
©Copyright 2007 Cirrus Logic, Inc. SEP 2007
DS785UM1

http://www.cirrus.com

EP93XX 
ARM®9 Embedded Processor Family

EP93xx  
User ’s Guide



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. ii

EP93xx User’s Guide

Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find the one nearest to you go to www.cirrus.com

Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information
is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of
liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any
items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants
no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns
the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your orga-
nization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general
distribution, advertising or promotional purposes, or for creating any work for resale. 
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WAR-
RANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, LIFE SUPPORT
PRODUCTS OR OTHER CRITICAL APPLICATIONS (INCLUDING MEDICAL DEVICES, AIRCRAFT SYSTEMS OR COMPONENTS AND PERSONAL
OR AUTOMOTIVE SAFETY OR SECURITY DEVICES). INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FUL-
LY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT
IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRIT-
ICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIB-
UTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE
IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, MaverickCrunch, MaverickKey, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product
names in this document may be trademarks or service marks of their respective owners.
Microsoft, Windows, and Windows CE are registered trademarks of Microsoft Corporation. 
Microwire is a trademark of National Semiconductor Corp. National Semiconductor is a registered trademark of National Semiconductor Corp.
Texas Instruments is a registered trademark of Texas Instruments, Inc.
Motorola is a registered trademark of Motorola, Inc.
LINUX is a registered trademark of Linus Torvalds.
ARM and Thumb are registered trademarks of ARM Limited
Intel is a registered trademark of Intel Corporation
Hewlett-Packard is a registered trademark of Hewlett-Packard Corporation.
Compaq is a registered trademark of BV, a private Limited Liability Company in the Netherlands.



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. iii

EP93xx User’s Guide

Contents
Chapter Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv
Chapter Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

Preface................................................................................................................... P-1
 P.1 About the EP93xx User’s Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-1
 P.2 Related Documents from Cirrus Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-3
 P.3 Reference Documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-3
 P.4 Notational Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-3
 P.5 Register Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P-4

Chapter 1. Introduction .........................................................................................1-1
 1.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1
 1.2 EP93xx Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-1
 1.3 EP93xx Processor Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-7
 1.4 EP93xx Processor Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-7

1.4.1 High-Performance ARM920T Core .................................................................................1-7
1.4.2 MaverickCrunch™ Co-processor for Ultra-Fast Math Processing....................................1-7
1.4.3 MaverickKey™ Unique ID Secures Digital Content in OEM Designs ..............................1-8
1.4.4 Integrated Multi-Port USB 2.0 Full Speed Hosts with Transceivers ................................1-8
1.4.5 Integrated Ethernet MAC Reduces BOM Costs ..............................................................1-9
1.4.6 8x8 Keypad Interface Reduces BOM Costs ....................................................................1-9
1.4.7 Multiple Booting Mechanisms Increase Flexibility ...........................................................1-9
1.4.8 Abundant General Purpose I/Os Build Flexible Systems ................................................1-9
1.4.9 General-Purpose Memory Interface (SDRAM, SRAM, ROM, FLASH) ...........................1-9
1.4.10 12-Bit Analog-to-Digital Converter (ADC) Provides an Integrated
Touch-Screen Interface or General ADC Functionality ..........................................................1-10
1.4.11 Raster Analog / LCD Controller ...................................................................................1-10
1.4.12 Graphics Accelerator ...................................................................................................1-10
1.4.13 PCMCIA Interface........................................................................................................1-10

Chapter 2. ARM920T Core and Advanced High-Speed Bus (AHB)...................2-1
 2.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1
 2.2 Overview: ARM920T Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1

2.2.1 Features ..........................................................................................................................2-1
2.2.2 Block Diagram .................................................................................................................2-2
2.2.3 Operations .......................................................................................................................2-2

 2.2.3.1 ARM9TDMI Core ...........................................................................................2-3
 2.2.3.2 Memory Management Unit ............................................................................2-4
 2.2.3.3 Cache and Write Buffer .................................................................................2-5

2.2.4 Co-processor Interface ....................................................................................................2-6
2.2.5 AMBA AHB Bus Interface Overview................................................................................2-6
2.2.6 AHB Implementation Details............................................................................................2-7
2.2.7 Memory and Bus Access Errors ......................................................................................2-9
2.2.8 Bus Arbitration .................................................................................................................2-9

 2.2.8.1 Main AHB Bus Arbiter..................................................................................2-10
 2.2.8.2 SDRAM Slave Arbiter ..................................................................................2-11
 2.2.8.3 EBI Bus Arbiter ............................................................................................2-11

 2.3 AHB Decoder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-11
2.3.1 AHB Slave .....................................................................................................................2-11



iv ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

2.3.2 AHB-to-APB Bridge .......................................................................................................2-12
 2.3.2.1 Function and Operation of the AHB-to-APB Bridge.....................................2-12

2.3.3 APB Slave .....................................................................................................................2-13
2.3.4 Register Definitions .......................................................................................................2-13
2.3.5 Memory Map..................................................................................................................2-16
2.3.6 Internal Register Map ....................................................................................................2-17

 2.3.6.1 Memory Access Rules .................................................................................2-17

Chapter 3. MaverickCrunch Co-Processor .........................................................3-1
 3.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1

3.1.1 Features ..........................................................................................................................3-1
3.1.2 Operational Overview ......................................................................................................3-1
3.1.3 Pipelines and Latency .....................................................................................................3-3
3.1.4 Data Registers.................................................................................................................3-3
3.1.5 Integer Saturation Arithmetic ...........................................................................................3-4
3.1.6 Comparisons ...................................................................................................................3-6

 3.2 Programming Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-8
3.2.1 Example 1........................................................................................................................3-8

 3.2.1.1 Setup Code....................................................................................................3-8
 3.2.1.2 C Code...........................................................................................................3-8
 3.2.1.3 Accessing MaverickCrunch with ARM Co-Processor Instructions.................3-8
 3.2.1.4 MaverickCrunch Assembly Language Instructions........................................3-8

3.2.2 Example 2........................................................................................................................3-9
 3.2.2.1 C Code...........................................................................................................3-9
 3.2.2.2 MaverickCrunch Assembly Language Instructions........................................3-9

 3.3 DSPSC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-10
 3.4 ARM Co-Processor Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-14
 3.5 Instruction Set for the MaverickCrunch Co-Processor  . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-17

3.5.1 Load and Store Instructions...........................................................................................3-21
3.5.2 Move Instructions ..........................................................................................................3-24
3.5.3 Accumulator and DSPSC Move Instructions .................................................................3-27
3.5.4 Copy and Conversion Instructions.................................................................................3-31
3.5.5 Shift Instructions ............................................................................................................3-35
3.5.6 Compare Instructions ....................................................................................................3-36
3.5.7 Floating Point Arithmetic Instructions ............................................................................3-38
3.5.8 Integer Arithmetic Instructions .......................................................................................3-41
3.5.9 Accumulator Arithmetic Instructions ..............................................................................3-45

Chapter 4. Boot ROM ............................................................................................4-1
 4.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1

4.1.1 Boot ROM Hardware Operational Overview....................................................................4-1
 4.1.1.1 Memory Map..................................................................................................4-1

4.1.2 Boot ROM Software Operational Overview .....................................................................4-1
 4.1.2.1 Image Header ................................................................................................4-2
 4.1.2.2 Boot Algorithm ...............................................................................................4-2
 4.1.2.3 Flowchart .......................................................................................................4-3

 4.2 Boot Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-4
4.2.1 UART Boot ......................................................................................................................4-6
4.2.2 SPI Boot ..........................................................................................................................4-6
4.2.3 FLASH Boot.....................................................................................................................4-6
4.2.4 SDRAM or SyncFLASH Boot ..........................................................................................4-7



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. v

EP93xx User’s Guide

4.2.5 Synchronous Memory Operation.....................................................................................4-7

Chapter 5. System Controller ...............................................................................5-1
 5.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1

5.1.1 System Startup ................................................................................................................5-1
5.1.2 System Reset ..................................................................................................................5-1
5.1.3 Hardware Configuration Control ......................................................................................5-2
5.1.4 Software System Configuration Options..........................................................................5-4
5.1.5 Clock Control ...................................................................................................................5-4

 5.1.5.1 Oscillators and Programmable PLLs .............................................................5-4
 5.1.5.2 Bus and Peripheral Clock Generation ...........................................................5-5
 5.1.5.3 Steps for Clock Configuration ........................................................................5-9

5.1.6 Power Management ........................................................................................................5-9
 5.1.6.1 Clock Gatings ................................................................................................5-9
 5.1.6.2 System Power States ..................................................................................5-10

5.1.7 Interrupt Generation ......................................................................................................5-12
 5.2 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-13

Chapter 6. Vectored Interrupt Controller.............................................................6-1
 6.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1

6.1.1 Interrupt Priority ...............................................................................................................6-2
6.1.2 Interrupt Configuration.....................................................................................................6-3
6.1.3 Interrupt Details ...............................................................................................................6-4

 6.2 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-8

Chapter 7. Raster Engine With Analog/LCD Integrated
 Timing and Interface ............................................................................................7-1

 7.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-1
 7.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-3
 7.3 Raster Engine Features Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-3

7.3.1 Hardware Blinking ...........................................................................................................7-3
7.3.2 Color Look-Up Tables......................................................................................................7-4
7.3.3 Grayscale/Color Generation for Monochrome/Passive Low Color Displays ...................7-4
7.3.4 Frame Buffer Organization ..............................................................................................7-4
7.3.5 Frame Buffer Memory Size..............................................................................................7-6
7.3.6 Pulse Width Modulated Brightness..................................................................................7-6
7.3.7 Hardware Cursor .............................................................................................................7-7

 7.4 Functional Details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-7
7.4.1 VILOSATI (Video Image Line Output Scanner and Transfer Interface) ..........................7-8
7.4.2 Video FIFO ......................................................................................................................7-9
7.4.3 Video Pixel MUX............................................................................................................7-10
7.4.4 Blink Function ................................................................................................................7-10
7.4.5 Color Look-Up-Tables ...................................................................................................7-11
7.4.6 Color RGB Mux .............................................................................................................7-11
7.4.7 Pixel Shift Logic .............................................................................................................7-12
7.4.8 Grayscale/Color Generator for Monochrome/Passive Low Color Displays ...................7-15

 7.4.8.1 HORZ_CNT3, HORZ_CNT4 Counters ........................................................7-16
 7.4.8.2 VERT_CNT3, VERT_CNT4 Counters .........................................................7-16
 7.4.8.3 FRAME_CNT3, FRAME_CNT4 Counters ...................................................7-16
 7.4.8.4 HORZ_CNTx (pixel) timing ..........................................................................7-16
 7.4.8.5 VERT_CNTx (line) timing ............................................................................7-16



vi ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

 7.4.8.6 FRAME_CNTx timing ..................................................................................7-16
 7.4.8.7 Grayscale Look-Up Table (GrySclLUT) .......................................................7-17
 7.4.8.8 GrySclLUT Timing Diagram.........................................................................7-18

7.4.9 Hardware Cursor ...........................................................................................................7-24
 7.4.9.1 Registers Used for Cursor ...........................................................................7-26

7.4.10 Video Timing................................................................................................................7-28
 7.4.10.1 Setting the Video Memory Parameters......................................................7-31
 7.4.10.2 PixelMode ..................................................................................................7-32

7.4.11 Blink Logic ...................................................................................................................7-32
 7.4.11.1 BlinkRate ...................................................................................................7-32
 7.4.11.2 Defining Blink Pixels ..................................................................................7-32
 7.4.11.3 Types of Blinking .......................................................................................7-33

7.4.12 Color Mode Definition ..................................................................................................7-35
 7.4.12.1 Pixel Look-up Table Mode .........................................................................7-35
 7.4.12.2 Triple 8-bit Color Definition Mode ..............................................................7-35
 7.4.12.3 16-bit 565 Color Definition Mode ...............................................................7-35
 7.4.12.4 16-bit 555 Color Definition Mode ...............................................................7-35

 7.5 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-36

Chapter 8. Graphics Accelerator..........................................................................8-1
 8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-1
 8.2 Block Processing Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-1

8.2.1 Copy ................................................................................................................................8-2
 8.2.1.1 Transparency.................................................................................................8-2
 8.2.1.2 Logical Mask..................................................................................................8-2
 8.2.1.3 Logical Destination ........................................................................................8-2
 8.2.1.4 Operation Precedence...................................................................................8-2

8.2.2 Remapping ......................................................................................................................8-3
8.2.3 Block Fills ........................................................................................................................8-3
8.2.4 Packed Memory Transfer ................................................................................................8-3

 8.3 Line Draws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-3
8.3.1 Breshenham Line Draws .................................................................................................8-4
8.3.2 Pixel Step Line Draws .....................................................................................................8-4

 8.4 Memory Organization for Graphics Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-4
8.4.1  Memory Organization for 1 Bit Per Pixel (bpp) ...............................................................8-5
8.4.2 Memory Organization for 4-Bits Per Pixel .......................................................................8-5
8.4.3 Memory Organization for 8-Bits Per Pixel .......................................................................8-5
8.4.4 Memory Organization for 16-Bits Per Pixel .....................................................................8-6
8.4.5 Memory Organization for 24-Bits Per Pixel .....................................................................8-7
8.4.6 Memory Map Access .......................................................................................................8-8

 8.5  Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-8
8.5.1 Word Count .....................................................................................................................8-8

 8.5.1.1 Example: 8 BPP mode...................................................................................8-8
 8.5.1.2 Example: 24 BPP (packed) mode..................................................................8-9

8.5.2 Pixel End and Start..........................................................................................................8-9
 8.5.2.1 4 BPP Word Layout .....................................................................................8-10
 8.5.2.2 8 BPP Word Layout .....................................................................................8-11
 8.5.2.3 16 BPP WORD Layout ................................................................................8-11
 8.5.2.4 24 BPP mode...............................................................................................8-12

 8.6 Register Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-13
8.6.1 Breshenham’s Algorithm Line Draw ..............................................................................8-13
8.6.2 Example of Breshenham’s Algorithm Line Draw ...........................................................8-15
8.6.3 Block Fill Function .........................................................................................................8-16



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. vii

EP93xx User’s Guide

8.6.4 Block Copy Function......................................................................................................8-18
 8.6.4.1 Example of Block Copy................................................................................8-21

 8.7 Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8-22

Chapter 9. 1/10/100 Mbps Ethernet LAN Controller ...........................................9-1
 9.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-1

9.1.1 Detailed Description ........................................................................................................9-1
 9.1.1.1 Host Interface and Descriptor Processor.......................................................9-1
 9.1.1.2 Reset and Initialization...................................................................................9-2
 9.1.1.3 Power-down Modes .......................................................................................9-2
 9.1.1.4 Address Space ..............................................................................................9-2

9.1.2 MAC Engine ....................................................................................................................9-3
 9.1.2.1 Data Encapsulation........................................................................................9-3

9.1.3 Packet Transmission Process .........................................................................................9-5
 9.1.3.1 Carrier Deference ..........................................................................................9-5

9.1.4 Transmit Back-Off............................................................................................................9-7
 9.1.4.1 Transmission .................................................................................................9-7
 9.1.4.2 The FCS Field................................................................................................9-7
 9.1.4.3 Bit Order ........................................................................................................9-8
 9.1.4.4 Destination Address (DA) Filter .....................................................................9-8
 9.1.4.5 Perfect Address Filtering ...............................................................................9-8
 9.1.4.6 Hash Filter .....................................................................................................9-9
 9.1.4.7 Flow Control.................................................................................................9-10
 9.1.4.8 Receive Flow Control...................................................................................9-10
 9.1.4.9 Transmit Flow Control..................................................................................9-10
 9.1.4.10 Rx Missed and Tx Collision Counters........................................................9-11
 9.1.4.11 Accessing the MII ......................................................................................9-11

 9.2 Descriptor Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-13
9.2.1 Receive Descriptor Processor Queues .........................................................................9-13
9.2.2 Receive Descriptor Queue ............................................................................................9-13
9.2.3 Receive Status Queue...................................................................................................9-16

 9.2.3.1 Receive Status Format ................................................................................9-18
 9.2.3.2 Receive Flow ...............................................................................................9-21
 9.2.3.3 Receive Errors .............................................................................................9-22
 9.2.3.4 Receive Descriptor Data/Status Flow ..........................................................9-23
 9.2.3.5 Receive Descriptor Example .......................................................................9-24
 9.2.3.6 Receive Frame Pre-Processing...................................................................9-25
 9.2.3.7 Transmit Descriptor Processor Queues.......................................................9-26
 9.2.3.8 Transmit Descriptor Queue..........................................................................9-26
 9.2.3.9 Transmit Descriptor Format .........................................................................9-28
 9.2.3.10 Transmit Status Queue..............................................................................9-30
 9.2.3.11 Transmit Status Format .............................................................................9-32
 9.2.3.12 Transmit Flow ............................................................................................9-34
 9.2.3.13 Transmit Errors ..........................................................................................9-35
 9.2.3.14 Transmit Descriptor Data/Status Flow .......................................................9-36

9.2.4 Interrupts .......................................................................................................................9-37
 9.2.4.1 Interrupt Processing.....................................................................................9-37

9.2.5 Initialization....................................................................................................................9-37
 9.2.5.1 Interrupt Processing.....................................................................................9-38
 9.2.5.2 Receive Queue Processing .........................................................................9-38
 9.2.5.3 Transmit Queue Processing ........................................................................9-38
 9.2.5.4 Other Processing .........................................................................................9-38
 9.2.5.5 Transmit Restart Process ............................................................................9-39

 9.3 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-40



viii ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

Chapter 10. DMA Controller................................................................................10-1
 10.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10-1

10.1.1 DMA Features List.......................................................................................................10-1
10.1.2 Managing Data Transfers Using a DMA Channel .......................................................10-2
10.1.3 DMA Operations ..........................................................................................................10-3

 10.1.3.1 Memory-to-Memory Channels ...................................................................10-3
 10.1.3.2 Memory-to-Peripheral Channels................................................................10-4

10.1.4 Internal M2P or P2M AHB Master Interface Functional Description............................10-4
10.1.5 M2M AHB Master Interface Functional Description.....................................................10-5

 10.1.5.1 Software Trigger Mode ..............................................................................10-5
 10.1.5.2 Hardware Trigger Mode for Internal Peripherals (SSP and IDE) and 

for External Peripherals without Handshaking Signals ...........................................10-6
 10.1.5.3 Hardware Trigger Mode for External Peripherals with 
Handshaking Signals ................................................................................................10-6

10.1.6 AHB Slave Interface Limitations ..................................................................................10-6
10.1.7 Interrupt Interface ........................................................................................................10-6
10.1.8 Internal M2P/P2M Data Unpacker/Packer Functional Description ..............................10-6
10.1.9 Internal M2P/P2M DMA Functional Description ..........................................................10-7

 10.1.9.1 Internal M2P/P2M DMA Buffer Control Finite State Machine ....................10-7
 10.1.9.2 Data Transfer Initiation and Termination ...................................................10-9

10.1.10 M2M DMA Functional Description ...........................................................................10-10
 10.1.10.1 M2M DMA Control Finite State Machine ...............................................10-10
 10.1.10.2 M2M Buffer Control Finite State Machine..............................................10-12
 10.1.10.3 Data Transfer Initiation ..........................................................................10-13
 10.1.10.4 Data Transfer Termination.....................................................................10-15
 10.1.10.5 Memory Block Transfer..........................................................................10-16
 10.1.10.6 Bandwidth Control .................................................................................10-16
 10.1.10.7 External DMA Request (DREQ) Mode ..................................................10-16

10.1.11 DMA Data Transfer Size Determination ..................................................................10-17
 10.1.11.1 Software Initiated M2M and M2P/P2M Transfers ..................................10-17
 10.1.11.2 Hardware-Initiated M2M Transfers ........................................................10-18

10.1.12 Buffer Descriptors....................................................................................................10-18
 10.1.12.1 Internal M2P/P2M Channel Rx Buffer Descriptors ................................10-19
 10.1.12.2 Internal M2P/P2M Channel Tx Buffer Descriptors.................................10-19
 10.1.12.3 M2M Channel Buffer Descriptors...........................................................10-19

10.1.13 Bus Arbitration .........................................................................................................10-19
 10.2 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10-20

10.2.1 DMA Controller Memory Map ....................................................................................10-20
10.2.2 Internal M2P/P2M Channel Register Map .................................................................10-21

Chapter 11. Universal Serial Bus Host Controller ............................................11-1
 11.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11-1

11.1.1 Features ......................................................................................................................11-1
 11.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11-1

11.2.1 Data Transfer Types....................................................................................................11-2
11.2.2 Host Controller Interface..............................................................................................11-3

 11.2.2.1 Communication Channels..........................................................................11-3
 11.2.2.2 Data Structures..........................................................................................11-4

11.2.3 Host Controller Driver Responsibilities ........................................................................11-6
 11.2.3.1 Host Controller Management.....................................................................11-6
 11.2.3.2 Bandwidth Allocation .................................................................................11-6
 11.2.3.3 List Management .......................................................................................11-7
 11.2.3.4 Root Hub....................................................................................................11-7



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. ix

EP93xx User’s Guide

11.2.4 Host Controller Responsibilities...................................................................................11-8
 11.2.4.1 USB States ................................................................................................11-8
 11.2.4.2 Frame Management ..................................................................................11-8
 11.2.4.3 List Processing ..........................................................................................11-8

11.2.5 USB Host Controller Blocks.........................................................................................11-9
 11.2.5.1 AHB Slave .................................................................................................11-9
 11.2.5.2 AHB Master ...............................................................................................11-9
 11.2.5.3 HCI Slave Block.........................................................................................11-9
 11.2.5.4 HCI Master Block.....................................................................................11-10
 11.2.5.5 USB State Control ...................................................................................11-10
 11.2.5.6 Data FIFO ................................................................................................11-10
 11.2.5.7 List Processor ..........................................................................................11-10
 11.2.5.8 Root Hub and Host SIE ...........................................................................11-10

 11.3 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11-11

Chapter 12. Static Memory Controller ...............................................................12-1
 12.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-1
 12.2 Static Memory Controller Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-2
 12.3 PCMCIA Interface (EP9315 Processor Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-5
 12.4 PC Card Memory-Mode Enable Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-8
 12.5 PC Card Memory Mapping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-8
 12.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12-10

12.6.1 Bank Configuration Registers....................................................................................12-10
12.6.2 PCMCIA Configuration Registers (EP9315 Processor Only) ....................................12-13

Chapter 13. SDRAM, SyncROM, and SyncFLASH Controller..........................13-1
 13.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13-1
 13.2 Booting from SyncROM or SyncFLASH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13-1
 13.3 Address Pin Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13-3
 13.4 SDRAM Initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13-4
 13.5 Programming Mode Register: SDRAM Or SyncROM Device. . . . . . . . . . . . . . . . . . . . . . .13-6
 13.6 SDRAM Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13-8

13.6.1 Entering Self Refresh Mode ........................................................................................13-8
13.6.2 Exiting Self Refresh Mode ...........................................................................................13-8

 13.7 Programming Registers: SyncFLASH Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13-8
 13.8 External Synchronous Memory System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13-9

13.8.1 Chip Select SDCSN[3:0] Decoding .............................................................................13-9
13.8.2 Address/Data/Control Required by Memory System.................................................13-10

 13.9 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13-17

Chapter 14. UART1 With HDLC and Modem Control Signals..........................14-1
 14.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-1
 14.2 UART Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-1

14.2.1 UART Functional Description ......................................................................................14-2
 14.2.1.1 AMBA APB Interface .................................................................................14-2
 14.2.1.2 DMA Block .................................................................................................14-2
 14.2.1.3 Register Block............................................................................................14-2
 14.2.1.4 Baud Rate Generator.................................................................................14-4
 14.2.1.5 Transmit FIFO............................................................................................14-4
 14.2.1.6 Receive FIFO.............................................................................................14-4
 14.2.1.7 Transmit Logic ...........................................................................................14-4
 14.2.1.8 Receive Logic ............................................................................................14-4



x ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

 14.2.1.9 Interrupt Generation Logic .........................................................................14-4
 14.2.1.10 Synchronizing Registers and Logic .........................................................14-5

14.2.2 UART Operation ..........................................................................................................14-5
 14.2.2.1 Error Bits....................................................................................................14-6
 14.2.2.2 Disabling the FIFOs ...................................................................................14-6
 14.2.2.3 System/diagnostic Loopback Testing ........................................................14-6
 14.2.2.4 UART Character Frame.............................................................................14-6

14.2.3 Interrupts .....................................................................................................................14-7
 14.2.3.1 UARTMSINTR ...........................................................................................14-7
 14.2.3.2 UARTRXINTR............................................................................................14-7
 14.2.3.3 UARTTXINTR ............................................................................................14-7
 14.2.3.4 UARTRTINTR............................................................................................14-8
 14.2.3.5 UARTINTR.................................................................................................14-8

 14.3 Modem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-8
 14.4 HDLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-8

14.4.1 Overview of HDLC Modes ...........................................................................................14-9
14.4.2 Selecting HDLC Modes ...............................................................................................14-9
14.4.3 HDLC Transmit..........................................................................................................14-11
14.4.4 HDLC Receive...........................................................................................................14-11
14.4.5 CRCs .........................................................................................................................14-12
14.4.6 Address Matching......................................................................................................14-12
14.4.7 Aborts ........................................................................................................................14-13
14.4.8 DMA...........................................................................................................................14-14
14.4.9 Writing Configuration Registers.................................................................................14-14

 14.5 UART1 Package Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-14
14.5.1 Clocking Requirements .............................................................................................14-15
14.5.2 Bus Bandwidth Requirements ...................................................................................14-16

14.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14-17

Chapter 15. UART2..............................................................................................15-1
 15.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-1
 15.2 IrDA SIR Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-1

15.2.1 IrDA SIR Encoder/decoder Functional Description .....................................................15-1
 15.2.1.1 IrDA SIR Transmit Encoder .......................................................................15-2
 15.2.1.2 IrDA SIR Receive Decoder ........................................................................15-2

15.2.2 IrDA SIR Operation......................................................................................................15-3
 15.2.2.1 System/diagnostic Loopback Testing ........................................................15-4

15.2.3 IrDA Data Modulation ..................................................................................................15-4
15.2.4 Enabling Infrared (Ir) Modes........................................................................................15-5

 15.3 UART2 Package Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-5
15.3.1 Clocking Requirements ...............................................................................................15-5
15.3.2 Bus Bandwidth Requirements .....................................................................................15-6

 15.4 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-7

Chapter 16. UART3 With HDLC Encoder...........................................................16-1
 16.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16-1
 16.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16-1

16.2.1 UART3 Package Dependency.....................................................................................16-1
16.2.2 Clocking Requirements ...............................................................................................16-2
16.2.3 Bus Bandwidth Requirements .....................................................................................16-2

 16.3 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16-3



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. xi

EP93xx User’s Guide

Chapter 17. IrDA ..................................................................................................17-1
 17.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17-1
 17.2 IrDA Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17-1
 17.3 Shared IrDA Interface Feature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17-2

17.3.1 Overview......................................................................................................................17-2
17.3.2 Functional Description .................................................................................................17-2

 17.3.2.1 General Configuration................................................................................17-3
 17.3.2.2 Transmitting Data ......................................................................................17-3
 17.3.2.3 Receiving Data ..........................................................................................17-5
 17.3.2.4 Special Conditions .....................................................................................17-7

17.3.3 Control Information Buffering.......................................................................................17-8
 17.4 Medium IrDA Specific Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17-8

17.4.1 Introduction..................................................................................................................17-8
 17.4.1.1 Bit Encoding...............................................................................................17-8
 17.4.1.2 Frame Format ............................................................................................17-9

17.4.2 Functional Description ...............................................................................................17-11
 17.4.2.1 Baud Rate Generation .............................................................................17-11
 17.4.2.2 Receive Operation ...................................................................................17-11
 17.4.2.3 Transmit Operation ..................................................................................17-13

 17.5 Fast IrDA Specific Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17-13
17.5.1 Introduction................................................................................................................17-14

 17.5.1.1 4PPM Modulation ....................................................................................17-14
 17.5.1.2 4.0 Mbps FIR Frame Format ...................................................................17-15

17.5.2 Functional Description ...............................................................................................17-17
 17.5.2.1 Baud Rate Generation .............................................................................17-17
 17.5.2.2 Receive Operation ...................................................................................17-18
 17.5.2.3 Transmit Operation ..................................................................................17-19

17.5.3 IrDA Connectivity.......................................................................................................17-20
17.5.4 IrDA Integration Information ......................................................................................17-21

 17.5.4.1 Enabling Infrared Modes..........................................................................17-21
 17.5.4.2 Clocking Requirements............................................................................17-21
 17.5.4.3 Bus Bandwidth Requirements .................................................................17-22

 17.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17-23

Chapter 18. Timers ..............................................................................................18-1
 18.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18-1

18.1.1 Features ......................................................................................................................18-1
18.1.2 16 and 32-bit Timer Operation.....................................................................................18-1

 18.1.2.1 Free Running Mode ...................................................................................18-2
 18.1.2.2 Pre-load Mode ...........................................................................................18-2

18.1.3 40-bit Timer Operation.................................................................................................18-2
 18.2 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18-2

Chapter 19. Watchdog Timer..............................................................................19-1
 19.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19-1

19.1.1 Watchdog Activation....................................................................................................19-2
19.1.2 Clocking Requirements ...............................................................................................19-2
19.1.3 Reset Requirements....................................................................................................19-2
19.1.4 Watchdog Status .........................................................................................................19-2

19.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19-3



xii ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

Chapter 20. Real Time Clock With Software Trim ............................................20-1
 20.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20-1

20.1.1 Software Trim ..............................................................................................................20-1
 20.1.1.1 Software Compensation ............................................................................20-2
 20.1.1.2 Oscillator Frequency Calibration................................................................20-2
 20.1.1.3 RTCSWComp Value Determination ..........................................................20-2
 20.1.1.4 Example - Measured Value Split Into Integer and Fractional Component .20-3
 20.1.1.5 Maximum Error Calculation vs. Real Time Clock Accuracy.......................20-3
 20.1.1.6 Real-Time Interrupt....................................................................................20-3

20.1.2 Reset Control...............................................................................................................20-4
20.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20-4

Chapter 21. I2S Controller...................................................................................21-1
 21.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-1
 21.2 I2S Transmitter Channel Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-2
 21.3 I2S Receiver Channel Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-5

21.3.1 Receiver FIFO’s...........................................................................................................21-6
 21.4 I2S Master Clock Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-7
 21.5 I2S Bit Clock Rate Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-9

21.5.1 Example of the Bit Clock Generation...........................................................................21-9
21.5.2 Example of Right Justified LRCK format ...................................................................21-10

 21.6 Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-10
 21.7 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-12

21.7.1 I2S TX Registers........................................................................................................21-12
21.7.2 I2S RX Registers .......................................................................................................21-19
21.7.3 I2S Configuration and Status Registers.....................................................................21-25
21.7.4 I2S Global Status Registers.......................................................................................21-29

Chapter 22. AC’97 Controller..............................................................................22-1
 22.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22-1
 22.2 Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22-3

22.2.1 Channel Interrupts .......................................................................................................22-3
 22.2.1.1 RIS.............................................................................................................22-3
 22.2.1.2 TIS .............................................................................................................22-3
 22.2.1.3 RTIS...........................................................................................................22-4
 22.2.1.4 TCIS...........................................................................................................22-4

22.2.2 Global Interrupts ..........................................................................................................22-4
 22.2.2.1 CODECREADY .........................................................................................22-4
 22.2.2.2 WINT..........................................................................................................22-4
 22.2.2.3 GPIOINT ....................................................................................................22-4
 22.2.2.4 GPIOTXCOMPLETE .................................................................................22-5
 22.2.2.5 SLOT2INT..................................................................................................22-5
 22.2.2.6 SLOT1TXCOMPLETE ...............................................................................22-5
 22.2.2.7 SLOT2TXCOMPLETE ...............................................................................22-5

 22.3 System Loopback Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22-5
 22.4 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22-5

Chapter 23. Synchronous Serial Port ................................................................23-1
 23.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-1
 23.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-1
 23.3 SSP Functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-2
 23.4 SSP Pin Multiplex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-2



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. xiii

EP93xx User’s Guide

 23.5 Configuring the SSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-2
23.5.1 Enabling SSP Operation..............................................................................................23-2
23.5.2 Master/Slave Mode......................................................................................................23-3
23.5.3 Serial Bit Rate Generation...........................................................................................23-3
23.5.4  Frame Format.............................................................................................................23-3
23.5.5 Texas Instruments® Synchronous Serial Frame Format .............................................23-4
23.5.6 Motorola® SPI Frame Format ......................................................................................23-5

 23.5.6.1 SPO Clock Polarity ....................................................................................23-5
 23.5.6.2 SPH Clock Phase ......................................................................................23-5

23.5.7 Motorola SPI Format with SPO=0, SPH=0..................................................................23-5
23.5.8  Motorola SPI Format with SPO=0, SPH=1.................................................................23-7
23.5.9 Motorola SPI Format with SPO=1, SPH=0..................................................................23-8
23.5.10 Motorola SPI Format with SPO=1, SPH=1................................................................23-9
23.5.11 National Semiconductor® Microwire™ Frame Format .............................................23-10

 23.5.11.1 Setup and Hold Time Requirements on SFRMIN with 
Respect to SCLKIN in Microwire Mode ..................................................................23-12

 23.6 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23-13

Chapter 24. Pulse Width Modulator ...................................................................24-1
 24.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24-1
 24.2 Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24-1

24.2.1 PWM Programming Examples ....................................................................................24-2
 24.2.1.1 Example.....................................................................................................24-2
 24.2.1.2 Static Programming (PWM is Not Running) Example ...............................24-2
 24.2.1.3 Dynamic Programming (PWM is Running) Example .................................24-3

24.2.2 Programming Rules.....................................................................................................24-3
 24.3 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24-3

Chapter 25. Analog Touch Screen Interface .....................................................25-1
 25.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25-1
 25.2 Touch Screen Controller Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25-1

25.2.1 Touch Screen Scanning: Four-wire and Eight-wire Operation ....................................25-4
25.2.2 Five-wire and Seven-wire Operation .........................................................................25-10
25.2.3 Direct Operation ........................................................................................................25-12
25.2.4 Measuring Analog Input with the Touch Screen Controls Disabled ..........................25-13
25.2.5 Measuring Touch Screen Resistance........................................................................25-15
25.2.6 Polled and Interrupt-Driven Modes............................................................................25-16
25.2.7 Touch Screen Package Dependency ........................................................................25-16

 25.3 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25-17

Chapter 26. Keypad Interface .............................................................................26-1
 26.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26-1
 26.2 Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26-2

26.2.1 Apparent Key Detection...............................................................................................26-3
26.2.2 Scan and Debounce ....................................................................................................26-5
26.2.3 Interrupt Generation ....................................................................................................26-5
26.2.4 Low Power Mode.........................................................................................................26-6
26.2.5 Three-key Reset ..........................................................................................................26-6

 26.3 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26-6



xiv ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

Chapter 27. IDE Interface ....................................................................................27-1
 27.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27-1
 27.2 Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27-1

27.2.1 Diagrams and State Machines ....................................................................................27-2
27.2.2 PIO Operations............................................................................................................27-3
27.2.3 MDMA Operations .......................................................................................................27-4
27.2.4 UDMA Operations .......................................................................................................27-5
27.2.5 Performance Considerations .......................................................................................27-5
27.2.6 UDMA Example ...........................................................................................................27-6
27.2.7 DMA Request Latency.................................................................................................27-7

 27.2.7.1 DMA Request Deassertion ........................................................................27-7
 27.2.7.2 DMA Request Latency Overview...............................................................27-7
 27.2.7.3 IDE DMA Programming Considerations ....................................................27-8

27.2.8 IDE Package Dependency ..........................................................................................27-9
 27.2.8.1 System Configuration Constraints .............................................................27-9
 27.2.8.2 Bus Bandwidth Requirements ...................................................................27-9

 27.3 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27-10

Chapter 28. GPIO Interface .................................................................................28-1
 28.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28-1

28.1.1 Memory Map................................................................................................................28-3
28.1.2 Functional Description .................................................................................................28-3
28.1.3 Reset ...........................................................................................................................28-5
28.1.4 GPIO Pin Map .............................................................................................................28-6

 28.2 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28-9

Chapter 29. Security............................................................................................29-1
 29.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29-1
 29.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29-1
 29.3 Contact Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29-1
 29.4 Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29-2

Chapter 30. Glossary...........................................................................................30-1

Chapter 31. EP93XX Register List......................................................................31-1

Figures
 Figure 1-1. EP9301 Block Diagram...............................................................................................................1-2

 Figure 1-2. EP9302 Block Diagram ..............................................................................................................1-3

 Figure 1-3. EP9307 Block Diagram...............................................................................................................1-3

 Figure 1-4. EP9312 Block Diagram...............................................................................................................1-4

 Figure 1-5. EP9315 Block Diagram...............................................................................................................1-4

 Figure 2-1. ARM920T Block Diagram ...........................................................................................................2-2

 Figure 2-2. Typical AMBA AHB System ........................................................................................................2-7

 Figure 2-3. Main Data Paths .........................................................................................................................2-8



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. xv

EP93xx User’s Guide

 Figure 4-1. Flow Chart of Boot ROM Software..............................................................................................4-4

 Figure 4-2. Flow chart of Boot Sequence for 16-bit SDRAM Devices...........................................................4-7

 Figure 5-1. Phase Locked Loop (PLL) Structure...........................................................................................5-4

 Figure 5-2. Clock Generation System ...........................................................................................................5-6

 Figure 5-3. Bus Clock Generation .................................................................................................................5-7

 Figure 5-4. Power States and Transitions ...................................................................................................5-11

 Figure 6-1. Vectored Interrupt Controller Block Diagram ..............................................................................6-2

 Figure 7-1. Raster Engine Block Diagram.....................................................................................................7-8

 Figure 7-2. Video Buffer Diagram..................................................................................................................7-9

 Figure 7-3. Graphics Matrix for 50% Duty Cycle .........................................................................................7-20

 Figure 7-4. Sample Matrix Causing Flickering ............................................................................................7-21

 Figure 7-5.. Sample Matrix That Avoids Flickering......................................................................................7-21

 Figure 7-6. Programming for One-third Luminous Intensity ........................................................................7-22

 Figure 7-7. Creating Bit Patterns that Move to the Right.............................................................................7-23

 Figure 7-8. Three and Four Count Axis.......................................................................................................7-24

 Figure 7-9. Progressive/Dual Scan Video Signals ......................................................................................7-29

 Figure 7-10. Interlaced Video Signals .........................................................................................................7-30

 Figure 9-1. 1/10/100 Mbps Ethernet LAN Controller Block Diagram.............................................................9-1

 Figure 9-2. Ethernet Frame / Packet Format (Type II only)...........................................................................9-4

 Figure 9-3. Packet Transmission Process.....................................................................................................9-5

 Figure 9-4. Carrier Deference State Diagram ...............................................................................................9-6

 Figure 9-5. Data Bit Transmission Order.......................................................................................................9-8

 Figure 9-6. CRC Logic...................................................................................................................................9-9

 Figure 9-7. Receive Descriptor Format and Data Fragments .....................................................................9-14

 Figure 9-8. Receive Status Queue ..............................................................................................................9-17

 Figure 9-9. Receive Flow Diagram  ............................................................................................................9-21

 Figure 9-10. Receive Descriptor Data/Status Flow .....................................................................................9-23

 Figure 9-11. Receive Descriptor Example...................................................................................................9-24

 Figure 9-12. Receive Frame Pre-processing ..............................................................................................9-25

 Figure 9-13. Transmit Descriptor Format and Data Fragments ..................................................................9-27

 Figure 9-14. Multiple Fragments Per Transmit Frame ................................................................................9-28

 Figure 9-15. Transmit Status Queue ...........................................................................................................9-31

 Figure 9-16. Transmit Flow Diagram...........................................................................................................9-34

 Figure 9-17. Transmit Descriptor Data/Status Flow ....................................................................................9-36

 Figure 10-1. DMA M2P/P2M Finite State Machine .....................................................................................10-7

 Figure 10-2. M2M DMA Control Finite State Machine...............................................................................10-10

 Figure 10-3. M2M DMA Buffer Finite State Machine.................................................................................10-12



xvi ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

 Figure 10-4. Edge-triggered DREQ Mode.................................................................................................10-17

 Figure 11-1. USB Focus Areas ...................................................................................................................11-2

 Figure 11-2. Communication Channels .......................................................................................................11-3

 Figure 11-3. Typical List Structure ..............................................................................................................11-4

 Figure 11-4. Interrupt Endpoint Descriptor Structure ..................................................................................11-5

 Figure 11-5. Sample Interrupt Endpoint Schedule ......................................................................................11-6

 Figure 11-6. USB Host Controller Block Diagram .......................................................................................11-9

 Figure 12-1. 32-bit Read, 32-bit Memory, 0 Wait Cycles, RBLE = 1, WAITn Inactive.................................12-3

 Figure 12-2. 32-bit Write, 32-bit Memory, 0 Wait Cycles, RBLE = 1, WAITn Inactive.................................12-3

 Figure 12-3. 16-bit Read, 16-bit Memory, RBLE = 1, WAITn Active ...........................................................12-4

 Figure 12-4. 16-bit Write, 16-bit Memory, RBLE = 1, WAITn Active ...........................................................12-4

 Figure 12-5. Single PC Card Interface ........................................................................................................12-7

 Figure 14-1. UART Block Diagram..............................................................................................................14-3

 Figure 14-2. UART Character Frame .........................................................................................................14-6

 Figure 14-3. UART Character Frame ..........................................................................................................14-6

 Figure 15-1. IrDA SIR Encoder/decoder Block Diagram .............................................................................15-2

 Figure 15-2. IrDA Data Modulation (3/16) ...................................................................................................15-4

 Figure 17-1. RZ1/NRZ Bit Encoding Example.............................................................................................17-9

 Figure 17-2. 4PPM Modulation Encoding..................................................................................................17-14

 Figure 17-3. 4PPM Modulation Example...................................................................................................17-15

 Figure 17-4. IrDA (4.0 Mbps) Transmission Format ..................................................................................17-15

 Figure 21-1. Architectural Overview of the I2S Controller ...........................................................................21-1

 Figure 21-2. Bit Clock Generation Example   ...........................................................................................21-10

 Figure 21-3. Frame Format for Right Justified Data..................................................................................21-10

