=1/20W (0.05W)

AC0402=1/16W (0.0625W); 1/8W (0.125W)

AC0603=1/10W (0.1W); 1/5W (0.2W)

AC0805=1/8W (0.125W); 1/4 W(0.25 W)

ACI206=I/4W (0.25W); 1/2 W (0.5 W)

AC1210=1/2W (0.5W); IW

AC1218=1W; 1.5W

AC2010=3/4W (0.75W); 1.25W

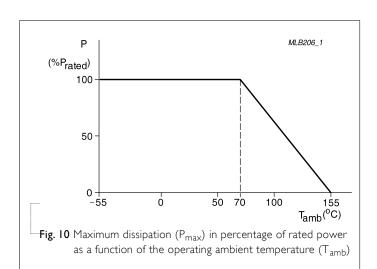
AC2512=1 W; 2W

RATED VOLTAGE

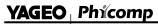
The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$

Or Maximum working voltage whichever is less


Where

V = Continuous rated DC or AC (rms) working


voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

^{1.} For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at T _A = 155 °C, unpowered	$\pm (1.0\% + 0.05 \Omega)$ for D/F tol $\pm (2.0\% + 0.05 \Omega)$ for J tol <50 m Ω for Jumper
Moisture Resistance	AEC-Q200 Test 6 MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$\pm (0.5\% + 0.05 \Omega)$ for D/F tol $\pm (2.0\% + 0.05 \Omega)$ for J tol $<$ 100 m Ω for Jumper
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	I,000 hours; 85 °C / 85% RH I0% of operating power Measurement at 24±4 hours after test conclusion.	$\pm (1.0\% + 0.05 \Omega)$ for D/F tol $\pm (3.0\% + 0.05 \Omega)$ for J tol $< 100~\text{m}\Omega$ for Jumper
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for J tol <100 m Ω for Jumper
Resistance to Soldering Heat	Condition B, no pre near or samples		$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (1.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper No visible damage
Thermal Shock	AEC-Q200 Test 16 MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (1.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper
ESD AEC-Q200 Test 17 AEC-Q200-002		Human Body Model, I pos. + I neg. discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	$\pm (3.0\% + 0.05 \ \Omega)$ <50 m Ω for Jumper

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds. (c) Method D, steam aging 8 hours, dipping at 260±3 °C for 7±0.5 seconds.	Well tinned (≥95% covered) No visible damage
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 90mm glass epoxy resin PCB (FR4) Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds	\pm (1.0%+0.05 Ω) <50 m Ω for Jumper
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 2
		Formula: $T.C.R = \frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$ Where $t_1 = +25 \text{ °C or specified room temperature}$ $t_2 = -55 \text{ °C or } +125 \text{ °C test temperature}$ $R_1 = \text{resistance at reference temperature in ohms}$ $R_2 = \text{resistance at test temperature in ohms}$	
Short Time Overload	IEC60115-1 4.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper
FOS	ASTM-B-809-95	Sulfur (saturated vapor) 500 hours, 60±2°C, unpowered	±(1.0%+0.05 Ω)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 6	May 31, 2017	-	- Add 10" packing
Version 5	Dec. 07, 2015	-	- Add in AC double power
Version 4	May 25, 2015	-	- Remove 7D packing
			- Extend resistance range
			- Add in AC0201
			- Update FOS test and requirements
Version 3	Feb 13, 2014	=	- Feature description updated
			- add ±0.5%
			- delete 10" taping reel
Version 2	Feb. 10, 2012	-	- Jumper criteria added
			- AC1218 marking and outline figure updated
Version I	Feb. 01, 2011	-	- Case size 1210, 1218, 2010, 2512 extended
			- Test method and procedure updated
			- Packing style of 7D added
Version 0	Nov. 10, 2010	-	- First issue of this specification

0201 to 2512

LEGAL DISCLAIMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Yageo:

AC0805FR-7W499RL AC0805FR-7W49K9L AC0805FR-7W4K99L AC0805FR-7W5K1L AC0805FR-7W5K9L AC0402FR-7W100RL AC2512JK-071K1L AC2512JK-07130RL AC2512FK-0751R1L AC0603DR-0744K2L AC0603FR-072R87L AC0805FR-7W20KL AC2010JK-076K8L AC2512JK-0739KL AC2512JK-0743RL AC2512JK-074K3L AC2512JK-0762RL AC2512JK-07820RL AC1210JR-0715KL AC1210JR-0715RL AC1210JR-075K6L AC1210JR-0775RL AC2010FK-07182RL AC2010FK-07511RL AC0805FR-7W16K9L AC0805FR-7W200RL AC0805FR-7W825KL AC1210FR-073K01L AC1210FR-07549RL AC1210FR-07649RL AC0402FR-7W56KL AC0402FR-7W5K6L AC0603FR-7W1KL AC0805FR-7W100KL AC0805FR-7W100RL AC0805FR-7W10KL AC0402FR-7W3K3L AC0402FR-7W499RL AC0402FR-7W49K9L AC0402FR-7W4K75L AC0402FR-7W4K7L AC0402FR-7W4K99L AC0402FR-7W20KL AC0402FR-7W22KL AC0402FR-7W2K2L AC0402FR-7W2KL AC0402FR-7W330RL AC0402FR-7W39KL AC0805FR-0727R4L AC0805FR-0736K5L AC0805FR-0737R4L AC0402FR-7W1ML AC0402FR-7W200KL AC0402FR-7W200RL AC0402JR-07510KL AC0402JR-07620KL AC0402JR-07240KL AC0805FR-071K37L AC0805FR-0745K3L AC1206FR-0736R5L AC0201FR-0712K1L AC0201FR-07750KL AC0402JR-07270KL AC0402JR-07620RL AC0402JR-07820KL AC0402JR-07910RL AC0201FR-071K1L AC0201FR-071K43L AC0201FR-07681KL AC0201FR-07681RL AC0201FR-076K04L AC0201FR-071K24L AC0805FR-135K6L AC0805FR-132K15L AC0805FR-1313K7L AC1206FR-13374RL AC1210FR-7W1R5L AC0805FR-132K2L AC0603FR-1345K3L AC1206FR-1360R4L AC1206JR-132K2L AC1206FR-1328RL AC0805FR-136K49L AC0805FR-132K7L AC0805FR-138K2L AC0603FR-1332K4L AC1218JK-0736RL AC0805FR-1382KL AC0603FR-13178KL AC1206FR-7W20RL AC1206FR-0722K6L AC1210FR-0733K2L AC1206FR-078R66L AC1206FR-7W20KL AC0603JR-1322KL AC0201FR-0716K2L AC0201FR-07453KL AC0201FR-0724K3L AC0402FR-072M05L AC0603JR-131K5L