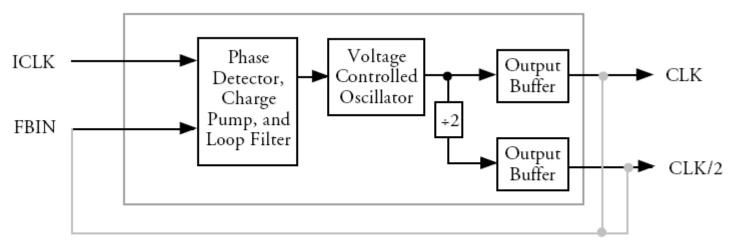


LOW PHASE NOISE ZERO DELAY BUFFER

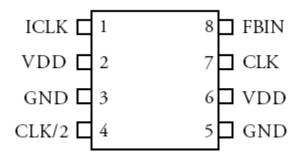
ICS571

Description


The ICS571 is a high speed, high output drive, low phase noise Zero Delay Buffer (ZDB) which integrates IDT's proprietary analog/digital Phase Locked Loop (PLL) techniques. IDT introduced the world standard for these devices in 1992 with the debut of the AV9170, and updated that with the ICS570. The ICS571, part of IDT's ClockBlocks™ family, was designed to operate at higher frequencies, with faster rise and fall times, and with lower phase noise. The zero delay feature means that the rising edge of the input clock aligns with the rising edges of both outputs, giving the appearance of no delay through the device. There are two outputs on the chip, one being a low-skew divide by two of the other.

The chip is ideal for synchronizing outputs in a large variety of systems, from personal computers to data communications to video. By allowing offchip feedback paths, the ICS571 can eliminate the delay through other devices. The use of dividers in the feedback path will enable the part to multiply by more than two.

Features


- Packaged in 8-pin SOIC (Pb free)
- Can function as low phase noise x2 multiplier
- Low skew outputs. One is ÷2 of other
- Input clock frequency up to 160 MHz at 3.3 V
- Phase noise of better than -100 dBc/Hz from 1 kHz to 1 MHz offset from carrier
- · Can recover poor input clock duty cycle
- Output clock duty cycle of 45/55 at 3.3 V
- High drive strength for >100 MHz outputs
- Full CMOS clock swings with 25 mA drive capability at TTL levels
- · Advanced, low power CMOS process
- Operating voltages of 3.0 to 5.5 V

Block Diagram

External feedback can come from CLK or CLK/2 (see table on page 2).

Pin Assignment

Feedback Configuration Table and Frequency Ranges (at 3.3 V)

Feedback From	CLK	CLK/2	Input Range
CLK	Input clock frequency	Input clock frequency/2	20 to 160 MHz
CLK/2	2x Input clock frequency	Input clock frequency	10 to 80 MHz

Pin Descriptions

Pin Number	Pin Name	Pin Type	Pin Description
1	ICLK	CI	Reference clock input.
2	VDD	Р	Connect to +3.3 V or +5 V. Must be same as other VDD.
3	GND	Р	Connect to ground.
4	CLK/2	0	Clock output per table above. Low skew divide by two of pin 7 clock.
5	GND	Р	Connect to ground.
6	VDD	Р	Connect to +3.3 V or +5 V. Must be same as other VDD.
7	CLK	0	Clock output per table above.
8	FBIN	CI	Feedback clock input. Connect to CLK or CLK/2 per table above.

Key: CI = clock input; I = input; O = output; P = power supply connection.

External Components

The ICS571 requires a minimum number of external components for proper operation.

A decoupling capacitor of 0.01µF must be connected between VDD and GND on each side of the chip (between

pins 2 and 3, and between pins 6 and 5). They must be connected close to the ICS571 to minimize lead inductance. No external power supply filtering is required for this device. A 33Ω terminating resistor can be used next to each output pin.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS571. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Item	Rating
Supply Voltage, VDD, referenced to GND	7 V
Inputs, referenced to GND	-0.5 V to VDD+0.5 V
Clock Output, referenced to GND	-0.5 V to VDD+0.5 V
Storage Temperature	-65 to +150° C
Soldering Temperature, max of 10 seconds	260° C
Ambient Operating Temperature	0 to +70° C