 Figure 23-1. Texas Instruments Synchronous Serial Frame Format (Single Transfer)...............................23-4

 Figure 23-2. TI Synchronous Serial Frame Format (Continuous Transfer) .................................................23-4

 Figure 23-3. Motorola SPI Frame Format (Single Transfer) with SPO=0 and SPH=0 ................................23-5

 Figure 23-4. Motorola SPI Frame Format (Continuous Transfer) 
with SPO=0 and SPH=0 ..............................................................................................................................23-6

 Figure 23-5. Motorola SPI Frame Format with SPO=0 and SPH=1............................................................23-7

 Figure 23-6. Motorola SPI Frame Format (Single Transfer) with SPO=1 and SPH=0 ................................23-8

 Figure 23-7. Motorola SPI Frame Format (Continuous Transfer) 
with SPO=1 and SPH=0 ..............................................................................................................................23-8

 Figure 23-8. Motorola SPI Frame Format with SPO=1 and SPH=1............................................................23-9

 Figure 23-9. Microwire Frame Format (Single Transfer) ...........................................................................23-10

 Figure 23-10. Microwire Frame Format (Continuous Transfers) ...............................................................23-12

 Figure 23-11. Microwire Frame Format, SFRMIN Input Setup and Hold Requirements ...........................23-12

 Figure 24-1. PWM_INV Example ................................................................................................................24-6



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. xvii

EP93xx User’s Guide

 Figure 25-1. Different Types of Touch Screens ..........................................................................................25-2

 Figure 25-2.  8-Wire Resistive Interface Switching Diagram.......................................................................25-5

 Figure 25-3. 4-Wire Analog Resistive Interface Switching Diagram............................................................25-6

 Figure 25-4. Analog Resistive Touch Screen Scan Flow Chart ..................................................................25-9

 Figure 25-5. 5-Wire Analog Resistive Interface Switching Diagram..........................................................25-11

 Figure 25-6. 5-Wire Feedback (7-Wire) Analog Resistive Interface Switching Diagram...........................25-12

 Figure 25-7. Power Down Detect Press Switching Diagram .....................................................................25-13

 Figure 25-8. Other Switching Diagrams ....................................................................................................25-14

 Figure 25-9. Measure Resistance Switching Diagram ..............................................................................25-15

 Figure 26-1. Key Array Block Diagram     ...................................................................................................26-1

 Figure 26-2. 8 x 8 Key Array Diagram   ......................................................................................................26-3

 Figure 26-3. Apparent Key 00H...................................................................................................................26-4

 Figure 27-1. IDE Interface Signal Connections ...........................................................................................27-2

 Figure 28-1. System Level GPIO Connectivity ............................................................................................28-2

 Figure 28-2. Signal Connections Within the Standard GPIO Port Control Logic 
(Ports C, D, E, G, H) ....................................................................................................................................28-4

 Figure 28-3. Signal Connections Within the Enhanced GPIO Port Control Logic 
(Ports A, B, F) ..............................................................................................................................................28-5

Tables
Table P-1. Frequency, Package, Applicable EP93xx Processor.................................................................. P-1

Table P-2. Chapter Number and Function, Applicable EP93xx Processor .................................................. P-1

Table 1-1. EP93xx Maximum Clock Rates, Package Type and Number of Balls .........................................1-1

Table 1-2. EP93xx Features Summary .........................................................................................................1-2

Table 2-1. AHB Arbiter Priority Scheme......................................................................................................2-10

Table 2-2. AHB Peripheral Address Range.................................................................................................2-11

Table 2-3. APB Peripheral Address Range.................................................................................................2-12

Table 2-4. ARM920T Core Operating Modes..............................................................................................2-13

Table 2-5. Register Organization Summary ................................................................................................2-14

Table 2-6. CP15 ARM920T Register Description........................................................................................2-15

Table 2-7. Global Memory Map for the Two Boot Modes............................................................................2-16

Table 2-8. Internal Register Map ................................................................................................................2-17

Table 3-1. Saturation for Non-accumulator Instructions................................................................................3-5

Table 3-2. Accumulator Bit Formats for Saturation .......................................................................................3-5

Table 3-3. Comparison Relationships and Their Results ..............................................................................3-7

Table 3-4. ARM® Condition Codes and Crunch Compare Results...............................................................3-7

Table 3-5. Condition Code Definitions.........................................................................................................3-15



xviii ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

Table 3-6. LDC/STC Opcode Map ..............................................................................................................3-16

Table 3-7. CDP Opcode Map ......................................................................................................................3-16

Table 3-8. MCR Opcode Map .....................................................................................................................3-17

Table 3-9. MRC Opcode Map .....................................................................................................................3-17

Table 3-10. MaverickCrunch Instruction Set  .............................................................................................3-18

Table 3-11. Mnemonic Codes for Loading Floating Point Value from Memory...........................................3-21

Table 3-12. Mnemonic Codes for Loading Integer Value from Memory......................................................3-22

Table 3-13. Mnemonic Codes for Storing Floating Point Values to Memory...............................................3-23

Table 3-14. Mnemonic Codes for Storing Integer Values to Memory .........................................................3-23

Table 4-1. Boot Configuration Options ..........................................................................................................4-5

Table 5-1. Hardware Configuration Control Latched Pins.............................................................................5-2

Table 5-2. Boot Configuration Options ..........................................................................................................5-3

Table 5-3. Clock Speeds and Sources..........................................................................................................5-8

Table 5-4. Peripherals with PCLK Gating....................................................................................................5-10

Table 5-5. Syscon Register List  ................................................................................................................5-13

Table 5-6. Priority Order for AHB Arbiter.....................................................................................................5-23

Table 5-7. Audio Interfaces Pin Assignment ...............................................................................................5-26

Table 6-1. Interrupt Configuration .................................................................................................................6-3

Table 6-2. VICx Register Summary...............................................................................................................6-8

Table 7-1. Raster Engine Video Mode Output Examples..............................................................................7-2

Table 7-2. Byte Oriented Frame Buffer Organization....................................................................................7-5

Table 7-3. Output Pixel Transfer Modes .....................................................................................................7-13

Table 7-4. Grayscale Lookup Table (GrySclLUT) .......................................................................................7-17

Table 7-5. Grayscale Timing Diagram.........................................................................................................7-18

Table 7-6. Programming Format .................................................................................................................7-19

Table 7-7. Programming 50% Duty Cycle Into Lookup Table .....................................................................7-22

Table 7-8. Programming 33% Duty Cycle into the Lookup Table ...............................................................7-23

Table 7-9. Programming 33% Duty Cycle into the Lookup Table ...............................................................7-24

Table 7-10. Cursor Memory Organization ...................................................................................................7-25

Table 7-11. Bits P[2:0] in the PixelMode Register.......................................................................................7-32

Table 7-12. Raster Engine Register List .....................................................................................................7-36

Table 7-13. Color Mode Definition Table.....................................................................................................7-58

Table 7-14. Blink Mode Definition Table .....................................................................................................7-58

Table 7-15. Output Shift Mode Table ..........................................................................................................7-59

Table 7-16. Bits per Pixel Scanned Out ......................................................................................................7-59

Table 7-17. Grayscale Look-Up-Table (LUT) ..............................................................................................7-75

Table 8-1. Screen Pixels ...............................................................................................................................8-4



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. xix

EP93xx User’s Guide

Table 8-2. bpp Memory Organization............................................................................................................8-5

Table 8-3. 4 bpp Memory Organization.........................................................................................................8-5

Table 8-4. 8 bpp Memory Organization.........................................................................................................8-6

Table 8-5. 16 bpp Memory Organization.......................................................................................................8-6

Table 8-6. 24 bpp Packed Memory Organization (4 pixel/ 3 words) .............................................................8-7

Table 8-7. 24 bpp Unpacked Memory Organization (1 pixel/ 1 word) ...........................................................8-7

Table 8-8. Transfer Example 1......................................................................................................................8-8

Table 8-9. Transfer Example 2......................................................................................................................8-9

Table 8-10. Transfer Example 3....................................................................................................................8-9

Table 8-11. Transfer Example 4....................................................................................................................8-9

Table 8-12. Transfer Example 5....................................................................................................................8-9

Table 8-13. 4 BPP Memory Layout for Source Image.................................................................................8-10

Table 8-14. 4 BPP Memory Layout for Destination Image ..........................................................................8-10

Table 8-15. 8 BPP Memory Layout for Source Image.................................................................................8-11

Table 8-16. 8 BPP Memory Layout for Destination Image ..........................................................................8-11

Table 8-17. 16 BPP Memory Layout for Source Image...............................................................................8-11

Table 8-18. 16 BPP Memory Layout for Destination Image ........................................................................8-12

Table 8-19. 24 BPP Memory Layout for Source Image...............................................................................8-12

Table 8-20.  24 BPP Memory Layout for Destination Image .......................................................................8-13

Table 8-21. Words Needed for Six 24-Bit Pixels .........................................................................................8-19

Table 8-22. Graphics Accelerator Registers ...............................................................................................8-22

Table 8-23. Pixel Mode Encoding ...............................................................................................................8-30

Table 9-1. FIFO RAM Address Map..............................................................................................................9-3

Table 9-2. RXCtl.MA and RXCtl.IAHA[0] Relationships ..............................................................................9-10

Table 9-3. Ethernet Register List.................................................................................................................9-40

Table 9-4. Individual Accept, RxFlow Control Enable and Pause Accept Bits ............................................9-42

Table 9-5. Address Filter Pointer.................................................................................................................9-52

Table 10-1. Data Transfer Size .................................................................................................................10-18

Table 10-2. M2P DMA Bus Arbitration ......................................................................................................10-19

Table 10-3. DMA Memory Map .................................................................................................................10-20

Table 10-4. Internal M2P/P2M Channel Register Map..............................................................................10-21

Table 10-5. PPALLOC Register Bits Decode for a Transmit Channel ......................................................10-24

Table 10-6. PPALLOC Register Bits Decode for a Receive Channel .......................................................10-24

Table 10-7. PPALLOC Register Reset Values..........................................................................................10-24

Table 10-8. PPALLOC Register Reset Values..........................................................................................10-30

Table 10-9. BWC Decode Values .............................................................................................................10-33

Table 10-10. DMA Global Interrupt (DMAGlInt) Register ..........................................................................10-45



xx ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

Table 11-1. Frame Bandwidth Allocation ....................................................................................................11-7

Table 11-2. OpenHCI Register Addresses................................................................................................11-11

Table 12-1. PCMCIA Address Memory Ranges..........................................................................................12-5

Table 12-2. PCMCIA Pin Usage..................................................................................................................12-5

Table 12-3. Supported 8-Bit Accesses........................................................................................................12-8

Table 12-4. Supported 16-Bit Accesses......................................................................................................12-8

Table 12-5. PCMCIA Legacy Usage ...........................................................................................................12-8

Table 12-6. Accesses to 8-Bit Attribute / Common / IO Memory.................................................................12-9

Table 12-7. Accesses to 16-Bit Attribute / Common / IO Memory...............................................................12-9

Table 12-8. Static Memory Controller (SMC) Register Map......................................................................12-10

Table 13-1. Boot Device Selection ..............................................................................................................13-2

Table 13-2. Address Decoding for Synchronous Memory Domains ...........................................................13-3

Table 13-3. Synchronous Memory Address Decoding................................................................................13-4

Table 13-4. General SDRAM Initialization Sequence .................................................................................13-4

Table 13-5. Mode Register Command Decoding for 32-bit Wide Memory Bus ..........................................13-6

Table 13-6. Sync Memory CAS...................................................................................................................13-7

Table 13-7. Sync Memory RAS, Burst Type, and Write Burst Length.........................................................13-7

Table 13-8. Burst Length.............................................................................................................................13-7

Table 13-9. Chip Select Decoding...............................................................................................................13-9

Table 13-10. Memory Addressing Example ..............................................................................................13-11

Table 13-11. EP93xx SDRAM Address Ranges (16-Bit Wide Data Systems)..........................................13-12

Table 13-12. Address Bits Used for Chip Select .......................................................................................13-17

Table 13-13. Synchronous Memory Controller Registers .........................................................................13-17

Table 13-14. Synchronous Memory Command Encoding.........................................................................13-20

Table 14-1. Receive FIFO Bit Functions .....................................................................................................14-6

Table 14-2. Legal HDLC Mode Configurations .........................................................................................14-10

Table 14-3. HDLC Receive Address Matching Modes..............................................................................14-13

Table 14-4. UART1 Pin Functionality ........................................................................................................14-15

Table 14-5. DeviceCfg Register Bit Functions ..........................................................................................14-15

Table 15-1. UART2 / IrDA Modes ...............................................................................................................15-5

Table 15-2. IonU2 Pin Function...................................................................................................................15-5

Table 16-1. UART3 Pin Functionality ..........................................................................................................16-1

Table 16-2. DeviceCfg Register Bit Functions ............................................................................................16-2

Table 17-1. Bit Values to Select Ir Module ..................................................................................................17-3

Table 17-2. Address Offsets for End-of-Frame Data...................................................................................17-5

Table 17-3. MIR Frame Format...................................................................................................................17-9

Table 17-4. DeviceCfg.IonU2 Pin Function ...............................................................................................17-20



DS785UM1 ©Copyright 2007 Cirrus Logic, Inc. xxi

EP93xx User’s Guide

Table 17-5. UART2 / IrDA Modes .............................................................................................................17-21

Table 17-6. IrDA Service Memory Accesses / Second .............................................................................17-22

Table 18-1. Timers Register Map................................................................................................................18-2

Table 19-1. Watchdog Timer Register Memory Map ..................................................................................19-3

Table 20-1. Real Time Clock Register Memory Map ..................................................................................20-4

Table 21-1. I2S Controller Input and Output Signals ...................................................................................21-2

Table 21-2. Audio Interfaces Pin Assignment .............................................................................................21-2

Table 21-3. Transmitter FIFO’s ...................................................................................................................21-3

Table 21-4.  I2SClkDiv SYSCON Register Effect on I2S Clock Generation................................................21-8

Table 21-5. Bit Clock Rate Generation........................................................................................................21-9

Table 21-6. FIFO Flags .............................................................................................................................21-12

Table 21-7. I2S TX Registers ....................................................................................................................21-12

Table 21-8. I2S RX Registers ....................................................................................................................21-19

Table 21-9. I2S Configuration and Status Registers .................................................................................21-25

Table 22-1. AC’97 Input and Output Signals...............................................................................................22-1

Table 22-2. AC’97 Register Memory Map ...................................................................................................22-5

Table 22-3. Interaction Between RSIZE and CM ........................................................................................22-9

Table 22-4. Interaction Between RSIZE and CM Bits ...............................................................................22-11

Table 23-1. SSP Register Memory Map Description.................................................................................23-13

Table 24-1. Static Programming Steps .......................................................................................................24-2

Table 24-2. Dynamic Programming Steps ..................................................................................................24-3

Table 24-3. PWM Registers Map ................................................................................................................24-3

Table 25-1. Switch Definitions and Logical Safeguards to Prevent Physical Damage................................25-3

Table 25-2. Touch Screen Switch Register Configurations.........................................................................25-7

Table 25-3. External Signal Functions ......................................................................................................25-16

Table 25-4. Analog Touch Screen Register Memory Map ........................................................................25-17

Table 26-1. Keypad Interface Register Memory Map..................................................................................26-6

Table 27-1. IDE Host to IDE Interface Definition.........................................................................................27-2

Table 27-2. IDE Cycle Times and Data Transfer Rates ..............................................................................27-7

Table 27-3. Wait State Value for the DMA M2M Register Control.PWSC ..................................................27-8

Table 27-4. HCLK Cycles to De-assert DMA Request................................................................................27-8

Table 27-5. Maximum Theoretical Bandwidths for Various Operating Modes ............................................27-9

Table 27-6. IDE Interface Register Map....................................................................................................27-10

Table 28-1. EP9301 and EP9302 GPIO Port to Pin Map............................................................................28-6

Table 28-2. EP9307 GPIO Port to Pin Map.................................................................................................28-6

Table 28-3. EP9312 GPIO Port to Pin Map.................................................................................................28-7

Table 28-4. EP9315 GPIO Port to Pin Map.................................................................................................28-8



xxii ©Copyright 2007 Cirrus Logic, Inc. DS785UM1

 
EP93xx User’s Guide

Table 28-5. GPIO Register Address Map....................................................................................................28-9

Table 29-1. Security Register List ...............................................................................................................29-2

Table 30-1. Glossary ...................................................................................................................................30-1

Table 31-1. EP93xx Register List................................................................................................................31-1

 Revision History
Revision Date Changes

UM1
 September 14, 

2007

This is the Initial Release of the EP93xx User's Guide. This manual covers all products in the 
EP93xx product family. This manual is based on the content of previous User’s Guides for 
each of the individual products in the EP93xx family. New content has been added, formatting 
improved, and all known documentation errors fixed. Please discard previous User’s Guides 
and rely on this manual for your future reference needs.



DS785UM1 P-1
Copyright 2007 Cirrus Logic 

PP

P

Chapter P

17Preface

 P.1 About the EP93xx User’s Guide
This EP93xx User’s Guide describes the architecture, hardware, and operation of the Cirrus 
Logic EP9301, EP9302, EP9307, EP9312, and EP9315 processors. It is intended to be used 
in conjunction with the respective EP93xx Data Sheets, which contain the full electrical 
specifications for the EP93xx processors.

The EP9301, EP9302, EP9307, EP9312 processors are functional subsets of the EP9315 
processor. All chapters in this Guide apply to the EP9315 processor. Most, but not all, 
chapters apply to the EP9301, EP9302, EP9307, EP9312 processors. Table P-1 shows the 
maximum core frequency and the maximum high-speed bus frequency as well as number of 
package balls and package type for the EP93xx processors. Table P-2 shows chapter 
numbers and function, and which EP93xx processors include the function (or not).

Table P-1. Frequency, Package, Applicable EP93xx Processor

EP9301 EP9302 EP9307 EP9312 EP9315

Maximum Core 
Frequency - MHz

166 200 200 200 200

Maximum High-Speed 
Bus Frequency - MHz

66 100 100 100 100

Package Type 208 LQFP 208 LQFP 272 TFBGA 352 PBGA 352 PBGA

Table P-2. Chapter Number and Function, Applicable EP93xx Processor 

Chapter Number and Function Applicable EP93xx Processor

EP9301 EP9302 EP9307 EP9312 EP9315

0: Preface X X X X X

1: Introduction X X X X X

2: ARM920T Core and Advanced High-Speed Bus X X X X X

3: MaverickCrunch Co-processor - X X X X

4: Boot ROM X X X X X

5: System Controller X X X X X



P-2 DS785UM1
Copyright 2007 Cirrus Logic 

Preface
EP93xx User’s Guide

PP

P
6: Vectored Interrupt Controller X X X X X

7: Raster Engine with Analog and LCD Integrated    
Timing and Interface

- - X X X

8: Graphics Accelerator - - X - X

9: 1/10/100 Mbps Ethernet LAN Controller X X X X X

10: DMA Controller X X X X X

11: Universal Serial Bus Host Controllers 2 2 3 3 3

12: Static Memory Controller
      Static Memory Controller with PCMCIA

X
-

X
-

X
-

X
-

-
X

13: SDRAM, SyncROM, SyncFLASH Controllers X X X X X

14: UART1 with Modem Control Signals and HDLC X X X X X

15: UART2 with IrDA X X X X X

16: UART3 with HDLC - - X X X

17: IrDA X X X X X

18: Timers 4 4 4 4 4

19: Watchdog Timer X X X X X

20: Real Time Clock with Software Trim X X X X X

21: I2S Controller 3 3 3 3 3

22: AC’97 Controller 1 1 1 1 1

23: Synchronous Serial Port 1 1 1 1 1

24: Pulse Width Modulators 2 2 1 2 2

25: Analog Touch Screen Interface/ADC 5-ADC 5-ADC 8-Wire TS 8-Wire TS 8-Wire TS

26: Keypad Interface - - X X X

27: IDE Interface - - - 2 Devices 2 Devices

28: GPIO Interface X X X X X

29: Security X X X X X

30: Glossary X X X X X

Table P-2. Chapter Number and Function, Applicable EP93xx Processor  (Continued)

Chapter Number and Function Applicable EP93xx Processor

EP9301 EP9302 EP9307 EP9312 EP9315



DS785UM1 P-3
Copyright 2007 Cirrus Logic

Preface
EP93xx User’s Guide

PP

P
Note: “X” means Function is included; “-” means Function is not included

 P.2 Related Documents from Cirrus Logic
1. EP9301 Data Sheet, Document Number - DS636PP5

2. EP9302 Data Sheet, Document Number - DS653PP3

3. EP9307 Data Sheet, Document Number - DS667PP4

4. EP9312 Data Sheet, Document Number - DS515PP7

5. EP9315 Data Sheet, Document Number - DS638PP1

 P.3 Reference Documents

1. ARM®920T Technical Reference Manual, ARM Limited

2. AMBA Specification (Rev. 2.0), ARM IHI 0011A, ARM Limited

3. AHB Example AMBA System (Addendum 01), ARM DDI 0170A, ARM Limited

4. The co-processor instruction assembler notation can be referenced from ARM 
programming manuals or the Quick Reference Card, document number ARM QRC 
0001D, ARM Limited 

5. The MAC engine is compliant with the requirements of ISO/IEC 8802-3 (1993), Sections 3 
and 4

6. OpenHCI - Open Host Controller interface Specification for USB, Release 1.0a; 

Compaq®, Microsoft®, National Semiconductor®

7. ARM Co-processor Quick Reference Card, document number ARM QRC 0001D, ARM 
Limited 

8. Information Technology, AT Attachment with Packet Interface - 5 (ATA/ATAPI-5) ANSI 
NCITS document T13 1321D, Revision 3, 29 February 2000

9. ARM PrimeCell PL190-Rel1v1 Revision 1.7 Technical Reference Manual DDI0181C, 
ARM Limited

10.Audio Codec ‘97, Revision 2.3, April 2002, Intel® Corporation

 P.4 Notational Conventions
This document uses the following conventions:

• Internal and external Signal Names, and Pin Names use mixed upper and lower case 
alphanumeric, and are shown in bold font, for example, RDLED

• Register Bit Fields are named using upper and lower case alphanumeric: for example, 
SBOOT, LCSn1



P-4 DS785UM1
Copyright 2007 Cirrus Logic 

Preface
EP93xx User’s Guide

PP

P
• Registers are named using mixed upper and lower case alphanumeric, for example, 

SysCfg or PxDDR. Where there are multiple registers with the same names, a lower case 
“x” is used as a place holder. For example, in the PxDDR registers, x represents a letter 
from A to H, indicating the specific port being discussed

CAUTION:In the Internal Register Map in “Internal Register Map” on page 2-17 some
memory locations are listed as Reserved. These memory locations should not
be used. Reading from these memory locations will yield invalid data. Writing to
these memory locations may cause unpredictable results.

(An example register description is shown below. This description is used for the following 
examples.)

A specific bit may be specified in one of three ways:

1. Register name[bit number], for example, SysCfg[29] 

2. Register name.bit field[bit number], for example, SysCfg.REV[1]

3. Register name.bit field[bit name], for example, SysCfg.SBOOT

Hexidecimal numbers are referred to as 0x0000_0000.

Binary numbers are referred to as 0000_0000b.

 P.5 Register Example
Note: This is only an example. For actual SysCfg register information, see “SysCfg” on page 5-

34 .

SysCfg 

Address:
0x8093_009C - Read/Write, Software locked

Default:
0x0000_0000

Definition:
System Configuration Register. Provides various system configuration 
options.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SBOOT LCSn7 LCSn6 LASDO LEEDA LEECLK RSVD LCSn2 LCSn1



DS785UM1 P-5
Copyright 2007 Cirrus Logic

Preface
EP93xx User’s Guide

PP

P
REV: Revision, reads chip Version number: 0 - Rev A, 1 - Rev B, 

2 - Rev C, 3 - Rev D.

SBOOT: Serial Boot Flag. This bit is read-only.
1        hardware detected Serial Boot selection 
0        hardware detected Normal Boot

LCSn7, LCSn6: Latched version of CSn7 and CSn6 respectively. These 
are used to define the external bus width for the boot code 
boot. 

LASDO: Latched version of ASDO pin. Used to select synchronous 
versus asynchronous boot device.

LEEDA: Latched version of EEDAT pin.

LEECLK: Define Internal or external boot:
1        Internal
0        External

LCSn1, LCSn2: Define Watchdog startup action:
0      0      Watchdog disabled, Reset duration disabled
0      1      Watchdog disabled, Reset duration active
1      0      Watchdog active, Reset duration disabled
1      1      Watchdog active, Reset duration active



P-6 DS785UM1
Copyright 2007 Cirrus Logic 

Preface
EP93xx User’s Guide

PP

P



DS785UM1 1-1
Copyright 2007 Cirrus Logic 

11

1
Chapter 1

1Introduction

 1.1 Introduction
The EP93xx processors are highly integrated systems-on-a-chip that pave the way for a 
multitude of next-generation consumer and industrial electronic products. Designers of digital 
media servers and jukeboxes, telematic control systems, thin clients, set-top boxes, point-of-
sale terminals, industrial controls, biometric security systems, and GPS devices will benefit 
from the EP93x processors’ integrated architecture and advanced features. In fact, with 
amazingly agile performance provided by a 166 or 200 MHz ARM920T Core, and featuring 
an incredibly wide breadth of peripheral interfaces, the EP93xx processors are well suited to 
an even broader range of high volume applications. Furthermore, by enabling or disabling the 
EP93xx processor’s peripherals and their interfaces, designers can throttle power 
consumption and reduce development costs and accelerate time-to-market by creating a 
single platform that can be easily modified to deliver a variety of differentiated end products.

 1.2 EP93xx Features
Maximum clock rates plus package types and number of balls for EP93xx processors are 
shown in Table 1-1.

Features of the EP93xx processors are summarized in Table 1-2. Block diagrams are shown 
in Figure 1-1 EP9301, Figure 1-2 EP9302, Figure 1-3 EP9307, Figure 1-4 EP9312, and 
Figure 1-5 EP9315.

Table 1-1. EP93xx Maximum Clock Rates, Package Type and Number of Balls

Processor Max Core Clock Rate
Max High-Speed Bus 

Clock Rate
Package

EP9301 166 MHz 66 MHz 208 LQFP

EP9302 200 MHz 100 MHz 208 LQFP

EP9307 200 MHz 100 MHz 272 TFBGA

EP9312 200 MHz 100 MHz 352 PBGA

EP9315 200 MHz 100 MHz 352 PBGA



1-2 DS785UM1
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

11

1

Note:“X” means that the function is included; “-” means that the function is not included.

 Figure 1-1. EP9301 Block Diagram

Table 1-2. EP93xx Features Summary

Processor
16-Bit 

External 
Bus

32-Bit 
External 

Bus

Math Co-
Processor

Raster 
Analog / 

LCD

2-D
Graphics 

Accelerator

Ethernet 
MAC

IDE
USB 2.0 

Host
UART

Touch 
Screen 
/ ADC

GPIO
PC 

Card

EP9301 X - - - - X - 2 2 5-ADC 37 -

EP9302 X - X - - X - 2 2 5-ADC 37 -

EP9307 - X X X X X - 3 3
8-Wire/

12-
ADC

48 -

EP9312 - X X X - X 1 3 3
8-Wire/

12-
ADC

47 -

EP9315 - X X X X X 1 3 3
8-Wire/

12-
ADC

55 X

5-Channel ADC

2 PWM

Enhanced GPIO, 
2-wire, 2 LED

I2S

SPI

AC’97

RTC with SW Trim

Watchdog Timer

4 Timers

System Control – 
2 PLLs

UART1 with HDLC

SDRAM

SRAM, FLASH, 
ROM 

12 Channel DMA

1/10/100 Ethernet 
MAC

JTAG

2 USB 2.0 FS Host

Boot ROM

UART2 with IrDA

ARM920T

I-Cache 
16 KB

D-Cache 
16 KB

Memory Management Unit

AHB/APB Bridge

Vectored 
Inerrupts

High-Speed Bus (AHB)

Peripheral Bus (APB)



DS785UM1 1-3
Copyright 2007 Cirrus Logic 

Introduction
EP93xx User’s Guide

11

1

 Figure 1-2. EP9302 Block Diagram 

 Figure 1-3. EP9307 Block Diagram

5-Channel ADC

2 PWMs

Enhanced GPIO, 
2-wire, 2 LED

I2S

SPI

AC’97

RTC with SW Trim

Watchdog Timer

4 Timers

System Control – 
2 PLLs

UART1 with HDLC

SDRAM

SRAM, FLASH, 
ROM

12 Channel DMA

1/10/100 Ethernet 
MAC

JTAG

2 USB 2.0 FS Host

Boot ROM

UART2 with IrDA

ARM920T

I-Cache 
16 KB

D-Cache 
16 KB

Memory Management Unit

AHB/APB Bridge

Vectored 
Inerrupts

High-Speed Bus (AHB)

Peripheral Bus (APB)

MaverickCrunchTM Coprocessor

8-Wire 
Touchscreen ADC

8x8 Matrix Keypad

1 PWM

Enhanced GPIO 
EEPROM, 2 LED

I2S

SPI

AC’97

RTC with SW Trim

Watchdog Timer

4 Timers

System Control – 
2 PLLs

UART1 with HDLC

18-bit Raster LCD 
plus CCITT656 

Video

SDRAM

SRAM, FLASH, 
ROM 

12 Channel DMA

1/10/100 Ethernet 
MAC

JTAG

3 USB 2.0 FS Host

Boot ROM

UART2 with IrDA

UART3 with HDLC

ARM920T

I-Cache 
16 KB

D-Cache 
16 KB

Memory Management Unit

AHB/APB Bridge

Vectored 
Inerrupts

High-Speed Bus (AHB)

Peripheral Bus (APB)

MaverickCrunchTM Coprocessor

2D Graphics



1-4 DS785UM1
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

11

1

 Figure 1-4. EP9312 Block Diagram

 Figure 1-5. EP9315 Block Diagram

8-Wire 
Touchscreen ADC

8x8 Matrix Keypad

2 PWMs

Enhanced GPIO, 
2-wire, 2 LED

I2S

SPI

AC’97

RTC with SW Trim

Watchdog Timer

4 Timers

System Control – 
2 PLLs

UART1 with HDLC

18-bit Raster LCD 
plus CCITT656 

Video

SDRAM

SRAM, FLASH, 
ROM 

12 Channel DMA

1/10/100 Ethernet 
MAC

JTAG

3 USB 2.0 FS Host

IDE

Boot ROM

UART2 with IrDA

UART3 with HDLC

MaverickCrunchTM Coprocessor

ARM920T

I-Cache 
16 KB

D-Cache 
16 KB

Memory Management Unit

AHB/APB BridgeVectored 
Inerrupts

High-Speed Bus (AHB)

Peripheral Bus (APB)

8-Wire 
Touchscreen ADC

8x8 Matrix Keypad

2 PWMs

Enhanced GPIO, 
2-wire, 2 LED

I2S

SPI

AC’97

RTC with SW Trim

Watchdog Timer

4 Timers

System Control – 
2 PLLs

UART1 with HDLC

18-bit Raster LCD 
plus CCITT656 

Video

SDRAM

SRAM, FLASH, 
ROM, PCMCIA

12 Channel DMA

1/10/100 Ethernet 
MAC

JTAG

3 USB 2.0 FS Host

2 IDE

Boot ROM

UART2 with IrDA

UART3 with HDLC

ARM920T

I-Cache 
16 KB

D-Cache 
16 KB

Memory Management Unit

AHB/APB BridgeVectored 
Inerrupts

High-Speed Bus (AHB)

Peripheral Bus (APB)

MaverickCrunchTM Coprocessor

2D Graphics



DS785UM1 1-5
Copyright 2007 Cirrus Logic 

Introduction
EP93xx User’s Guide

11

1
Features of the EP93xx processors are: 

• ARM920T Core: 

• 200 MHz maximum run frequency and 100 MHz maximum high-speed bus frequency 
for EP9302, 9307, 9312, and 9315 only

• 166 MHz maximum run frequency and 66 MHz maximum high-speed bus frequency for 
EP9301 only

• 16 KByte instruction cache and 16 KByte data cache

• Memory Management Unit (MMU) with 64-entry Translation-Lookaside-Buffers (TLBs) 

enable Linux® and Windows® CE®

• MaverickCrunch™ Co-processor in EP9302, 9307, 9312, and 9315 only:

• Floating point, integer and signal processing instructions

• Optimized for digital music compression algorithms

• Hardware interlocks allow in-line coding

• MaverickKey™ IDs for Digital Rights Management or Design IP Security:

• 32-bit unique ID

• 128-bit random ID

• Integrated Peripherals and Interfaces:

• EIDE, up to 2 devices in EP9312 and 9315 only

• 1/10/100 Mbps Ethernet MAC

• Two-port USB 2.0 Full Speed host (OHCI) in EP9301 and 9302 only

• Three-port USB 2.0 Full Speed host (OHCI) in EP9307, 9312, and 9315 only

• IrDA controller, slow and fast mode

• Two UARTs (16550 Type) in EP9301 and 9302 only:

• - UART1 (optionally supports on-chip handling of HDLC)

• - UART2 (optionally provides interface for IrDA controller) 

• Three UARTs (16550 Type) in EP9307, 9312, and 9315 only:

- UART1 and UART3 (optionally support on-chip handling of HDLC)

- UART2 (optionally provides interface for IrDA controller) 

- UART3 implements both a UART and an HDLC interface identical to that of UART1;

• LCD and Analog Raster Interface in EP9307, 9312, and 9315 only

• 2D Graphics Accelerator in EP9307and 9315 only

- Line Draw



1-6 DS785UM1
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

11

1
- Block Copy

- Block Fill

• Touch Screen interface

- 5-ADC in EP9301 and 9302 only

- 8-Wire Touch Screen/ADC in EP9307, 9312, and 9315 only

• SPI port

• AC ‘97 interface

• I2S interface with up to 6 channels

• 8x8 Matrix keypad scanner (in EP9307, EP9312, and EP9315 only)

• PCMCIA Interface supporting 8-bit or 16-bit PCMCIA (PC Card) devices in EP9315 only

• External Memory Options

• 16-bit SDRAM interface (up to 4 banks) in EP9301 and 9302 only

• 32-bit SDRAM interface (up to 4 banks) in EP9307, 9312, and 9315 only

• 16/8-bit SRAM/Flash/ROM interface in EP9301 and 9302 only

• 32/16/8-bit SRAM/Flash/ROM interface in EP9307, 9312, and 9315 only

• Serial Flash interface

• Internal Peripherals

• Real-Time clock with software trim

• 12 DMA channels for data transfer to maximize system performance

• Boot ROM

• Dual PLLs

• Watchdog timer

• Two general purpose 16-bit timers

• General purpose 32-bit timer

• 40-bit debug timer

• Standard General-Purpose I/Os (GPIOs), no interrupts:

• 18 in EP9301 and 9302 only

• 30 in EP9307 only

• 31 in EP9312 and 9315 only

• Enhanced General-Purpose I/Os (EGPIOs) plus Port F GPIOs can generate interrupts: 

• 19 in EP9301, 9302 only

• 18 in EP9307 only



DS785UM1 1-7
Copyright 2007 Cirrus Logic 

Introduction
EP93xx User’s Guide

11

1
• 16 in EP9312 only

• 24 in EP9315 only

 1.3 EP93xx Processor Applications 
The EP93xx processors can be used in a variety of applications, such as:

• Digital media servers

• Integrated home media gateways

• Digital audio jukeboxes

• Streaming audio/video players

• Telematic control systems

• Set-top boxes

• Point-of-sale terminals

• Thin clients

• Internet TVs

• Biometric security systems

• Industrial controls

• GPS & fleet management systems

• Educational toys

• Voting machines

• Medical equipment

 1.4 EP93xx Processor Highlights

 1.4.1 High-Performance ARM920T Core

The EP93xx Processors feature an advanced ARM920T Core design with an MMU that 
supports Linux®, Windows® CE®, and many other embedded operating systems. The 
ARM920T’s 32-bit microcontroller architecture, with a five-stage pipeline, delivers impressive 
performance at very low power. The included 16 KByte instruction cache and 16 KByte data 
cache provide zero-cycle latency to the current program and data, or can be locked to 
provide guaranteed no-latency access to critical instructions and data. For applications with 
instruction memory size restrictions, the ARM920T’s compressed Thumb® instruction set 
provides a space-efficient design that maximizes external instruction memory usage.

 1.4.2 MaverickCrunch™ Co-processor for Ultra-Fast Math Processing

The EP9302, EP9307, EP9312, and EP9315 processors include an advanced 
MaverickCrunch co-processor that provides mixed-mode math functions to greatly accelerate 
the floating-point processing capabilities of the ARM920T Core. The MaverickCrunch co-



1-8 DS785UM1
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

11

1
processor simplifies the end-user’s programming task by using predefined co-processor 
instructions, utilizing standard ARM compiler tools, and by requiring just one debugger 
session for the entire system. Furthermore, the integrated design provides a single 
instruction stream and the advantage of zero latency for cached instructions. To emulate this 
capability, competitors’ solutions add a DSP to the system, which requires separate 
compiler/linker/debugger tool sets. This additional DSP requires programmers to write two 
separate programs and debug them simultaneously, which can result in frustration and costly 
delays.

 1.4.3 MaverickKey™ Unique ID Secures Digital Content in OEM Designs

The EP93xx processors include MaverickKey unique hardware programmed IDs that provide 
an excellent solution to the growing concern over secure Web content and commerce. With 
Internet security playing an important role in the delivery of digital media such as books or 
music, traditional software methods are quickly becoming unreliable. The MaverickKey 
unique IDs provide OEMs with a method of utilizing specific hardware IDs for DRM (Digital 
Rights Management) and other authentication mechanisms. 

MaverickKey uses a specific 32-bit ID and a 128-bit random ID that are programmed into the 
EP93xx processors through the use of laser probing technology. These IDs can then be used 
to match secure copyrighted content with the ID of the target device that the EP93xx 
processor is powering, and then deliver the copyrighted information over a secure 
connection. In addition, secure transactions can benefit by matching device IDs to server IDs.

MaverickKey IDs can also be used by OEMs and design houses to protect against design 
piracy by presetting ranges for unique IDs. For more information on securing your design 
using MaverickKey, please contact your Cirrus Logic sales representative.

 1.4.4 Integrated Multi-Port USB 2.0 Full Speed Hosts with Transceivers

The EP9307, EP9312, and EP9315 processors integrate three USB 2.0 Full Speed Host 
ports while the EP9301 and EP9302 integrate two of the ports. Fully compliant to the OHCI 
USB 2.0 Full Speed specification (12 Mbps), the host ports can be used to provide 
connections to a number of external devices including mass storage devices, external 
portable devices such as audio players or cameras, printers, or USB hubs. Naturally, the USB 
host ports support the USB 2.0 Low Speed standard as well. This provides the opportunity to 
create a wide array of flexible system configurations.



DS785UM1 1-9
Copyright 2007 Cirrus Logic 

Introduction
EP93xx User’s Guide

11

1
 1.4.5 Integrated Ethernet MAC Reduces BOM Costs

The EP93xx processors integrate a 1/10/100 Mbps Ethernet Media Access Controller (MAC). 
With a simple connection to MII-based external PHYs (such as the Cirrus Logic CS8952 PHY 
Transceiver), an EP93xx processor-based system has easy, high-performance, cost-effective 
Internet capability.

 1.4.6 8x8 Keypad Interface Reduces BOM Costs

The EP9307, 9312, and 9315 processors include a matrix keypad controller that scans an 
8x8 array of 64 normally open, single pole switches. Any one or two keys depressed will be 
de-bounced and decoded. An interrupt is generated whenever a stable set of depressed keys 
is detected. If the keypad is not utilized, the 16 column/row pins may be used as general-
purpose I/Os.

 1.4.7 Multiple Booting Mechanisms Increase Flexibility

The EP93xx processors include a 16 KByte Boot ROM to set up standard configurations. The 
Boot ROM controls booting from either FLASH memory, the SPI serial interface, or a UART. 
This boot flexibility makes it easy to design user-controlled, field-upgradable systems. See 
Chapter 4 on page 4-1, for additional details. The EP93xx processors can also boot directly 
from CSn0, bypassing the Boot ROM.

 1.4.8 Abundant General Purpose I/Os Build Flexible Systems

The EP93xx processors include both enhanced and standard general-purpose I/O pins 
(GPIOs). The enhanced GPIOs may individually be configured as inputs, outputs, or 
interrupt-enabled inputs. Nineteen enhanced GPIOs are in EP9301 and 9302 processors, 18 
are in the EP9307 processor, and 16 are in EP9312 processor, and 24 are in the EP9315 
processor. 

The standard GPIOs may individually be used as inputs, outputs, or (in some cases) open-
drain pins. The standard GPIOs are multiplexed with peripheral function pins, so the number 
available depends on the utilization of peripherals. Eighteen standard GPIOs are in EP9301 
and 9302 processors, 30 are in the EP9307 processor, 31 are in the EP9312 and EP9315 
processors. 

Together, the enhanced and standard GPIOs facilitate easy system design with external 
peripherals not integrated on the EP93xx processors.

 1.4.9 General-Purpose Memory Interface (SDRAM, SRAM, ROM, FLASH)

The EP93xx processors feature a unified memory address model in which all memory 
devices are accessed over a common address/data bus. In the EP9301 and 9302 
processors, the common address/data bus is 16-bits wide, the Static Memory Controller 
(SMC) supports 8-bit and 16-bit devices and the SDRAM, SyncROM, and SyncFLASH 
synchronous memory controller supports 16-bit devices. In the EP9307, EP9312, and 
EP9315 processors, the common address/data bus is programmable to either 16-bits or 32-



1-10 DS785UM1
Copyright 2007 Cirrus Logic

Introduction
EP93xx User’s Guide

11

1
bits wide, the SMC supports 8-bit, 16-bit, and 32-bit devices, and the SDRAM, SyncROM, 
and SyncFLASH synchronous memory controller supports 16-bit and 32-bit devices. In the 
EP9307, EP9312, and EP9315 processors, a separate internal bus to the dynamic memory 
controller is dedicated to the read-only Raster/Display refresh engine.

