RECTIFIER, up to 150V, 1.8A, 30ns

1N6073 1N6074

1N6075

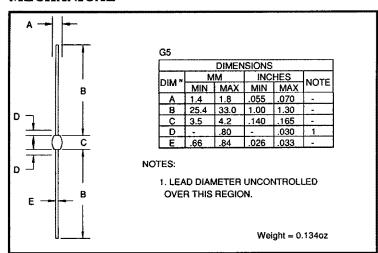
FF15 FF15

January 7, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

AXIAL LEADED HERMETICALLY SEALED SUPERFAST RECTIFIER DIODE

- · Very low reverse recovery time
- Hermetically sealed in Metoxilite fused metal oxide
- Low switching losses
- Low forward voltage drop
- Soft, non-snap off, recovery characteristics


QUICK REFERENCE DATA

- $V_R = 50 150V$
- $I_F = 1.8A$
- $t_{rr} = 30nS$
- $V_F = 1.2V$

ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified)

	Symbol	1N6073 FF05	1N6074 FF10	1N6075 FF15	Unit
Working reverse voltage	V _{RWM}	50	100	150	V
Repetitive reverse voltage	V _{RRM}	50	100	150	V
Average forward current (@ 55°C, lead length = 0.375")	I _{F(AV)}	—		_	Α
Repetitive surge current (@ 55°C, lead length = 0.375")	I _{FRM}	4			Α
Non-repetitive surge current (tp = 8.3 ms, @ V_R & T_{jmax})	IFSM	-	— 35.0 —		A
Storage temperature range Operating temperature range	T _{STG} T _{OP}	4	· -65 to +150 · -65 to +150		°C

MECHANICAL

These products are qualified to MIL-S-19500/503.

They can be supplied fully released as JAN, JANTX, and JANTXV versions.

These products are qualified in Europe to DEF STAN 59-61 (PART 80)/029 available to F and FX levels.

1N6073 1N6074 1N6075 FF05 FF10 FF15

January 7, 1998

ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified)

	Symbol	1N6073 FF05	1N6074 FF10	1N6075 FF15	Unit
Average forward current max. (pcb mounted; T _A = 55°C) for sine wave for square wave (d = 0.5)	I _{F(AV)} I _{F(AV)}	-	0.85 0.90		A A
Average forward current max. $T_L = 70^{\circ}\text{C}$; $L = 0$ ". $T_L = 55^{\circ}\text{C}$; $L = 3/8$ "	I _{F(AV)}	-	3.0		A
for sine wave for square wave	IF(AV) IF(AV)	*			A A A ² S
I ² t for fusing (t = 8.3mS) max. Forward voltage drop max. @ I _F = 1.5A, T _i = 25°C	I ² t V _F		5.0 1.2		A-5 V
Reverse current max. @ V_{RWM} , $T_j = 25^{\circ}C$ @ V_{RWM} , $T_j = 100^{\circ}C$	I _R	<u> </u>	1.0 50	 →	μΑ μΑ
Reverse recovery time 0.5A If, 1.0A IR, 0.25A IRR.	t _{rr}	-	— 30 —		nS
Junction capacitance typ. @ V _R = 5V , f = 1MHz	C _j		28		ρF

THERMAL CHARACTERISTICS

	Symbol	1N6073 FF05	1N6074 FF10	1N6075 FF15	Unit
Thermal resistance - junction to lead Lead length = 0.375" Lead length = 0.0" Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper.	Rejl Rejl Reja		46 — 13 — 95 —		°C/W °C/W °C/W

1N6073 1N6074

1N6075

FF05 FF10 FF15

January 7, 1998

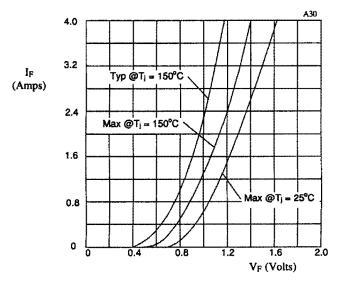


Fig 1. Forward voltage drop as a function of forward current.

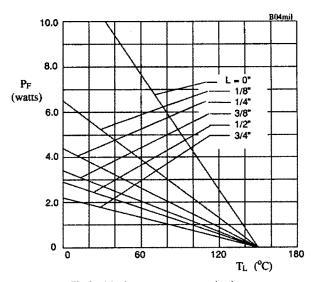


Fig 2. Maximum power versus lead temperature.

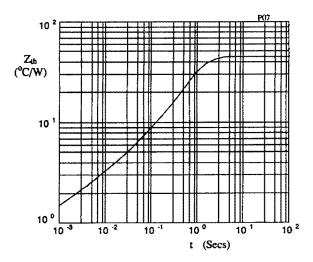


Fig 3. Transient thermal impedance characteristic.

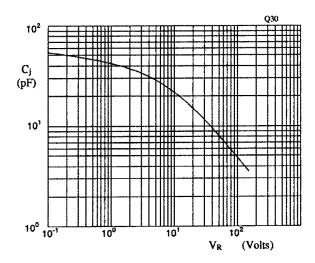


Fig 4. Typical junction capacitance as a function of reverse voltage.

FF15

1N6075

January 7, 1998

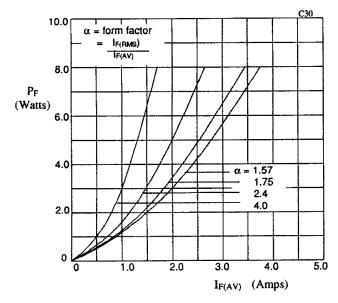


Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

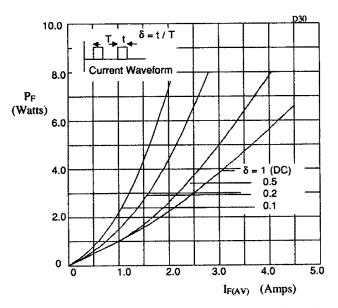


Fig 6. Forward power dissipation as a function of forward current, for square wave operation.

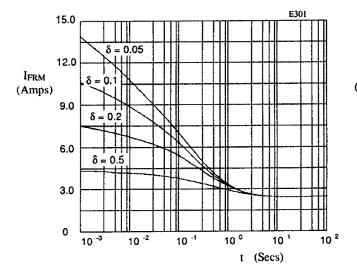


Fig 7. Maximum repetitive forward current as a function of pulse width at 55°C; R_{OJL} = 45 °C/W; V_{RWM} during 1 - δ.

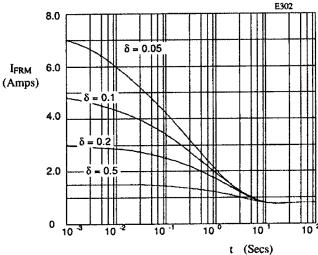


Fig 8. Maximum repetitive forward current as a function of pulse width at 100° C; $R_{\theta JL} = 110^{\circ}$ C/W; V_{RWM} during 1 - δ.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Semtech:

<u>1N6073 1N6074 1N6075 JAN1N6075 JANTX1N6074 JAN1X1N6074 JANTX1N6076 JANTX1N6075 JAN1X01N6073 JANTXV1N6074 JANTXV1N6074 JANTXV1N6075 JAN</u>