DC Electrical Characteristics

Unless stated otherwise, **VDD = 5.0 V or 3.3 V**, Ambient Temperature 0 to +70° C

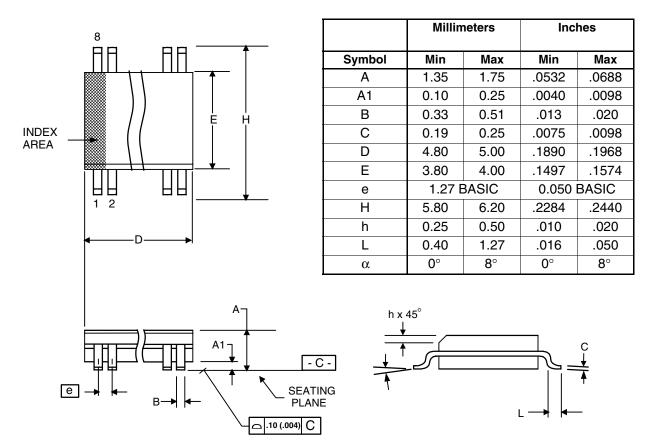
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Operating Supply Voltage	VDD		3		5.5	V
Input High Voltage	V _{IH}	ICLK, FBIN (pins 1 and 8)	VDD/2+1	VDD/2		V
Input Low Voltage	V _{IL}	ICLK, FBIN (pins 1 and 8)		VDD/2	VDD/2-1	V
Output High Voltage, CMOS level	V _{OH}	I _{OH} = -4 mA	VDD-0.4			V
Output High Voltage	V _{OH}	I _{OH} = -25 mA	2.4			V
Output Low Voltage	V _{OL}	I _{OL} = 25 mA			0.4	V
IDD Operating Supply Current, 133 in, 133 out		No load, 3.3 V		34		mA
IDD Operating Supply Current, 50 in, 100 out		No load, 3.3 V		26		mA
Short Circuit Current	Ios	Each output		±100		mA
Input Capacitance	C _{IN}	ICLK, FBIN		5		pF

AC Electrical Characteristics

Unless stated otherwise, **VDD = 5.0 V or 3.3 V**, Ambient Temperature 0 to +70° C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Frequency, clock input	f _{IN}	FB from CLK	20		160	MHz
Input Frequency, clock input	f _{IN}	FB from CLK/2	10		80	MHz
Skew CLK/2 with respect to CLK		Note 2	150	500	850	ps
Input clock to output connected to FBIN		Note 2	-500		500	ps
Output Clock Rise Time, 5 V		0.8 to 2.0 V, 15 pF load		0.3		ns
Output Clock Fall Time, 5 V		2.0 to 0.8 V, 15 pF load		0.4		ns
Output Clock Rise Time, 3.3 V		0.8 to 2.0 V, 15 pF load		0.45		ns
Output Clock Fall Time, 3.3 V		2.0 to 0.8 V, 15 pF load		0.55		ns
Input Clock Duty Cycle, 3.3 V		fin = 150 MHz	20		80	%
Output Clock Duty Cycle, 3.3 V		At VDD/2	45	49 to 51	55	%
Absolute Clock Period Jitter, CLK, Note 3		Deviation from Mean		±80		ps
One-Sigma Clock Period Jitter, CLK, Note 3				50		ps
Phase Noise, Relative to carrier		1 kHz offset		-105		dBc/Hz
Phase Noise, Relative to carrier		100 kHz offset		-115		dBc/Hz

Notes:


- 1. Sresses beyond these can permanently damage the device.
- 2. Assumes clocks with the same rise time, measured from rising edges at VDD/2. Measured with 33Ω termination resistors and 15 pF loads. Applies to both 3.3 V and 5 V operation.
- 3. CLK/2 has lower jitter (both absolute and one sigma, in ps) than CLK.

Thermal Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Thermal Resistance Junction to	θ_{JA}	Still air				° C/W
Ambient	θ_{JA}	1 m/s air flow				° C/W
	θ_{JA}	3 m/s air flow				° C/W
Thermal Resistance Junction to Case	θ_{JC}					° C/W

Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
571MLF	571MLF	Tubes	8-pin SOIC	0 to +70° C
571MLFT		Tape and Reel	8-pin SOIC	0 to +70° C

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/