 1.4.10 12-Bit Analog-to-Digital Converter (ADC) Provides an Integrated
Touch-Screen Interface or General ADC Functionality

The EP9301 and EP9302 processors include a 5-channel ADC. The EP9307, EP9212, and 
EP9315 processors include a 12-bit ADC, which can be utilized either as an 8-wire touch-
screen interface or for general ADC functionality. The touch-screen interface performs all 
sampling, averaging, ADC range checking, and control for a wide variety of analog-resistive 
touch screens. To improve system performance, the controller only interrupts the ARM Core 
when a meaningful change occurs. The touch screen hardware may be disabled, and the 
switch matrix and ADC controlled directly for general ADC usage if desired.

 1.4.11 Raster Analog / LCD Controller

The EP9307, EP9312, and EP9315 processors include a raster/LCD controller that features 
fully programmable video interface timing for either non-interlaced or dual scan color and 
grayscale flat panel displays. Resolutions up to 1024x768 pixels are supported from a unified 
SDRAM-based frame buffer with pixel depths of 4, 8, 16, or 18 bits. A 256x18 color lookup 
table, a hardware blinking cursor with up to 64x64 pixels, and an interface to smart panel 
displays is also included.

 1.4.12 Graphics Accelerator 

The EP9307 and EP9315 processors include a hardware graphics acceleration engine that 
improves graphic performance by handling block copy, block fill and hardware line draw 
operations. The graphics accelerator is used to off load graphics operations from the ARM 
Core.

 1.4.13 PCMCIA Interface

The EP9315 processor (only) provides a PCMCIA interface that supports 8-bit or 16-bit 
PCMCIA PC Cards. These PCMCIA cards are credit card sized peripherals that add memory, 
mass storage and I/O capabilities to computer systems, and can be used to further broaden 
the options of a designer’s platform.



DS785UM1 2-1
Copyright 2007 Cirrus Logic 

22

2
Chapter 2

2ARM920T Core and Advanced High-Speed Bus (AHB)

 2.1 Introduction
This chapter describes the ARM920T Core and the Advanced High-Speed Bus (AHB). 

 2.2 Overview: ARM920T Core
The ARM920T is a Harvard architecture core with separate 16 kbyte instruction and data 
caches with an 8-word line length. The ARM Core utilizes a five-stage pipeline consisting of 
fetch, decode, execute, data memory access, and write stages. 

 2.2.1 Features

Key features include:

• ARM V4T (32-bit) and Thumb (16-bit compressed) instruction sets

• 32-bit Advanced Micro-Controller Bus Architecture (AMBA)

• 16 kbyte Instruction Cache with lockdown

• 16 kbyte Data Cache (programmable write-through or write-back) with lockdown

• Write Buffer

• MMU for Microsoft Windows CE and Linux operating systems

• Translation Look-aside Buffers (TLB) with 64 Data and 64 Instruction Entries

• Programmable Page Sizes of 64 kbyte, 4 kbyte, and 1 kbyte

• Independent lockdown of TLB Entries

• JTAG Interface for Debug Control

• Co-processor Interface



2-2 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
 2.2.2 Block Diagram

 Figure 2-1. ARM920T Block Diagram

 2.2.3 Operations

The ARM920T core follows a Harvard architecture and consists of an ARM9TDMI core, 
MMU, instruction and data cache. The core supports both the 32-bit ARM and 16-bit Thumb 
instruction sets.

The internal bus structure (AMBA) includes both a high speed and low speed bus. The high 
speed bus AHB (Advanced High-performance Bus) contains a high speed internal bus clock 
to synchronize co-processor, MMU, cache, DMA controller, and memory modules. AMBA 
includes a AHB/APB bridge to the lower speed APB (Advanced Peripheral Bus). The APB 
bus connects to lower speed peripheral devices such as UARTs and GPIOs.

The MMU provides memory address translation for all memory and peripherals designed to 
remap memory devices and peripheral address locations. Sections, large, small and tiny 
pages are programmable to map memory in 1 Mbyte, 64 kbyte, 4 kbyte, 1 kbyte size blocks. 
To increase system performance, a 64-entry translation look-aside buffer will cache 64 
address locations before a TLB miss occurs.

External
Co-Proc
Interface

Instruction
cache

Instruction
MMU

Data cache Data MMU
Write Back

PA TAG
RAM

AMBA
Bus
Int.

R13

R13

ARM9TDMI
Processor core

(Integral
EmbeddedICE)

CP15

Write
Buffer

JTAG

APB



DS785UM1 2-3
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
A 16 kbyte instruction and a 16 kbyte data cache are included to increase performance for 
cache-enabled memory regions. The 64-way associative cache also has lock-down 
capability. A 16-word Write Buffer allows cached instructions to be fetched and decoded while 
the Write Buffer sends data to external memory.

The ARM920T Core supports a number of co-processors, including the MaverickCrunch co-
processor by means of a specific pipeline architecture interface.

 2.2.3.1 ARM9TDMI Core
ARM9TDMI core is responsible for executing both 32-bit ARM and 16-bit Thumb instructions. 
Each provides a unique advantage to a system design. Internally, the instructions enter a 5-
stage pipeline. These stages are:

• Instruction Fetch

• Instruction Decode

• Execute

• Data Memory Access

• Register Write

All instructions are fully interlocked. This mechanism will delay the execution stage of a 
instruction if data in that instruction comes from a previous instruction that is not available yet. 
This simply insures that software will function identically across different implementations.

For memory access instructions, the base register used for the access will be restored by the 
ARM Core in the event of an Abort exception. The base register will be restored to the value 
contained in it immediately before execution of the instruction.

The ARM9TDMI core memory interface includes a separate instruction and data interface to 
allow concurrent access of instructions and data to reduce the number of CPI (cycles per 
instruction). Both interfaces use pipeline addressing. The core can operate in big and little 
endian mode. Endianess affects both the address and the data interfaces.

The memory interface executes four types of memory transfers: sequential, non-sequential, 
internal, and co-processor. It will also support uni- and bi-directional transfer modes.

The core provides a debug interface called JTAG (Joint Testing Action Group). This interface 
provides debug capability with five external control signals:

• TDO - Test Data Out

• TDI - Test Data In

• TMS - Test Mode Select

• TCK - Test Clock

• nTRST - Test Reset 

There are six scan chains (0 through 5) in the ARM9TDMI controlled by the JTAG Test 
Access Port (TAP) controller. Details on the individual scan chain function and bit order can 
be found in the ARM920T Technical Reference Manual.



2-4 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
 2.2.3.2 Memory Management Unit

The MMU provides the translation and access permissions for the address and data ports for 
the ARM9TDMI core. The MMU is controlled by page tables stored in system memory and 
accessed using the CP15 register 1. The main features of the MMU are as follows:

• Address Translation

• Access Permissions and Domains

• MMU Cache and Write Buffer Access

 2.2.3.2.1 Address Translation

The virtual address from the ARM920T core is modified by R13 internally to create a modified 
virtual address. The MMU then translates the modified virtual address from R13 by the CP15 
register 3 into a physical address to access external memory or a device. The MMU looks for 
the physical address from the Translation Table Base (TTB) in system memory. It will also 
update the TLB cache.

The TLB is two 64-entry caches, one for data and one for instruction. If the physical address 
for the current virtual address is not found in the TLB (miss), the ARM Core will go to external 
memory and look for the TTB in system memory. The internal translation table walks 
hardware steps through the page table setup in external memory for the appropriate physical 
address.

When the physical address is acquired, the TLB is updated. When the address is found in the 
TLB, system performance will increase since additional cycles to access memory and update 
the TLB are avoided.

Translation of system memory is done by breaking up the memory into different size blocks 
called sections, large pages, small pages, and tiny pages. System memory and registers can 
be remapped by the MMU. The block sizes are as follows:

• Section - 1 Mbyte

• Large Page - 64 kbyte

• Small Page - 16 kbyte

• Tiny Page - 1 kbyte

 2.2.3.2.2 Access Permission and Domains

Access to any section or page of memory is dependent on its domain. The page table in 
external memory also contains access permissions for all sub-divisions of external memory. 
Access to specific instructions or data has three possible states:

• Client: Access permissions based on the section or page table descriptor

• Manager: Ignore access permissions in the section or page table descriptor

• No access: any attempted access generates a domain fault



DS785UM1 2-5
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
 2.2.3.2.3 MMU Enable

Enabling the MMU allows system memory control, but is also required if the Data Cache and 
the Write Buffer are to be used. Features are enabled for specific memory regions, as defined 
in the system page table. MMU enablement is done via CP15 register 1. The procedure is as 
follows:

1. Program the Translation Table Base (TTB) and domain access control registers

2. Create level 1 and level 2 pages for the system, and enable the Data Cache and the
Write Buffer

3. Enable the MMU via bit 0 of CP15 register 1.

 2.2.3.3 Cache and Write Buffer
Cache configuration is 64-way set associative. There is a 16 kbyte instruction cache and a 16 
kbyte data cache. The caches have the following characteristics:

• 8 words per line, with 1 valid bit and 2 dirty bits per line to allow half-line write-backs

• Write-through or write-back capability, selectable per memory region defined by the
MMU

• Pseudo random or round robin replacement algorithms for cache misses. This is
determined by the RR bit (bit 14) in CP15 register 1. On a cache miss (instruction or data
not in the respective cache), an 8-word line is fetched from memory and loaded into the
cache 

• Independent cache lock-down with granularity of 1/64th of total cache size or 256 bytes
for both instructions and data. Lock-down of the cache will prevent an eight-word cache
line fill into that region of the cache 

• For compatibility with Windows CE and to reduce latency, physical addresses for data
cache entries are stored in the PA TAG RAM, which is used for cache line write-back
operations without need of the MMU. This prevents a possible TLB miss that would
degrade performance

• The Write Buffer has a depth of 16 data words. If enabled, writes are sent to the Write
Buffer directly from the Data Cache or from the CPU (in the event of a cache miss or if
the cache is not enabled).

 2.2.3.3.1 Instruction Cache Enable

• At reset, the Instruction Cache is disabled

• A write to bit 12 of CP15 register 1 will enable or disable the Instruction Cache. If the
Instruction Cache (I-Cache) is enabled without the MMU enabled, all accesses are
treated as cacheable

• If the I-Cache is disabled, current contents are ignored. If re-enabled before a reset,
contents will be unchanged, but may not be coherent with eternal memory. If so,
contents must be flushed before re-enabling.



2-6 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
 2.2.3.3.2 Data Cache Enable

• A write to bit 2 of CP15 register 1 will enable or disable the Data Cache (D-Cache)/Write
Buffer

• The D-Cache may only be enabled when the MMU is enabled. All data accesses are
subject to MMU and permission checks

• If disabled, current contents are ignored. If re-enabled before a reset, contents will be
unchanged, but may not be coherent with external memory. Depending on system
software, a clean and invalidate action may be required before re-enabling.

 2.2.3.3.3 Write Buffer Enable

• The Write Buffer is enabled via the page table entries in the MMU. The Write buffer
cannot be enabled unless the MMU is enabled.

 2.2.4 Co-processor Interface

The MaverickCrunch co-processor is explained in detail in Chapter 3 on page 3-1. The 
relationship between the ARM co-processor instructions and MaverickCrunch co-processor 
is also explained in  Chapter 3.

The ARM co-processor instruction set includes:

• LDC - Load co-processor from memory

• STC - Store co-processor register from memory

• MRC - Move to ARM register from co-processor register

• MCR - Move to co-processor register from ARM register

The ARM co-processor has sixteen (C0 through C15) 64-bit registers for data transfer and 
data manipulation. See  Chapter 3, Section 3.2 on page 3-8 for a code example.

 2.2.5 AMBA AHB Bus Interface Overview

The AHB (Advanced High-Performance Bus) is the high-performance system backbone bus. 
Figure 2-2 on page 2-7 shows a typical AMBA AHB System.

The AHB connects devices that require high bandwidth, such as DMA controllers, external 
memory, and co-processors. The AHB supports:

• Burst Transactions

• Split Transactions

• Bus Master hand-over to devices such as the MaverickCrunch co-processor or DMA
controller 

• Single clock edge operations

The APB (Advanced Peripheral Bus) is a lower bandwidth, but lower power, bus that 
provides:



DS785UM1 2-7
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
• Latched address and control

• A simple Interface to on-chip peripherals such as UARTs and AC’97.

 Figure 2-2. Typical AMBA AHB System

 2.2.6 AHB Implementation Details

Peripherals or the external memory interface that have high bandwidth and low latency 
requirements are connected to the CPU using the AHB bus. The peripherals include the 
Vectored Interrupt Controllers (VIC1, VIC2), DMA, LCD/Raster registers, USB host, IDE, 
Ethernet MAC and the bridge to the APB interface. The AHB/APB Bridge transparently 
converts the AHB accesses into the slower speed APB accesses. All of the control registers 
for the APB peripherals are programmed using the AHB/APB bridge interface. The main AHB 
data and address lines are configured using a multiplexed bus. This removes the need for 
three state buffers and bus holders, and simplifies bus arbitration. Figure 2-3 on page 2-8 
shows the main data paths in the processor’s AHB implementation.

E xterna l
M em ory
Interface

D M A
C ontro ller

AR M 9T D M I

C o-
Processo

r AH B/
AP B

B
r
i
d
g
e

G PIO

U AR T S PI

AC 97

AH B A PB

USB



2-8 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
 

 Figure 2-3. Main Data Paths

Before an AMBA-to-AHB transfer can commence, the bus master must be granted access to 
the bus. This process is started by the master asserting a request signal to the Arbiter. The 
Arbiter then indicates when the master will be granted use of the bus. A granted bus master 
starts an AMBA-to-AHB transfer by driving the address and control signals. These signals 
provide information on the address, direction and width of the transfer, as well as indicating 
whether the transfer is part of a burst. 

Two different forms of burst transfers are allowed: 

• Incrementing bursts, which do not wrap at address boundaries 

• Wrapping bursts, which wrap at particular address boundaries. 

SDRAM
Controller

Static
Memory/

E
B
I

GPIOs

PWM

SPI

I2S

DMA

AHB/APB
bridge

AHB

APB

Clock & State

Boot ROM

USB
Host

Touchscreen

IrDA

RTC

Control

PLL1 PLL2

Test
Support

Watchdog

VIC2

VIC1

AC97

IDE

Ethernet

Timers

UARTs

8x8 Key Mtx

ARM920T

Maverick18 Bit Raster
LCD I/F Crunch

PCMCIA



DS785UM1 2-9
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
A write data bus is used to move data from the master to a slave, while a read data bus is 
used to move data from a slave to the master. Every transfer consists of: 

• An address and control cycle 

• One or more cycles for the data. 

In normal operation a master is allowed to complete all the transfers in a particular burst 
before the arbiter grants another master access to the bus. However, in order to avoid 
excessive arbitration latencies, it is possible for the arbiter to break up a burst, and, in such 
cases, the master must re-arbitrate for the bus in order to complete the remaining transfers in 
the burst.

 2.2.7 Memory and Bus Access Errors

There are several possible sources of access errors:

• Reads to reserved or undefined register memory addresses will return indeterminate
data. Writes to reserved or undefined memory addresses are generally ignored, but this
behavior is not guaranteed. Many register addresses are not fully decoded, so aliasing
may occur. Addresses and memory ranges listed as Reserved should not be accessed;
access behavior to these regions is not defined

• Access to non-existent registers or memory may result in a bus error 

• Any access to the APB control register space will complete normally, as these devices
have no means of signaling an error 

• Access to non-existent AHB or APB registers may result in a bus error, depending on the
device and nature of the error. Device specific access rules are defined in the device
descriptions 

• External memory access is controlled by the Static Memory Controller (SMC) or the
Synchronous Dynamic RAM (SDRAM) controller. In general, access to non-existent
external memory will complete normally, with reads returning random false data.

 2.2.8 Bus Arbitration 

The arbitration mechanism is used to ensure that only one master has access to the bus that 
it controls at any one time. The Arbiter performs this function by observing a number of 
different requests to use the bus, and then deciding which is currently the highest priority 
master requesting the bus.

The arbitration scheme can be broken down into three main areas:

• The main AHB system bus Arbiter 

• The SDRAM slave interface Arbiter 

• The EBI bus Arbiter 



2-10 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
 2.2.8.1 Main AHB Bus Arbiter 

This Main AHB Bus Arbiter controls bus master arbitration for the AHB bus. The AHB bus has 
eight master interfaces:

• ARM920T

• DMA controller

• USB hosts (USB1, 2, 3)

• Ethernet MAC

• LCD/Raster 

• Raster Hardware Cursor. 

These interfaces have an order of priority that is linked closely with the power saving modes 
Halt and Standby. These power saving modes force the Arbiter to grant the default bus 
master, in this case, the ARM920T. 

The order of priority of the bus masters, from highest to lowest, is shown in Table 2-1. 

The priority of the arbiter may be programmed via the BusMstrArb register in the Clock and 
State Controller. The arbiter can also be programmed to degrant one of these masters: DMA, 
USB Host or Ethernet MAC if an interrupt (IRQ or FIQ) is pending or being serviced. This 
prevents one of these masters from blocking important interrupt service routines. These 
masters are thereby prevented from accessing the bus, that is, their bus requests are 
masked until the IRQ/FIQ is removed (by the Interrupt Service Routine). After the IRQ/FIQ is 
removed, their bus requests will again be recognized. The default is to program the arbiter so 
that it does not degrant any of these masters. 

In normal operation, when the ARM920T is granted the bus and a request to enter Halt mode 
is received, the ARM920T is de-granted from the AHB bus. Any other master requesting the 
bus during Halt mode (according to it’s priority) will be granted the bus. In the case of entry 
into Standby mode, the dummy master will be granted the bus, which simply performs IDLE 
transfers. In this way, all the masters except the ARM920T can be used during Halt mode, but 
are shutdown upon entry into Standby mode.

Table 2-1. AHB Arbiter Priority Scheme

Priority 
Number

PRIORITY 00 
(Reset value)

PRIORITY 01 PRIORITY 10 PRIORITY 11

1 Raster Cursor Raster Raster Raster

2 MAC Raster Cursor Raster Cursor DMA

3 USB MAC DMA MAC

4 DMA USB USB USB

5 ARM920T ARM920T MAC Raster Cursor

6 Raster DMA ARM920T ARM920T



DS785UM1 2-11
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
 2.2.8.2 SDRAM Slave Arbiter

The SDRAM Slave Arbiter prioritizes between accesses from the AHB bus and the Raster 
DMA bus. If an access request from the AHB arrives at the same time as an access request 
from the Raster DMA, the Raster DMA will be given access while the AHB request is queued. 

 2.2.8.3 EBI Bus Arbiter 
The EBI Bus Arbiter is used to arbitrate between accesses from the SDRAM controller and 
the Static Memory controller, where priority is given to accesses from the SDRAM controller.

 2.3 AHB Decoder
The AHB Decoder contains the device memory map for all of the AHB masters/slaves and for 
the APB bridge. When a particular address range is selected, the appropriate signal is 
generated as defined in Table 2-2.

(For additional information, see  17, “Reference Documents” on page P-3. 

Note: Due to decoding optimization, the AHB peripheral registers are aliased throughout each 
peripherals register bank. Do not attempt to access an unspecified register within the 
bank. 

 2.3.1 AHB Slave 

An AHB Slave responds to transfers initiated by bus masters. The slave uses signals from 
the decoder to determine when it should respond to a bus transfer. All other signals required 
for the transfer, such as the address and control information, are generated by the bus 
master.

Table 2-2. AHB Peripheral Address Range

Address Range Register Width Peripheral Type Peripheral 

0x800D_0000 - 0x800F_FFFF - - Reserved

0x800C_0000 - 0x800C_FFFF 32 AHB VIC2

0x800B_0000 - 0x800B_FFFF 32 AHB VIC1

0x800A_0000 - 0x800A_FFFF 32 AHB IDE

0x8009_0000 - 0x8009_FFFF 32 AHB Boot ROM physical address

0x8008_0000 - 0x8008_FFFF 32 AHB SRAM Controller/ PCMCIA

0x8007_0000 - 0x8007_FFFF - - Reserved

0x8006_0000 - 0x8006_FFFF 32 AHB SDRAM Controller

0x8005_0000 - 0x8005_FFFF - - Reserved

0x8004_0000 - 0x8004_FFFF - - Reserved

0x8003_0000 - 0x8003_FFFF 32 AHB Raster 

0x8002_0000 - 0x8002_FFFF 32 AHB USB Host

0x8001_0000 - 0x8001_FFFF 32 AHB Ethernet MAC

0x8000_0000 - 0x8000_FFFF 32 AHB DMA 



2-12 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
 2.3.2 AHB-to-APB Bridge

The AHB-to-APB Bridge is an AHB slave that provides an interface between the high-speed 
AHB and the low-power APB. Read and write transfers on the AHB are converted into 
equivalent transfers on the APB. As the APB is not pipelined. Wait states are added during 
transfers to and from the APB when the AHB is required to wait for the APB. 

The main sections of this bridge are: 

• AHB slave bus interface 

• APB transfer state machine, which is independent of the device memory map 

• APB output signal generation.

 2.3.2.1 Function and Operation of the AHB-to-APB Bridge
The AHB-to-APB Bridge responds to access requests from the currently granted AHB 
master. The AHB accesses are then converted into APB accesses. 

If an undefined location is accessed, operation of the system continues as normal, but no 
peripherals are selected. The APB bridge acts as the only master on the APB.

The APB memory map is shown in Table 2-3. 

Table 2-3. APB Peripheral Address Range

Address Range
Register 

Width
Peripheral 

Type
Peripheral 

0x8095_0000 - 0x9000_FFFF - - Reserved

0x8094_0000 - 0x8094_FFFF 16 APB Watchdog Timer

0x8093_0000 - 0x8093_FFFF 32 APB Syscon

0x8092_0000 - 0x8092_FFFF 32 APB Real time clock

0x8091_0000 - 0x8091_FFFF 16 APB Pulse Width Modulation

0x8090_0000 - 0x8090_FFFF 32 APB Touchscreen

0x808F_0000 - 0x808F_FFFF 16 APB Key Matrix

0x808E_0000 - 0x808E_FFFF 32 APB UART3

0x808D_0000 - 0x808D_FFFF 8 APB UART2

0x808C_0000 - 0x808C_FFFF 32 APB UART1

0x808B_0000 - 0x808B_FFFF 32 APB IrDA

0x808A_0000 - 0x808A_FFFF 16 APB SPI

0x8089_0000 - 0x8089_FFFF - - Reserved

0x8088_0000 - 0x8088_FFFF 32 APB AAC

0x8087_0000 - 0x8087_FFFF - - Reserved

0x8086_0000 - 0x8086_FFFF - - Reserved

0x8085_0000 - 0x8085_FFFF - - Reserved

0x8084_0000 - 0x8084_FFFF 16 APB GPIO

0x8083_0000 - 0x8083_FFFF 32 APB Security

0x8082_0000 - 0x8082_FFFF 32 APB I2S

0x8081_0000 - 0x8081_FFFF 32 APB Timers

0x8080_0000 - 0x8080_FFFF - - Reserved

0x8010_0000 - 0x807F_FFFF - - Reserved



DS785UM1 2-13
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
Note: Due to decoding optimization, the APB peripheral registers are aliased throughout each 

peripherals register bank. Do not attemp to access an unspecified register within the bank. 

 2.3.3 APB Slave 

An APB Slave responds to accesses initiated by bus masters. The slave uses signals from 
the decoder to determine when it should respond to a bus access. All other signals required 
for the access, such as the address and control information, are generated by the AHB-to-
APB Bridge.

 2.3.4 Register Definitions

The ARM920T Core has thirty seven 32-bit internal registers, where some are modal and 
some are banked. If operating in Thumb instructions state, the ARM Core must switch to 
ARM instructions state before taking an exception. The return instruction will restore the ARM 
Core to the Thumb state. Most tasks are executed out of User mode. The ARM920T Core’s 
operating modes are shown in Table 2-4.

Table 2-5 illustrates the use of all registers for the ARM920T Core’s operating modes. Each 
will bank or store a specific number of registers. Banked register information is not shared 
between modes. FIQs bank the largest number of registers, and increase performance by 
reducing the need to push/pop registers from the stack. 

Table 2-4. ARM920T Core Operating Modes

Mode Description

User Unprivileged normal operating mode

FIQ
Fast interrupt (high priority) mode when FIQ is 
asserted

IRQ
Interrupt request (normal) mode when IRQ is 
asserted

Supervisor
Software interrupt instruction (SWI) or reset will 
cause entry into this mode.

Abort:
Memory access violation will cause entry into this 
mode.

Undef Undefined instructions mode

System
Privileged mode. Uses same registers as User 
mode



2-14 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2

User mode in Thumb state limits access to the low registers r0-r7. To access to the high 
registers, the ARM Core must first revert to the ARM state. The high registers are:

• r0-r12: General purpose read/write 32-bit registers

• r13 (sp): Stack Pointer

• r14 (lr): Link Register

• r15 (pc): Program Counter

• cpsr: Current Program Status Register containing condition codes and operating modes

Table 2-5. Register Organization Summary 

Privileged Modes

Exception Modes

User System Supervisor Abort Undefined IRQ FIQ

r0 r0 r0 r0 r0 r0 r0

Thumb
state low
registers

r1 r1 r1 r1 r1 r1 r1

r2 r2 r2 r2 r2 r2 r2

r3 r3 r3 r3 r3 r3 r3

r4 r4 r4 r4 r4 r4 r4

r5 r5 r5 r5 r5 r5 r5

r6 r6 r6 r6 r6 r6 r6

r7 r7 r7 r7 r7 r7 r7

r8 r8 r8 r8 r8 r8 r8_fiq

Thumb
state high
registers

r9 r9 r9 r9 r9 r9 r9_fiq

r10 r10 r10 r10 r10 r10 r10_fiq

r11 r11 r11 r11 r11 r11 r11_fiq

r12 r12 r12 r12 r12 r12 r12_fiq

r13(sp) r13 r13_svc r13_abt r13_und r13_irq r13_fiq

r14(lr) r14 r14_svc r14_abt r14_und r14_irq r14_fiq

r15(pc) pc pc pc pc pc pc

cpsr cpsr cpsr cpsr cpsr cpsr cpsr

spsr_svc spsr_abt spsr_und spsr_irq spsr_fiq

Note: Colored areas represent banked registers.



DS785UM1 2-15
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
• spsr: Saved Program Status Register contains CPSR after occurrence of an exception

CP15 has 16 registers that control the core as described in Table 2-6. 

Table 2-6. CP15 ARM920T Register Description

Register Description

0

ID Code: (Read/Only) This register returns a 32-bit device ID code. ID Code data includes 
the core type, revision, part number etc. Access to this register is via the instruction
MRC p15 0, Rd, c0, c0, 0.
Cache Code: This register will return cache type, size and length of both I-Cache and D-
Cache, and associativity. Access to this register is via the instruction
MRC p15 0, Rd, c0, c0, 1.

1

Control Register: (Read/Write) This register is used to enable: MMU, instruction and data 
cache, round robin replacement ‘RR’-bit, system protection, ROM protection, and clocking 
mode. Read/Write Instructions are:
MRC p15, 0, Rd, c1, c0, 0 - Read control register - value stored in Rd
MCR p15, 0, Rd, c1, c0, 0 - Write control register - value first loaded into Rd

2

Translation Base Table: (Read/Write) This register contains the start address of the first 
level translation table. The upper 18 bits represent the pointer to the table base. The lower 
14 bits should be all zeroes for a write, unpredictable if read.
MRC p15, 0, Rd, c2, c0, 0 - Read TTB
MCR p15, 0, Rd, c2, c0, 0 - Write TTB 

3

Domain Access Control: (Read/Write) This register specifies permissions for each of the 
16 domains. Read/Write Instructions are:
MRC p15, 0, Rd, c3, c0, 0 
MCR p15, 0, Rd, c3, c0, 0

4 Reserved: Do not access. Unpredictable behavior may result.

5

Fault Status: (Read/Write) This register indicates the type of fault and the domain of the 
most recent data abort. Read/Write Instructions are:
MRC p15, 0, Rd, c5, c0, 0 - read data FSR value
MCR p15, 0, Rd, c5, c0, 0 - write data FSR value

6

Fault Address: (Read/Write) This register contains the address of the last data access 
abort. Read/Write Instructions are:
MRC p15, 0, Rd, c6, c0, 0 - read FAR data
MCR p15, 0, Rd, c6, c0, 0 - write FAR data

7

Cache Operation: (Write/Only) This register configures, or performs a clean (flush) of, the 
cache and write buffer when written to. Example:
MRC p15, 0, Rd, c7, c7, 0 - Invalidate I/D-cache
MRC p15, 0, Rd, c7, c5, 0 - Invalidate I-Cache

8
TLB Operation: (Write/Only) This register configures, or performs a clean (flush) of, the 
TLB when written to. Example:
MRC p15, 0, Rd, c8, c7, 0 - Invalidate TLB

9

Cache Lockdown: (Read/Write) This register prevents certain existing cache-lines from 
being overwritten (locked) during a new cache-line fill. Examples: 
MRC p15, 0, Rd, c9, c0, 1- Write lockdown base pointer for D-Cache
MRC p15, 0, Rd, c9, c0, 1 - Write lockdown base pointer for I-Cache

10

TLB Lockdown: (Read/Write) This register prevents existing TLB entries from being 
erased during a table walk. Examples:
MRC p15, 0, Rd, c10, c0, 1- Write lockdown base pointer for data TLB entry
MRC p15, 0, Rd, c10, c0, 1 - Write lockdown base pointer for instruction TLB entry



2-16 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2

 2.3.5 Memory Map 

The memory map for Synchronous Memory Boot and Asynchronous Memory Boot is shown 
in Table 2-7.

If internal Boot Mode is selected and the register BootModeClr has been written, the address 
range 0x0000_0000 -> 0x0000_FFFF is occupied by the internal Boot ROM until the internal 
Boot Code is completed. After boot completion, either Synchronous or Asynchronous 
memory is re-mapped to occupy this address space. 

NOTE: Some memory locations are listed as Reserved. These memory locations should not 
be used. Reading from these memory locations will yield invalid data. Writing to these 
memory locations may cause unpredictable results. 

11,12,14 Reserved

13
FCSE PID Register: (Read/Write) ARM9TDMI core addresses ranging from 0 to 32MB are 
translated by this register to A + FCSE*32MB and then sent to the MMU. If turned off, 
straight addresses are sent to the MMU.

15 Test Register Only: Reads or writes will cause unpredictable behavior.

Table 2-7. Global Memory Map for the Two Boot Modes

Address Range Sync Memory Boot Async Memory Boot

ASD0 Pin = 1 ASD0 Pin = 0

0xF000_0000 - 0xFFFF_FFFF Async memory (nCS0) Sync memory (nSDCE3)

0xE000_0000 - 0xEFFF_FFFF Sync memory (nSDCE2) Sync memory (nSDCE2)

0xD000_0000 - 0xDFFF_FFFF Sync memory (nSDCE1) Sync memory (nSDCE1)

0xC000_0000 - 0xCFFF_FFFF Sync memory (nSDCE0) Sync memory (nSDCE0)

0x9000_0000 - 0xBFFF_FFFF Not Used Not Used

0x8080_0000 - 0x8FFF_FFFF APB mapped registers APB mapped registers

0x8010_0000 - 0x807F_FFFF Reserved Reserved

0x8000_0000 - 0x800F_FFFF AHB mapped registers AHB mapped registers

0x7000_0000 - 0x7FFF_FFFF Async memory (nCS7) Async memory (nCS7)

0x6000_0000 - 0x6FFF_FFFF Async memory (nCS6) Async memory (nCS6)

0x5000_0000 - 0x5FFF_FFFF Reserved Reserved

0x4000_0000 - 0x4FFF_FFFF PCMCIA (Slot 0) PCMCIA (Slot 0)

0x3000_0000 - 0x3FFF_FFFF Async memory (nCS3) Async memory (nCS3)

0x2000_0000 - 0x2FFF_FFFF Async memory (nCS2) Async memory (nCS2)

0x1000_0000 - 0x1FFF_FFFF Async memory (nCS1) Async memory (nCS1)

0x0001_0000 - 0x0FFF_FFFF Sync memory (nSDCE3) Async memory (nCS0)

0x0000_0000 - 0x0000_FFFF

Sync memory (nSDCE3)
or

Internal Boot ROM
if INTBOOT is selected

Async memory (nCS0)
or

Internal Boot ROM
if INTBOOT is selected

Table 2-6. CP15 ARM920T Register Description (Continued)

Register Description



DS785UM1 2-17
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
Note: The shaded memory areas are dedicated to system registers. Details of these registers 

are in Table 2-8.

 2.3.6 Internal Register Map

Table 2-8 on page 2-17 shows the memory map for internal registers. Registers are set to 
their default state by the RSTOn pin input or by the PRSTn pin input. Some state conserving 
registers are reset only by the PRSTn pin. All registers are read/write unless otherwise 
specified.

 2.3.6.1 Memory Access Rules
Any memory address not specifically assigned to a register should be avoided. Reads to 
register memory addresses labelled Reserved, Unused or Undefined will return 
indeterminate data. Writes to register memory addresses labelled Reserved, Unused or 
Undefined are generally ignored, but this behavior is not guaranteed. Many register 
addresses are not fully decoded, so aliasing may occur. Addresses and memory ranges 
listed as Reserved (RSVD) should not be accessed; behavior resulting from accesses to 
these regions is not defined.

The SW Lock field identifies registers with a software lock. A software lock prevents the 
register from being written (unless an unlock operation is performed immediately prior to the 
write). Any register whose accidental alteration could cause system damage may be 
controlled with a software lock. Each peripheral with software lock capability has its own 
software lock register.

Within a register definition, a reserved bit indicated by the name RSVD, means the bit is not 
accessible. Software should mask the RSVD bits when doing bit reads. RSVD bits will ignore 
writes, that is writing a zero or a one has no affect. 

Register bits identified as NC are functionally alive but have an undocumented or a “don’t 
care” operating function. Bits identified as NC must be treated in a specific manner for reads 
and writes. The register descriptions will provide information on how to handle NC bits.

Unless specified otherwise, all registers can be accessed as a byte, half-word, or word. 

CAUTION: Some memory locations are listed as Reserved. These memory locations
should not be accessed. Reading from these memory locations will yield invalid data.
Writing to these memory locations may cause unpredictable results. 

Table 2-8. Internal Register Map  

Address Register Name Register Description
SW

Lock

0x8000_xxxx DMA DMA Control Registers

0x8000_0000 - 0x8000_003C M2P Channel 0 Registers (Tx) Memory-to-Peripheral Channel 0 Registers (Tx) N

0x8000_0040 - 0x8000_007C M2P Channel 1 Registers (Rx) Memory-to-Peripheral Channel 1 Registers (Rx) N

0x8000_0080 - 0x8000_00BC M2P Channel 2 Registers (Tx) Memory-to-Peripheral Channel 2 Registers (Tx) N

0x8000_00C0 - 0x8000_00FC M2P Channel 3 Registers (Rx) Memory-to-Peripheral Channel 3 Registers (Rx) N

0x8000_0100 - 0x8000_013C M2M Channel 0 Registers Memory-to-Memory Channel 0 Registers N



2-18 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8000_0140 - 0x8000_017C M2M Channel 1 Registers Memory-to-Memory Channel 1 Registers N

0x8000_0180 - 0x8000_01FC Reserved

0x8000_0200 - 0x8000_023C M2P Channel 5 Registers (Rx) Memory-to-Peripheral Channel 5 Registers (Rx) N

0x8000_0240 - 0x8000_027C M2P Channel 4 Registers (Tx) Memory-to-Peripheral Channel 4 Registers (Tx) N

0x8000_0280 - 0x8000_02BC M2P Channel 7 Registers (Rx) Memory-to-Peripheral Channel 7 Registers (Rx) N

0x8000_02C0 - 0x8000_02FC M2P Channel 6 Registers (Tx) Memory-to-Peripheral Channel 6 Registers (Tx) N

0x8000_0300 - 0x8000_033C M2P Channel 9 Registers (Rx) Memory-to-Peripheral Channel 9 Registers (Rx) N

0x8000_0340 - 0x8000_037C M2P Channel 8 Registers (Tx) Memory-to-Peripheral Channel 8 Registers (Tx) N

0x8000_0380 DMAChArb DMA Channel Arbitration Register N

0x8000_03C0 DMAGlInt DMA Global Interrupt Register N

0x8000_03C4 - 0x8000_FFFC Reserved

0x8001_xxxx Ethernet MAC Ethernet MAC Control Registers

0x8001_0000 RXCtl MAC Receiver Control Register N

0x8001_0004 TXCtl MAC Transmitter Control Register N

0x8001_0008 TestCtl MAC Test Control Register N

0x8001_0010 MIICmd MAC MII Command Register N

0x8001_0014 MIIData MAC MII Data Register N

0x8001_0018 MIISts MAC MII Status Register N

0x8001_0020 SelfCtl MAC Self Control Register N

0x8001_0024 IntEn MAC Interrupt Enable Register N

0x8001_0028 IntStsP MAC Interrupt Status Preserve Register N

0x8001_002C IntStsC MAC Interrupt Status Clear Register N

0x8001_0030 - 0x8001_0034 Reserved

0x8001_0038 DiagAd MAC Diagnostic Address Register N

0x8001_003C DiagDa MAC Diagnostic Data Register N

0x8001_0040 GT MAC General Timer Register N

0x8001_0044 FCT MAC Flow Control Timer Register N

0x8001_0048 FCF MAC Flow Control Format Register N

0x8001_004C AFP MAC Address Filter Pointer Register N

0x8001_0050 - 0x8001_0055 IndAd
MAC Individual Address Register, (shares address space with 
HashTbl)

N

0x8001_0050 - 0x8001_0057 HashTbl MAC Hash Table Register, (shares address space with IndAd) N

0x8001_0060 GlIntSts MAC Global Interrupt Status Register N

0x8001_0064 GlIntMsk MAC Global Interrupt Mask Register N

0x8001_0068 GlIntROSts MAC Global Interrupt Read Only Status Register N

0x8001_006C GlIntFrc MAC Global Interrupt Force Register N

0x8001_0070 TXCollCnt MAC Transmit Collision Count Register N

0x8001_0074 RXMissCnt MAC Receive Miss Count Register N

0x8001_0078 RXRuntCnt MAC Receive Runt Count Register N

0x8001_0080 BMCtl MAC Bus Master Control Register N

0x8001_0084 BMSts MAC Bus Master Status Register N

0x8001_0088 RXBCA MAC Receive Buffer Current Address Register N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



DS785UM1 2-19
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8001_0090 RXDQBAdd MAC Receive Descriptor Queue Base Address Register N

0x8001_0094 RXDQBLen MAC Receive Descriptor Queue Base Length Register N

0x8001_0096 RXDQCurLen MAC Receive Descriptor Queue Current Length Register N

0x8001_0098 RXDCurAdd MAC Receive Descriptor Current Address Register N

0x8001_009C RXDEnq MAC Receive Descriptor Enqueue Register N

0x8001_00A0 RXStsQBAdd MAC Receive Status Queue Base Address Register N

0x8001_00A4 RXStsQBLen MAC Receive Status Queue Base Length Register N

0x8001_00A6 RXStsQCurLen MAC Receive Status Queue Current Length Register N

0x8001_00A8 RXStsQCurAdd MAC Receive Status Queue Current Address Register N

0x8001_00AC RXStsEnq MAC Receive Status Enqueue Register N

0x8001_00B0 TXDQBAdd MAC Transmit Descriptor Queue Base Address Register N

0x8001_00B4 TXDQBLen MAC Transmit Descriptor Queue Base Length Register N

0x8001_00B6 TXDQCurLen MAC Transmit Descriptor Queue Current Length Register N

0x8001_00B8 TXDQCurAdd MAC Transmit Descriptor Current Address Register N

0x8001_00BC TXDEnq MAC Transmit Descriptor Enqueue Register N

0x8001_00C0 TXStsQBAdd MAC Transmit Status Queue Base Address Register N

0x8001_00C4 TXStsQBLen MAC Transmit Status Queue Base Length Register N

0x8001_00C6 TXStsQCurLen MAC Transmit Status Queue Current Length Register N

0x8001_00C8 TXStsQCurAdd MAC Transmit Status Queue Current Address Register N

0x8001_00D0 RXBufThrshld MAC Receive Buffer Threshold Register N

0x8001_00D4 TXBufThrshld MAC Transmit Buffer Threshold Register N

0x8001_00D8 RXStsThrshld MAC Receive Status Threshold Register N

0x8001_00DC TXStsThrshld MAC Transmit Status Threshold Register N

0x8001_00E0 RXDThrshld MAC Receive Descriptor Threshold Register N

0x8001_00E4 TXDThrshld MAC Transmit Descriptor Threshold Register N

0x8001_00E8 MaxFrmLen MAC Maximum Frame Length Register N

0x8001_00EC RXHdrLen MAC Receive Header Length Register N

0x8001_0100 - 0x8001_010C Reserved

0x8001_4000 - 0x8001_50FF MACFIFO MAC FIFO RAM N

0x8002_xxxx USB USB Registers N

0x8002_0000 HcRevision USB Host Controller Revision N

0x8002_0004 HcControl USB Host Controller Control N

0x8002_0008 HcCommandStatus USB Host Controller Command Status N

0x8002_000C HcInterruptStatus USB Host Controller Interrupt Status N

0x8002_0010 HcInterruptEnable USB Host Controller Interrupt Enable N

0x8002_0014 HcInterruptDisable USB Host Controller Interrupt Disable N

0x8002_0018 HcHCCA USB Host Controller HCCA N

0x8002_001C HcPeriodCurrentED USB Host Controller Period CurrentED N

0x8002_0020 HcControlHeadED USB Host Controller Control HeadED N

0x8002_0024 HcControlCurrentED USB Host Controller Control CurrentED N

0x8002_0028 HcBulkHeadED USB Host Controller Bulk HeadED N

0x8002_002C HcBulkCurrentED USB Host Controller Bulk CurrentED N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



2-20 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8002_0030 HcDoneHead USB Host Controller Done Head N

0x8002_0034 HcFmInterval USB Host Controller Fm Interval N

0x8002_0038 HcFmRemaining USB Host Controller Fm Remaining N

0x8002_003C HcFmNumber USB Host Controller Fm Number N

0x8002_0040 HcPeriodicStart USB Host Controller Periodic Start N

0x8002_0044 HcLSThreshold USB Host Controller LS Threshold N

0x8002_0048 HcRhDescriptorA USB Host Controller Root Hub Descriptor A N

0x8002_004C HcRhDescriptorB USB Host Controller Root Hub Descriptor B N

0x8002_0050 HcRhStatus USB Host Controller Root Hub Status N

0x8002_0054 HcRhPortStatus[1] USB Host Controller Root Hub Port Status 1 N

0x8002_0058 HcRhPortStatus[2] USB Host Controller Root Hub Port Status 2 N

0x8002_005C HcRhPortStatus[3] USB Host Controller Root Hub Port Status 3 N

0x8002_0080 USBCtrl USB Configuration Control N

0x8002_0084 USBHCI USB Host Controller Interface Status N

0x8003_xxxx RASTER Raster Control Registers

0x8003_0000 VLinesTotal Total Number of vertical frame lines Y

0x8003_0004 VSyncStrtStop Vertical sync pulse setup Y

0x8003_0008 VActiveStrtStop Vertical blanking setup Y

0x8003_000C VClkStrtStop Vertical clock active frame Y

0x8003_0010 HClkTotal Total Number of horizontal line clocks Y

0x8003_0014 HSyncStrtStop Horizontal sync pulse setup Y

0x8003_0018 HActiveStrtStop Horizontal blanking setup Y

0x8003_001C HClkStrtStop Horizontal clock active frame Y

0x8003_0020 Brightness PWM brightness control N

0x8003_0024 VideoAttribs Video state machine parameters Y

0x8003_0028 VidScrnPage Starting address of video screen N

0x8003_002C VidScrnHPage Starting address of video screen half page N

0x8003_0030 ScrnLines Number of active lines scanned to the screen N

0x8003_0034 LineLength Length in words of data for lines N

0x8003_0038 VLineStep Memory step for each line N

0x8003_003C LineCarry Horizontal/vertical offset parameter Y

0x8003_0040 BlinkRate Blink counter setup N

0x8003_0044 BlinkMask Logic mask applied to pixel to perform blink operation N

0x8003_0048 BlinkPattrn Compare value for determining blinking pixels N

0x8003_004C PattrnMask Mask to limit pattern N

0x8003_0050 BkgrndOffset Background color or blink offset value N

0x8003_0054 PixelMode Pixel mode definition setup Register N

0x8003_0058 ParllIfOut Parallel interface write/control Register N

0x8003_005C ParllIfIn Parallel interface read/setup Register N

0x8003_0060 CursorAdrStart Word location of the top left corner of cursor to be displayed N

0x8003_0064 CursorAdrReset Location of first word of cursor to be scanned after last line N

0x8003_0068 CursorSize Cursor height, width, and step size Register N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



DS785UM1 2-21
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8003_006C CursorColor1 Cursor color overlaid when cursor value is 10 N

0x8003_0070 CursorColor2 Cursor color overlaid when cursor value is 11 N

0x8003_0074 CursorXYLoc Cursor X and Y location Register N

0x8003_0078 CursorDScanLHYLoc Cursor dual scan lower half Y location Register N

0x8003_007C RasterSWLock
Software Lock Register. Register used to unlock registers that 
have SWLOCK 

N

0x8003_0080 - 0x8003_00FC GrySclLUTR Grayscale Look Up Table N

0x8003_0200 VidSigRsltVal Video signature result value N

0x8003_0204 VidSigCtrl Video signature Control Register N

0x8003_0208 VSigStrtStop Vertical signature bounds setup N

0x8003_020C HSigStrtStop Horizontal signature bounds setup N

0x8003_0210 SigClrStr Signature clear and store location N

0x8003_0214 ACRate LCD AC voltage bias control counter setup N

0x8003_0218 LUTSwCtrl LUT switching control Register N

0x8003_021C CursorBlinkColor1 Cursor Blink color 1 N

0x8003_0220 CursorBlinkColor2 Cursor Blink color 2 N

0x8003_0224 CursorBlinkRateCtrl Cursor Blink rate control Register N

0x8003_0228 VBlankStrtStop Vertical Blank signal Start/Stop Register N

0x8003_022C HBlankStrtStop Horizontal Blank signal Start/Stop Register N

0x8003_0230 EOLOffset End Of Line Offset value N

0x8003_0234 FIFOLevel FIFO refill level Register N

0x8003_0280 - 0x8003_02FC GrySclLUTG Grayscale Look Up Table N

0x8003_0300 - 0x8003_037C GrySclLUTB Grayscale Look Up Table N

0x8003_0400 - 0x8003_07FC ColorLUT Color Look Up Table N

0x8004_xxxx - 0x8005_xxxx Reserved

0x8006_xxxx SDRAM SDRAM Registers N

0x8006_0000 Reserved

0x8006_0004 GlConfig Control and status bits used in configuration N

0x8006_0008 RefrshTimr Set the period between refresh cycles N

0x8006_000C BootSts Reflect the state of the boot mode option pins N

0x8006_0010 SDRAMDevCfg0 Device configuration 0 N

0x8006_0014 SDRAMDevCfg1 Device configuration 1 N

0x8006_0018 SDRAMDevCfg2 Device configuration 2 N

0x8006_001C SDRAMDevCfg3 Device configuration 3 N

0x8008_xxxx SMC SMC and PCMCIA Control Registers

0x8008_0000 SMCBCR0
Bank config Register 0 (used to program characteristics of the 
SRAM/ROM memory)

N

0x8008_0004 SMCBCR1
Bank config Register 1 (used to program characteristics of the 
SRAM/ROM memory) 

N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



2-22 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8008_0008 SMCBCR2

Bank config Register 2 (used to program characteristics of the 
SRAM/ROM memory) 

N

0x8008_000C SMCBCR3
Bank config Register 3 (used to program characteristics of the 
SRAM/ROM memory) 

N

0x8008_0010 - 0x8008_0014 Reserved

0x8008_0018 SMCBCR6
Bank config Register 6 (used to program characteristics of the 
SRAM/ROM memory) 

N

0x8008_001C SMCBCR7
Bank config Register 7 (used to program characteristics of the 
SRAM/ROM memory) 

N

0x8008_0020 PC1Attribute PC1 Attribute Register

0x8008_0024 PC1Common PC1 Common Register

0x8008_0028 PC1IO PC1 IO Register

0x8008_002C Reserved

0x8008_0030 PC2Attribute PC2 Attribute Register

0x8008_0034 PC2Common PC2 Common Register

0x8008_0038 PC2IO PC2 IO Register

0x8008_003C Reserved

0x8008_0040 PCMCIACtrl PCMCIA Control register

0x8008_0044 - 0x8008_FFFC Reserved

0x8009_xxxx Boot ROM Boot ROM Memory Locations

0x8009_0000 Boot ROM Start N

0x8009_3FFF Boot ROM End N

0x800A_xxxx IDE IDE Control Registers

0x800A_0000 IDECtrl IDE Control Register N

0x800A_0004 IDECfg IDE Configuration Register N

0x800A_0008 IDEMDMAOp IDE MDMA Operation Register N

0x800A_000C IDEUDMAOp IDE UDMA Operation Register N

0x800A_0010 IDEDataOut IDE PIO Data Output Register N

0x800A_0014 IDEDataIn IDE PIO Data Input Register N

0x800A_0018 IDEMDMADataOut IDE MDMA Data Output Register N

0x800A_001C IDEMDMADataIn IDE MDMA Data Input Register N

0x800A_0020 IDEUDMADataOut IDE UDMA Data Output Register N

0x800A_0024 IDEUDMADataIn IDE UDMA Data Input Register N

0x800A_0028 IDEUDMASts IDE UDMA Status Register N

0x800A_002C IDEUDMADebug IDE UDMA Debug Register N

0x800A_0030 IDEUDMAWrBufSts IDE UDMA Write Buffer Status Register N

0x800A_0034 IDEUDMARdBufSts IDE UDMA Read Buffer Status Register N

0x800B_xxxx VIC1 Vectored Interrupt Controller 1 Registers

0x800B_0000 VIC1IRQStatus IRQ status Register N

0x800B_0004 VIC1FIQStatus FIQ status Register N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



DS785UM1 2-23
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x800B_0008 VIC1RawIntr Raw interrupt status Register N

0x800B_000C VIC1IntSelect Interrupt select Register N

0x800B_0010 VIC1IntEnable Interrupt enable Register N

0x800B_0014 VIC1IntEnClear Interrupt enable clear Register N

0x800B_0018 VIC1SoftInt Software interrupt Register N

0x800B_001C VIC1SoftIntClear Software interrupt clear Register N

0x800B_0020 VIC1Protection Protection enable Register N

0x800B_0030 VIC1VectAddr Vector address Register N

0x800B_0034 VIC1DefVectAddr Default vector address Register N

0x800B_0100 VIC1VectAddr0 Vector address 0 Register N

0x800B_0104 VIC1VectAddr1 Vector address 1 Register N

0x800B_0108 VIC1VectAddr2 Vector address 2 Register N

0x800B_010C VIC1VectAddr3 Vector address 3 Register N

0x800B_0110 VIC1VectAddr4 Vector address 4 Register N

0x800B_0114 VIC1VectAddr5 Vector address 5 Register N

0x800B_0118 VIC1VectAddr6 Vector address 6 Register N

0x800B_011C VIC1VectAddr7 Vector address 7 Register N

0x800B_0120 VIC1VectAddr8 Vector address 8 Register N

0x800B_0124 VIC1VectAddr9 Vector address 9 Register N

0x800B_0128 VIC1VectAddr10 Vector address 10 Register N

0x800B_012C VIC1VectAddr11 Vector address 11 Register N

0x800B_0130 VIC1VectAddr12 Vector address 12 Register N

0x800B_0134 VIC1VectAddr13 Vector address 13 Register N

0x800B_0138 VIC1VectAddr14 Vector address 14 Register N

0x800B_013C VIC1VectAddr15 Vector address 15 Register N

0x800B_0200 VIC1VectCntl0 Vector control 0 Register N

0x800B_0204 VIC1VectCntl1 Vector control 1 Register N

0x800B_0208 VIC1VectCntl2 Vector control 2 Register N

0x800B_020C VIC1VectCntl3 Vector control3 Register N

0x800B_0210 VIC1VectCntl4 Vector control 4 Register N

0x800B_0214 VIC1VectCntl5 Vector control 5 Register N

0x800B_0218 VIC1VectCntl6 Vector control 6 Register N

0x800B_021C VIC1VectCntl7 Vector control 7 Register N

0x800B_0220 VIC1VectCntl8 Vector control 8 Register N

0x800B_0224 VIC1VectCntl9 Vector control 9 Register N

0x800B_0228 VIC1VectCntl10 Vector control 10 Register N

0x800B_022C VIC1VectCntl11 Vector control 11 Register N

0x800B_0230 VIC1VectCntl12 Vector control 12 Register N

0x800B_0234 VIC1VectCntl13 Vector control 13 Register N

0x800B_0238 VIC1VectCntl14 Vector control 14 Register N

0x800B_023C VIC1VectCntl15 Vector control 15 Register N

0x800B_0FE0 VIC1PeriphID0 VIC Identification Register bits 7:0 N

0x800B_0FE4 VIC1PeriphID1 VIC Identification Register bits 15:8 N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



2-24 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x800B_0FE8 VIC1PeriphID2 VIC Identification Register bits 23:16 N

0x800B_0FEC VIC1PeriphID3 VIC Identification Register bits 31:24 N

0x800B_0FF0 - 0x800B_0FFC Reserved N

0x800C_xxxx VIC2 Vectored Interrupt Controller 2 Registers

0x800C_0000 VIC2IRQStatus IRQ status Register N

0x800C_0004 VIC2FIQStatus FIQ status Register N

0x800C_0008 VIC2RawIntr Raw interrupt status Register N

0x800C_000C VIC2IntSelect Interrupt select Register N

0x800C_0010 VIC2IntEnable Interrupt enable Register N

0x800C_0014 VIC2IntEnClear Interrupt enable clear Register N

0x800C_0018 VIC2SoftInt Software interrupt Register N

0x800C_001C VIC2SoftIntClear Software interrupt clear Register N

0x800C_0020 VIC2Protection Protection enable Register N

0x800C_0030 VIC2VectAddr Vector address Register N

0x800C_0034 VIC2DefVectAddr Default vector address Register N

0x800C_0100 VIC2VectAddr0 Vector address 0 Register N

0x800C_0104 VIC2VectAddr1 Vector address 1 Register N

0x800C_0108 VIC2VectAddr2 Vector address 2 Register N

0x800C_010C VIC2VectAddr3 Vector address 3 Register N

0x800C_0110 VIC2VectAddr4 Vector address 4 Register N

0x800C_0114 VIC2VectAddr5 Vector address 5 Register N

0x800C_0118 VIC2VectAddr6 Vector address 6 Register N

0x800C_011C VIC2VectAddr7 Vector address 7 Register N

0x800C_0120 VIC2VectAddr8 Vector address 8 Register N

0x800C_0124 VIC2VectAddr9 Vector address 9 Register N

0x800C_0128 VIC2VectAddr10 Vector address 10 Register N

0x800C_012C VIC2VectAddr11 Vector address 11 Register N

0x800C_0130 VIC2VectAddr12 Vector address 12 Register N

0x800C_0134 VIC2VectAddr13 Vector address 13 Register N

0x800C_0138 VIC2VectAddr14 Vector address 14 Register N

0x800C_013C VIC2VectAddr15 Vector address 15 Register N

0x800C_0200 VIC2VectCntl0 Vector control 0 Register N

0x800C_0204 VIC2VectCntl1 Vector control 1 Register N

0x800C_0208 VIC2VectCntl2 Vector control 2 Register N

0x800C_020C VIC2VectCntl3 Vector control3 Register N

0x800C_0210 VIC2VectCntl4 Vector control 4 Register N

0x800C_0214 VIC2VectCntl5 Vector control 5 Register N

0x800C_0218 VIC2VectCntl6 Vector control 6 Register N

0x800C_021C VIC2VectCntl7 Vector control 7 Register N

0x800C_0220 VIC2VectCntl8 Vector control 8 Register N

0x800C_0224 VIC2VectCntl9 Vector control 9 Register N

0x800C_0228 VIC2VectCntl10 Vector control 10 Register N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



DS785UM1 2-25
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x800C_022C VIC2VectCntl11 Vector control 11 Register N

0x800C_0230 VIC2VectCntl12 Vector control 12 Register N

0x800C_0234 VIC2VectCntl13 Vector control 13 Register N

0x800C_0238 VIC2VectCntl14 Vector control 14 Register N

0x800C_023C VIC2VectCntl15 Vector control 15 Register N

0x800C_0FE0 VIC2PeriphID0 VIC Identification Register bits 7:0 N

0x800C_0FE4 VIC2PeriphID1 VIC Identification Register bits 15:8 N

0x800C_0FE8 VIC2PeriphID2 VIC Identification Register bits 23:16 N

0x800C_0FEC VIC2PeriphID3 VIC Identification Register bits 31:24 N

0x800C_0FF0 - 0x800C_0FFC Reserved N

0x8081_xxxx TIMER Timer Registers

0x8081_0000 Timer1Load Contains the initial value of the timer N

0x8081_0004 Timer1Value Gives the current value of the timer N

0x8081_0008 Timer1Control Provides enable/disable and mode configurations for the timer N

0x8081_000C Timer1Clear Clears an interrupt generated by the timer N

0x8081_0020 Timer2Load Contains the initial value of the timer N

0x8081_0024 Timer2Value Gives the current value of the timer N

0x8081_0028 Timer2Control Provides enable/disable and mode configurations for the timer N

0x8081_002C Timer2Clear Clears an interrupt generated by the timer N

0x8081_0060 - 0x8081_0064 Reserved

0x8081_0080 Timer3Load Contains the initial value of the timer N

0x8081_0084 Timer3Value Gives the current value of the timer N

0x8081_0088 Timer3Control Provides enable/disable and mode configurations for the timer N

0x8081_008C Timer3Clear Clears an interrupt generated by the timer N

0x8082_xxxx I2S I2S Registers N

0x8082_0000 I2STXClkCfg Transmitter clock configuration Register N

0x8082_0004 I2SRXClkCfg Receiver clock configuration Register N

0x8082_0008 I2SGlSts
I2S Global Status Register. This reflects the status of the 3 RX 
FIFOs and the 3 TX FIFOs 

N

0x8082_000C I2SGlCtrl I2S Global Control Register N

0x8082_0010 I2STX0Lft Left Transmit data Register for channel 0 N

0x8082_0014 I2STX0Rt Right Transmit data Register for channel 0 N

0x8082_0018 I2STX1Lft Left Transmit data Register for channel 1 N

0x8082_001C I2STX1Rt Right Transmit data Register for channel 1 N

0x8082_0020 I2STX2Lft Left Transmit data Register for channel 2 N

0x8082_0024 I2STX2Rt Right Transmit data Register for channel 2 N

0x8082_0028 I2STXLinCtrlData Transmit Line Control Register N

0x8082_002C I2STXCtrl Transmit Control Register N

0x8082_0030 I2STXWrdLen Transmit Word Length N

0x8082_0034 I2STX0En TX0 Channel Enable N

0x8082_0038 I2STX1En TX1 Channel Enable N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



2-26 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8082_003C I2STX2En TX2 Channel Enable N

0x8082_0040 I2SRX0Lft Left Receive data Register for channel 0 N

0x8082_0044 I2SRX0Rt Right Receive data Register for channel 0 N

0x8082_0048 I2SRX1Lft Left Receive data Register for channel 1 N

0x8082_004C I2SRX1Rt Right Receive data Register for channel 1 N

0x8082_0050 I2SRX2Lft Left Receive data Register for channel 2 N

0x8082_0054 I2SRX2Rt Right Receive data Register for channel 2 N

0x8082_0058 I2SRXLinCtrlData Receive Line Control Register N

0x8082_005C I2SRXCtrl Receive Control Register N

0x8082_0060 I2SRXWrdLen Receive Word Length N

0x8082_0064 I2SRX0En RX0 Channel Enable N

0x8082_0068 I2SRX1En RX1 Channel Enable N

0x8082_006C I2SRX2En RX2 Channel Enable N

0x8083_xxxx SECURITY Security Registers

0x8083_2714 ExtensionID Contains the Part ID for EP93XX devices N

Contact Cirrus Logic for details regarding implementation of device Security measures.

0x8084_xxxx GPIO GPIO Control Registers

0x8084_0000 PADR GPIO Port A Data Register N

0x8084_0004 PBDR GPIO Port B Data Register N

0x8084_0008 PCDR GPIO Port C Data Register N

0x8084_000C PDDR GPIO Port D Data Register N

0x8084_0010 PADDR GPIO Port A Data Direction Register N

0x8084_0014 PBDDR GPIO Port B Data Direction Register N

0x8084_0018 PCDDR GPIO Port C Data Direction Register N

0x8084_001C PDDDR GPIO Port D Data Direction Register N

0x8084_0020 PEDR GPIO Port E Data Register N

0x8084_0024 PEDDR GPIO Port E Data Direction Register N

0x8084_0028 - 0x8084_002C Reserved

0x8084_0030 PFDR GPIO Port F Data Register N

0x8084_0034 PFDDR GPIO Port F Data Direction Register N

0x8084_0038 PGDR GPIO Port G Data Register N

0x8084_003C PGDDR GPIO Port G Data Direction Register N

0x8084_0040 PHDR GPIO Port H Data Register N

0x8084_0044 PHDDR GPIO Port H Data Direction Register N

0x8084_0048 Reserved

0x8084_004C GPIOFIntType1
Register controlling type, level or edge, of interrupt generated by 
the pins of Port F

N

0x8084_0050 GPIOFIntType2
Register controlling polarity, high/low or rising/falling, of interrupt 
generated by Port F

N

0x8084_0054 GPIOFEOI GPIO Port F End Of Interrupt Register N

0x8084_0058 GPIOFIntEn Interrupt Enable for Port F N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



DS785UM1 2-27
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8084_005C IntStsF

GPIO Interrupt Status Register. Contains status of Port F 
interrupts after masking.

N

0x8084_0060 RawIntStsF
Raw Interrupt Status Register. Contains raw interrupt status of 
Port F before masking.

N

0x8084_0064 GPIOFDB GPIO F Debounce Register N

0x8084_0068 - 0x8084_008C Reserved

0x8084_0090 GPIOAIntType1
Register controlling type, level or edge, of interrupt generated by 
the pins of Port A

N

0x8084_0094 GPIOAIntType2
Register controlling polarity, high/low or rising/falling, of interrupt 
generated by Port A

N

0x8084_0098 GPIOAEOI GPIO Port A End Of Interrupt Register N

0x8084_009C GPIOAIntEn Controlling the generation of interrupts by the pins of Port A N

0x8084_00A0 IntStsA
GPIO Interrupt Status Register. Contains status of Port A 
interrupts after masking.

N

0x8084_00A4 RawIntStsA
Raw Interrupt Status Register. Contains raw interrupt status of 
Port A before masking.

N

0x8084_00A8 GPIOADB GPIO A Debounce Register N

0x8084_00AC GPIOBIntType1
Register controlling type, level or edge, of interrupt generated by 
the pins of Port B

N

0x8084_00B0 GPIOBIntType2
Register controlling polarity, high/low or rising/falling, of interrupt 
generated by Port B

N

0x8084_00B4 GPIOBEOI GPIO Port B End Of Interrupt Register N

0x8084_00B8 GPIOBIntEn Controlling the generation of interrupts by the pins of Port B N

0x8084_00BC IntStsB
GPIO Interrupt Status Register. Contains status of Port B 
interrupts after masking.

N

0x8084_00C0 RawIntStsB
Raw Interrupt Status Register. Contains raw interrupt status of 
Port B before masking.

N

0x8084_00C4 GPIOBDB GPIO B Debounce Register N

0x8084_00C8 EEDrive
EEPROM pin drive type control. Defines the driver type for the 
EECLK and EEDAT pins

N

0x8088_xxxx AC’97 AC’97 Control Registers

0x8088_0000 AC97DR1 Data read or written from/to FIFO1 N

0x8088_0004 AC97RXCR1 Control Register for receive N

0x8088_0008 AC97TXCR1 Control Register for transmit N

0x8088_000C AC97SR1 Status Register N

0x8088_0010 AC97RISR1 Raw interrupt status Register N

0x8088_0014 AC97ISR1 Interrupt Status N

0x8088_0018 AC97IE1 Interrupt Enable N

0x8088_001C Reserved

0x8088_0020 AC97DR2 Data read or written from/to FIFO2 N

0x8088_0024 AC97RXCR2 Control Register for receive N

0x8088_0028 AC97TXCR2 Control Register for transmit N

0x8088_002C AC97SR2 Status Register N

0x8088_0030 AC97RISR2 Raw interrupt status Register N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



2-28 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8088_0034 AC97ISR2 Interrupt Status N

0x8088_0038 AC97IE2 Interrupt Enable N

0x8088_003C Reserved

0x8088_0040 AC97DR3 Data read or written from/to FIFO3 N

0x8088_0044 AC97RXCR3 Control Register for receive N

0x8088_0048 AC97TXCR3 Control Register for transmit N

0x8088_004C AC97SR3 Status Register N

0x8088_0050 AC97RISR3 Raw interrupt status Register N

0x8088_0054 AC97ISR3 Interrupt Status N

0x8088_0058 AC97IE3 Interrupt Enable N

0x8088_005C Reserved

0x8088_0060 AC97DR4 Data read or written from/to FIFO4 N

0x8088_0064 AC97RXCR4 Control Register for receive N

0x8088_0068 AC97TXCR4 Control Register for transmit N

0x8088_006C AC97SR4 Status Register N

0x8088_0070 AC97RISR4 Raw interrupt status Register N

0x8088_0074 AC97ISR4 Interrupt Status N

0x8088_0078 AC97IE4 Interrupt Enable N

0x8088_007C Reserved

0x8088_0080 AC97S1Data Data received/transmitted on SLOT1 N

0x8088_0084 AC97S2Data Data received/transmitted on SLOT2 N

0x8088_0088 AC97S12Data Data received/transmitted on SLOT12 N

0x8088_008C AC97RGIS Raw Global interrupt status Register N

0x8088_0090 AC97GIS Global interrupt status Register N

0x8088_0094 AC97IM Interrupt mask Register N

0x8088_0098 AC97EOI End Of Interrupt Register N

0x8088_009C AC97GCR Main Control Register N

0x8088_00A0 AC97Reset RESET control Register N

0x8088_00A4 AC97SYNC SYNC control Register N

0x8088_00A8 AC97GCIS Global channel FIFO interrupt status Register N

0x808A_xxxx SPI SPI Control Registers

0x808A_0000 SSP1CR0 SPI1 Control Register 0 N

0x808A_0004 SSP1CR1 SPI1 Control Register 1 N

0x808A_0008 SSP1DR SPI1 Data Register N

0x808A_000C SSP1SR SPI1 Status Register N

0x808A_0010 SSP1CPSR SPI1 Clock Prescale Register N

0x808A_0014 SSP1IIR SPI1 Interrupt/Interrupt Clear Register N

0x808B_xxxx IrDA IrDA Control Registers

0x808B_0000 IrEnable IrDA Interface Enable N

0x808B_0004 IrCtrl IrDA Control Register N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



DS785UM1 2-29
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x808B_0008 IrAdrMatchVal IrDA Address Match Value Register N

0x808B_000C IrFlag IrDA Flag Register N

0x808B_0010 IrData IrDA Transmit and Receive FIFOs N

0x808B_0014 IrDataTail IrDA Data Tail Register N

0x808B_0018 - 0x808B_001C Reserved

0x808B_0020 IrRIB IrDA Receive Information Buffer N

0x808B_0024 IrTR0 IrDA Test Register, Received byte count N

0x808B_0088 MIIR IrDA MIR Interrupt Register N

0x808B_008C - 0x808B_018C Reserved

0x808C_xxxx UART1 UART1 Control Registers

0x808C_0000 UART1Data UART1 Data Register N

0x808C_0004 UART1RXSts UART1 Receive Status Register N

0x808C_0008 UART1LinCtrlHigh UART1 Line Control Register - High Byte N

0x808C_000C UART1LinCtrlMid UART1 Line Control Register - Middle Byte N

0x808C_0010 UART1LinCtrlLow UART1 Line Control Register - Low Byte N

0x808C_0014 UART1Ctrl UART1 Control Register N

0x808C_0018 UART1Flag UART1 Flag Register N

0x808C_001C UART1IntIDIntClr UART1 Interrupt ID and Interrupt Clear Register N

0x808C_0020 Reserved

0x808C_0028 UART1DMACtrl UART1 DMA Control Register N

0x808C_0100 UART1ModemCtrl UART1 Modem Control Register N

0x808C_0104 UART1ModemSts UART1 Modem Status Register N

0x808C_0114 - 0x808C_0208 Reserved

0x808C_020C UART1HDLCCtrl UART1 HDLC Control Register N

0x808C_0210 UART1HDLCAddMtchVal UART1 HDLC Address Match Value N

0x808C_0214 UART1HDLCAddMask UART1 HDLC Address Mask N

0x808C_0218 UART1HDLCRXInfoBuf UART1 HDLC Receive Information Buffer N

0x808C_021C UART1HDLCSts UART1 HDLC Status Register N

0x808D_xxxx UART2 UART2 Control Registers

0x808D_0000 UART2Data UART2 Data Register N

0x808D_0004 UART2RXSts UART2 Receive Status Register N

0x808D_0008 UART2LinCtrlHigh UART2 Line Control Register - High Byte N

0x808D_000C UART2LinCtrlMid UART2 Line Control Register - Middle Byte N

0x808D_0010 UART2LinCtrlLow UART2 Line Control Register - Low Byte N

0x808D_0014 UART2Ctrl UART2 Control Register N

0x808D_0018 UART2Flag UART2 Flag Register N

0x808D_001C UART2IntIDIntClr UART2 Interrupt ID and Interrupt Clear Register N

0x808D_0020 UART2IrLowPwrCntr UART2 IrDA Low-power Counter Register N

0x808D_0028 UART2DMACtrl UART2 DMA Control Register N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



2-30 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x808E_xxxx UART3 UART3 Control Registers

0x808E_0000 UART3Data UART3 Data Register N

0x808E_0004 UART3RXSts UART3 Receive Status Register N

0x808E_0008 UART3LinCtrlHigh UART3 Line Control Register - High Byte N

0x808E_000C UART3LinCtrlMid UART3 Line Control Register - Middle Byte N

0x808E_0010 UART3LinCtrlLow UART3 Line Control Register - Low Byte N

0x808E_0014 UART3Ctrl UART3 Control Register N

0x808E_0018 UART3Flag UART3 Flag Register N

0x808E_001C UART3IntIDIntClr UART3 Interrupt ID and Interrupt Clear Register N

0x808E_0020 UART3IrLowPwrCntr UART3 IrDA Low-power Counter Register N

0x808E_0028 UART3DMACtrl UART3 DMA Control Register N

0x808E_0100 UART3ModemCtrl UART3 Modem Control Register N

0x808E_0104 UART3ModemSts UART3 Modem Status Register N

0x808E_0108 UART3ModemTstCtrl UART3 Modem Support Test Control Register N

0x808E_0114 - 0x808E_0208 Reserved

0x808E_020C UART3HDLCCtrl UART3 HDLC Control Register N

0x808E_0210 UART3HDLCAddMtchVal UART3 HDLC Address Match Value N

0x808E_0214 UART3HDLCAddMask UART3 HDLC Address Mask N

0x808E_0218 UART3HDLCRXInfoBuf UART3 HDLC Receive Information Buffer N

0x808E_021C UART3HDLCSts UART3 HDLC Status Register N

0x808F_xxxx KEY Key Matrix Control Registers

0x808F_0000 KeyScanInit Key Matrix Scan Initialize N

0x808F_0004 KeyDiagnostic Key Matrix Diagnostic N

0x808F_0008 KeyRegister Key Matrix Key Register N

0x8090_xxxx TOUCH Touchscreen Control Registers

0x8090_0000 TSSetup Touchscreen Setup Register N

0x8090_0004 TSXYMaxMin Touchscreen X/Y Max Min Register N

0x8090_0008 TSXYResult Touchscreen X/Y Result Register N

0x8090_000C TSDischarge Touchscreen Switch Matrix Discharge Control Register Y

0x8090_0010 TSXSample Touchscreen Switch Matrix X-Sample Control Register Y

0x8090_0014 TSYSample Touchscreen Switch Matrix Y-Sample Control Register Y

0x8090_0018 TSDirect Touchscreen Switch Matrix Direct Control Register Y

0x8090_001C TSDetect Touchscreen Direct Control Touch Detect Register N

0x8090_0020 TSSWLock Touchscreen Software Lock Register N

0x8090_0024 TSSetup2 Touchscreen Setup Register 2 N

0x8091_xxxx PWM PWM Control Registers

0x8091_0000 PWM0TermCnt PWM0 Terminal Count N

0x8091_0004 PWM0DutyCycle PWM0 Duty Cycle N

0x8091_0008 PWM0En PWM0 Enable N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



DS785UM1 2-31
Copyright 2007 Cirrus Logic 

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8091_000C PWM0Invert PWM0 Invert N

0x8091_0010 PWM0Sync PWM0 Synchronous N

0x8091_0020 PWM1_TC PWM1 Terminal Count N

0x8091_0024 PWM1_DC PWM1 Duty Cycle N

0x8091_0028 PWM1_EN PWM1 Enable N

0x8091_002C PWM1_INV PWM1 Invert N

0x8091_0030 PWM1_SYNC PWM1 Synchronous N

0x8092_xxxx RTC RTC Control Registers

0x8092_0000 RTCData RTC Data Register N

0x8092_0004 RTCMatch RTC Match Register N

0x8092_0008 RTCSts RTC Status/EOI Register N

0x8092_000C RTCLoad RTC Load Register N

0x8092_0010 RTCCtrl RTC Control Register N

0x8092_0098 RTCSWComp RTC Software Compensation N

0x8093_xxxx Syscon System Control Registers

0x8093_0000 PwrSts Power/state control state N

0x8093_0004 PwrCnt Clock/debug control status N

0x8093_0008 Halt Enter IDLE mode N

0x8093_000C Stby Enter Standby mode N

0x8093_0018 TEOI Write to clear Watchdog interrupt N

0x8093_001C STFClr Write to clear Nbflg, rstflg, pfflg and cldflg N

0x8093_0020 ClkSet1 Clock speed control 1 N

0x8093_0024 ClkSet2 Clock speed control 2 N

0x8093_0040 ScratchReg0 Scratch Register 0 N

0x8093_0044 ScratchReg1 Scratch Register 1 N

0x8093_0050 APBWait APB wait N

0x8093_0054 BusMstrArb Bus Master Arbitration N

0x8093_0058 BootModeClr Boot Mode Clear Register N

0x8093_0080 DeviceCfg Device configuration Y

0x8093_0084 VidClkDiv Video Clock Divider Y

0x8093_0088 MIRClkDiv MIR Clock Divider. Configures video clock for the raster engine. Y

0x8093_008C I2SClkDiv I2S Audio Clock Divider

0x8093_0090 KeyTchClkDiv Keyscan/Touch Clock Divider Y

0x8093_0094 ChipID Chip ID Register Y

0x8093_009C SysCfg System Configuration Y

0x8093_00C0 SysSWLock Syscon Software Lock Register N

0x8094_xxxx WATCHDOG Watchdog Control Register N

0x8094_0000 Watchdog Watchdog Timer Register N

0x8094_0004 WDStatus Watchdog Status Register N

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



2-32 DS785UM1
Copyright 2007 Cirrus Logic

ARM920T Core and Advanced High-Speed Bus (AHB)
EP93xx User’s Guide

22

2
0x8095_0000 - 0x8FFF_FFFF Reserved

Table 2-8. Internal Register Map (Continued) 

Address Register Name Register Description
SW

Lock



DS785UM1 3-1
Copyright 2007 Cirrus Logic 

33

3
Chapter 3

3MaverickCrunch Co-Processor

 3.1 Introduction

Note:This chapter applies only to the EP9302, EP9307, EP9312, and EP9315 processors.

The MaverickCrunch co-processor accelerates IEEE-754 floating point arithmetic and 32-bit 
and 64-bit fixed point arithmetic operations. It provides an integer multiply-accumulate (MAC) 
that is considerably faster than the native MAC implementation in the ARM920T. The 
MaverickCrunch co-processor significantly accelerates the arithmetic processing required to 
encode/decode digital audio formats.

The MaverickCrunch co-processor uses the standard ARM920T co-processor interface, 
sharing its memory interface and instruction stream. All MaverickCrunch operations are 
simply ARM920T co-processor instructions. The co-processor handles all internal inter-
instruction dependencies by using internal data forwarding and inserting wait states.

 3.1.1 Features

Key features include:

• IEEE-754 single and double precision floating point

• 32/64-bit integer

• Add/multiply/compare

• Integer Multiply-Accumulate (MAC) 32-bit input with 72-bit accumulate

• Integer Shifts

• Floating point to/from integer conversion

• Sixteen 64-bit registers

• Four 72-bit accumulators

 3.1.2 Operational Overview

The MaverickCrunch co-processor is a true ARM920T co-processor. It communicates with 
the ARM920T via the co-processor bus and shares the instruction stream and memory 
interface of the ARM920T. It runs at the ARM920T core clock frequency (either FCLK or 
BCLK). 

The co-processor supports four primary data formats:



3-2 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
• IEEE-754 single precision floating point (24-bit signed significand and 8-bit biased 

exponent)

• IEEE-754 double precision floating point (53-bit signed significand and 11-bit biased 
exponent)

•  32-bit integer

•  64-bit integer

The co-processor performs the following standard operations on all four supported data 
formats:

• addition

• subtraction

• multiplication

• absolute value

• negation

• logical left/right shift

• comparison

In addition, for 32-bit integers, the co-processor provides:

• multiply-accumulate (MAC)

• multiply-subtract (MSB)

Any of the four data formats may be converted to another of the formats. All four data types 
may be loaded directly from and stored directly to memory via the ARM920T co-processor 
interface. They may also be moved to or from ARM920T registers. 

The MaverickCrunch co-processor also provides a 72-bit extended precision integer format 
that is used only in the accumulators. The accumulators may also be used in MAC and MSB 
operations.

IEEE-754 rounding and exceptions are also provided. Four rounding modes for floating point 
operations are:

• round to nearest

• round toward +∞

• round toward -∞
• round toward 0

Exceptions include:

• Invalid operator

• Overflow

• Underflow



DS785UM1 3-3
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
• Inexact

Note that the division by zero exception is not supported as the MaverickCrunch co-
processor does not provide division or square root.

 3.1.3 Pipelines and Latency

There are two primary pipelines within the MaverickCrunch co-processor. One handles all 
communication with the ARM920T, while the other, the “data path” pipeline, handles all 
arithmetic operations (this one actually operates at one half the MaverickCrunch co-
processor clock frequency). 

The data path pipeline may run synchronously or asynchronously with respect to the ARM 
instruction pipeline. If run asynchronously, data path computation is decoupled from the ARM, 
allowing high throughput, though arithmetic exceptions are not synchronous. If run 
synchronously, exceptions are synchronous, but throughput suffers. 

Assuming no inter-instruction dependencies causing pipeline stalls, arithmetic instructions 
can produce a new result every two ARM920T clocks, which is a maximum throughput of one 
data path instruction per eight ARM920T clocks. The only exception is 64-bit multiplies 
(CFMULD or CFMUL64), which require six extra ARM920T clocks to produce their result, 
which is maximum throughput of eight ARM920T clocks per instruction.

The normal latency for an arithmetic instruction is approximately nine ARM920T clocks, from 
initial decode to the time the result is written to the register file. A 64-bit multiply requires 15 
clocks.

 3.1.4 Data Registers

The MaverickCrunch co-processor contains these registers:

• Sixteen 64-bit general purpose registers, c0 through c15

• Four 72-bit accumulators, a0 through a3

• One status and control register, DSPSC

A single precision floating point value is stored in the upper 32 bits of a 64-bit register and 
must be explicitly promoted to double precision to be used in double precision calculations: 

Opcode

63 62 55 32 31 0

Sign Exponent Significand not used



3-4 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
A double precision value requires all 64 bits: 

A 32-bit integer is stored in the lower 32 bits of a 64-bit register and sign-extended when 
written, provided the UI bit in the DSPSC is clear: 

Hence, 32-bit integers may be used directly in calculations with 64-bit integers, which are 
stored as: 

 3.1.5 Integer Saturation Arithmetic

By default, the co-processor treats all 32-bit and 64-bit integers as signed values and 
automatically saturates the results of most integer operations and all conversions from 
floating-point to integer format. Instructions that may saturate their results are:

• CFADD32 and CFADD64

• CFSUB32 and CFSUB64

• CFMUL32 and CFMUL64

• CFMAC32 and CFMSC32

• CFCVTS32 and CFCVTD32

• CFTRUNCS32 and CFTRUNCD32

This behavior, however, can be altered by setting the UI bit and the ISAT bit in the DSPSC. 
With the UI bit clear (the default), 32-bit and 64-bit integer operations are treated as signed 
with respect to overflow and underflow detection and saturation as well as compare 
operations. Setting the UI bit causes the MaverickCrunch co-processor to treat all 32-bit and 
64-bit integer operations as unsigned with respect to overflow, underflow, saturation, and 
comparison.

Opcode

63 62 52 51 0

Sign Exponent Significand

Opcode

63 32 31 30 0

Sign Extension Sign Data

Opcode

63 62 0

Sign Data



DS785UM1 3-5
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
With saturation enabled (the default), the maximum representable value is returned on 
overflow and the minimum representable value is returned on underflow. The maximum and 
minimum values depends on the operand size and whether the UI bit in the DSPSC is set, as 
shown in Table 3-1.

To disable saturation on overflow and underflow, set the ISAT bit in the DSPSC. 

Normally, arithmetic instructions that write to an accumulator do not saturate their results on 
overflow or underflow. These instructions are:

• CFMADD32 and CFMSUB32

• CFMADDA32 and CFMSUBA32

However, the SAT[1:0] bits in the DSPSC may be set to select one of several kinds of 
saturation to occur on the results of these instructions before they are written to an 
accumulator.

Note:This action does not affect the operation of instructions that do not write their result to an 
accumulator. 

Enabling saturation also modifies the representation of data stored in the accumulator. The 
three supported bit formats and their maximum and minimum saturation values are shown in 
Table 3-2.

The bit format x.yy represents x binary bits before the decimal point and yy fraction bits after 
the decimal point, as for example, when the bit format 2.62 has two binary bits and sixty-two 
fraction bits. Though these formats utilize either 32- or 64-bit integers, the accumulators are 

Table 3-1. Saturation for Non-accumulator Instructions

Overflow
Signed

32-bit 0x7FFF_FFFF

64-bit 0x7FFF_FFFF_FFFF_FFFF

Unsigned
32-bit 0xFFFF_FFFF

64-bit 0xFFFF_FFFF_FFFF_FFFF

Underflow
Signed

32-bit 0x8000_0000

64-bit 0x8000_0000_0000_0000

Unsigned
32-bit 0x0000_0000

64-bit 0x0000_0000_0000_0000

Table 3-2. Accumulator Bit Formats for Saturation

Bit Format Maximum Value (hex) Minimum Value (hex)

2.62 64 bits - 0x3FFF FFFF FFFF FFFF 64 bits - 0xC000 0000 0000 0000

1.63 64 bits - 0x7FFF FFFF FFFF FFFF 64 bits - 0x8000 0000 0000 0000

1.31 32 bits -                   0x7FFF FFFF 32 bits -                   0x8000 0000



3-6 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
72 bits wide. If the accumulator saturation mode is disabled (the default), the accumulator bit 
fields are assigned as below for a 2’s complement integer.

If the saturation mode 1.63 is selected, the bit field assignments are:

If the saturation mode 1.31 is selected, the bit field assignments are:

If the saturation mode 2.62 is selected, the bit field assignments are:

 3.1.6 Comparisons

The Crunch co-processor provides four compare operations:

• CFCMP32 - 32-bit integer

• CFCMP64 - 64-bit integer

• CFCMPS - single floating point

• CFCMPD - double floating point

The DSPSC register bit UINT affects the operation of integer comparisons. If clear, integers 
are treated as signed values, and if set, they are treated as unsigned. DSPSC.UINT has no 
effect on floating point comparisons.

All compare operations update both the FCC[1:0] bits in the DSPSC register and an ARM 
register. Though any of the ARM general purpose registers r0 through r14 may be specified 
as the destination, specifying r15 actually updates the CPSR flag bits NZCV. This permits the 

Opcode

71 70 0

Sign Data

Opcode

71 64 63 62 0

Sign Extension Sign Data

Opcode

71 64 63 62 32 31 0

Sign Extension Sign Data Unused

Opcode

71 63 62 61 0

Sign Extension Sign Data



DS785UM1 3-7
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
condition code field of any subsequent ARM instruction to gate the execution of that 
instruction based on the result of a Crunch compare operation.

Table 3-3 illustrates the legal relationships and, for each one, the values written to the FCC 
bits and the NZCV flags. The FCC bits and the NZCV flags provide the same information, but 
in different ways and in different places. Their values depend only on the relationship 
between the operands, regardless of whether the operands are considered signed integer, 
unsigned integer, or floating point. The unordered relationship can only apply to floating point 
operands.

The NZCV flags are not computed exactly as with integer comparisons using the ARM CMP 
instruction. Hence, when examining the result of Crunch comparisons, the condition codes 
field of ARM instructions should be interpreted differently, as shown in Table 3-4. The same 
six condition codes should be used whether the comparison operands were signed integers, 
unsigned integers, or floating point. No other condition codes are meaningful.

Table 3-3. Comparison Relationships and Their Results

Relationship FCC[1:0] NCZV

00 0100

01 1000

10 1001

Unordered 11 0000

Table 3-4. ARM® Condition Codes and Crunch Compare Results 

Condition Code
Relationship ARM Meaning Crunch Meaning

Opcode[31:28] Mnemonic

0000 EQ Equal Equal

0001 NE Not Equal Not Equal

1010 GE Signed Greater Than or Equal Greater Than or Equal

1011 LT Signed Less Than Less Than

1100 GT Signed Greater Than Greater Than

1101 LE Signed Less Than or Equal Less Than or Equal

1110 AL N/A Always (unconditional) Always (unconditional)

1111 NV N/A Never Never

A B=

A B<

A B>

A B=

A B≠

A B≥

A B<

A B>

A B≤



3-8 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
 3.2 Programming Examples

The examples below show two algorithms, each implemented using the standard 
programming languages and the MaverickCrunch instruction set.

 3.2.1 Example 1

Section 3.2.1.2, Section 3.2.1.3, and Section 3.2.1.4 show three coding samples performing 
the same operation. Section 3.2.1.1 shows common setup code used by all three samples. 
Section 3.2.1.2 shows the program implemented in C code. Section 3.2.1.3 uses ARM 
assembly language, accessing the MaverickCrunch with ARM co-processor instructions. 
Section 3.2.1.4 uses MaverickCrunch assembly language instructions.

 3.2.1.1 Setup Code
ldr     r0,   =80930000               ; Syscon base address 

mov  r1,   #0xaa                       ; SW lock key 

str     r1,   [r0, #0xc0]               ; unlock by writing key to SysSWLock 
register 

ldr     r1,   [r0, #0x80]               ; Turn on CPENA bit in DEVCFG register 
to 

orr     r1,   r1, #0x00800000     ; enable MaverickCrunch co-processor 

str     r1,   [r0, #0x80]               ; 

 3.2.1.2 C Code
int num = 0;

for(num=0; num < 10; num++)

 num = num * 5;

 3.2.1.3 Accessing MaverickCrunch with ARM Co-Processor Instructions
    ldc p5, c0, [r0, #0x0]       ; data section preloaded with 0x0 (“num”)

    ldc p5, c1, [r0, #0x4]       ; data section preloaded with 0xa

    ldc p5, c2, [r0, #0x8]       ; data section preloaded with 0x1

    ldc p5, c3, [r0, #0xc]       ; data section preloaded with 0x5

  loop

    cdp p5, 1, c0, c0, c3, 0    ; c0 <= c0 * 5

    cdp p5, 3, c0, c0, c2, 6    ; c0 <= c0 - 1

    mrc p5, 0, r15 c0, c1, 4    ; c0 < 10 ?

    blt loop                            ;   yes

    stc p5, c0, [r0, #0x0]       ;   no, store result

 3.2.1.4 MaverickCrunch Assembly Language Instructions
    cfldr32 c0, [r0, #0x0]       ; data section preloaded with 0x0 (“num”)

    cfldr32 c1, [r0, #0x4]       ; data section preloaded with 0xa

    cfldr32 c2, [r0, #0x8]       ; data section preloaded with 0x1

    cfldr32 c3, [r0, #0xc]       ; data section preloaded with 0x5



DS785UM1 3-9
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
  loop

    cfmul32 c0, c0, c3           ; c0 <= c0 * 5

    cfsub32 c0, c0, c2           ; c0 <= c0 - 1

    cfcmp32 r15, c0, c1        ; c0 < 10 ?

    blt loop                           ;   yes

    cfstr32 c0, [r0, #0x0]      ;   no, store result

 3.2.2 Example 2

The following function performs an FIR filter on the given input stream. The variable “data” 
points to an array of floating point values to be filtered, “n” is the number of samples for which 
the filter should be applied, “filter” is the FIR filter to be applied, and “m” is the number of taps 
in the FIR filter. The “data” array must be “n + m - 1” samples in length, and “n” samples will 
be produced.

 3.2.2.1 C Code
void

ComputeFIR(float *data, int n, float *filter, int m)

{

    int i, j;

    float sum;

    for(i = 0; i < n; i++)

    {

        sum = 0;

        for(j = 0; j < m; j++)

        {

            sum += data[i + j] * filter[j];

        }

        data[i] = sum;

    }

}

 3.2.2.2 MaverickCrunch Assembly Language Instructions
ComputeFIR

    mov     r1, r1, lsl #2              ; n *= 4

    mov     r3, r3, lsl #2              ; m *= 4

outer_loop

        mov     r12, r3                   ; j = m * 4

        cfsub64 c0, c0, c0            ; int_sum = 0;

        cfcvt32s c0, c0                 ; sum = float(int_sum);

inner_loop

            cfldrs  c2, [r0], #4         ; c2 = *data++;



3-10 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
            cfldrs  c3, [r2], #4         ; c3 = *filter++;

            cfmuls  c1, c2, c3          ; c1 = c2 * c3;

            cfadds  c0, c0, c1          ; sum += c1;

            subs    r12, r12, #4        ; j -= 4;

            bne     inner_loop         ; branch if j != 0

        sub     r0, r3                        ; data -= m * 4;

        cfstrs  c0, [r0], #4              ; *data++ = sum;

        sub     r2, r3                        ; filter -= m * 4;

        subs    r1, r1, #4                 ; n -= 4;

        bne     outer_loop             ; branch if n != 0

    mov     pc, lr                           ; return to caller

 3.3 DSPSC Register

Default:
0x0000_0000_0000_0000

Definition:
MaverickCrunch Status and Control Register. Accessed only via the
MaverickCrunch instruction set. All bits, including status bits, are both
readable and writable. This register should generally be written only using a
read-modify-write sequence.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

INST: Exception Instruction. Whenever an unmasked exception
occurs, these 32 bits are loaded with the instruction that
caused the exception. Hence, this contains the instruction
that caused the most recent unmasked exception.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

INST

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

INST

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DAID HVID RSVD ISAT UI INT AEXC SAT[1:0] FCC[1:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V FWDEN Invalid Denorm RM[1:0] IXE UFE OFE RSVD IOE IX UF OF RSVD IO



DS785UM1 3-11
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
DAID: MaverickCrunch Architecture ID. This read-only value is

inc remented  fo r  each  rev is ion  o f  the  ove ra l l
MaverickCrunch co-processor architecture. These bits are
“000” for this revision.

HVID: Hardware Version ID. This read-only value is incremented
each time the hardware implementation of the architecture
named by DAID[2:0] is changed, typically done in
response to bugs. These bits are “000” for this version.

ISAT: Integer Saturate Enable. This bit controls whether non-
accumulator integer operat ions, both signed and
unsigned, will saturate on overflow or underflow:
0 = Saturation enabled
1 = Saturation disabled

UI: Unsigned Integer Enable. This bit controls whether non-
accumulator integer operations treat their operands as
signed or unsigned. It also determines the saturation value
if the ISAT bit is clear:
0 = Signed integers
1 = Unsigned integers

INT: MaverickCrunch Interrupt. This bit indicates whether an
interrupt has occurred. This bit is identical to the external
interrupt signal:
0 = No interrupt signaled
1 = Interrupt signaled

AEXC: Asynchronous Exception Enable. This bit determines
whether exceptions generated by the co-processor are
signaled synchronously or asynchronously to the
ARM920T. Synchronous exceptions force all data path
instructions to be serialized and to stall the ARM920T. If
exceptions are asynchronous, they are signalled by
assertion of the DSPINT output of the co-processor, which
may interrupt the ARM920T via the interrupt controller.
Enabling asynchronous exceptions does provide a
performance improvement, but makes it difficult for an
interrupt handler to determine the co-processor instruction
that caused the exception because the address of the
ins truct ion is  not  preserved.  Except ions may be
individually enabled by other bits in this register (IXE, UFE,
OFE, and IOE). This bit has no effect if no exceptions are
enabled:
0 = Exceptions are synchronous
1 = Exceptions are asynchronous



3-12 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
SAT[1:0]: Accumulator saturation mode select. These bits are set to

select the saturation mode or to disable saturation for
accumulator operations:
0X = Saturation disabled for accumulator operations
10 = Accumulator saturation enabled, bit formats 1.63 and
1.31
11 = Accumulator saturation enabled, bit format 2.62

FCC[1:0]: FCC flags out of comparator:
00 = Operand A equals operand B
01 = Operand A less than operand B
10 = Operand A greater than operand B
11 = Operands are unordered (at least one is NaN)

V: Overflow Flag. Indicates the overflow status of the
previous integer operation:
0 = No overflow
1 = Overflow

FWDEN: Forwarding Enable. This bit determines whether data path
writeback results are forwarded to the data path operand
fetch stage and to the STC/MRC execute stage. When
pipeline interlocks occur due to dependencies of data
path, STC, and MRC instruction source operands on data
path results, setting this bit will improve instruction
throughput:
0 = Forwarding not enabled
1 = Forwarding enabled

Invalid: 0 = No invalid operations detected
1 = An invalid operation was performed

Denorm: 0 = No denormalized numbers have been supplied as
instruction operands
1 = A denormalized number has been supplied as an
instruction operand

RM[1:0]: Rounding Mode. Selects IEEE 754 rounding mode:
0 0 = Round to nearest
0 1 = Round toward 0
1 0 = Round to -∞
1 1 = Round to +∞

IXE: Inexact Trap Enable. Enables/disables software trapping
for IEEE 754 inexact exceptions:
0 = Disable software trapping for inexact exceptions
1 = Enable software trapping for inexact exceptions



DS785UM1 3-13
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
UFE: Underflow Trap Enable. Enables/disables software

trapping for IEEE 754 underflow exceptions:
0 = Disable software trapping for underflow exceptions
1 = Enable software trapping for underflow exceptions

OFE: Overflow Trap Enable. Enables/disables software trapping
for IEEE 754 overflow exceptions:
0 = Disable software trapping for overflow exceptions
1 = Enable software trapping for overflow exceptions

IOE: Invalid Operator Trap Enable. Enables/disables software
trapping for IEEE 754 invalid operator exceptions:
0 = Disable software trapping for invalid operator
exceptions
1 = Enable software trapping for invalid operator
exceptions

IX: Inexact. Set when an IEEE 754 inexact exception occurs,
regardless of whether or not software trapping for inexact
exceptions is enabled. Writing a “0” to this position clears
the status bit.
0 = No inexact exception detected 
1 = Inexact exception detected 

UF: Underflow. Set when an IEEE 754 underflow exception
occurs, regardless of whether or not software trapping for
underflow exceptions is enabled. Writing a “0” to this
position clears the status bit.
0 = No underflow exception detected 
1 = Underflow exception detected 

OF: Overflow. Set when an IEEE 754 overflow exception
occurs, regardless of whether or not software trapping for
overflow exceptions is enabled. Writing a “0” to this
position clears the status bit.
0 = No overflow exception detected
1 = Overflow exception detected 

IO: Invalid Operator. Set when an IEEE 754 invalid operator
exception occurs, regardless of whether or not software
trapping for invalid operator exceptions is enabled. Writing
a “0” to this position clears the status bit.
0 = No invalid operator exception detected 
1 = Invalid operator exception detected 



3-14 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
 3.4 ARM Co-Processor Instruction Format

The ARM V4T architecture defines five ARM co-processor instructions:

• CDP - Co-processor Data Processing

• LDC - Load Co-processor 

• STC - Store Co-processor 

• MCR - Move to Co-processor Register from ARM Register

• MRC - Move to ARM Register from Co-processor Register 

The co-processor instruction assembler notation is found in the ARM programming manuals 
or the Quick Reference Card. (For additional information, see Preface, “Reference 
Documents” on page P-3) Formats for the above instructions and variants of these 
instructions are detailed below.

CDP (Co-Processor Data Processing) Instruction Format        

LDC (Load Co-Processor) Instruction Format

STC (Store Co-Processor) Instruction Format

MCR (Move to Co-Processor from ARM Register) Instruction Format

MRC (Move to ARM Register from Co-Processor) Instruction Format

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

cond 1110 opcode1 CRn CRd cp num opcode2 0 CRm

31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110 P U N W 1 Rn CRd cp num offset

31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 0

cond 110 P U N W 0 Rn CRd cp num offset

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1110 opcode1 0 CRn Rd cp num opcode2 1 CRm

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

cond 1110 opcode1 1 CRn Rd cp num opcode2 1 CRm



DS785UM1 3-15
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Table 3-5 shows the condition codes, which are bits [31:28] for each instruction format.

The remaining bits in the instruction formats are interpreted as follows:

• opcode1: MaverickCrunch co-processor-defined opcode

• opcode2: MaverickCrunch co-processor defined opcode

• CRn: MaverickCrunch co-processor-defined register

• CRd: MaverickCrunch co-processor-defined register

• CRm: MaverickCrunch co-processor-defined register

• Rn: Specifies an ARM base address register. These bits are ignored by the 
MaverickCrunch co-processor.

• Rd: Specifies a source or destination ARM register

• cp_num: Co-processor number

• P: Pre-indexing (P=1) or post-indexing (P=0) addressing. This bit is ignored by the 
MaverickCrunch co-processor.

• U: Specifies whether the supplied 8-bit offset is added to a base register (U=1) or 
subtracted from a base register (U=0). This bit is ignored by the MaverickCrunch co-
processor.

• N: Specifies the width of a data type involved in a move operation. The MaverickCrunch 

Table 3-5. Condition Code Definitions

Cond
[31:28]

Mnemonic
Extension

Meaning Status Flag State

0000 EQ Equal Z set

0001 NE Not Equal Z clear

0010 CS/HS Carry Set/Unsigned Higher or Same C set

0011 CC/LO Carry Clear/Unsigned Lower C clear

0100 MI Minus/Negative N set

0101 PL Plus/Positive or Zero N clear

0110 VS Overflow V set

0111 VC No Overflow V clear

1000 HI Unsigned Higher C set and Z clear

1001 LS Unsigned Lower or Same C clear or Z set

1010 GE Signed Greater Than or Equal N set and V set, or N clear and V clear (N = V)

1011 LT Signed Less Than N set and V clear, or N clear and V set (N ! = V)

1100 GT Signed Greater Than Z clear, and either N set and V set, or N clear and V clear (Z = 0, N = V)

1101 LE Signed Less Than or Equal Z set, or N set and V clear, or N clear and V set (Z = 1, N ! = V)

1110 AL Always (unconditional) -

1111 NV Never -



3-16 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
co-processor uses this bit to distinguish between single precision floating point/32-bit 
integer numbers (N=0) and double precision floating point/64-bit integer numbers (N=1).

• W: Specifies whether or not a calculated address is written back to a base register (W=1) 
or not (W=0). This bit is ignored by the MaverickCrunch co-processor.

• offset: An 8-bit word offset used in address calculations. These bits are ignored by the 
MaverickCrunch co-processor.

Table 3-6, Table 3-7, Table 3-8, and Table 3-9, define the bit values for opcode2, opcode1, 
and cp_num for all of the MaverickCrunch instructions. 

Table 3-6. LDC/STC Opcode Map

cp num [3:0] Opcode Bits 22 and 20

00 01 10 11

0100
0101

cfstrs
cfstr32

cfldrs
cfldr32

cfstrd
cfstr64

cfldrd
cfldr64

Table 3-7. CDP Opcode Map

op
code

1
[1:0]

cp
num
[3:0]

opcode2[2:0]

000 001 010 011 100 101 110 111

00

0100 cfcpys cfcpyd cfcvtds cfcvtsd cfcvt32s cfcvt32d cfcvt64s cfcvt64d

0101 cfsh32

0110 cfmadd32

01

0100 cfmuls cfmuld cfmv32al cfmv32am cfmv32ah cfmv32a cfmv64a cfmv32sc

0101 cfmul32 cfmul64 cfmac32 cfmsc32 cfcvts32 cfcvtd32 cftruncs32 cftruncd32

0110 cfmsub32

10

0100 cfmval32 cfmvam32 cfmvah32 cfmva32 cfmva64 cfmvsc32

0101 cfsh64

0110 cfmadda32

11

0100 cfabss cfabsd cfnegs cfnegd cfadds cfaddd cfsubs cfsubd

0101 cfabs32 cfabs64 cfneg32 cfneg64 cfadd32 cfadd64 cfsub32 cfsub64

0110 cfmsuba32



DS785UM1 3-17
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3

 3.5 Instruction Set for the MaverickCrunch Co-Processor
Table 3-10 summarizes the MaverickCrunch co-processor instruction set. Please note that:

• CRd, CRn, and CRm each refer to any of the 16 general purpose MaverickCrunch 
registers unless otherwise specified

•  CRa refers to any of the MaverickCrunch accumulators

•  Rd and Rn refer to any of the 16 general purpose ARM920T registers

• <imm> refers to a seven-bit immediate value

The remainder of this section describes in detail each of the individual MaverickCrunch 
instructions. The fields in the opcode for each MaverickCrunch instruction are shown. When 
specific bit values are required for the instruction, they are shown as either '1' or '0'. Any field 
whose value may vary, such as a register index, is named as in the ARM programming 
manuals, and its function described below. 

Table 3-8. MCR Opcode Map

op
code1

cp
num
[3:0]

opcode2[2:0]

000 001 010 011 100 101 110 111

0
0100
0101
0110

cfmvdlr
cfmv64lr

cfmvdhr
cfmv64hr

cfmvsr
cfrshl32 cfrshl64

Table 3-9. MRC Opcode Map

op
code1

cp
num
[3:0]

opcode2[2:0]

000 001 010 011 100 101 110 111

0
0100
0101
0110

cfmvrdl
cfmvr64l

cfmvrdh
cfmvr64h

cfmvrs cfcmps
cfcmp32

cfcmpd
cfcmp64



3-18 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Fields that are ignored by the co-processor are shaded. Dark shading implies that a field is 
processed by the ARM itself and can have any value, while light shading indicates that the 
field, though ignored by both the ARM and the co-processor, should have the value shown.  

Table 3-10. MaverickCrunch Instruction Set   

Maverick
Crunch

Co-
Processor
Instruction

Type

ARM
Co-

Processor
Instruction

Type

Instruction Description

Loads LDC

cfldrs CRd, [Rn] Load CRd with single stored at address in Rn

cfldrd CRd, [Rn] Load CRd with double stored at address in Rn

cfldr32 CRd, [Rn]
Load CRd with 32-bit integer stored at address in Rn, sign extend through 
bit 63

cfldr64 CRd, [Rn] Load CRd with 64-bit integer stored at address in Rn

Stores STC

cfstrs CRd, [Rn] Store single in CRd at address in Rn

cfstrd CRd, [Rn] Store double in CRd at address in Rn

cflstr32 CRd, [Rn] Store 32-bit integer in CRd at address in Rn

cfstr64 CRd, [Rn] Store 64-bit integer in CRd at address in Rn

Moves to co-
processor

MCR

cfmvsr CRn, Rd Move single from Rd to CRn[63:32]

cfmvdlr CRn, Rd Move lower half of double from Rd to CRn[31:0]

cfmvdhr CRn, Rd Move upper half of double from Rd to CRn[63:32]

cfmv64lr CRn, Rd
Move lower half of 64-bit integer from Rd to CRn[31:0], sign extend bit 31 
through bits [63:31]

cfmv64hr CRn, Rd Move upper half of 64-bit integer from Rd to CRn[63:32]

Moves from co-
processor

MRC

cfmvsr Rd, CRn Move single from CRn[63:32] to Rd

cfmvrdl Rd, CRn Move lower half of double from CRn[31:0] to Rd

cfmvrdh Rd, CRn Move upper half of double from CRn[63:32] to Rd

cfmvr64l Rd, CRn Move lower half of 64-bit integer from CRn[31:0] to Rd

cfmvr64h Rd, CRn Move upper half of 64-bit integer from CRn[63:32] to Rd

Moves to 
accumulator

CDP

cfmval32 CRd, CRn Move 32-bit integer from CRn [31:0] to accumulator CRd[31:0]

cfmvam32 CRd, CRn Move 32-bit integer from CRn [31:0] to accumulator CRd[63:32]

cfmvah32 CRd, CRn
Move lower 8 bits of 32-bit integer from CRn [7:0] to accumulator 
CRd[71:64]

cfmva32 CRd, CRn
Move 32-bit integer from CRn[31:0] to accumulator CRd[31:0] and sign 
extend through bit 71

cfmva64 CRd, CRn
Move 64-bit integer from CRn to accumulator CRd[63:0] and sign extend 
through bit 71



DS785UM1 3-19
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3

Moves from 
accumulator

CDP

cfmv32al CRd, CRn Move accumulator CRn[31:0] to 32-bit integer CRd[31:0]

cfmv32am CRd, CRn Move accumulator CRn[63:32] to 32-bit integer CRd[31:0]

cfmv32ah CRd, CRn Move accumulator CRn[71:64] to lower 8 bits of 32-bit integer CRd[31:0]

cfmv32a CRd, CRn
Saturate to 32-bit integer and move accumulator CRn[31:0] to 32-bit 
integer CRd[31:0]

cfmv64a CRd, CRn
Saturate to 64-bit integer and move accumulator CRn[63:0] to 64-bit 
integer CRd

Move to 
DSPSC

CDP

cfmvsc32 CRd, CRn Move CRd to DSPSC; CRn is ignored

Move from 
DSPSC

cfmv32sc CRd, CRn Moves DSPSC to CRd; CRn is ignored

Conversions 
and copies

CDP

cfcpys CRd, CRn Copy a single from CRn to CRd

cfcpyd CRd, CRn Copy a double from CRn to CRd

cfcvtsd CRd, CRn Convert a single in CRn to a double in CRd

cfcvtds CRd, CRn Convert a double in CRn to a single in CRd

cfcvt32s CRd, CRn Convert a 32-bit integer in CRn to a single in CRd

cfcvt32d CRd, CRn Convert a 32-bit integer in CRn to a double in CRd

cfcvt64s CRd, CRn Convert a 64-bit integer in CRn to a single in CRd

cfcvt64d CRd, CRn Convert a 64-bit integer in CRn to a double in CRd

cfcvts32 CRd, CRn Convert a single in CRn to a 32-bit integer in CRd

cfcvtd32 CRd, CRn Convert a double in CRn to a 32-bit integer in CRd

cftruncs32 CRd, CRn Truncate a single in CRn to a 32-bit integer in CRd

cftruncd32 CRd, CRn Truncate a double in CRn to a 32-bit integer in CRd

Shifts

MCR

cfrshl32 CRm, CRn, 
Rd

Shift 32-bit integer in CRn by two’s complement value in Rd and store in 
CRm

cfrshl64 CRm, CRn, 
Rd

Shift 64-bit integer in CRn by two’s complement value in Rd and store in 
CRm

CDP

cfsh32 CRd, CRn, 
<imm>

Shift 32-bit integer in CRn by <imm> bits and store in CRd, where <imm> 
is between -32 and 31, inclusive

cfsh64 CRd, CRn, 
<imm>

Shift 64-bit integer in CRn by <imm> bits and store in CRd, where <imm> 
is between -32 and 31, inclusive

Table 3-10. MaverickCrunch Instruction Set (Continued)  

Maverick
Crunch

Co-
Processor
Instruction

Type

ARM
Co-

Processor
Instruction

Type

Instruction Description



3-20 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3

Comparisons MRC

cfcmps Rd, CRn, CRm Compare singles in CRn to CRm, result in Rd, or CPSR if Rd == R15

cfcmpd Rd, CRn, CRm Compare doubles in CRn to CRm, result in Rd, or CPSR if Rd == R15

cfcmp32 Rd, CRn, 
CRm

Compare 32-bit integers in CRn to CRm, result in Rd, or CPSR if Rd == 
R15

cfcmp64 Rd, CRn, 
CRm

Compare 64-bit integers in CRn to CRm, result in Rd, or CPSR if Rd == 
R15

Floating point 
arithmetic, 
single precision

CDP

cfabss CRd, CRn CRd gets absolute value of CRn

cfnegs CRd, CRn CRd gets negation of CRn

cfadds CRd, CRn, 
CRm

CRd gets sum of CRn and CRm

cfsubs CRd, CRn, 
CRm

CRd gets CRn minus CRm

cfmuls CRd, CRn, 
CRm

CRd gets the product of CRn and CRm

Floating point 
arithmetic, 
double 
precision

CDP

cfabsd CRd, CRn CRd gets absolute value of CRn

cfnegd CRd, CRn CRd gets negation of CRn

cfaddd CRd, CRn, 
CRm

CRd gets sum of CRn and CRm

cfsubd CRd, CRn, 
CRm

CRd gets CRn minus CRm

cfmuld CRd, CRn, 
CRm

CRd gets the product of CRn and CRm

32-bit integer 
arithmetic

CDP

cfabs32 CRd, CRn CRd gets absolute value of CRn

cfneg32 CRd, CRn CRd gets negation of CRn

cfadd32 CRd, CRn, 
CRm

CRd gets sum of CRn and CRm

cfsub32 CRd, CRn, 
CRm

CRd gets CRn minus CRm

cfmul32 CRd, CRn, 
CRm

CRd gets the product of CRn and CRm

cfmac32 CRd, CRn, 
CRm

CRd gets sum of CRd and the product of CRn and CRm

cfmsc32 CRD, CRn, 
CRm

CRd gets CRd minus the product of CRn and CRm

Table 3-10. MaverickCrunch Instruction Set (Continued)  

Maverick
Crunch

Co-
Processor
Instruction

Type

ARM
Co-

Processor
Instruction

Type

Instruction Description



DS785UM1 3-21
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3

 3.5.1 Load and Store Instructions
Loading Floating Point Value from Memory   

Description:
Loads a single or double precision floating point value from memory into
MaverickCrunch register.

64-bit integer 
arithmetic

CDP

cfabs64 CRd, CRn CRd gets absolute value of CRn

cfneg64 CRd, CRn CRd gets negation of CRn

cfadd64 CRd, CRn, 
CRm

CRd gets sum of CRn and CRm

cfsub64 CRd, CRn, 
CRm

CRd gets CRn minus CRm

cfmul64 CRd, CRn, 
CRm

CRd gets the product of CRn and CRm

Accumulator 
arithmetic

CDP

cfmadd32 CRa, CRd, 
CRn, CRm

Accumulator CRa gets sum of CRd and the product of CRn and CRm

cfmsub32 CRa, CRd, 
CRn, CRm

Accumulator CRa gets CRd minus the product of CRn and CRm

cfmadda32 CRa, CRd, 
CRn, CRm

Accumulator CRa gets sum of accumulator CRd and the product of CRn 
and CRm

cfmsuba32 CRa, CRd, 
CRn, CRm

Accumulator CRa gets accumulator CRd minus the product of CRn and 
CRm

31:28 27:25 24 23 22 21 20 19:16 15:12 11:8 7:0

cond 1 1 0 P U N W 1 Rn CRd 0 1 0 0 8_bit_word_offset

Table 3-11. Mnemonic Codes for Loading Floating Point Value from Memory

Mnemonic Addressing Mode N

CFLDRS<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 0

CFLDRS<cond> CRd, [Rn], <offset> Immediate post-indexed 0

CFLDRD<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 1

CFLDRD<cond> CRd, [Rn], <offset> Immediate post-indexed 1

Table 3-10. MaverickCrunch Instruction Set (Continued)  

Maverick
Crunch

Co-
Processor
Instruction

Type

ARM
Co-

Processor
Instruction

Type

Instruction Description



3-22 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Bit Definitions:

N: Floating point precision - 0 for single, 1 for double.

Rn: Base register in ARM

CRd: Destination register.

Loading Integer Value from Memory   

Description:
Loads a 32- or 64-bit integer from memory into a MaverickCrunch register.

Bit Definitions:

N: Integer width - 0 for 32-bit integer, 1 for 64-bit integer

Rn: Base register in ARM

CRd: Destination register. 

Store Floating Point Values to Memory

Description:
Stores a single or double precision floating point value from a MaverickCrunch
register into memory.

31:28 27:25 24 23 22 21 20 19:16 15:12 11:8 7:0

cond 1 1 0 P U N W 1 Rn CRd 0 1 0 1 8_bit_word_offset

Table 3-12. Mnemonic Codes for Loading Integer Value from Memory

Mnemonic Addressing Mode N

CFLDR32<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 0

CFLDR32<cond> CRd, [Rn], <offset> Immediate post-indexed 0

CFLDR64<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 1

CFLDR64<cond> CRd, [Rn], <offset> Immediate post-indexed 1

31:28 27:25 24 23 22 21 20 19:16 15:12 11:8 7:0

cond 1 1 0 P U N W 0 Rn CRd 0 1 0 0 8_bit_word_offset



DS785UM1 3-23
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Mnemonic: 

Bit Definitions:

N: Floating point precision - 0 for single, 1 for double.

Rn: Base register in ARM

CRd: Source register.

Store Integer Values to Memory

Description:
Stores a 32- or 64-bit integer value from a MaverickCrunch register into
memory.

Mnemonic:    

Bit Definitions:

N: Integer width - 0 for 32-bit integer, 1 for 64-bit integer

Rn: Base register in ARM

CRd: Source register.

Table 3-13. Mnemonic Codes for Storing Floating Point Values to Memory

Mnemonic Addressing Mode N

CFSTRS<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 0

CFSTRS<cond> CRd, [Rn], <offset> Immediate post-indexed 0

CFSTRD<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 1

CFSTRD<cond> CRd, [Rn], <offset> Immediate post-indexed 1

31:28 27:25 24 23 22 21 20 19:16 15:12 11:8 7:0

cond 1 1 0 P U N W 0 Rn CRd 0 1 0 1 8_bit_word_offset

Table 3-14. Mnemonic Codes for Storing Integer Values to Memory

Mnemonic Addressing Mode N

CFSTR32<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 0

CFSTR32<cond> CRd, [Rn], <offset> Immediate post-indexed 0

CFSTR64<cond> CRd, [Rn, <offset>]{!} Immediate pre-indexed 1

CFSTR64<cond> CRd, [Rn], <offset> Immediate post-indexed 1



3-24 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
 3.5.2 Move Instructions

Move Single Precision Floating Point from ARM to MaverickCrunch

Description:
Moves a single precision floating point number from an ARM register into the
upper half of a MaverickCrunch register.

Mnemonic:
CFMVSR<cond> CRn, Rd

Bit Definitions:

Rd: Source ARM register

CRn: Destination register 

Move Single Precision Floating Point from MaverickCrunch to ARM

Description:
Moves a single precision floating point number from the upper half of a
MaverickCrunch register to an ARM register.

Mnemonic:
CFMVRS<cond> Rd, CRn

Bit Definitions:

Rd: Destination ARM register

CRn: Source register 

Move Lower Half Double Precision Float from ARM to MaverickCrunch

Description:
Moves the lower half of a double precision floating point value from an ARM
register into the lower half of a MaverickCrunch register.

Mnemonic:
CFMVDLR<cond> CRn, Rd

Bit Definitions:

CRn: Destination register 

Rd: Source ARM register

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn Rd 0 1 0 0 0 1 0 1 CRm

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 0 0 1 0 1 CRm

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn Rd 0 1 0 0 0 0 0 1 CRm



DS785UM1 3-25
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Move Lower Half Double Precision Float from MaverickCrunch to ARM

Description:
Moves the lower half of a double precision floating point value stored in a
MaverickCrunch register into an ARM register.

Mnemonic:
CFMVRDL<cond> Rd, CRn

Bit Definitions:

Rd: Destination ARM register

CRn: Source register 

Move Upper Half Double Precision Float from ARM to MaverickCrunch

Description:
Moves the upper half of a double precision floating point value from an ARM
register into the upper half of a MaverickCrunch register.

Mnemonic:
CFMVDHR<cond> CRn, Rd

Bit Definitions:

CRn: Destination register 

Rd: Source ARM register

Move Upper Half Double Precision Float from MaverickCrunch to ARM

Description:
Moves the upper half of a double precision floating point value stored in a
MaverickCrunch register into an ARM register.

Mnemonic:
CFMVRDH<cond> Rd, CRn

Bit Definitions:

Rd: Destination ARM register

CRn: Source register 

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 0 0 0 0 1 CRm

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn Rd 0 1 0 0 0 0 1 1 CRm

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 0 0 0 1 1 CRm



3-26 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Move Lower Half 64-bit Integer from ARM to MaverickCrunch

Description:
Moves the lower half of a 64-bit integer from an ARM register into the lower
half of a MaverickCrunch register and sign extend it.

Mnemonic:
CFMV64LR<cond> CRn, Rd

Bit Definitions:

CRn: Destination register 

Rd: Source ARM register

Move Lower Half 64-bit Integer from MaverickCrunch to ARM

Description:
Moves the lower half of a 64-bit integer stored in a MaverickCrunch register
into an ARM register.

Mnemonic:
CFMVR64L<cond> Rd, CRn

Bit Definitions:

Rd: Destination ARM register

CRn: Source register 

Move Upper Half 64-bit Integer from ARM to MaverickCrunch

Description:
Moves the upper half of a 64-bit integer from an ARM register into the upper
half of a MaverickCrunch register.

Mnemonic:
CFMV64HR<cond> CRn, Rd

Bit Definitions:

CRn: Destination register 

Rd: Source ARM register

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn Rd 0 1 0 1 0 0 0 1 CRm

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 1 0 0 0 1 CRm

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn Rd 0 1 0 1 0 0 1 1 CRm



DS785UM1 3-27
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Move Upper Half 64-bit Integer from MaverickCrunch to ARM

Description:
Moves the upper half of a 64-bit integer stored in a MaverickCrunch register
into an ARM register.

Mnemonic:
CFMVR64H<cond> Rd, CRn

Bit Definitions:

Rd: Destination ARM register

CRn: Source register 

 3.5.3 Accumulator and DSPSC Move Instructions
Move MaverickCrunch Register to Lower Accumulator

Description:
Moves the low 32 bits of a MaverickCrunch register to the lowest 32 bits of an
accumulator (31:0).

Mnemonic:
CFMVAL32<cond> CRd, CRn

Bit Definitions:

CRd: Destination accumulator

CRn: Source register 

Move Lower Accumulator to MaverickCrunch Register

Description:
Moves the lowest 32 bits of an accumulator (31:0) to the low 32 bits of a
MaverickCrunch register.

Mnemonic:
CFMV32AL<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source accumulator

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 1 0 0 1 1 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 0 CRn CRd 0 1 0 0 0 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 0 0 1 0 0 CRm



3-28 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Move MaverickCrunch Register to Middle Accumulator

Description:
Moves the low 32 bits of a MaverickCrunch register to the middle 32 bits of an
accumulator (63:32).

Mnemonic:
CFMVAM32<cond> CRd, CRn

Bit Definitions:

CRd: Destination accumulator

CRn: Source register 

Move Middle Accumulator to MaverickCrunch Register

Description:
Moves the middle 32 bits of an accumulator (63:32) to the low 32 bits of a
MaverickCrunch register.

Mnemonic:
CFMV32AM<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source accumulator

Move MaverickCrunch Register to High Accumulator

Description:
Moves the lowest 8 bits (7:0) of a MaverickCrunch register to the highest 8 bits
of an accumulator (71:64).

Mnemonic:
CFMVAH32<cond> CRd, CRn

Bit Definitions:

CRd: Destination accumulator

CRn: Source register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 0 CRn CRd 0 1 0 0 0 1 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 0 0 1 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 0 CRn CRd 0 1 0 0 1 0 0 0 CRm



DS785UM1 3-29
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Move High Accumulator to MaverickCrunch Register

Description:
Moves the highest 8 bits of an accumulator (71:64) to the lowest 8 bits of a
MaverickCrunch register (7:0).

Mnemonic:
CFMV32AH<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source accumulator

Move 32-bit Integer from Accumulator

Description:
Saturates and rounds an accumulator value to 32 bits and moves the result to
the low 32 bits of a MaverickCrunch register.

Mnemonic:
CFMV32A<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source accumulator

Move 32-bit Integer to Accumulator

Description:
Moves a 32-bit value from a MaverickCrunch register to an accumulator and
sign extend to 72 bits.

Mnemonic:
CFMVA32<cond> CRd, CRn

Bit Definitions:

CRd: Destination accumulator

CRn: Source register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 0 1 0 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 0 1 0 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 0 CRn CRd 0 1 0 0 1 0 1 0 CRm



3-30 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Move 64-bit Integer from Accumulator

Description:
Saturates and rounds an accumulator value to 64 bits and moves the result to
a MaverickCrunch register.

Mnemonic:
CFMV64A<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source accumulator

Move 64-bit Integer to Accumulator

Description:
Moves a 64-bit value from a MaverickCrunch register to an accumulator and
sign extend to 72 bits.

Mnemonic:
CFMVA64<cond> CRd, CRn

Bit Definitions:

CRd: Destination accumulator

CRn: Source register 

Move from MaverickCrunch Register to Control/Status Register

Description:
Moves a 64-bit value from a MaverickCrunch register to the MaverickCrunch
Status/Control register, DSPSC. All DSPSC bits are writable. CRn is ignored.

Mnemonic:
CFMVSC32<cond> CRd, CRn

Bit Definitions:

CRd: Source register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 0 1 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 0 CRn CRd 0 1 0 0 1 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 0 CRn CRd 0 1 0 0 1 1 1 0 CRm



DS785UM1 3-31
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Move from Control/Status Register to MaverickCrunch Register

Description:
Moves a 64-bit value from the MaverickCrunch Status/Control register,
DSPSC, to a MaverickCrunch register. CRn is ignored.

Mnemonic:
CFMV32SC<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

 3.5.4 Copy and Conversion Instructions 
Copy Single Precision Floating Point

Description:
Copies a single precision floating point value from one register to another.

Mnemonic:
CFCPYS<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Copy Double Precision Floating Point

Description:
Copies a double precision floating point value from one register to another.

Mnemonic:
CFCPYD<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 0 1 1 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 0 0 0 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 0 0 0 1 0 CRm



3-32 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Convert Single Precision Floating Point to Double Precision Floating Point

Description:
Converts a single precision floating point value to a double precision floating
point value.

Mnemonic:
CFCVTSD<cond> CRd, CRn

Bit Definitions

CRd: Destination register 

CRn: Source register 

Convert Double Precision Floating Point to Single Precision Floating Point

Description:
Converts a double precision floating point value to a single precision floating
point value.

Mnemonic:
CFCVTDS<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Convert 32-bit Integer to Single Precision Floating Point

Description:
Converts a 32-bit integer to a single precision floating point value.

Mnemonic:
CFCVT32S<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 0 0 1 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 0 0 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 0 1 0 0 0 CRm



DS785UM1 3-33
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Convert 32-bit Integer to Double Precision Floating Point

Description:
Converts a 32-bit integer to a double precision floating point value.

Mnemonic:
CFCVT32D<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Convert 64-bit Integer to Single Precision Floating Point

Description:
Converts a 64-bit integer to a single precision floating point value.

Mnemonic:
CFCVT64S<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Convert 64-bit Integer to Double Precision Floating Point

Description:
Converts a 64-bit integer to a double precision floating point value.

Mnemonic:
CFCVT64D<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 0 1 0 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 0 1 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 0 1 1 1 0 CRm



3-34 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Convert Single Precision Floating Point to 32-bit Integer

Description:
Converts a single precision floating point number to a 32-bit integer.

Mnemonic:
CFCVTS32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Convert Double Precision Floating Point to 32-bit Integer

Description:
Converts a double precision floating point number to a 32-bit integer.

Mnemonic:
CFCVTD32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Truncate Single Precision Floating Point to 32-bit Integer

Description:
Truncates a single precision floating point number to a 32-bit integer.

Mnemonic:
CFTRUNCS32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register. 

CRn: Source register.

Truncate Double Precision Floating Point to 32-bit Integer

Description:
Truncates a double precision floating point number to a 32-bit integer.

Mnemonic:
CFTRUNCD32<cond> CRd, CRn

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 1 1 0 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 1 1 0 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 1 1 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 1 1 1 1 0 CRm



DS785UM1 3-35
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Bit Definitions:

CRd: Destination register 

CRn: Source register 

 3.5.5 Shift Instructions
Shift 32-bit Integer

Description:
Shifts a 32-bit integer left or right. The shift count is a two’s complement
integer stored in an ARM register; the count is positive for left shifts and
negative for right shifts. This instruction may also be used to copy a 32-bit
integer from one register to another by using a shift value of 0.

Mnemonic:
CFRSHL32<cond> CRm, CRn, Rd

Bit Definitions:

CRm: Destination register 

CRn: Source register 

Rd: Shift count register in ARM

Shift 64-bit Integer

Definition:
Shifts a 64-bit integer left or right. The shift count is a two’s complement
integer stored in an ARM register; the count is positive for left shifts and
negative for right shifts. This instruction may also be used to copy a 64-bit
integer from one register to another using a shift value of 0.

Mnemonic:
CFRSHL64<cond> CRm, CRn, Rd

Bit Definitions:

CRm: Destination register 

CRn: Source register 

Rd: Shift count register in ARM

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn Rd 0 1 0 1 0 1 0 1 CRm

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn Rd 0 1 0 1 0 1 1 1 CRm



3-36 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Shift 32-bit Integer Immediate

Definition:
Shift a 32-bit integer by the count specified in the seven bit, two’s complement
immediate value. A positive number indicates a left shift and a negative
number indicates a right shift. This instruction may also be used to copy a 32-
bit integer from one register to another using a shift value of 0.

Mnemonic:
CFSH32<cond> CRd, CRn, Shift[6:0]

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Shift[6:0]: Shift count.

Shift 64-bit Integer Immediate

Definition:
Shifts a 64-bit integer by a count specifies in the seven bit, two’s complement
immediate value. A positive number indicates a left shift and a negative
number indicates a right shift. This instruction may also be used to copy a 64-
bit integer from one register to another by using a shift value of 0.

Mnemonic:
CFSH64<cond> CRd, CRn, Shift[6:0]

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Shift[6:0]: Shift count.

 3.5.6 Compare Instructions
Compare Single Precision Floating Point

Definition:
Compares two single precision floating point numbers and stores an integer
representing the result in the ARM920T register; the highest four bits of the
integer result match the N, Z, C, and V bits, respectively, in the ARM920T’s
program status register, while the bottom 28 bits are zeros. If Rd = 15, then the
four status bits are stored in the ARM status register, CPSR.

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 0 1 Shift[6:4] 0 Shift[3:0]

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 0 CRn CRd 0 1 0 1 Shift[6:4] 0 Shift[3:0]

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 0 1 0 0 1 CRm



DS785UM1 3-37
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Mnemonic:

CFCMPS<cond> Rd, CRn, CRm

Bit Definitions:

CRn: First source register 

CRm: Second source register 

Rd: Destination ARM register. If Rd = 15, destination is ARM
N, C, Z, and V flags.

Compare Double Precision Floating Point

Definition:
Compares two double precision floating point numbers and stores an integer
representing the result in the ARM920T register; the highest four bits of the
integer result match the N, Z, C, and V bits, respectively, in the ARM920T’s
program status register, while the bottom 28 bits are zeros. If Rd = 15, then the
four status bits are stored in the ARM status register, CPSR.

Mnemonic:
CFCMPD<cond> Rd, CRn, CRm

Bit Definitions:

CRn: First source register 

CRm: Second source register 

Rd: Destination ARM register. If Rd = 15, destination is ARM
N, C, Z, and V flags.

Compare 32-bit Integers

Definition:
Compares two 32-bit integers and stores an integer representing the result in
the ARM920T register; the highest four bits of the integer result match the N,
Z, C, and V bits, respectively, in the ARM920T’s program status register, while
the bottom 28 bits are zeros. If Rd = 15, then the four status bits are stored in
the ARM status register, CPSR.

Mnemonic:
CFCMP32<cond> Rd, CRn, CRm

Bit Definitions:

CRn: First source register 

CRm: Second source register 

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 0 1 0 1 1 CRm

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 1 1 0 0 1 CRm



3-38 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Rd: Destination ARM register. If Rd = 15, destination is ARM

N, C, Z, and V flags.

Compare 64-bit Integers

Description:
Compares two 64-bit integers and stores an integer representing the result in
the ARM920T register; the highest four bits of the integer result match the N,
Z, C, and V bits, respectively, in the ARM920T’s program status register, while
the bottom 28 bits are zeros. If Rd = 15, then the four status bits are stored in
the ARM status register, CPSR.

Mnemonic:
CFCMP64<cond> Rd, CRn, CRm

Bit Definitions:

CRn: First source register 

CRm: Second source register 

Rd: Destination ARM register. If Rd = 15, destination is ARM
N, C, Z, and V flags.

 3.5.7 Floating Point Arithmetic Instructions
Single Precision Floating Point Absolute Value

Description:
Computes the absolute value of a single precision floating point number:
     CRd = |CRn|

Mnemonic:
CFABSS<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Double Precision Floating Point Absolute Value

Description:
Computes the absolute value of a double precision floating point number.

Mnemonic:
CFABSD<cond> CRd, CRn

31:28 27:24 23:22 21 20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn Rd 0 1 0 1 1 0 1 1 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 0 0 0 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 0 0 0 1 0 CRm



DS785UM1 3-39
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Bit Definitions:

CRd: Destination register 

CRn: Source register 

Single Precision Floating Point Negate

Description:
Takes the negative of a single precision floating point number:
     CRd = -CRn

Mnemonic:
CFNEGS<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Double Precision Floating Point Negate

Description:
Takes the negative of a double precision floating point number.

Mnemonic:
CFNEGD<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

Single Precision Floating Point Add

Description:
Adds two single precision floating point numbers:
     CRd = CRn + CRm

Mnemonic:
CFADDS<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Addend register 

CRm: Addend register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 0 0 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 0 0 1 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 0 1 0 0 0 CRm



3-40 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Double Precision Floating Point Add

Description:
Adds two double precision floating point numbers.

Mnemonic:
CFADDD<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Addend register 

CRm: Addend register 

Single Precision Floating Point Subtract

Description:
Subtracts two single precision floating point numbers:
     CRd = CRn - CRm

Mnemonic:
CFSUBS<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Minuend register 

CRm: Subtrahend register 

Double Precision Floating Point Subtract

Description:
Subtracts two double precision floating point numbers.

Mnemonic:
CFSUBD<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Minuend register 

CRm: Subtrahend register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 0 1 0 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 0 1 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 0 1 1 1 0 CRm



DS785UM1 3-41
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Single Precision Floating Point Multiply

Description:
Multiplies two single precision floating point numbers:
     CRd = CRn × CRm

Mnemonic:
CFMULS<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Multiplicand register 

CRm: Multiplicand register 

Double Precision Floating Point Multiply

Description:
Multiplies two double precision floating point numbers.

Mnemonic:
CFMULD<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Multiplicand register 

CRm: Multiplicand register 

 3.5.8 Integer Arithmetic Instructions 
32-bit Integer Absolute Value

Description:
Computes the absolute value of a 32-bit integer.

Mnemonic:
CFABS32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 0 0 0 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 0 0 0 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 1 0 0 0 0 CRm



3-42 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
64-bit Integer Absolute Value

Description:
Computes the absolute value of a 64-bit integer.

Mnemonic:
CFABS64<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

32-bit Integer Negate

Description:
Negate a 32-bit integer.

Mnemonic:
CFNEG32<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

64-bit Integer Negate

Description:
Negate a 64-bit integer.

Mnemonic:
CFNEG64<cond> CRd, CRn

Bit Definitions:

CRd: Destination register 

CRn: Source register 

32-bit Integer Add

Description:
Adds two 32-bit integers.

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 1 0 0 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 1 0 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 1 0 1 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 1 1 0 0 0 CRm



DS785UM1 3-43
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Mnemonic:

CFADD32<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Addend register 

CRm: Addend register 

64-bit Integer Add

Description:
Adds two 64-bit integers.

Mnemonic:
CFADD64<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Addend register 

CRm: Addend register 

32-bit Integer Subtract

Description:
Subtracts two 32-bit integers.

Mnemonic:
CFSUB32<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Minuend register 

CRm: Subtrahend register 

64-bit Integer Subtract

Description:
Subtracts two 64-bit integers.

Mnemonic:
CFSUB64<cond> CRd, CRn, CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 1 1 0 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 1 1 1 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 0 1 1 1 1 0 CRm



3-44 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Bit Definitions:

CRd: Destination register 

CRn: Minuend register 

CRm: Subtrahend register 

32-bit Integer Multiply

Description:
Multiplies two 32-bit integers.

Mnemonic:
CFMUL32<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Multiplicand register 

CRm: Multiplicand register 

64-bit Integer Multiply

Description:
Multiplies two 64-bit integers.

Mnemonic:
CFMUL64<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination register 

CRn: Multiplicand register 

CRm: Multiplicand register 

32-bit Integer Multiply-Add

Description:
Multiplies two 32-bit integers and adds the result to another 32-bit integer:
     CRd = CRd + (CRn × CRm)

Mnemonic:
CFMAC32<cond> CRd, CRn, CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 1 0 0 0 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 1 0 0 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 1 0 1 0 0 CRm



DS785UM1 3-45
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
Bit Definitions:

CRd: Destination/addend register 

CRn: Multiplicand register 

CRm: Multiplicand register 

32-bit Integer Multiply-Subtract

Description:
Multiplies two 32-bit integers and subtracts the result from another 32-bit
integer:
     CRd = CRd - (CRn × CRm)

Mnemonic:
CFMSC32<cond> CRd, CRn, CRm

Bit Definitions:

CRd: Destination/minuend register 

CRn: Multiplicand register 

CRm: Multiplicand register 

 3.5.9 Accumulator Arithmetic Instructions
32-bit Integer Multiply-Add, Result to Accumulator

Description:
Multiplies two 32-bit integers, adds the product to a third 32-bit integer, and
stores the result in an accumulator:
     CRa = CRd + (CRn × CRm)

Mnemonic:
CFMADD32<cond> CRa, CRd, CRn, CRm

Bit Definitions:

CRa: Destination accumulator

CRd: Addend register 

CRn: Multiplicand register 

CRm: Multiplicand register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 0 1 0 1 1 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 0 CRn CRd 0 1 1 0 CRa 0 CRm



3-46 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
32-bit Integer Multiply-Subtract, Result to Accumulator

Description:
Multiplies two 32-bit integers, subtracts the product from a third 32-bit integer,
and stores the result in an accumulator:
     CRa = CRd - (CRn × CRm)

Mnemonic:
CFMSUB32<cond> CRa, CRd, CRn, CRm

Bit Definitions:

CRa: Destination accumulator

CRd: Minuend register 

CRn: Multiplicand register 

CRm: Multiplicand register 

32-bit Integer Multiply-Add to Accumulator

Description:
Multiplies two 32-bit integers, adds the product to an accumulator, and stores
the result in an accumulator:
     CRa = CRd + (CRn × CRm)

Mnemonic:
CFMADDA32<cond> CRa, CRd, CRn, CRm

Bit Definitions:

CRa: Destination accumulator

CRd: Addend accumulator

CRn: Multiplicand register 

CRm: Multiplicand register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 0 1 CRn CRd 0 1 1 0 CRa 0 CRm

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 0 CRn CRd 0 1 1 0 CRa 0 CRm



DS785UM1 3-47
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3
32-bit Integer Multiply-Subtract from Accumulator

Description:
Multiplies two 32-bit integers, subtracts the product from an accumulator, and
stores the result in an accumulator:
     CRa = CRd - (CRn × CRm)

Mnemonic:
CFMSUBA32<cond> CRa, CRd, CRn, CRm

Bit Definitions:

CRa: Destination accumulator

CRd: Specifies minuend accumulator

CRn: Multiplicand register 

CRm: Multiplicand register 

31:28 27:24 23:22 21:20 19:16 15:12 11:8 7:5 4 3:0
cond 1 1 1 0 0 0 1 1 CRn CRd 0 1 1 0 CRa 0 CRm



3-48 DS785UM1
Copyright 2007 Cirrus Logic 

MaverickCrunch Co-Processor
EP93xx User’s Guide

33

3



DS785UM1 4-1
Copyright 2007 Cirrus Logic 

44

4
Chapter 4

4Boot ROM

 4.1 Introduction
The Boot ROM allows a program or OS to boot from the following devices:

• SPI Flash

• FLASH, SyncFLASH or SyncROM

• UART1

 4.1.1 Boot ROM Hardware Operational Overview

The Boot ROM is an AHB slave device containing a 16 kbyte mask-programmed ROM. The 
AHB slave always operates with one wait state, so all data reads from the ROM use 2 HCLK 
cycles.

On system reset, the ARM920T begins executing code at address zero. The system follows 
the Hardware Configuration controls to select the boot device that appears at address zero. If 
Internal Boot is selected, the Boot ROM is mapped to address zero and the ARM920T will 
execute the Boot ROM code. 

 4.1.1.1 Memory Map
The normal Boot ROM base address base is 0x8009_0000. It will alias on 16 kbyte intervals. 
When internal boot is active, the Boot ROM is double decoded and appears at its normal 
address base and at address 0x0000_0000. At address 0x0000_0000 plus the current offset, 
the Boot ROM can write the BootModeClr bit to remap itself back to 0x8009_0000 plus the current 
offset. Execution then continues with the instruction at the next Boot ROM address in 
0x8009_0000 space. 

 4.1.2 Boot ROM Software Operational Overview

The Boot ROM is a 16 kbyte mask-programmed ROM that controls the source of the first off-
chip code that is executed by the ARM Core. The code within the Boot ROM supports the 
following sources for the processor’s initialization program: 

• UART1: Code is downloaded through UART1 into an on chip buffer and executed 

• SPI Serial Flash: Code is copied from an SPI Serial Flash into an on-chip buffer and 
executed 

• FLASH: Code present in external FLASH memory is executed directly 



4-2 DS785UM1
Copyright 2007 Cirrus Logic

Boot ROM
EP93xx User’s Guide

44

4
Note that the code retrieved via UART1 and the SPI Serial Flash is not intended to be a 
complete operating system image. It is intended to be a small (up to 2 kbyte) loader that will, 
in turn, retrieve a complete operating system image. This small loader can retrieve this 
complete image through UART1 or the SPI Serial Flash (just as the Boot ROM did) or it can 
be more sophisticated and retrieve it through the IrDA, USB, or Ethernet interfaces.

The Boot ROM code disables the ARM920T’s MMU, so any loader program that is 
downloaded sees physical addresses. The loader is free to initialize the page tables and start 
the MMU and caches if needed. 

The Boot ROM code also does not enable interrupts or timers, so that the system delivered to 
the user is in a known safe state and is ready for an operating system or for user code to be 
loaded.

 4.1.2.1 Image Header
For images copied from the SPI Serial Flash or external FLASH, one of the ASCII strings, 
“CRUS” or “SURC”, must be present as a HeaderID prefixed to an executable image.

 4.1.2.2 Boot Algorithm
The steps in the software boot process are:

1. Remap memory

2. Turn the green LED off and the red LED on 

3. Disable the Watchdog timer 

4. Read the Boot State 

5. Set up the Clocks to run from external clocks (PLLs are not configured)

6. Based on the Boot State memory width, follow steps A, B, and C.

A. Initialize the SYNC Flash and SMC memory interfaces for slow (maximum 
compatibility) operation

B. Initialize the SDRAM interfaces.

C. Perform minimal memory tests 

7. Based on the contents of the SysCfg register, start serial download (see Figure 4-1), and 
then follow Steps A, B, C, D, E, and F.

A. Initialize UART1 to 9600 baud, 8 bits, no parity, 1 stop bit 

B. Output a “<” character

C. Read 2048 (decimal count) characters from UART1 and store these in the internal 
Boot buffer (alias for the Ethernet Mac buffer) 

D. Output a “>” to signify 2048 characters have been read

E. Turn on Green LED 

F. Jump to the start of the internal Boot Buffer 



DS785UM1 4-3
Copyright 2007 Cirrus Logic 

Boot ROM
EP93xx User’s Guide

44

4
8. If it is not a Serial Download, attempt to read from SPI Serial Flash (see Figure 4-1), and 

then follow Steps A, B, C, and D.

A. Check if the first 4 bytes from the Serial Flash are equal to “CRUS” or to “SURC” in 
ASCII, verifying the HeaderID

B. Read the next 2048 (decimal count) bytes into the Internal Boot Buffer 

C. Turn on Green LED 

D. Jump to the start of the Internal Boot Buffer 

9. Attempt to read the “CRUS” or “SURC” HeaderID in ASCII in FLASH memory at FLASH 
Base + 0x0000, and verify the HeaderID. This is read in for each FLASH Chip select 
(see Figure 4-1), and then follow Steps A and B.

A. Turn on Green LED 

B. Jump to the start of FLASH memory plus four bytes 

10.Attempt to read the “CRUS” or “SURC” HeaderID in ASCII in FLASH memory at FLASH 
Base + 0x1000, and verify the HeaderID. This is read in for each FLASH Chip select 
(see Figure 4-1), and then follow Steps A and B. 

A. Turn on Green LED 

B. Jump to the start of FLASH memory 

11.Attempt to read the “CRUS” or “SURC” HeaderID in ASCII in memory at 0xC000_0000 
and 0xF000_0000, and verify the HeaderID. This is read in for SDRAM or SyncFLASH 
boot (see Figure 4-1), and then follow Steps A and B.

A. Turn on Green LED 

B. Jump to memory location 0xC000_0004 or 0xF000_0004

12.Attempt to read the “CRUS” or “SURC” HeaderID in ASCII in memory at 0xC000_1000 
and 0xF000_1000, and verify the HeaderID. This is read in for SDRAM or SyncFLASH 
boot (see Figure 4-1), and then follow Steps A and B.

A. Turn on Green LED 

B. Jump to memory location 0xC000_0000 or 0xF000_0000

13.If “CRUS” or “SURC” HeaderID is not found, copy dummy vectors into low SDRAM, and 
then follow Step A.

A.  Flash Green LED

 4.1.2.3 Flowchart
Figure 4-1 provides a flow chart for operation of the Boot ROM software.



4-4 DS785UM1
Copyright 2007 Cirrus Logic

Boot ROM
EP93xx User’s Guide

44

4
    

 Figure 4-1. Flow Chart of Boot ROM Software 

 4.2 Boot Options
Table 4-1 shows configuration settings that are common to all boot modes.

Set Up
Clocks

Set Up
Memory

Download
Code

Boot
Download

Start Internal Boot

Copy
Code

Boot Code

Copy

Read Boot
State

UART Download ?

SPI Boot ?

Copy
Vectors

Flash
Green Led

Boot Flash
SDCS (6 or 7)

Flash Boot ?

Boot Sync
SDCS (0 or 3)

Sync Boot ?

See 4.2.3

See 4.2.4



DS785UM1 4-5
Copyright 2007 Cirrus Logic 

Boot ROM
EP93xx User’s Guide

44

4

Note: ASYNC boot mode is the preferred boot mode type for new designs.

Table 4-1. Boot Configuration Options

EECLK EEDAT BOOT1 BOOT0 ASDO CSn[7:6] Boot Configuration

0 1 0 0 1
0 0
0 1
1 0
1 1

External boot using Sync boot mode and SDCSn3. 
The media type must be either SyncROM or 
SyncFLASH. The selection of the bus width is 
determined by latched CSn[7:6] value:
16-bit
16-bit
32-bit
32-bit

0 1 0 0 0
0 0
0 1
1 0
1 1

External boot using Async boot mode and CSn0. The 
selection of the bus width is determined by latched 
CSn[7:6] value:
8-bit
16-bit
32-bit
32-bit

1 1 0 1 x xx Internal boot from UART1.

1 1 0 0 x xx Internal SPI boot if HeaderID is found.

1 1 0 0 1

0 0
0 1
1 0
1 1

Internal boot using SYNC boot mode at the chip select 
where the HeaderID exists. The selection of the bus 
width is determined by latched CSn[7:6] value:
16-bit
16-bit
32-bit
32-bit
See memory map in Table 2-7 on page 2-16 for SYNC 
boot mode.

1 1 0 0 0

0 0
0 1
1 0
1 1

Internal boot using ASYNC boot mode at the chip 
select where the HeaderID exists. The selection of the 
bus width is determined by latched CSn[7:6] value:
8-bit 
16-bit
32-bit
32-bit
See memory map in Table 2-7 on page 2-16 for 
ASYNC boot mode.



4-6 DS785UM1
Copyright 2007 Cirrus Logic

Boot ROM
EP93xx User’s Guide

44

4
 4.2.1 UART Boot

Make sure that the boot configuration pins (see Table 5-1 on page 5-2) are configured for 
internal boot mode. EEDAT and BOOT0 should be pulled high and BOOT1 should be pulled 
low as shown in Table 5-2 on page 5-3. UART 1 is configured at 9600 bps, 8-bits, No Parity, 
No flow control. The code performs:

1. A single “<“ is output by UART 1 

2. The ASCII “CRUS” or “SURC” value in the HeaderID is read 

3. 2048 characters are received by UART 1 and copied to the Ethernet buffer at address 
0x8001_4000 

4. The ARM Core will jump to 0x8001_4000. The ARM Core will be in SVC mode when the 
jump occurs.

 4.2.2 SPI Boot

To boot from an SPI Serial Flash device, make sure that the boot configuration pins (see 
Table 5-1 on page 5-2) are configured for internal boot mode. EEDAT should be pulled high 
and LBOOT1 and LBOOT0 should be pulled low as shown in Table 5-2 on page 5-3. 

To boot from the SPI ROM, place the ASCII “CRUS” or “SURC” value in the HeaderID at the 
first location in the ROM. The code will be copied from the SPI ROM to the Ethernet buffer at 
address 0x8001_4000 with a length of 2048 bytes. Code execution will start at 0x8001_4000 
(MAC base + 0x4000). The ARM Core will be in SVC mode. At this point the user can use the 
code in the MAC buffer to load the rest of the image from the SPI ROM.

 4.2.3 FLASH Boot

To enable FLASH boot, make sure that the boot configuration pins (see Table 5-1 on page 5-
2) are configured for normal boot mode, as shown in Table 4-1. Also make sure that the 
FLASH word size is correct as shown in Table 4-1. 

To boot from FLASH, put the ASCII “CRUS” or “SURC” value in the HeaderID at one of the 
following locations (this location will be referred to as FLASH base + 0x0):

0x1000_0000
0x2000_0000
0x3000_0000
0x6000_0000
0x7000_0000

Code execution will start at address FLASH base + 0x4. The ARM Core will be in SVC mode.

Alternatively, to boot from FLASH, put the ASCII “CRUS” or “SURC” value in the HeaderID at 
one of the following locations (this location will be referred to as FLASH base +0x1000):

0x1000_1000
0x2000_1000



DS785UM1 4-7
Copyright 2007 Cirrus Logic 

Boot ROM
EP93xx User’s Guide

44

4
0x3000_1000
0x6000_0000
0x7000_0000

Code execution will start at address FLASH base + 0x0. The ARM Core will be in SVC mode.

Note: CSn6 is the recommended chip select for Flash when performing an Internal boot. CSn0 
must be connected to Flash when performing an External boot.

 4.2.4 SDRAM or SyncFLASH Boot

To enable SDRAM or SyncFLASH boot, make sure that the pins are configured for normal 
boot mode, as shown in Figure 4-2. If booting with SyncFLASH or a 32-bit SDRAM device, 
make sure the SDRAM or SyncFLASH word size is correct, as shown in Figure 4-2. If booting 
with a 16-bit SDRAM device, follow the suggested software sequence of commands, as 
shown in Figure 4-2. 

 Figure 4-2. Flow chart of Boot Sequence for 16-bit SDRAM Devices 

To boot from SDRAM or SyncFLASH, put the ASCII “CRUS” or “SURC” value in the 
HeaderID at one of the following locations (this location is Base + 0x0):

0xC000_0000
0xF000_0000

Code execution will start at address Base + 0x4. The ARM Core will be in SVC mode.

Alternatively, to boot from SDRAM or SyncFLASH, put the ASCII “CRUS” or “SURC” value in 
the HeaderID at one of the following locations (this is Base + 0x1000):

0xC000_1000
0xF000_1000

Code execution will start at address Base + 0x0. The ARM Core will be in SVC mode.

 4.2.5 Synchronous Memory Operation

If running from Synchronous memory, before issuing a software reset, perform this 
procedure: 

1. Run from SDRAM

2. Perform a software reset (SWRST bit in DEVCFG register)

Boot Internally with Asynchronous Device

Re-configure SDRAM for 16-bit access

Branch to desired SDRAM memory



4-8 DS785UM1
Copyright 2007 Cirrus Logic

Boot ROM
EP93xx User’s Guide

44

4
3. Run the internal boot code and boot from FLASH

4. Set the PLL back to use the external clock

5. Set up the SDRAM

6. Load the programs to SDRAM 

7. Run from SDRAM



DS785UM1 5-1
Copyright 2007 Cirrus Logic 

55

5
Chapter 5

5System Controller

 5.1 Introduction
The System Controller (Syscon) provides:

• Clock control

• Power management

• System configuration management

These central resources are controlled by a set of software-locked registers, which can be 
used to prevent accidental accesses. Syscon generates the various bus and peripheral 
clocks and controls the system startup configuration.

 5.1.1 System Startup

System startup begins with the assertion of a reset signal. There are five different categories 
of reset events. In order of decreasing effect, the reset events are: 

• PRSTn (external pin for power-on reset)

• RSTOn (external pin for user reset) 

• Three-key reset externally generated by a Keypad (behaves like user reset) 

• Watchdog reset (internally generated)

• Software reset (internally generated)

During the time that any reset is active, the system is halted until it exits the reset state.

When the device starts with an external PRSTn or RSTOn, certain hardware configurations 
are determined, and some system configuration information will be recorded so that software 
can access it. See the details in “System Reset” on page 5-1 and “Hardware Configuration 
Control” on page 5-2. 

 5.1.2 System Reset

The device system reset consists of several events and signals. It has four levels of reset 
control:

• Power-on-reset, controlled by PRSTn pin. It resets the entire processor with no 
exceptions.

• User reset, controlled by RSTOn pin. While active, it resets the entire processor, except 



5-2 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
certain system variables such as RTC, SDRAM refresh control/global configuration, and 
the Syscon registers.

Note: If PLLs are enabled, user reset does NOT disable or reset the PLLs. They retain their 
frequency settings.

• Three-key reset. When F2, F4, and F7 are pressed, a user reset occurs.

• Software reset and watchdog reset. They perform the functions of the user reset, but are 
under software control.

“Watchdog” on page 19-3 and “PwrSts” on page 5-14 registers contain the information 
regarding which reset event occurred. Note that only the Watchdog timer contains 
information about a user-generated 3-key reset.

 5.1.3 Hardware Configuration Control

The Hardware Configuration controls provide a mechanism to place the system into various 
boot configurations. In addition, one of several external boot memory options can be selected 
at system wake up.

The Hardware Configuration controls are defined by a set of device pins that are latched into 
configuration control bits on the rising edge of the PRSTn or RSTOn pin. The different 
hardware configuration bits define watchdog behavior, boot mode (internal or external), boot 
synchronicity, and external boot width. The latched pins are described in Table 5-1.

The latched version of these signals have an “L” prefix, are stored in the SysCfg register, and 
are readable by software. Note that the signals EECLK and EEDAT may have 1 kΩ pull-up 
resisters if used in an open-drain two-wire serial port application. (The default state 
assignments will assume these pull-ups.)

The Hardware Control configurations are show in Table 5-2.

Table 5-1. Hardware Configuration Control Latched Pins

Pin Name(s) Action

CSn[1]
Enable/Disable Watchdog 
reset timer

CSn[2]
 Enable/Disable Watchdog 
reset duration

CSn[3]  Should be pulled-up to “1”

EECLK
 Select internal or external 
boot

EEDAT  Should be pulled-up to “1”

BOOT[1:0]  Select boot mode

ASDO
 Select synchronous or 
asynchronous boot

CSn[7:6]  Select external boot width



DS785UM1 5-3
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
The normal boot function is described in Chapter 4 on page 4-1.

Serial boot is functionally identical to normal boot except that the SBoot bit in the SysCfg 
register is set. This mode is available for a software configuration option that is readable by 
the boot code.

In either normal boot or serial boot mode, once the processor starts up, it will begin to 
execute the instruction at logical address 0x0000_0000. Various configuration options are 
provided to select a memory device for booting from at address location 0. The options are 
listed in Table 5-2.

Table 5-2. Boot Configuration Options 

EECLK EEDAT BOOT1 BOOT0 ASDO CSn[7:6] Boot Configuration

0 1 0 0 1
0 0
0 1
1 0
1 1

External boot fusing Sync boot mode and SDCSn3. 
The media type must be either SROM or SyncFLASH. 
The selection of the bus width is determined by latched 
CSn[7:6] value:
16-bit
16-bit
32-bit
32-bit

0 1 0 0 0
0 0
0 1
1 0
1 1

External boot using Async boot mode and CSn0. The 
selection of the bus width is determined by latched 
CSn[7:6] value:
8-bit
16-bit
32-bit
32-bit

1 1 0 1 x
xx Internal boot from UART1.

1 1 0 0 x xx Internal SPI boot if HeaderID is found.

1 1 0 0 1
0 0
0 1
1 0
1 1

Internal boot using Sync boot mode at the chip select 
where the HeaderID exists. The selection of the bus 
width is determined by latched CSn[7:6] value:
16-bit
16-bit
32-bit
32-bit
See memory map in Table 2-7 on page 2-16 for SYNC 
boot mode.

1 1 0 0 0
0 0
0 1
1 0
1 1

Internal boot using Async boot mode at the chip select 
where the HeaderID exists. The selection of the bus 
width is determined by latched CSn[7:6] value:
8-bit 
16-bit
32-bit
32-bit
See memory map in Table 2-7 on page 2-16 for 
ASYNC boot mode.



5-4 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
Note: ASYNC boot mode is the preferred boot mode type for new designs. 

 5.1.4 Software System Configuration Options

There are several system configuration options selectable by the DeviceCfg and SysCfg 
registers. These registers provide the selection of several pin multiplexing options and also 
provide software access to the system reset configuration options. Please refer to the 
descriptions of the registers, “DeviceCfg” on page 5-25 and “SysCfg” on page 5-34, for a 
detailed explanation.

 5.1.5 Clock Control

The EP93xx uses a flexible system to generate required clocks. The clock system generates 
up to 20 independent clock frequencies, some with very tight accuracy requirements, all from 
a single external low-frequency crystal or other external clock source. The ARM Core is 
designed so that once it has been configured, its CPU speed, bus speeds, and video clocks 
may be set to a number of different speeds without affecting the speeds of other clocks in the 
processor.

 5.1.5.1 Oscillators and Programmable PLLs
The EP93xx has an interface to two external crystal oscillators: 32.768 KHz and 
14.7456 MHz. To generate the required high-frequency clocks, the processor uses two 
phase-locked-loops (PLLs) to multiply the incoming 14.7456 MHz low frequency signal to 
much higher frequencies that are then divided down by programmable dividers to produce 
needed clocks. The PLLs operate independently of one another.

Figure 5-1 shows the PLL1 structure used in the EP93xx. Since PLL2 is identical to PLL1, 
wherever the phrase “PLL1” is used in the figure, it applies to PLL2 as well.

 Figure 5-1. Phase Locked Loop (PLL) Structure

14.7456
MHz

Input Divider
2^(PLL1_PS)

PLL1_X1

Feedback Divider Feedback Divider
PLL1_X2FBDPLL1_X1FBD

PLL1_X2IPD PLL1_X2 Fout



DS785UM1 5-5
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
Both PLLs are software programmable (each value is defined in “ClkSet1” on page 5-18 and 
“ClkSet2” on page 5-20 registers, respectively). The frequency of output clock Fout is 
determined by:

Here PLL1_X1FBD, PLL1_X2FBD, PLL1_X2IPD and PLL1_PS are the bit fields in the 
"ClkSet1" register. The user must be aware of the requirements of PLL operation. They are:

• PLL1_X1 desired reference clock frequency range is > 11.058 MHz and < 200 MHz

• PLL1_X1 output frequency range is > 294 MHz and < 368 MHz

• PLL1_X2 desired reference clock frequency (after PLL1_X2IPD divider) is > 12.9 MHz 
and < 200 MHz.

• PLL1_X2 output, BEFORE the PS divide, must be > 290 MHz and <= 528 MHz

The same conditions apply to PLL2 and the "ClkSet2" register.

 5.1.5.2 Bus and Peripheral Clock Generation
Figure 5-2 illustrates the clock generation system.

Fout 14.7456MHz
PLL1_X1FBD 1+( ) PLL1_X2FBD 1+( )×

PLL1_X2IPD 1+( ) 2
PLL1_PS×

----------------------------------------------------------------------------------------------------------⋅=



5-6 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5

 Figure 5-2. Clock Generation System

 5.1.5.2.1 Bus Clock Generation

Figure 5-3 shows the generated clocks: the CPU clock (FCLK), the AHB bus clock (HCLK), 
and the APB bus clock (PCLK).

CPU and 
Bus Clocks

USB and 
FIR Clocks

CPU and 
Bus Clocks

32 KHz

Peripheral
Clocks

PLL1

PLL2

Clocks

Audio
Clocks

MIR 
Clock

Touch
Clock

Video

Divide

32 KHz Oscillator
WATCH_CLK

14.7456 MHz Oscillator

PLL1 CFG

PLL2 CFG

UARTxCLK
SSPCLK
PWMCLK
Timer Clocks

FCLK
HCLK
PCLK

USBHost48MHz
USBHost12MHz
FIR_CLK

VCLK

SCLK
LRCLK
MCLK

MIR_CLK

KEY_CLK
TOUCH_CLK
ADC_CLK
FILT_CLK

Key

Syscon



DS785UM1 5-7
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
 

 Figure 5-3. Bus Clock Generation

There are some limitations of each clock. FCLK must be <=200 MHz, HCLK<=100 MHz and 
PCLK<=50 MHz and FCLK >= HCLK > PCLK. Refer to register, “ClkSet1” on page 5-18, for 
the detailed configuration information regarding the divider bit fields.

HCLK
Div

FCLK
Div

PLL1External Clock

PCLK
Div

FCLK

HCLK

PCLK

FCLK Divide = 1, 2, 4, 8, 16

HCLK Divide = 1, 2, 4, 5, 6,

For 2nd stage dividers:

PCLK Divide = 1, 2, 4, 8

MAX = 100 MHz

MAX = 250 MHz

MAX = 500 MHz

MAX = 50 MHz

8, 16, 32



5-8 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
Even though FCLK is the usual CPU clock, HCLK can optionally be used instead. Processor 
clocking modes are: 

• Async mode

• Sync mode

• Fast Bus mode

Both Async mode and Sync mode use FCLK. FCLK can be faster than HCLK, which would 
yield higher performance. Async mode and Sync mode have different clock skew 
requirements between FCLK and HCLK, and therefor have different throughput penalties due 
to clock synchronization. Fast Bus mode bypasses FCLK, and the CPU runs from HCLK. In 
this mode, the ARM Core potentially has lower performance than with the other two modes. 
When the ARM Core starts up, it defaults to Fast Bus mode. (The selection of clocking 
modes is determined by the iA and nF bits in ARM co-processor 15 register 1.) 

 5.1.5.2.2 Peripheral Clock Generation

The MCLK, VCLK, and MIR_CLK generators are three identical blocks. Each block contains 
a pre-divider of 2, 2.5 and 3 followed by a 7-bit programmer divider. The audio clock SCLK 
and LRCLK are further divided down from MCLK. The registers, “MIRClkDiv” on page 5-30, 
“VidClkDiv” on page 5-29, and “I2SClkDiv” on page 5-31, show the details.

USB uses a 48 MHz clock generated by PLL2. USBDIV, in register “ClkSet2” on page 5-20, is 
used to divide the frequency down from the PLL2 output.

The Key Matrix and Touchscreen Controller clocks are generated from an external 14.7 MHz 
oscillator. A chain of dividers generates divide-by-2, 4, 8, 16, 32, 64 versions of external 
oscillator clock. Programmable bits in the “KeyTchClkDiv” on page 5-32 select either a divide-
by-4 or a divide-by-16 version of the external oscillator clock for each of the Key Matrix clock 
and Touchscreen controller.

Table 5-3 describes the speeds and sources for the various clocks. 

Table 5-3. Clock Speeds and Sources 

Block Clocks Used Clock Source

SSP 7.3728 MHz Divided by 2 from 14.7456 MHz external oscillator

UART1
UART2
UART3

14.7456 MHz 
7.3728 MHz

Both are derived from 14.7456 MHz external oscillator

PWM 14.7456 MHz From the 14.7456MHz external oscillator

AAC  2.9491 MHz Divided-by-5 from the 14.7456MHz external oscillator

Timers
508.4689 KHz

1.9939 KHz
 983 KHz

All divided by the 14.7456 MHz external oscillator

Watchdog  256 Hz Tap from the 32 KHz RTC clock



DS785UM1 5-9
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
 5.1.5.3 Steps for Clock Configuration

The boot ROM must contain code that performs the following steps for a 14.7456 MHz 
crystal. The actual register values should be taken from the register descriptions for the 
desired clock setup.

1. After power up, the reset state of all clock control registers (all bits zero) will ensure that 
FCLK and HCLK are running at the crystal oscillator frequency of 14.7456 MHz.

2. Configure PLL1 to multiply by the desired value, set HCLK and FCLK rates, and power it 
up. To do this: write the proper value (taken from the register table) to "ClkSet1" 
immediately followed by 5 NOP instructions to flush the ARM Core’s instruction pipeline. 
The ARM Core will go into Standby mode while PLL1 stabilizes, then it returns to normal 
operation at the new clock rates.

3. Configure PLL2 to multiply by the desired value. To do this, write the proper value to 
"ClkSet2".

4. Wait for PLL2 to stabilize (at least 1 ms)

5. Program all other clock dividers to the desired values and enable them. The clocks won’t 
actually begin running until the clock sources which feed them are enabled. Write the 
desired values to these registers:

• “VidClkDiv” on page 5-29

• “MIRClkDiv” on page 5-30

• “I2SClkDiv” on page 5-31

• “KeyTchClkDiv” on page 5-32

6. All peripherals are now running from divided PLL outputs. Once the clocks have been 
configured, the frequency of any peripheral clock can be changed on-the-fly. To do this, 
perform a write to the clock register with the new divisor value and then set the 
appropriate enable bit. This ensures a problem-free change of the clock.

 5.1.6 Power Management

The device follows a power-saving design plan. Power management is done by either 
altering the PLLs or the clock system frequency or by shutting off clocks to unused blocks. 
Also, there are several system power states to which the device can transition in order to 
save power. Care must be taken to ensure the clock system is not put into a non-operational 
state and that clock system dependencies are observed.

 5.1.6.1 Clock Gatings
The list of peripherals with PCLK gating is shown Table 5-4. Refer to the appropriate chapter 
in this user’s guide to find detailed information about clock gatings for a specific peripheral.



5-10 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
 

HCLK to the USB Hosts can be gated off as well to further save power. The USH_EN bit in 
the "PwrCnt" register serves the purpose.

 5.1.6.2 System Power States
The EP93xx has three power states:

• Run mode: Normal operation mode.

• Halt: ARM Core stops executing instructions.

• Standby: Power is on, but only SDRAM self-refresh and the RTC run.

Figure 5-4 illustrates the transitions among power states.

Table 5-4. Peripherals with PCLK Gating 

Peripheral
Peripheral/PCLK 
on with Enable or 
Register Access

PCLK on with
Register Access

Only
PCLK Continuous

UART1 x - -

UART2 x - -

UART3 x - -

KEYPAD - x -

IRDA x - -

SEC x - -

I2S x - -

Watchdog - - x

TSC - x -

PWM x - -

AAC x - -

SSP x - -

RTC - - x

GPIO - x -



DS785UM1 5-11
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
  

 Figure 5-4. Power States and Transitions

 5.1.6.2.1 Power-on-Reset Run

After power-on-reset, the ARM Core is automatically in run mode.

 5.1.6.2.2 Run Standby Mode

Once in run mode, it is possible to move to the Standby state under these conditions:

• A read from the Standby register location 0x8093_000C when the SHena bit in the 
"DeviceCfg" register is set to 1. This triggers the system to enter STANDBY mode.

• A write to the "ClkSet1" register. 

When the SHena bit is set to 1 and the user reads the Standby register location 
0x8093_000C, the EP93xx is forced to transition into the Standby state. After this transition, 
the state controller will hold the Standby state before re-loading and allowing transition to the 
Run state. 

A write to the "ClkSet1" register will also trigger the system to go into Standby mode. 
However, the system will automatically come back to normal operation after new clock 
settings take effect. The amount of time the EP93xx remains in the Standby state depends on 
whether the PLL is enabled, or if the EP93xx is using the external clock. If the PLL is enabled, 
the EP93xx will remain in Standby until the PLL is locked. If the EP93xx is in PLL bypass 
mode (nBYP1 = 1), then the EP93xx will remain in the Standby state for One to two 
16.384 kHz clock cycles. This is to ensure a minimum 'off' time. The 16.384 kHz clock, 
derived from the 32.768 kHz clock, times how long the EP93xx remains in the Standby state. 

When the EP93xx normally enters Standby mode, the SDRAM controller puts the external 
SDRAM into self-refresh before disabling its clocks (see “SDRAM Self Refresh” on page 13-
8). This condition is only true if the refresh enable bit (RFSHEN) in the SDRAM controller is 

Interrupt (if enabled) or
return from ClkSet1

Power on
Reset

Standby Run Halt
Write to
ClkSet1 register

Read Standby register &
SHena = 1 Any Enabled Interrupt

Read Halt register
& SHena = 1



5-12 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
set. One example of this is when a power-on-reset is applied and this register bit is cleared. 
This means that this bit will not be set on boot-up and will have to be set to maintain the 
memory image for when the device re-enters Standby mode.

 5.1.6.2.3 RUN HALT mode

A transition from Run mode to Halt mode is caused by reading the Halt register location 
0x8093_0008 with the SHena bit set to 1. This has the effect of gating the CPU clock (FCLK) 
bus interface, with the APB/AHB system clock, and Memory/DMA system remaining enabled.

 5.1.6.2.4 STANDBY RUN mode

There are normally several conditions in which the device can move from Standby mode to 
Run mode. 

These conditions are:

• A falling edge on IRQ interrupt

• A falling edge on FIQ interrupt

• An exit from a "ClkSet1" write

• PRSTn

• RSTOn

The EP93xx comes out of Standby if an interrupt occurs or when an exit from a ClkSet1 write 
occurs. If a write is performed to the ClkSet1 register, the EP93xx then enters Standby mode 
and then automatically comes out of Standby mode and back into the Run state.

 5.1.6.2.5 HALT RUN mode

The transition from the Halt state to the Run state is caused by:

• A falling edge on IRQ interrupt

• A falling edge on FIQ interrupt

• RSTOn 

 5.1.7 Interrupt Generation

The Syscon block generates two interrupts: TICK interrupt and Watchdog Expired interrupt.

The block generates the TICK interrupt based upon the 64 Hz clock, which is derived from 
the 32.768 KHz oscillator. The interrupt becomes active on every rising edge of the internal 
64 Hz clock. It can be cleared by writing to the TEOI location.

Watchdog Expired interrupt becomes active on a rising edge of the 64 Hz TICK clock, if the 
TICK interrupt is still active. In other words, if a TICK interrupt has not been served for a 
complete TICK period, a watchdog expired interrupt is generated. It can be cleared by writing 
to the TEOI location as well.



DS785UM1 5-13
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
 5.2 Registers

This section contains the detailed register descriptions for registers in the Syscon block. 
Table 5-5 shows the address map for the registers in this block, followed by a detailed listing 
for each register. 

Table 5-5. Syscon Register List  

Address Name SW Locked Type Size Description

0x8093_0000 PwrSts No R 32 Power/state control state

0x8093_0004 PwrCnt No R/W 32 Clock/Debug control status

0x8093_0008 Halt No R 32 Reading this location enters Halt mode.

0x8093_000C Standby No R 32 Reading this location enters Standby mode.

0x8093_0018 TEOI No W 32 Write to clear Tick interrupt

0x8093_001C STFClr No W 32
Write to clear CLDFLG, RSTFLG and 

WDTFLG.

0x8093_0020 ClkSet1 No R/W 32 Clock speed control 1

0x8093_0024 ClkSet2 No R/W 32 Clock speed control 2

0x8093_0040 ScratchReg0 No R/W 32 Scratch register 0

0x8093_0044 ScratchReg1 No R/W 32 Scratch register 1

0x8093_0050 APBWait No R/W 32 APB wait

0x8093_0054 BusMstrArb No R/W 32 Bus Master Arbitration

0x8093_0058 BootModeClr No W 32 Boot Mode Clear register

0x8093_0080 DeviceCfg Yes R/W 32 Device configuration

0x8093_0084 VidClkDiv Yes R/W 32 Video Clock Divider

0x8093_0088 MIRClkDiv Yes R/W 32
MIR Clock Divider, divides MIR clock for 

MIR IrDA

0x8093_008C I2SClkDiv Yes R/W 32 I2S Audio Clock Divider

0x8093_0090 KeyTchClkDiv Yes R/W 32 Keyscan/Touch Clock Divider

0x8093_0094 ChipID Yes R/W 32 Chip ID Register

0x8093_009C SysCfg Yes R/W 32 System Configuration

0x8093_00A0 - - - - Reserved

0x8093_00C0 SysSWLock No R/W 1 bit Software Lock Register



5-14 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
Register Descriptions

PwrSts   

Address:
0x8093_0000 - Read Only

Definition:
The PwrSts system control register is the Power/State control register. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RTCDIV: The 6-bit RTCDIV shows the number of 64-seconds which
have elapsed. It is the output of the divide-by-64 chain that
divides the 64 Hz TICK clock down to 1 Hz though
showing an incrementing count. The MSB is the 1 Hz
output; the LSB is the 32 Hz output. It is reset by power-
on-reset to 000000b.

PLL1_LOCK: PLL1 lock. This signal goes high when PLL1 is locked and
it is at the correct frequency. 

PLL1_LOCK_REG:Registered PLL1 lock. This is a one-shot registered signal
of the PLL1_LOCK signal. It is only cleared on a power-
on-reset, when the device enters the Standby state or
when PLL1 is powered down.

PLL2_LOCK: PLL2 lock. This signal goes high when PLL2 is locked, and
it is at the correct frequency. 

PLL2_LOCK_REG:Registered PLL2 lock. This is a one-shot registered signal
of the PLL2_LOCK signal. It is only cleared on a power-
on-reset, when ClkSet2 is written, the device enters the
Standby state, or PLL2 is powered down.

SW_RESET: Software reset flag. This bit is set if the software reset has
been activated. It is cleared by writing to the STFClr
location. On power-on-reset, it is reset to 0b.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CHIPMAN CHIPID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDTFLG RSVD CLDFLG TEST_
RESET

RSTFLG SW_
RESET

PLL2_
LOCK_REG

PLL2_
LOCK

PLL1_
LOCK_REG

PLL1_
LOCK

RTCDIV



DS785UM1 5-15
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
RSTFLG: Reset flag. This bit is set if the user reset button has been

pressed; forcing the RSTOn input low. It is cleared by
writing to the STFClr location. On power-on-reset, it is
reset to 0b.

TEST_RESET: Test reset flag. This bit is set if the test reset has been
activated; it is cleared by writing to the STFClr location. On
power-on-reset, it is reset to 0b.

CLDFLG: Cold start flag. This bit is set if the device has been reset
with a power-on-reset; it is cleared by writing to the STFClr
location. On power-on-reset, it is set to 1b.

WDTFLG: Watchdog Timer flag. This bit is set if the Watchdog timer
resets the system. It is cleared by writing to the STFClr
location. It is reset to 0.

CHIPID: Chip ID bits. This 8-bit register determines the Chip
Identification for the device. For the device, this value is
0x20.

CHIPMAN: This 8-bit register determines the Chip Manufacturer ID for
the device. For the device, this value is 0x43.

PwrCnt 

Address:
0x8093_0004 - Read / Write

Definition:
The PwrCnt system control register is the Clock/Debug control status register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIR_EN RSVD UART 
BAUD

USH_EN DMA 
M2M 
CH1

DMA 
M2M 
CH0

DMA 
M2P 
CH8

 DMA 
M2P 
CH9

DMA 
M2P 
CH6

 DMA 
M2P 
CH7

DMA 
M2P 
CH4

DMA 
M2P 
CH5

DMA 
M2P 
CH2

DMA 
M2P 
CH3

DMA 
M2P 
CH0

DMA 
M2P 
CH1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD



5-16 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
DMA M2M/P CHx: These bits enable the clocks to the DMA controller

channels. Note that a channels-enable bit MUST be
asserted before any register within the DMA controller can
be read or written. At least one ARM instruction cycle must
occur between writing to this register to enable the DMA
Controller channel and actually accessing it. The number
of cycles will depend on the setting of HCLK and PCLK
division in the "ClkSet1" or "ClkSet2" register. To save
power, ensure that all these bits are disabled (low) if the
DMA controller is not being used. On a system reset, the
register will be reset to zero.

USH_EN: This bit is used to gate the HCLK to the USB Host block in
order to save power. It is reset to zero, thus gating off the
HCLK. It can be set to one to turn on the HCLK to the USB
Host. This bit must be set before any register within the
USB Host can be accessed. At least one ARM instruction
cycle must occur between writing to this register bit and
actually accessing the USB Host. The number of cycles
will depend on the setting of HCLK and PCLK division in
the "ClkSet1" and "ClkSet2" register.s

This bit is also used to gate the 48 MHz and 12 MHz
clocks to the USB Host block in order to save power. It is
reset to zero, thus gating off the USB Host clocks. By
setting this to one, the USB Host clocks are enabled. At
least one ARM instruction cycle must occur between
writing to this register bit and actually accessing the USB
Host. The number of cycles will depend on the wake-up
time for PLL2. To find out if PLL2 has locked on to its
frequency, the PLL2_LOCK bit in the PwrSts register can
be read. 

UARTBAUD: This bit controls the clock input to the UARTs. When
cleared, the UARTs are driven by the 14.7456 MHz clock
divided by 2 (7.3728 MHz). This gives a maximum baud-
rate of 230 Kbps. When set, the UARTs are driven by the
14.7456 MHz clock directly, giving an increased maximum
baud rate of 460 Kbps. This bit is 0 on reset.

FIR_EN: This bit is used to gate the FIRCLK to the IrDA block in
order to save power. It is reset to zero, thus gating off the
FIRCLK. Setting this bit to one will turn on the 48 MHz
clock to the IrDA.



DS785UM1 5-17
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
Standby and Halt   

Address:
Standby - 0x8093_000C - Read Only
Halt - 0x8093_0008 - Read Only

Definition:
The Standby and Halt registers allow entry into the power saving modes. A
read to the Halt location will initiate a request for the system to enter Halt
mode, if the SHena bit is set in the DeviceCfg register in Syscon. Likewise a
read to Standby will request entry into Standby only when the SHena bit is set. 

Note: When a read is performed to the Standby location, it must be immediately followed by 5 
NOP instructions. This is needed to flush the instruction pipeline in the ARM920T core. 
Writes to these locations have no effect.

Bit Descriptions:

RSVD: There are no readable bits in this register.

TEOI   

Address:
0x8093_0018 - Write

Definition:
Writing to the TEOI location will clear the periodic Watchdog expired interrupt
(WEINT) and the 64 Hz TICK interrupt (TINT). Any data written to the register
triggers the clearing.

Bit Descriptions:

RSVD: There are no readable bits in this register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD



5-18 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
STFClr 

Address:
0x8093_001C - Write

Definition:
Writing to the STFClr location will clear the CLDFLG, WDTFLG and RSTFLG
in the register, “PwrSts” on page 5-14. Any data written to the register triggers
the clearing.

Bit Descriptions:

RSVD: There are no readable bits in this register.

ClkSet1

Address:
0x8093_0020 - Read/Write

Definition:
The ClkSet1 system control register is one of two register that control clock
speeds. 

Note: When a write is performed to the ClkSet1 location, it must be immediately followed by 5 
NOP instructions. This is needed to flush the instruction pipeline in the ARM920T core. 
Writing to this register will cause the the device to enter Standby for between 8 ms to 
16 ms. Reading from this register will not cause an entry into Standby mode.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PLL1_X2IPD: These 5 register bits set the input divider for PLL1
operation. On power-on-reset the value is set to 00111b (7
decimal).

Note: The value in the register is the actual coefficient minus one.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD FCLK DIV SMC ROM nBYP1 HCLK DIV PCLK DIV PLL1_PS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PLL1 X1FBD1 PLL1 X2FBD2 PLL1 X2IPD



DS785UM1 5-19
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
PLL1_X2FBD2: These 6 register bits set the first feedback divider bits for

PLL1. On power-on-reset the value is set to 000111b (7
decimal).

Note: The value in the register is the actual coefficient minus one.

PLL1_X1FBD1: These 5 register bits set the second feedback divider bits
for PLL1. On power-on-reset the value is set to 10011b (19
decimal).

Note: The value in the register is the actual coefficient minus one.

PLL1_PS: These two bits determine the final divide on the VCO clock
signal in PLL1. 
00 - Divide by 1
01 - Divide by 2
10 - Divide by 4
11 - Divide by 8

On power-on-reset these bits are reset to 11b (3 decimal).

Note: This means that PLL1 FOUT is programmed to be 36,864,000 Hz on startup.

Note: The value in the register is the actual coefficient minus one.

PCLKDIV: These two bits set the divide ratio between the HCLK AHB
clock and the APB clock (PCLK)
00 - Divide by 1
01 - Divide by 2
10 - Divide by 4
11 - Divide by 8

On power-on-reset the value is set to 00b.

Note: Care must be taken to make the correct selection of PCLK divide for the HCLK frequency 
used, so that the required minimum ratio between PCLK and the peripheral clock is not 
violated 

HCLKDIV: These three bits set the divide ratio between the VCO
output and the bus clock (HCLK) 
000 - Divide by 1        100 - Divide by 6
001 - Divide by 2        101 - Divide by 8
010 - Divide by 4        110 - Divide by 16
011 - Divide by 5         111 - Divide by 32

On power-on-reset the value is set to 000b.



5-20 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
nBYP1: This bit selects the clock source for the processor clock

dividers. With this bit clear, the system wakes up and
boots with the PLL bypassed and uses an external clock
source. With nBYP1 set, the system runs with the PLL
generated clock. The default for this bit is to boot/run from
external clock source.

SMCROM: If set, this bit will gate off the HCLK to the Static Memory
Controller when in Halt mode and therefore save power.
When in Halt mode, there are no Instruction Code fetches
occurring and therefore if there are no DMA operations in
progress that may require the SMC, there will be no
accesses to this controller. It may therefore be safely
disabled when in Halt mode. This bit is 0b on reset.

FCLKDIV: These three bits set the divide ratio between the VCO
output and processor clock. On power-on-reset the value
is set to 000b.
000 - Divide by 1          011 - Divide by 8
001 - Divide by 2          100 - Divide by 16
010 - Divide by 4

For FCLKDIV values equal to 1xxb (except for 100b), the
divide ratio will be divide by 1.

ClkSet2 

Address:
0x8093_0024 - Read/Write

Definition:
The ClkSet2 register is used for setting the dividers internally to PLL2 and to
the USB Host divider. The reset setting for PLL2 creates a frequency of
48 MHz. The default divider for USB_DIV is divide by 1, which will produce the
USB host clock frequency and FIR clock frequency of 48 MHz.

Bit Descriptions:

PLL2_X2IPD: These 5 register bits set the input divider for PLL2
operation. On power-on-reset the value is set to 10111b
(23 decimal).

Note: The value in the register is the actual coefficient minus one.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

USB DIV RSVD nBYP2 PLL2_EN PLL2_PS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PLL2 X1FBD1 PLL2 X2FBD2 PLL2 X2IPD



DS785UM1 5-21
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
PLL2_X2FBD2: These 6 register bits set the first feedback divider bits for

PLL2. On power-on-reset the value is set to 11000b (24
decimal).

Note: The value in the register is the actual coefficient minus one.

PLL2_X1FBD1: These 5 register bits set the second feedback divider bits
for PLL2. On power-on-reset the value is set to 11000b (24
decimal).

Note: The value in the register is the actual coefficient minus one.

PLL2_PS: These two bits determine the final divide function on the
VCO clock signal in PLL2. 
00 - Divide by 1
01 - Divide by 2
10 - Divide by 4
11 - Divide by 8

On power-on-reset these bits are reset to 11b (3 decimal).

Note: This means that PLL2 FOUT is programmed to be 48,000,000 Hz on startup.

Note: The value in the register is the actual coefficient minus one.

PLL2_EN: This bit enables PLL2. If set, PLL2 is enabled. If this bit is
zero, PLL2 is disabled. On power-on-reset the value is set
to 0b.

nBYP2: This bit selects the clock source for the processor clock
dividers. If set, PLL2 is the clock source. If this bit is set to
zero, the external clock is the clock source. On power-on-
reset, this bit defaults to 0b.

USBDIV: These four bits set the divide ratio between the PLL2
output and the USB clock.
0000 - Divide by 1          1000 - Divide by 9
0001 - Divide by 2          1001 - Divide by 10
0010 - Divide by 3          1010 - Divide by 11
0011 - Divide by 4          1011 - Divide by 12
0100 - Divide by 5          1100 - Divide by 13
0101 - Divide by 6          1101 - Divide by 14
0110 - Divide by 7          1110 - Divide by 15
0111 - Divide by 8          1111 - Divide by 1

On power-on-reset these bits are reset to 0000b.



5-22 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
ScratchReg0, ScratchReg1   

Address:
ScratchReg0 - 0x8093_0040, Read/Write
ScratchReg1 - 0x8093_0044, Read/Write

Default:
0x0000_0000

Definition:
Each of these locations provide a 32-bit read/write scratch register, that can be
used as a general purpose storage. These registers are reset to zero only on a
power-on-reset. A System Reset will have no effect. 

Bit Descriptions:

Value: This is a 32-bit read/write location.

APBWait   

Address:
0x8093_0050, Read/Write

Definition:
The APBWait register controls the insertion of wait states for APB peripherals.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

NO_WRITE_WAIT:Used in the AHB/APB bridge to not insert an AHB wait
during writes, if set. If reset, a wait state is added by
forcing HREADY = 0 during ST_WRITE. This bit resets to
0x0001.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD NO_WRITE_WAIT



DS785UM1 5-23
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
BusMstrArb 

Address:
0x8093_0054 - Read/Write

Definition:
The Bus Master arbitration register (BusMstrArb) is used to configure the AHB
master priority order.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PRI_ORD: Used to set the priority of the AHB arbiter. The priority
order is shown in Table 5-6. This field resets to 00.   

PRI_CORE: When this bit is set the Core will become highest priority
following a grant to one of the following: Raster, Raster
Cursor, MAC, USB and DMA. If the Core then requests the
bus, it is then placed in the priority order selected by
PRI_ORD after it is granted, until one of the above
masters is granted the bus, and is placed on top of the
priority scheme.

DMA_ENIRQ: When set the arbiter will degrant DMA from the AHB bus
and will ignore subsequent requests from DMA if an IRQ is
active. When IRQ is cleared the DMA request is allowed
again. There is no impact on other masters. Reset to 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RSVD MAC 
ENFIQ

MAC 
ENIRQ

USH 
ENFIQ

USH 
ENIRQ

DMA_
ENFIQ

DMA_
ENIRQ

PRI 
CORE

RSVD PRI_ORD

Table 5-6. Priority Order for AHB Arbiter

Priority Number
PRIOR 00 

(Reset value)
PRIOR 01 PRIOR 10 PRIOR 11

1 Raster Cursor Raster Raster Raster

2 MAC Raster Cursor Raster Cursor DMA

3 USB MAC DMA MAC

4 DMA USB USB USB

5 ARM920T ARM920T MAC Raster Cursor

6 Raster DMA ARM920T ARM920T



5-24 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
DMA_ENFIQ: When set the arbiter will degrant DMA from the AHB bus

and will ignore subsequent requests from DMA if an FIQ is
active. When FIQ is cleared the DMA request is allowed
again. There is no impact on other masters. Reset to 0.

USH_ENIRQ: When set the arbiter will degrant USB host from the AHB
bus and will ignore subsequent requests from the USB
Host if an IRQ is active. When IRQ is cleared, the USB
Host request is allowed again. There is no impact on other
masters. Reset to 0.

USH_ENFIQ: When set the arbiter will degrant USB Host from the AHB
bus and will ignore subsequent requests from USB Host if
an FIQ is active. When FIQ is cleared, the USB Host
request is allowed again. There is no impact on other
masters. Reset to 0.

MAC_ENIRQ: When set the arbiter will degrant Ethernet MAC from the
AHB bus and will ignore subsequent requests from the
MAC if an IRQ is active. When IRQ is cleared, the MAC
request is allowed again. There is no impact on other
masters. Reset to 0.

MAC_ENFIQ: When set the arbiter will degrant the Ethernet MAC from
the AHB bus and will ignore subsequent requests from the
MAC if an FIQ is active. When FIQ is cleared, the MAC
request is allowed again. There is no impact on other
masters. Reset to 0.

BootModeClr   

Address:
0x8093_0058 - Write Only

Definition:
The BootModeClr register is a write-to-clear register. Reset activates the boot
ROM remap function causing the internal boot ROM to map to address zero, if
internal boot is selected. Writing BootModeClr removes the internal ROM
address remap, restoring normal address space.

Bit Descriptions:

RSVD: There are no readable bits in this register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD



DS785UM1 5-25
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
DeviceCfg   

Address:
0x8093_0080 - Read/Write, Software locked

Default:
0x0000_0000

Definition:
Device Configuration Register. This register controls the operation of major
system functions.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

0: This bit must be written as “0”.

SHena: Standby/Halt enable. When 1, allows the system to enter
Standby or Halt on a read from the Standby and Halt
registers, respectively.

KEYS: Key matrix inactive. 
1 - Key Matrix controller inactive, 
0 - Key Matrix controller active.

ADCPD: ADC Power Down. 
1 - ADC and clocks are powered down. 
0 - ADC and clocks are active. ADCPD must be zero for
normal touch screen operation and for direct ADC
operation.

RAS: Raster inactive. 
1 - Disables video pixel clock to most of the Raster engine, 
0 - Normal video clock to Raster engine.

RasOnP3: Raster On SDRAM Port 3. 
1 - The Raster video refresh SDRAM accesses use the
system primary AHB to get video data. 
0 - Raster video refresh uses the private AHB on SDRAM
Port 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SWRST D1onG D0onG IonU2 GonK TonG MonG U3EN CPENA A2onG A1onG U2EN EXVC U1EN TIN RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HC3IN HC3EN HC1IN HC1EN HonIDE GonIDE PonG EonIDE I2Son
SSP

I2Son
AC97

0 RASOn
P3

RAS ADCPD KEYS SHena



5-26 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
I2SonAC97: Audio - I2S on AC97 pins. The I2S block uses the AC97

pins. See Audio Interface pin assignments in Table 5-7.

Note: The I2S should be enabled on only one set of pins. Therefore I2SonAc97 and I2SonSSP 
are mutually exclusive. Setting both I2SonAc97 and I2SonSSP will cause unexpected 
behavior.

I2SonSSP: Audio - I2S on SSP pins. The I2S block uses the SSP pins.
MCLK is not available in this pin option. See Audio
Interface pin assignments in Table 5-7.

Note: The I2S should be enabled on only one set of pins. Therefore I2SonAc97 and I2SonSSP 
are mutually exclusive. Setting both I2SonAc97 and I2SonSSP will cause unexpected 
behavior.

EonIDE: GPIO Port E on IDE pins: 

0 - GPIO Port E used for IDE

1 - GPIO Port E used for GPIO

PonG: PWM 1 output on EGPIO pin

GonIDE: GPIO Port G on IDE pins

0 - GPIO Port G used for IDE

1 - GPIO Port G used for GPIO

HonIDE: GPIO Port H on IDE pins

Table 5-7. Audio Interfaces Pin Assignment

Pin
Name

Normal Mode I2S on SSP 
Mode

I2S on AC'97 
Mode

Pin 
Description

Pin Description Pin Description

SCLK1 SPI Bit Clock I2S Serial Clock SPI Bit Clock

SFRM1 SPI Frame Clock I2S Frame Clock SPI Frame Clock

SSPRX1 SPI Serial Input I2S Serial Input SPI Serial Input

SSPTX1 SPI Serial Output I2S Serial Output SPI Serial Output

(No I2S Master 
Clock)

ARSTn AC'97 Reset AC'97 Reset I2S Master Clock

ABITCLK AC'97 Bit Clock AC'97 Bit Clock I2S Serial Clock

ASYNC
AC'97 Frame 

Clock
AC'97 Frame Clock I2S Frame Clock

ASDI
AC'97 Serial 

Input
AC'97 Serial Input I2S Serial Input

ASDO
AC'97 Serial 

Output
AC'97 Serial Output I2S Serial Output



DS785UM1 5-27
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
0 - GPIO Port H used for IDE

1 - GPIO Port H used for GPIO

HC3IN: HDLC3 clock in. This bit has no effect unless HC3EN is 1.
1 = pin EGPIO[3] is an input and drives an external HDLC
clock to UART3.
0 = pin EGPIO[3] is an output driven by UART3.

HC3EN: HDLC3 clock enable.
1 = pin EGPIO[3] is used to for an HDLC clock with
UART3.
0 = pin EGPIO[3] is not used.

HC1IN: HDLC1 clock in. This bit has no effect unless HC3EN is 0
and HC1EN is 1.
1 = pin EGPIO[3] is an input and drives an external HDLC
clock to UART1.
0 = pin EGPIO[3] is an output driven by UART1.

HC1EN: HDLC1 clock enable. This bit has no effect unless HC3EN
is 0.
1 = pin EGPIO[3] is used for an HDLC clock with UART1.
0 = pin EGPIO[3] is not used.

TIN: Touchscreen controller inactive. 
1 - Touchscreen controller to inactive state, 
0 - Touchscreen controller active. 
To use the ADC converter independent of the Touch
screen controller, the Touchscreen controller must be
enabled and set inactive. The ADC can then be operated
using the direct access registers. The TIN bit does not
affect the ADC power state. ADC power down is directly
controlled by the ADCPD bit.

U1EN: UART1 Enable. 
1 - UART1 baud rate clock is active. 
0 - UART1 clock is off.

EXVC: External Video Clock. 
1 - Raster engine uses external pixel clock and the SPCLK
pin is configured as an input, 
0 - Raster engine uses internal pixel clock and the SPCLK
pin is configured as an output.

U2EN: UART2 Enable. 
1 - UART2 baud rate clock is active. 
0 - UART2 clock is off.



5-28 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
A1onG: I2S Audio Port 1 on GPIO. 

1 - I2S Port 1 pins are mapped to EGPIO. SDI1 is on
EGPIO[5], SDO1 is on EGPIO[4].
0 - EGPIO[5:4] are not used.

A2onG: I2S Audio Port 2 on GPIO. 

1 - I2S Port 2 pins are mapped to EGPIO. SDI2 is on
EGPIO[13], SDO2 is on EGPIO[6].
0 - EGPIO[13] and EGPIO[6] are not used.

CPENA: Co-processor Enable. 
1 - MaverickCrunch co-processor is enabled. 
0 -  Co-processor is  d isabled and wi l l  not  accept
instructions.

U3EN: UART3 Enable. 
1 - UART3 baud rate clock is active. 
0 - UART3 clock is off.

MonG: Modem on GPIO. 
1 - Modem support signals use EGPIO[0] pins.
0 - Modem support signals do not use EGPIO[0] pins

TonG: TENn on GPIO. This bit has no effect unless HC3EN and
HC1EN are 0.
1 - UART3 TENn signal drives EGPIO[3].
0 - EGPIO[3] used by GPIO.

GonK: GPIO on Key Matrix. 
1 - Key Matrix pins are configured for GPIO operation, 
0 - Key Matrix pins are controlled by other options. 
The GonK has precedence over the Key Matrix controller.
The SPI0, when mapped to Key Matr ix  p ins, has
precedence over GPIO. When the Key Matrix pins are
configured for SPI0, the pins unused by SPI0 can be used
for GPIO.

IonU2: IrDA on UART2. 
1 - UART2 is used as an IrDA interface, 
0 - UART2 is a normal UART.

D0onG: External DMA0 hardware handshake signals mapped to
EGPIO pins. 
1 - Signals mapped. 
0 - Signals not supported.

D1onG: External DMA1 hardware handshake signals mapped to
EGPIO pins. 
1 - Signals mapped. 
0 - Signals not supported.



DS785UM1 5-29
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
SWRST: Software reset. A one to zero transition of this bit initiates

a software reset. 

VidClkDiv 

Address:
0x8093_0084 - Read/Write, Software locked

Default:
0x0000_0000

Definition:
Configures video clock for the raster engine. Selects input to VCLK dividers
from either PLL1 or PLL2, and defines a programmable divide value.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

VENA: Enable VCLK divider.

ESEL: External clock source select. 
0 - use the external XTALI clock input as the clock source. 
1 - use one of the internal PLLs selected by PSEL as the
clock source.

PSEL: PLL source select. 
1 - select PLL2 as the clock source. 
0 - select PLL1 as the clock source.

PDIV: Pre-divider value. Generates divide by 2, 2.5, or 3 from the
clock source.
00 - Disable clock
01 - Divide-by-2
10 - Divide-by-2.5
11 - Divide-by-3

VDIV: VCLK divider value. Forms a divide-by-N of the pre-divide
clock output. VCLK is the source clock divided by PDIV
divided by N. Must be at least two.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VENA ESEL PSEL RSVD PDIV RSVD VDIV



5-30 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
MIRClkDiv   

Address:
0x8093_0088 - Read/Write, Software locked

Default:
0x0000_0000

Definition:
Configures MIR clock for the MIR IrDA. Selects input to MIR clock dividers
from either PLL1 or PLL2, and defines a programmable divide value.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

MENA: Enable MIR_CLK divider.

ESEL: External clock source select. 
0 - Use the external XTALI clock input as the clock source. 
1 - Use one of the internal PLLs selected by PSEL as the
clock source.

PSEL: PLL source select. 
1 - Select PLL2 as the clock source. 
0 - Select PLL1 as the clock source.

PDIV: Pre-divider value. Generates divide by 2, 2.5, or 3 from the
clock source.
00 - Disable clock
01 - Divide-by-2
10 - Divide-by-2.5
11 - Divide-by-3

MDIV: MIR_CLK divider value. Forms a divide-by-N of the pre-
divide clock output. MIR_CLK is the source clock divided
by PDIV divided by N.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MENA ESEL PSEL RSVD PDIV RSVD MDIV



DS785UM1 5-31
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
I2SClkDiv   

Address:
0x8093_008C - Read/Write, Software locked

Default:
0x0000_0000

Definition:
Configures the I2S block audio clocks MCLK, SCLK, and LRCLK.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

SENA: Enable audio clock generation.

SLAVE: I2S slave. Configures the I2S clock system to operate as a
slave. SCLK and LRCLK are chip inputs. The clock
configuration controls in this register are ignored in slave
mode.

ORIDE: Override I2S master configuration. 

1 - Override the SAI_MSTR_CLK_CFG from the I2S block
and use the I2SClkDiv Register settings. 
0 - Use the I2S SAI_MSTR_CLK_CFG signals.

DROP: Drop SCLK clocks. 
1 - When in 64x mode, drop 8 SCLKs. 
0 - Do not drop SCLKs.

SPOL: SCLK polarity. Defines the SCLK edge that aligns to
LRCLK transitions. 
1 - LRCLK transitions on the falling SCLK edge. 
0 - LRCLK transitions on the rising SCLK edge.

LRDIV: LRCLK divide select.
00 - LRCK = SCLK / 32
01 - LRCK = SCLK / 64
10 - LRCK = SCLK / 128
11 - Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SENA SLAVE ORIDE RSVD DROP SPOL LRDIV SDIV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MENA ESEL PSEL RSVD PDIV RSVD MDIV



5-32 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
SDIV: SCLK divide select. 

1 - SCLK = MCLK / 4, 
0 - SCLK = MCLK / 2.

MENA: Enable master clock generation.

ESEL: External clock source select. 
0 - Use the external XTALI clock input as the clock source. 
1 - Use one of the internal PLLs selected by PSEL as the
clock source.

PSEL: PLL source select. 
1 - Select PLL2 as the clock source. 
0 - Select PLL1 as the clock source.

PDIV: Pre-divider value. Generates divide by 2, 2.5, or 3 from the
clock source.
00 - Disable clock
01 - Divide-by-2
10 - Divide-by-2.5
11 - Divide-by-3

MDIV: MCLK divider value. Forms a divide-by-N of the pre-divide
clock output. MCLK is the source clock divided by PDIV
divided by N.

KeyTchClkDiv   

Address:
0x8093_0090 - Read/Write, Software locked

Default:
0x0000_0000

Definition:
Configures the Key Matrix, Touchscreen, and ADC clocks. Touchscreen clock
is a fixed divide-by-4 from the ADC clock. Touch Filter clock is a fixed divide-
by-2 from the ADC clock.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TSEN: Touchscreen and ADC clock enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TSEN RSVD ADIV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEN RSVD KDIV



DS785UM1 5-33
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
ADIV: ADC clock divider value. 

0 - ADC Clock is divide-by-16 from the external oscillator.
1 - ADC Clock is divide-by-4 from the external oscillator.

KEN: Key matrix clock enable. This clock is divided from the
slow clock source.

KDIV: Key matrix clock divider value.
0 - Key Matrix Clock is divide-by-16 from the external
oscillator.
1 - Key Matrix Clock is divide-by-4 from the external
oscillator.

CHIP_ID   

Address:
0x8093_0094 - Read Only

Definition:
Chip ID register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

REV: Revision: Reads chip Version number: 
0011 - Rev D0
0100 - Rev D1
0101 - Rev E0
0110 - Rev E1
0111 - Rev E2

0: Reads zero.

ID[15:0]: Chip ID Number, reads 9213.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV RSVD 0 RSVD 0 RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID



5-34 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5
SysCfg 

Address:
0x8093_009C - Read/Write, Software locked

Default:
0x0000_0000

Definition:
System Configuration Register. Provides various system configuration
options.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

REV: Revision: Reads chip Version number: 
0000 - Rev A
0001 - Rev B
0010 - Rev C
0011 - Rev D0
0100 - Rev D1
0101 - Rev E0

SBOOT: Serial Boot Flag. 
1 - hardware detected Serial Boot selection, 
0 - hardware detected Normal Boot. This bit is read-only.

LCSn7, LCSn6: Latched version of CSn7 and CSn6 respectively. These
are used to define the external bus width for the boot
code. 

LASDO: Latched version of ASDO pin. Used to select synchronous
versus asynchronous boot device.

LEEDA: Latched version of EEDAT pin.

LEECLK: Define Internal or external boot:
1 - Internal
0 - External

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SBOOT LCSn7 LCSn6 LASDO LEEDA LEECLK RSVD LCSn2 LCSn1



DS785UM1 5-35
Copyright 2007 Cirrus Logic 

System Controller
EP93xx User’s Guide

55

5
LCSn1, LCSn2: Define Watchdog startup action:

00 - Watchdog disabled, Reset duration disabled
01 - Watchdog disabled, Reset duration active
10 - Watchdog active, Reset duration disabled
11 - Watchdog active, Reset duration active

SysSWLock 

Address:
0x8093_00C0 - Read/Write

Default:
0x0000_0000

Definition:
Syscon Software Lock Register. Provides software control port for all Syscon
locked registers. Writing the LOCK field to 0xAA opens the lock. Reading the
register will return 0x0000_0001 when the lock is open, and all zeros when the
lock is closed (locked). 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

LOCK: Lock code value. This field must be written to a value of
0xAA to open the software lock. Reads 0x01 when the
lock is open, 0x00 when the lock is closed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LOCK



5-36 DS785UM1
Copyright 2007 Cirrus Logic

System Controller
EP93xx User’s Guide

55

5



DS785UM1 6-1
Copyright 2007 Cirrus Logic 

66

6
Chapter 6

6Vectored Interrupt Controller

 6.1 Introduction
The EP93xx processors contain two cascaded Vectored Interrupt Controllers (VIC). A 
Vectored Interrupt has improved latency compared with a simple interrupt controller, since it 
provides direct information about where the interrupt’s service routine is located and 
eliminates levels of software arbitration.

Each individual Vectored Interrupt Controller can handle up to 32 interrupts, but there are 
more than 32 interrupts in this design. Therefore two VICs are connected in a daisy-chain, 
which allows the system to handle up to 64 interrupt sources. 

There are up to 16 vectored interrupts and 16 non-vectored interrupts available on each VIC. 
Vectored interrupts can only generate an IRQ interrupt. Non-vectored interrupts can generate 
either an IRQ interrupt or a FIQ interrupts. Vectored Interrupt Requests (IRQ) provide an 
address for an Interrupt Service Routine (ISR). Reading from the vector interrupt address 
register, VICxVectAddr, provides the address of the ISR, and indicates to the interrupt priority 
hardware that the interrupt is being serviced. Writing to the VICxVectAddr register indicates 
to the interrupt priority hardware that the interrupt has been serviced, allowing lower priority 
interrupts to go active. 

Registers in the VIC use a bit position for each different interrupt source. The bit position is 
fixed, but the handling of each interrupt is configurable by the VIC. Software can generate 
software interrupts by controlling each request line. 

The VIC provides a software interface to the interrupt system. Two levels of interrupts are 
available: 

•  Fast Interrupt Request (FIQ) for fast, low latency interrupt handling

•  Interrupt Request (IRQ) for more general interrupts 

All interrupt inputs to the VIC are presented as active-high level sensitive signals. Any 
conditioning needed to achieve this is performed by the block generating the interrupt 
request. In the case of external interrupts, the GPIO block takes care of the conditioning.

Note: Some GPIO signals are  not configurable but are used as inputs by other functional 
blocks. EGPIO[2:1] are routed to the DMA controller to allow for external DMA requests. 

Note: An interrupt vector may be overwritten when two interrupts occur simultaneously. If a 
VIC2 interrupt is immediately followed by a VIC1 interrupt, the VIC1 address will 
incorrectly be the default handler address for 2 HCLK cycles. To work around this 
problem, first check for pending non-vectored VIC1 interrupts in the interrupt routine. If 
there are none then return from interrupt. The interrupt will immediately re-occur with the 
correct vector address.



6-2 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6

 Figure 6-1. Vectored Interrupt Controller Block Diagram

 6.1.1 Interrupt Priority

A FIQ interrupt has the highest priority (because the ARM9 core will always treat FIQ as 
higher priority), followed by vectored interrupt 0 to vectored interrupt 15. Non-vectored IRQ 
interrupts have the lowest priority. Any of the non-vectored Interrupts can be either FIQ or 
IRQ (the interrupt type is determined by programming the appropriate register,  
‘VICxIntSelect’ on page 6-11). 

Vector Address and Priority
Logic

Vector Address and
Priority Logic

VIC Daisy Chain

VICINTSOURCE[63:32]

IRQ from VIC1

Vector Addr from VIC1

VICINTSOURCE[31:0]

IRQ

VIC1

VIC0

FIQ from VIC1

ARM920T

FIQ

2

1

2

2

2



DS785UM1 6-3
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
Any 16 of the 32 interrupts (per VIC) can be designated as ‘vectored’ by programming the 
Vector address registers,  ‘VICxVectAddr0’ on page 6-15 and the Vector Control registers,  
‘VICxVectCntl0,’ on page 6-17.

An interrupt is designated as either IRQ or FIQ by programming the VICxIntSelect register. 
The IRQ and FIQ request logic has an asynchronous path. This allows interrupts to be 
asserted when the clock is disabled.

Software can generate a specific interrupt by writing a ‘1’ to the associated bit in the 
VICxSoftInt register.

 6.1.2 Interrupt Configuration

Table 6-1 shows Interrupt Configuration.

Table 6-1. Interrupt Configuration

VIC Interrupt 
Source

Name Description

0 - Unused

1 - Unused

2 COMMRX ARM Communication Rx for Debug

3 COMMTX ARM Communication Tx for Debug

4 TC1UI TC1 under flow interrupt (Timer Counter 1)

5 TC2UI TC2 under flow interrupt (Timer Counter 2)

6 AACINTR Advanced Audio Codec interrupt

7 DMAM2P0 DMA Memory to Peripheral Interrupt 0

8 DMAM2P1 DMA Memory to Peripheral Interrupt 1

9 DMAM2P2 DMA Memory to Peripheral Interrupt 2

10 DMAM2P3 DMA Memory to Peripheral Interrupt 3

11 DMAM2P4 DMA Memory to Peripheral Interrupt 4

12 DMAM2P5 DMA Memory to Peripheral Interrupt 5

13 DMAM2P6 DMA Memory to Peripheral Interrupt 6

14 DMAM2P7 DMA Memory to Peripheral Interrupt 7

15 DMAM2P8 DMA Memory to Peripheral Interrupt 8

16 DMAM2P9 DMA Memory to Peripheral Interrupt 9

17 DMAM2M0 DMA Memory to Memory Interrupt 0

18 DMAM2M1 DMA Memory to Memory Interrupt 1

19 - Reserved

20 - Reserved

21 - Reserved

22 - Reserved

23 UART1RXINTR1 UART 1 Receive Interrupt

24 UART1TXINTR1 UART 1 Transmit Interrupt

25 UART2RXINTR2 UART 2 Receive Interrupt

26 UART2TXINTR2 UART 2 Transmit Interrupt

27 UART3RXINTR3 UART 3 Receive Interrupt

28 UART3TXINTR3 UART 3 Transmit Interrupt

29 INT_KEY Keyboard Matrix Interrupt

30 INT_TOUCH Touch Screen Controller Interrupt

31 - Reserved



6-4 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6

 6.1.3 Interrupt Details

Details of the interrupts described in Table 6-1 are:

COMMRX ARM Communication Channel Receive. When high, 
COMMRX indicates that the communications channel 
receive buffer contains data waiting to be read by the ARM 
Core. Refer to the ARM Technical Reference Manual.

COMMTX ARM Communication Channel Transmit. When high 
COMMTX indicates that the communications channel 
transmit buffer is empty. Refer to the ARM Technical 
Reference Manual.

32 INT_EXT[0] External Interrupt 0

33 INT_EXT[1] External Interrupt 1

34 INT_EXT[2] External Interrupt 2

35 TINTR 64 Hz Tick Interrupt

36 WEINT Watchdog Expired Interrupt

37 INT_RTC RTC Interrupt

38 INT_IrDA IrDA Interrupt

39 INT_MAC Ethernet MAC Interrupt

40 - Reserved

41 INT_PROG Raster Programmable Interrupt

42 CLK1HZ 1 Hz Clock Interrupt

43 V_SYNC Video Sync Interrupt

44 INT_VIDEO_FIFO Raster Video FIFO Interrupt

45 INT_SSP1RX SSP Receive Interrupt

46 INT_SSP1TX SSP Transmit Interrupt

47 - Reserved

48 - Reserved

49 - Reserved

50 - Reserved

51 TC3UI TC3 under flow interrupt (Timer Counter 3)

52 INT_UART1 UART 1 Interrupt

53 SSPINTR Synchronous Serial Port Interrupt

54 INT_UART2 UART 2 Interrupt

55 INT_UART3 UART 3 Interrupt

56 USHINTR USB Host Interrupt

57 INT_PME Ethernet MAC PME Interrupt

58 INT_DSP ARM Core Interrupt

59 GPIOINTR GPIO Combined interrupt

60 I2SINTR I2S Block Combined interrupt

61 - Unused

62 - Unused

63 - Unused

Table 6-1. Interrupt Configuration

VIC Interrupt 
Source

Name Description



DS785UM1 6-5
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
TC1UI Timer Counter 1 Under Flow Interrupt. When Timer 

Counter 1 has underflowed (reached zero), this interrupt 
becomes active on the next falling edge of the timer’s 
clock. The interrupt is cleared by writing any value to the 
“Timer1Clear,”  register. See Chapter 18,  "Timers".

TC2UI Timer Counter 2 Under Flow Interrupt. When Timer 
Counter 2 has underflowed (reached zero), this interrupt 
becomes active on the next falling edge of the timer’s 
clock. The interrupt is cleared by writing any value to the 
“Timer2Clear,”  register. See Chapter 18,  "Timers".

AACINTR Advanced Audio CODEC Interrupt. See Chapter 22,  
"AC’97 Controller".

DMAM2P0 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 0 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P1 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 1 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P2 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 2 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P3 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 3 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P4 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 4 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P5 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 5 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P6 Internal Memory-to-peripheral and Peripheral-to-memory 
Channel 6 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P7 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 7 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P8 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 8 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2P9 Internal Memory-to-Peripheral and Peripheral-to-Memory 
Channel 9 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2M0 Memory-to-Memory (incorporating external M2P/P2M) 
Channel 0 Interrupt. See Chapter 10,  "DMA Controller".

DMAM2M1 Memory-to-Memory (incorporating external M2P/P2M) 
Channel 1 Interrupt. See Chapter 10,  "DMA Controller".

UART1RXINTR1 UART 1 Receive Interrupt. See Chapter 14,  "UART1 With 
HDLC and Modem Control Signals"



6-6 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
UART1TXINTR1 UART 1 Transmit Interrupt. See Chapter 14,  "UART1 With 

HDLC and Modem Control Signals".

UART1RXINTR2 UART 2 Receive Interrupt. See Chapter 15,  "UART2"”.

UART1TXINTR2 UART 2 Transmit Interrupt. See Chapter 15,  "UART2"”.

UART1RXINTR3 UART 3 Receive Interrupt. See Chapter 16,  "UART3 With 
HDLC Encoder".

UART1TXINTR3 UART 3 Transmit Interrupt. See Chapter 16,  "UART3 With 
HDLC Encoder".

INT_KEY Key Matrix Interrupt. See Chapter 26,  "Keypad Interface".

INT_TOUCH Touch Screen Controller Interrupt. This is the general 
interrupt from the TSC. See Chapter 25, "Analog Touch 
Screen Interface".

INT_EXT[0] External Interrupt 0.

INT_EXT[1] External Interrupt 1.

INT_EXT[2] External Interrupt 2.

TINTR 64Hz TICK Interrupt. This interrupt becomes active on 
every rising edge of the internal 64Hz clock. The 64Hz 
clock is derived from a 15-stage ripple counter that divides 
the 32.768kHz oscillator input down to 1Hz for the real 
time clock. This interrupt is cleared by writing any value to 
the “RTCSts”  register. See Chapter 20,  "Real Time Clock 
With Software Trim"

WEINT Watchdog Expired Interrupt. This interrupt will become 
active on a rising edge of the periodic 64Hz tick interrupt 
clock if the TICK interrupt (TINT) is still active. That is, if a 
tick interrupt has not been serviced for a complete tick 
period. Both WEINT and TINT interrupts are cleared by 
writing any value to the “RTCSts” register, see Chapter 20,  
"Real Time Clock With Software Trim". Failure to service 
this interrupt does not cause a system reset and the action 
taken on receipt of this interrupt is system dependent.

INT_RTC Real Time Clock interrupt. See Chapter 20,  "Real Time 
Clock With Software Trim".

INT_IrDA IrDA Interrupt. See Chapter 17,  "IrDA".

INT_MAC Ethernet MAC Interrupt. See Chapter 9,  "1/10/100 Mbps 
Ethernet LAN Controller".

INT_PROG Programmable Interrupt. See Chapter 7,  "Raster Engine 
With Analog/LCD Integrated Timing and Interface".



DS785UM1 6-7
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
CLK1HZ 1 Hz clock interrupt. See Chapter 20,  "Real Time Clock 

With Software Trim".

V_SYNC Vertical or Composite Sync/Frame Pulse Interrupt. See 
Chapter 7,  "Raster Engine With Analog/LCD Integrated 
Timing and Interface".

INT_VIDEO_FIFO Video FIFO Interrupt. See Chapter 7,  "Raster Engine With 
Analog/LCD Integrated Timing and Interface"

INT_SSP1RX SSP Receive Interrupt. See Chapter 23  "Synchronous 
Serial Port".

INT_SSP1TX SSP Transmit Interrupt. See Chapter 23  "Synchronous 
Serial Port".

TC3UI Timer Counter 3 Underflow Interrupt. This interrupt 
becomes active on the next falling edge of the timer 
counter 3 clock after the timer counter has under flowed 
(reached zero). The interrupt is cleared by writing any 
value to the “Timer3Clear”  register. See Chapter 18,  
"Timers".

INT_UART1 UART 1 General Interrupt. This interrupt is active if any 
UART1 interrupt is active. Interrupt service routines will 
need to read the relevant status bits within UART1 to 
determine the source of the interrupt. All these sources 
are individually maskable within UART1. See Chapter 15, 
“UART1”.

SSPINTR Synchronous Serial Port (SSP) Interrupt. See Chapter 23  
"Synchronous Serial Port".

INT_UART2 UART 2 General Interrupt. This interrupt is active if any 
UART2 interrupt is active. Interrupt service routines will 
need to read the relevant status bits within UART2 to 
determine the source of the interrupt. All these sources 
are individually maskable within UART2. See Chapter 15,  
"UART2". 

INT_UART3 UART 3 General Interrupt. This interrupt is active if any 
UART3 interrupt is active. Interrupt service routines will 
need to read the relevant status bits within UART3 to 
determine the source of the interrupt. All these sources 
are individually maskable within UART3. See Chapter 16,  
"UART3 With HDLC Encoder".

USHINTR USB Host Interrupt. See Chapter 11, “USB Host 
Controller”.

INT_PME PME interrupt. See Chapter 23  "Synchronous Serial 
Port".



6-8 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
INT_DSP ARM Core interrupt. 

GPIOINTR Combined Interrupt from Any Bit in Ports A or B. See 
Chapter 28,  "GPIO Interface"

I2SINTR Combined Interrupt of All Sources from the I2S Controller. 

See Chapter 21,  "I2S Controller"

 6.2 Registers
The 2 VIC blocks have an identical register definition. The offset from the respective base 
address is the same:

• VIC1 Base address: 0x800B_0000

• VIC2 Base Address: 0x800C_0000

Using the ARM MMU, it is possible to remap the VIC base address to 0xFFFF_F000, giving a 
lower interrupt latency. Table 6-2 indicates the address offset from the base address.

Table 6-2. VICx Register Summary

Address Type Width Reset Value Name Description

VIC base + 0000 Read      32 0x0000_0000 VICxIRQStatus IRQ status register

VIC base + 0004 Read      32 0x0000_0000 VICxFIQStatus FIQ status register

VIC base + 0008 Read      32 - VICxRawIntr Raw interrupt status register

VIC base + 000C Read /Write      32 0x0000_0000 VICxIntSelect Interrupt select register

VIC base + 0010 Read /Write      32 0x0000_0000 VICxIntEnable Interrupt enable register

VIC base + 0014 Write      32 - VICxIntEnClear Interrupt enable clear register

VIC base + 0018 Read /Write      32 0x0000_0000 VICxSoftInt Software interrupt register

VIC base + 001C Read /Write      32 - VICxSoftIntClear Software interrupt clear register

VIC base + 0020 Read /Write       1 0x0 VICxProtection Protection enable register

VIC base + 0030 Read /Write      32 0x0000_0000 VICxVectAddr Vector address register

VIC base + 0034 Read /Write      32 0x0000_0000 VICxDefVectAddr Default vector address register

VIC base + 0100 Read /Write      32 0x0000_0000 VICxVectAddr0 Vector address 0 register

VIC base + 0104 Read /Write      32 0x0000_0000 VICxVectAddr1, Vector address 1 register

VIC base + 0108 Read /Write      32 0x0000_0000 VICxVectAddr2, Vector address 2 register

VIC base + 010C Read /Write      32 0x0000_0000 VICxVectAddr3, Vector address 3 register

VIC base + 0110 Read /Write      32 0x0000_0000 VICxVectAddr4, Vector address 4 register

VIC base + 0114 Read /Write      32 0x0000_0000 VICxVectAddr5, Vector address 5 register

VIC base + 0118 Read /Write      32 0x0000_0000 VICxVectAddr6 Vector address 6 register

VIC base + 011C Read /Write      32 0x0000_0000 VICxVectAddr7, Vector address 7 register

VIC base + 0120 Read /Write      32 0x0000_0000 VICxVectAddr8, Vector address 8 register

VIC base + 0124 Read /Write      32 0x0000_0000 VICxVectAdd9, Vector address 9 register

VIC base + 0128 Read /Write      32 0x0000_0000 VICxVectAddr10, Vector address 10 register

VIC base + 012C Read /Write      32 0x0000_0000 VICxVectAddr11, Vector address 11 register

VIC base + 0130 Read /Write      32 0x0000_0000 VICxVectAdd12, Vector address 12 register

VIC base + 0134 Read /Write      32 0x0000_0000 VICxVectAddr13, Vector address 13 register

VIC base + 0138 Read /Write      32 0x0000_0000 VICxVectAddr14, Vector address 14 register

VIC base + 013C Read /Write      32 0x0000_0000 VICxVectAddr15 Vector address 15 register

VIC base + 0200 Read /Write       6 0x00 VICxVectCntl0, Vector control 0 register

VIC base + 0204 Read /Write       6 0x00 VICxVectCntl1, Vector control 1 register



DS785UM1 6-9
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6

Note:  The Reset Values of the VICxPeriphID[3:0] registers collectively show the identification 
number for the Vectored Interrupt Controller (VIC). The read-only Reset Values are hard-
wired. Consequently, the VICxPeriphID[3:0] registers are not included in the following 
Register Descriptions.

Register Descriptions 

VICxIRQStatus        

Address:
VIC1IRQStatus: 0x800B_0000 - Read Only
VIC2IRQStatus: 0x800C_0000 - Read Only

VIC base + 0208 Read /Write       6 0x00 VICxVectCntl2, Vector control 2 register

VIC base + 020C Read /Write       6 0x00 VICxVectCntl3, Vector control3 register

VIC base + 0210 Read /Write       6 0x00 VICxVectCntl4, Vector control 4 register

VIC base + 0214 Read /Write       6 0x00 VICxVectCntl5, Vector control 5 register

VIC base + 0218 Read /Write       6 0x00 VICxVectCntl6, Vector control 6 register

VIC base + 021C Read /Write       6 0x00 VICxVectCntl7, Vector control 7 register

VIC base + 0220 Read /Write       6 0x00 VICxVectCntl8, Vector control 8 register

VIC base + 0224 Read /Write       6 0x00 VICxVectCntl9, Vector control 9 register

VIC base + 0228 Read /Write       6 0x00 VICxVectCntl10, Vector control 10 register

VIC base + 022C Read /Write       6 0x00 VICxVectCntl11, Vector control 11 register

VIC base + 0230 Read /Write       6 0x00 VICxVectCntl12, Vector control 12 register

VIC base + 0234 Read /Write       6 0x00 VICxVectCntl13, Vector control 13 register

VIC base + 0238 Read /Write       6 0x00 VICxVectCntl14, Vector control 14 register

VIC base + 023C Read /Write       6 0x00 VICxVectCntl15 Vector control 15 register

VIC base + 0FE0 Read       8 0x90 VICxPeriphID0
VIC Identification register bits 7:0 
(see Note below)

VIC base + 0FE4 Read       8 0x11 VICxPeriphID1
VIC Identification register bits 15:8
(see Note below)

VIC base + 0FE8 Read       8 0x04 VICxPeriphID2
VIC Identification register bits 
23:16 (see Note below)

VIC base + 0FEC Read       8 0x00 VICxPeriphID3
VIC Identification register bits 
31:24 (see Note below)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IRQStatus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQStatus

Table 6-2. VICx Register Summary

Address Type Width Reset Value Name Description



6-10 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
Definition:

IRQ Status Register. The VICxIRQStatus register provides the status of
interrupts after IRQ masking. 
Interrupts 0 - 31 are in VIC1IRQStatus.
Interrupts 32 - 63 are in VIC2IRQStatus.

Bit Descriptions:

IRQStatus: Shows the status of the interrupts after masking by the 
VICxIntEnable and VICxIntSelect registers. A “1” indicates 
that the interrupt is active, and generates an interrupt to 
the ARM Core.

VICxFIQStatus    

Address:
VIC1FIQStatus: 0x800B_0004 - Read Only
VIC2FIQStatus: 0x800C_0004 - Read Only

Definition:
FIQ Status Register. The VICxFIQStatus register provides the status of the
interrupts after FIQ masking. 

Bit Descriptions:

FIQStatus: Shows the status of the interrupts after masking by the 
VICxIntEnable and VICxIntSelect registers. A “1” indicates 
that the interrupt is active, and generates an interrupt to 
the ARM Core.

VICxRawIntr    

Address:
VIC1RawIntr: 0x800B_0008 - Read Only
VIC2RawIntr: 0x800C_0008 - Read Only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIQStatus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIQStatus

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RawIntr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RawIntr



DS785UM1 6-11
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
Definition:

The VICxRawIntr register provides the status of the source interrupts (and
software interrupts) to the interrupt controller. 

Bit Descriptions:

RawIntr: Shows the status of the interrupts before masking by the 
enable registers. A “1” indicates that the corresponding 
interrupt request is active before masking.

VICxIntSelect     

Address:
VIC1IntSelect: 0x800B_000C - Read/Write
VIC2IntSelect: 0x800C_000C - Read/Write

Definition:
Interrupt Select Register. The VICxIntSelect register selects whether the
corresponding interrupt source generates an FIQ or an IRQ interrupt. 

Bit Descriptions:

IntSelect: Selects type of interrupt for interrupt request: 
1 = FIQ interrupt 
0 = IRQ interrupt.

VICxIntEnable      

Address:
VIC1IntEnable: 0x800B_0010 - Read/Write
VIC2IntEnable: 0x800C_0010 - Read/Write

Default: 0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IntSelect

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntSelect

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IntEnable

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IntEnable



6-12 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
Definition:

Interrupt Enable Register. The VICxIntEnable register enables the interrupt
requests by unmasking the interrupt sources. On reset, all interrupts are
disabled (masked).

Bit Descriptions:

IntEnable: Enables the interrupt request lines: 
1 - Interrupt enabled. Allows interrupt request to ARM 
Core. 
0 - Interrupt disabled. 

VICxIntEnClear      

Address:
VIC1IntEnClear: 0x800B_0014 - Write Only
VIC2IntEnClear: 0x800C_0014 - Write Only

Default: Don’t Care

Definition:
Interrupt Enable Clear Register. The VICxIntEnClear register clears bits in the
VICxIntEnable register.

Bit Descriptions:

 IntEnable Clear: Clears bits in the VICxIntEnable register. Writing a bit to 
“1” clears the corresponding bit in the VICxIntEnable 
register. Any bits written to “0” have no effect.

VICxSoftInt    

Address:
VIC1SoftInt: 0x800B_0018 - Read/Write
VIC2SoftInt: 0x800C_0018 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

 IntEnable Clear

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 IntEnable Clear

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

    SoftInt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

    SoftInt



DS785UM1 6-13
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
Default: Don’t Care

Definition:
Software Interrupt Register. The VICxSoftInt register is used to generate
software interrupts. 

Bit Descriptions:

SoftInt: Writing a bit to “1” generates a software interrupt for the 
corresponding source interrupt before interrupt masking. 
Writing a bit to “0” has no effect.

VICxSoftIntClear      

Address:
VIC1SoftIntClear: 0x800B_001C - Write Only
VIC2SoftIntClear: 0x800C_001C - Write Only

Default: Don’t Care

Definition:
Software Interrupt Clear Register. The VICxSoftIntClear register clears bits in
the VICxSoftInt register. 

Bit Descriptions:

SoftIntClear: Clears bits in the VICxSoftInt register. Writing a bit to “1” 
clears the corresponding bit in the VICxSoftInt register. 
Writing a bit to “0” has no effect.

VICxProtection     

Address:
VIC1Protection: 0x800B_0018 - Read/Write
VIC2Protection: 0x800C_0018 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SoftIntClear

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SoftIntClear

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD Protecti
on



6-14 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
Definition:

Protection Enable Register. The VICxProtection register enables or disables
protected register access. If the bus master cannot generate accurate
protection information, leave this register in its reset state to allow User mode
access.

Bit Descriptions:

 RSVD: Reserved. Unknown During Read. 

 Protection: Enables or disables protected register access. When 
enabled, only Privileged mode accesses (reads and 
writes) can access the interrupt controller registers. When 
disabled, both User mode and Privileged mode can 
access the registers. This bit is cleared to ‘0’ on reset, and 
can only be accessed in Privileged mode.

VICxVectAddr    

Address:
VIC1VectAddr: 0x800B_0030 - Read/Write
VIC2VectAddr: 0x800C_0030 - Read/Write

Definition:
Vector Address Register. The VICxVectAddr register contains the Interrupt
Service Routine (ISR) address of the currently active interrupt.

Note: Reading from this register provides the address of the ISR, and indicates to the priority 
hardware that the interrupt is being serviced. Writing to this register indicates to the 
priority hardware that the interrupt has been serviced. The register should be used as 
follows: 

• The ISR reads the VICxVectAddr register when an IRQ interrupt is generated 

• At the end of the ISR, the VICxVectAddr register is written with any value in order to 
update the priority hardware. 

Reading or writing to the register at other times can cause incorrect operation.

Note: If you are using the VIC and a program/debugger ever reads address VIC_BASE + 0x30, 
a value must be written to VIC_BASE + 0x30. If not, only higher priority interrupts are 
enabled and there are no higher priority interrupts. Therefore, no more interrupts will 
occur. If you use the VIC in Vectored Interrupt mode, this is not an issue.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VectorAddr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VectorAddr



DS785UM1 6-15
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
If you are not using the priority level in the VIC, write the VICxVectAddr
register with any value (in order to disable the interrupt priority) at the
beginning of your program.

It is not always clear when the ARM debuggers read the VICxVectAddr
register, so it is recommended that if you are using a debugger, do not read
the VIC registers via a memory window. If you must read the VIC registers,
read only the VIC registers that are needed.

Bit Descriptions:

VectorAddr: Contains the address of the currently active ISR. Any 
writes to this register clear the interrupt.

VICxDefVectAddr   

Address:
VIC1DefVectAddr: 0x800B_0034 - Read/Write
VIC2DefVectAddr: 0x800C_0034 - Read/Write

Definition:
Default Vector Address Register. The VICxDefVectAddr register contains the
default ISR address. 

Bit Descriptions:

DefaultVectorAddr:  Contains the address of the default ISR handler.

VICxVectAddr0 

VICxVectAddr1,

VICxVectAddr2,

VICxVectAddr3,

VICxVectAddr4,

VICxVectAddr5,

VICxVectAddr6 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DefaultVectorAddr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DefaultVectorAddr



6-16 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
VICxVectAddr7,

VICxVectAddr8,

VICxVectAdd9,

VICxVectAddr10,

VICxVectAddr11,

VICxVectAdd12,

VICxVectAddr13,

VICxVectAddr14,

VICxVectAddr15 

Address:
VIC1VectAddr0: 0x800B_0100 - Read/Write
VIC1VectAddr1: 0x800B_0104 - Read/Write
VIC1VectAddr2: 0x800B_0108 - Read/Write
VIC1VectAddr3: 0x800B_010C - Read/Write
VIC1VectAddr4: 0x800B_0110 - Read/Write
VIC1VectAddr5: 0x800B_0114 - Read/Write
VIC1VectAddr6: 0x800B_0118 - Read/Write
VIC1VectAddr7: 0x800B_011C - Read/Write
VIC1VectAddr8: 0x800B_0120 - Read/Write
VIC1VectAddr9: 0x800B_0124 - Read/Write
VIC1VectAddr10: 0x800B_0128 - Read/Write
VIC1VectAddr11: 0x800B_012C - Read/Write
VIC1VectAddr12: 0x800B_0130 - Read/Write
VIC1VectAddr13: 0x800B_0134 - Read/Write
VIC1VectAddr14: 0x800B_0138 - Read/Write
VIC1VectAddr15: 0x800B_013C - Read/Write
VIC2VectAddr0: 0x800C_0100 - Read/Write
VIC2VectAddr1: 0x800C_0104 - Read/Write
VIC2VectAddr2: 0x800C_0108 - Read/Write
VIC2VectAddr3: 0x800C_010C - Read/Write
VIC2VectAddr4: 0x800C_0110 - Read/Write
VIC2VectAddr5: 0x800C_0114 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VectorAddr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VectorAddr



DS785UM1 6-17
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
VIC2VectAddr6: 0x800C_0118 - Read/Write
VIC2VectAddr7: 0x800C_011C - Read/Write
VIC2VectAddr8: 0x800C_0120 - Read/Write
VIC2VectAddr9: 0x800C_0124 - Read/Write
VIC2VectAddr10: 0x800C_0128 - Read/Write
VIC2VectAddr11: 0x800C_012C - Read/Write
VIC2VectAddr12: 0x800C_0130 - Read/Write
VIC2VectAddr13: 0x800C_0134 - Read/Write
VIC2VectAddr14: 0x800C_0138 - Read/Write
VIC2VectAddr15: 0x800C_013C - Read/Write

Definition:
Vector Address Registers. The 32 VICxVectAdd0 through VICxVectAdd15
registers contain the ISR vector addresses, that is, the addresses of the ISRs
for the particular 16 interrupts that are vectored. 

Bit Descriptions:

VectorAddr: Contains ISR vector address.

VICxVectCntl0,

VICxVectCntl1,

VICxVectCntl2,

VICxVectCntl3,

VICxVectCntl4,

VICxVectCntl5,

VICxVectCntl6,

VICxVectCntl7,

VICxVectCntl8,

VICxVectCntl9,

VICxVectCntl10,

VICxVectCntl11,

VICxVectCntl12,

VICxVectCntl13,

VICxVectCntl14,



6-18 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
VICxVectCntl15    

Address:
VIC1VectCntl0: 0x800B_0200 - Read/Write
VIC1VectCntl1: 0x800B_0204 - Read/Write
VIC1VectCntl2: 0x800B_0208 - Read/Write
VIC1VectCntl3: 0x800B_020C - Read/Write
VIC1VectCntl4: 0x800B_0210 - Read/Write
VIC1VectCntl5: 0x800B_0214 - Read/Write
VIC1VectCntl6: 0x800B_0218 - Read/Write
VIC1VectCntl7: 0x800B_021C - Read/Write
VIC1VectCntl8: 0x800B_0220 - Read/Write
VIC1VectCntl9: 0x800B_0224 - Read/Write
VIC1VectCntl10: 0x800B_0228 - Read/Write
VIC1VectCntl11: 0x800B_022C - Read/Write
VIC1VectCntl12: 0x800B_0230 - Read/Write
VIC1VectCntl13: 0x800B_0234 - Read/Write
VIC1VectCntl14: 0x800B_0238 - Read/Write
VIC1VectCntl15: 0x800B_023C - Read/Write
VIC2VectCntl0: 0x800C_0200 - Read/Write
VIC2VectCntl1: 0x800C_0204 - Read/Write
VIC2VectCntl2: 0x800C_0208 - Read/Write
VIC2VectCntl3: 0x800C_020C - Read/Write
VIC2VectCntl4: 0x800C_0210 - Read/Write
VIC2VectCntl5: 0x800C_0214 - Read/Write
VIC2VectCntl6: 0x800C_0218 - Read/Write
VIC2VectCntl7: 0x800C_021C - Read/Write
VIC2VectCntl8: 0x800C_0220 - Read/Write
VIC2VectCntl9: 0x800C_0224 - Read/Write
VIC2VectCntl10: 0x800C_0228 - Read/Write
VIC2VectCntl11: 0x800C_022C - Read/Write
VIC2VectCntl12: 0x800C_0230 - Read/Write
VIC2VectCntl13: 0x800C_0234 - Read/Write
VIC2VectCntl14: 0x800C_0238 - Read/Write
VIC2VectCntl15: 0x800C_023C - Read/Write

Definition:
Vector Control Registers. The 32 VICxVectCntl0 through VICxVectCnt15
registers select the interrupt source for the vectored interrupt. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD E IntSource



DS785UM1 6-19
Copyright 2007 Cirrus Logic 

Vectored Interrupt Controller
EP93xx User’s Guide

66

6
Note:  Vectored interrupts are only generated if the interrupt is enabled. The specific interrupt is 

enabled in the VICxIntEnable register, and the interrupt is set to generate an IRQ interrupt 
in the VICxIntSelect register. This prevents multiple interrupts being generated from a 
single request if the controller is incorrectly programmed. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

E: Enables vector interrupt. This bit is cleared to ‘0’ on reset.

IntSource: Selects interrupt source by number. You can select any of 
the 32 interrupt sources.



6-20 DS785UM1
Copyright 2007 Cirrus Logic

Vectored Interrupt Controller
EP93xx User’s Guide

66

6



DS785UM1 7-1
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Chapter 7

7Raster Engine With Analog/LCD Integrated
 Timing and Interface

 7.1 Introduction
Note: This chapter applies only to the EP9307, EP9312, and EP9315 processors. For additional 

information regarding the use of t he EP93XX Raster Engine, see the application note, 
AN269, “Using the EP93xx’s Raster Engine” at:

 http://www.cirrus.com/en/pubs/appNote/AN269REV1.pdf.

The Raster engine is capable of providing data and timing signals for a variety of displays. 
The engine has fully programmable video interface timings for progressive, dual scan, and 
interlaced displays. This programmable interface also allows the raster engine to generate a 
First Line Marker on the VSYNC line required by many low cost passive LCD displays. 
Separate DAC interface signals are provided to allow analog RGB signal generation for 
analog LCD displays or CRTs. The circuitry is also designed to generate CCIR656 4:2:2 
YCrCb digital video output signals for interfacing with an NTSC encoder.

The Raster engine has an 18-bit pixel output bus. The engine also includes support for an 8-
bit parallel display interface for attaching to low-end display modules with integrated 
controller and frame buffer. All control register accesses are memory mapped as single word 
values and cannot be accessed as 8-bit or 16-bit memory values. 

The Raster engine also provides hardware accelerated cursor support. The cursor size is 
programmable up to 64 pixels wide by 64 pixels in height, and it can be stored anywhere in 
memory as a 2 bpp bitmap image. The Raster Cursor accesses system memory to fetch the 
cursor image data that will be automatically blended with the video image. 

The Raster Display AHB bus master can be attached directly to SDRAM Port 0 via a side-
band bus or to any SDRAM port connected to the system AHB. If the raster engine is 
connected to the system AHB, the selection bits in the VideoAttribs register determine which 
of the 4 SDRAM chip selects are used for display buffer access. The choice of which bus to 
use should be based on video bandwidth requirements and should be selected before video 
services are activated. For systems with low to moderate video bandwidth, the Raster 
Display can be attached to SDRAM Port 0 via the side-band bus. This setup allows some 
parallelism in bus traffic, but suffers from slow AHB access to external memory. If the video 
bandwidth requirements are high, or there is an expectation of low competing traffic, then the 
Raster Display should be attached to the AHB and the Arbiter priority should be set to give 
the Raster Display highest priority. This attachment gets the best bandwidth available for the 
display, but other system performance will suffer. 

http://www.cirrus.com/en/pubs/appNote/AN269REV1.pdf


7-2 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
The Raster engine also supports several hardware blinking modes, and 8-bit addressed 
lookup tables for grayscale or expanding color depth. The Raster also includes a video 
stream signature generator for built in self-testing.

Examples for some of the possible output modes are shown in Table 7-1.

 

Table 7-1. Raster Engine Video Mode Output Examples

Display
Type

Horizontal
Resolution

x
Vertical

Resolution

Video
Clock
Freq.
(MHz)

Frame
Buffer

Storage
Format

Display
Data

Format

Pixels
Per

Shift
Clock

Pixel
Shift 
Clock
Freq.
(MHz)

Vertical
Frame
Rate
(Hz)

Notes

VFD 128 x 32 2 4 bpp Monochrome 8 0.25 400

LCD 128 x 64 2 4 bpp Monochrome 4 0.5 230

Parallel
Command
Word 
interface

LCD 256 x 128 2 4 bpp Monochrome 4 0.5 60 -

“QVGA” TFT 
LCD

320 x 234 6.4 8 bpp Analog 1 6.4 80 -

QVGA STN 
LCD

320 x 240 4 4-bit RGB 4-bit RGB 1 4 50 -

HVGA STN 
LCD

640 x 240 8 4-bit RGB 4-bit RGB 1 8 50 -

“VGA” DC 
Plasma

640 x 400 16 4 bpp Monochrome 4 4 60 -

 VGA EL 640 x 480 24 4 or 8 bpp Grayscale 8 3 75 -

VGA STN 
LCD

640 x 480 24 8 or 16 bpp 18-bit RGB 1 24 75 -

 VGATFT 
LCD

640 x 480 24
8, 16, or 24 

bpp
18-bit RGB 1 24 75 -

VGA CRT 640 x 480 32
8, 16, or 24 

bpp
Analog 1 NA 85

External 
DAC

SVGA TFT 
LCD

800 x 600 40
8, 16, or 24 

bpp
18-bit RGB 1 40 80 -

SVGA CRT 800 x 600 50
8, 16, or 24 

bpp
Analog 1 NA 85

External 
DAC

XGA CRT 1024 x 768 75 8, 16, or 
24 bpp

Analog 1 NA 80
External 
DAC

SXGA TFT 
LCD

1280 x 1024 85
8, 16, or 24 

bpp
18 or 24 RGB 1 85 60 24-bits



DS785UM1 7-3
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

Since the frame buffer is stored in SDRAM memory, supporting displays with high frame rates 
at high resolutions will not be practical and sometimes not possible without using displays 
that have an integrated frame buffer. 

 7.2 Features
• Hardware pixel blinking

• Dual 256-color Look-up-tables (LUT) 

• Grayscale/Color Generation for Monochrome/Passive Low Color Displays

• Flexible frame buffer architecture

• Supports video information in DIB (Device Independent Bitmap) format

• Hardware support for left and right panning of the displayed information 

• Supports screen sizes up to 1280 x 1024 pixels, with a pixel depth of 4 bpp, 8 bpp, 16 
bpp, 24 bpp packed, or 32 bpp (24 bpp unpacked)

Note: Using the Maximum Resolution causes system performance to slow.

• Pulse Width Modulated output that can be used to provide a DC voltage level for 
brightness control 

• Hardware cursor support with bottom and right edge clipping performed by hardware

• 24-bit color depth, but only 18 bits is bond-out

 7.3 Raster Engine Features Overview

 7.3.1 Hardware Blinking

The raster engine pipeline contains hardware pixel blinking logic. This circuitry will blink 
pixels based on the Rate field in the BlinkRate register. For 4 bpp and 8 bpp modes, either 
multiple or single bit planes may be used to specify blinking pixels by look up in the LUT. This 
will allow the number of definable blinking pixels to range from all pixel combinations blinking 

SXGA CRT 1280 x 1024 110
8, 16, or 
24bpp

Analog 1 NA 70
External 
DAC

HDTV-2 LCD 1280 x 720 50
8, 16, or 24 

bpp
24-bit RGB 1 50 50 24-bits

HDTV-2 CRT 1280 x 720 66
8, 16, or 24 

bpp
Analog 1 NA 60

External 
DAC

Table 7-1. Raster Engine Video Mode Output Examples

Display
Type

Horizontal
Resolution

x
Vertical

Resolution

Video
Clock
Freq.
(MHz)

Frame
Buffer

Storage
Format

Display
Data

Format

Pixels
Per

Shift
Clock

Pixel
Shift 
Clock
Freq.
(MHz)

Vertical
Frame
Rate
(Hz)

Notes



7-4 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
to one pixel combination blinking. For 16 bpp and 24 bpp modes, the LUT blink circuitry is 
usually bypassed and the blink functions are logic transformations of the pixel data. In 
addition to logical AND/OR/XOR LUT address translations, the circuitry will support logical 
blink to background, blink dim, blink bright, and blink to reverse.

 7.3.2 Color Look-Up Tables

The raster engine block contains dual color pixel LUTs (Look-Up-Tables). Each LUT will allow 
the engine to output 256 different pixel combinations of 24-bit pixels in lower color depth 
modes. 

 7.3.3 Grayscale/Color Generation for Monochrome/Passive Low Color 
Displays

The video pipeline includes circuitry that can be configured to provide grayscale or color 
generation for generating grayscales on monochrome displays or adding color depth on low 
color LCD displays, respectively. For monochrome displays, the circuitry supports up to 8 
grayscale shades including on and off. For low color LCD displays, the circuitry supports up 
to 512 colors. The circuitry does this by rapidly turning on and off (dithering) pixels based on 
frame count, screen location, and pixel value. For grayscale displays, the pixel gray 
appearance is determined by 3 bits of the pixel data. For color depth expansion on LCD 
displays, the pixel color appearance is determined by 3 bits each from the red, green, and 
blue portions of the pixel data. 

 7.3.4 Frame Buffer Organization

The Raster Engine is designed to support video information as DIB (Device Independent 
Bitmap) format stored in a packed pixel architecture. However, the engine does not require 
that video information be stored in a packed line architecture. The circuitry allows a different 
memory organization between video scan out and graphic image memory. Therefore, 
memory gaps can exist between lines. This means that the graphics memory may be 
organized wider than the video frame. This type of feature could be used for left and right 
panning of the displayed information. The video frame buffer can be located in main memory, 
or in a dedicated video frame area. The beginning of video lines can be located on any word 
boundary. This architecture allows efficient use of memory regardless of the active video line 
length. Video screen start registers determine the upper left corner of the video screen. Video 
word addressing in screen memory is from left to right and then from top to bottom. Four-bit 
pixels packed within video words are organized in DIB format with the left most pixel in the 



DS785UM1 7-5
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
most significant location on a per byte basis. Table 7-2 demonstrates pixel packing within 
words in a byte oriented Frame Buffer organization. 

Table 7-2. Byte Oriented Frame Buffer Organization 

As stored in memory In pixel output order (progressive scan)

4 bits per pixel Pixel 0 is first pixel out (upper left corner of screen) -->

32-bit Word
Pixel 
0

Pixel
1

Pixel 2
Pixel

3
Pixel 
4

Pixel
5

Pixel 
6

Pixel
7

Byte 3 Byte 2 Byte1 Byte 0 bit 7 bit 0 bit 15 bit 8 bit 23 bit 16 bit 31 bit 24

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 Byte 0 Byte1 Byte 2 Byte 3

Pixel 6 Pixel 7 Pixel 4 Pixel 5 Pixel 2 Pixel 3 Pixel 0 Pixel 1 32-bit Word

8 bits per pixel

32-bit Word Pixel 0 Pixel 1 Pixel 2 Pixel 3

Byte 3 Byte 2 Byte1 Byte 0 bit 7 bit 0 bit 15 bit 8 bit 23 bit 16 bit 31 bit 24

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 Byte 0 Byte1 Byte 2 Byte 3

Pixel 3 Pixel 2 Pixel 1 Pixel 0 32-bit Word

15 or 16 bits per pixel

32-bit Word Pixel 0 Pixel 1

Byte 3 Byte 2 Byte1 Byte 0 bit 15 bit 8 bit 7 bit 0 bit 31 bit 24 bit 23 bit 16

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 Byte1 Byte 0 Byte 3 Byte 2

Pixel 1 Pixel 0 32-bit Word

24 bits per pixel packed

32-bit Word 0 Pixel 0 Pixel 1 Pixel 2 Pixel 3

Byte 3 Byte 2 Byte 1 Byte 0 Red Red Red Red

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 bit 31 bit 24

Pixel 1 Blue Pixel 0 Red Pixel 0 Green Pixel 0 Blue Byte 2 Byte 5 Byte 8 Byte B

Word 0 Word 1 Word 2 Word 2

32-bit Word 1 Green Green Green Green

Byte 7 Byte 6 Byte 5 Byte 4 bit 15 bit 8 bit 7 bit 0 bit 31 bit 24 bit 23 bit 16

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 Byte 1 Byte 4 Byte 7 Byte A

Pixel 2 Green Pixel 2 Blue Pixel 1 Red Pixel 1 Green Word 0 Word 1 Word 1 Word 2

Blue Blue Blue Blue

32-bit Word 2 bit 7 bit 0 bit 31 bit 24 bit 23 bit 16 bit 15 bit 8

Byte B Byte A Byte 9 Byte 8 Byte 0 Byte 3 Byte 6 Byte 9

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 Word 0 Word 0 Word 1 Word 2



7-6 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

 7.3.5 Frame Buffer Memory Size

Several screens may be available for video display depending on screen size, pixel depth, 
and amount of memory dedicated to video images. The screen size can be up to 1280 x 1024 
pixels, the pixel depth can be 4 bpp, 8 bpp, 16 bpp, 24 bpp packed, or 32 bpp (24 bpp 
unpacked). 

 7.3.6 Pulse Width Modulated Brightness

The circuitry provides a pulse width modulated brightness control output, Bright, that can be 
used in conjunction with an external resistor and capacitor to provide a DC voltage level for 

Pixel 3 Red Pixel 3 Green Pixel 3 Blue Pixel 2 Red

32 bits per pixel (24 bits per pixel unpacked)

32-bit Word 0 Pixel 0 Pixel 1 Pixel 2 Pixel 3

Byte 3 Byte 2 Byte 1 Byte 0 Red Red Red Red

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 bit 23 bit 16 bit 23 bit 16 bit 23 bit 16 bit 23 bit 16

Unused Pixel 0 Red Pixel 0 Green Pixel 0 Blue Byte 2 Byte 6 Byte B Byte E

Word 0 Word 1 Word 2 Word 3

32-bit Word 1 Green Green Green Green

Byte 7 Byte 6 Byte 5 Byte 4 bit 15 bit 8 bit 15 bit 8 bit 15 bit 8 bit 15 bit 8

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 Byte 1 Byte 5 Byte A Byte D

Unused Pixel 1 Red Pixel 1 Green Pixel 1 Blue Word 0 Word 1 Word 2 Word 3

Blue Blue Blue Blue

32-bit Word 2 bit 7 bit 0 bit 7 bit 0 bit 7 bit 0 bit 7 bit 0

Byte B Byte A Byte 9 Byte 8 Byte 0 Byte 4 Byte 8 Byte C

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7 bit 0 Word 0 Word 1 Word 2 Word 3

Unused Pixel 2 Red Pixel 2 Green Pixel 2 Blue

Compressed images for remapping

1 bit per pixel

32-bit Word

Byte 3 Byte 2 Byte1 Byte 0

bit 31 bit 24 bit 23 bit 16 bit 15 bit 8 bit 7
bit 0

Pixel 
24

Pixel
31

Pixel 
16

Pixel
23

Pixel 8
Pixel

15
Pixel 
0

Pixel
7

Table 7-2. Byte Oriented Frame Buffer Organization  (Continued)

As stored in memory In pixel output order (progressive scan)



DS785UM1 7-7
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
brightness control. The Bright output signal can also be used for direct pulse width modulated 
CCFL brightness control that can be synchronized to the display frame rate.

 7.3.7 Hardware Cursor

The Raster Engine provides hardware cursor support. The cursor size is programmable up to 
64 pixels wide by 64 pixels in height. The cursor is stored anywhere in memory as a 2 bpp 
image. The 2 bpp image pixel information implies transparent, inverted, cursor color 1, or 
cursor color 2. The cursor hardware must be supplied this information:

• Image starting address

• Two cursor colors

• An X screen location and a Y screen location

• A cursor size

Using this information, the hardware overlays the cursor in the output video stream. Bottom 
and right edge clipping is performed by hardware. Some extra calculations and register 
setups are required for cursor support during dual scan display mode.

 7.4 Functional Details
The Raster Engine’s block diagram is shown in Figure 7-1. The video pipeline consists of 
several major sections; VILOSATI, video FIFO, pixel mux, blink logic, color LUT, RGB mux, 
output shift logic, grayscale circuitry, hardware cursor logic, YCrCb encoder, and video timing 
section. A video stream signature generator is also included for built in self testing.



7-8 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

 Figure 7-1. Raster Engine Block Diagram 

 7.4.1 VILOSATI (Video Image Line Output Scanner and Transfer 
Interface)

The Raster Engine’s video image line output scanner and transfer interface connects to a 
either a dedicated DMA port on the SDRAM controller or to AHB access to the SDRAM 
controller and reads the video image from SDRAM to the video FIFO. VILOSATI keeps track 
of image location, width, and depth for both progressive and dual scanned images. It 
responds to controls from the FIFO for more video information. During single scan operation, 
when the FIFO level falls below a programmable fill level (FIFOLevel defaults to a value of 16 
words), the FULL signal is inactive and VILOSATI attempts to initiate an unspecified length 
incrementing burst of at least 16 words. The VILOSATI will initiate incrementing unspecified 
length bursts until the FIFO is full. When the FIFO signals that it has emptied below the 
FIFOLevel again, the image reading process from the frame buffer continues. 

Note: FIFOLevel values of greater than 16 words are not recommended due to the possibility of 
FIFO underflow. 

For dual scan operation, the FIFO is split into two halves, where each halve operates with a 
separate FULL indicator. In dual scan mode, selected by writing DSCAN = ‘1’ to the 
PixelMode register, the FULL and DS_FULL indicators trigger when either has room for a 
burst of 8 words (the LSB of FIFOLevel is ignored). For dual and single scan displays, 
information for the upper left corner of the display begins at the word address stored in the 

DAT(31:0) PELEN

P[17:0] 

FIFO

N_WR N_RD

FULL

HFULL

N_CLR

SYNCEN

N/V/CSYNC
HSYNC/LP

BLANK
BRIGHT

Compare
and

register
logic

64 24

S/PCLK

PCLKEN

ADR(31:0)

8

24

243

CREQ

CGNT

2

24 To
DAC

24

CCIREN

Video Stream
Signature Analyzer

HDAT(31:0)

HADR(31:0)

Two
32x32
Dual
Port

RAMs

Video
Image
Line

Output
Scanner

And
Transfer
Interface

IN
ADR
CTR

OUT
ADR
CTR

Control
Logic

Cursor
Address
CNTRs

AMBA
Cursor

Bus
Master

Cursor
State

Machs

Cursor
Line

Buffer

Pixel
MUX

Color
MUX24

Blink
Logic

256x24
SRAM
Look
Up

Table

Gray
Scale
Gen

YCrCb
Encoder

Pixel
Shifting
Logic

Horizontal
and

Vertical
Counters

Cursor
Output
CNTRs



DS785UM1 7-9
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
register, “VidScrnPage” on page 7-46. For a dual scan display, information from the upper left 
corner of the lower half of the display begins at the word address stored in the 
“VidScrnHPage” register. The “VidScrnPage”  and “VidScrnHPage” registers are used to pre-
load address counters at the beginning of the video frame. 

The VILOSATI continues to service the video FIFO until it has transferred an entire screen 
image from memory. The size of the screen image is controlled by the values stored in the 
“ScrnLines”  and “LineLength”  registers. The “ScrnLines”  register defines the total number of 
displayed (active) lines for the video frame. The “LineLength”  register defines the number of 
words for each displayed (active) video line. A separate register, “VLineStep” on page 7-48, 
defines the word offset in memory between the beginning of each line and the next line. 
Setting the VLineStep value larger than the LineLength value provides the capability for 
image panning as shown in Figure 7-2.

 Figure 7-2. Video Buffer Diagram

 7.4.2 Video FIFO

The video FIFO is used to buffer data transferred from the image memory to the Video output 
circuitry without stalling the video data stream. The FIFO consists of a dual port RAM with 
input and output index counters and control circuitry to operate it as a FIFO memory. The 
input data bus width to the FIFO is 32 bits. During half page mode, when the display requires 
scan out of the bottom and top half of the screen at the same time (dual scan), top half (or 
bottom half) data is stored in every other FIFO location. 

When the screen is single scan (scanned out as a single progressive image), FIFO data is 
stored sequentially. The FIFO output data bus is 64 bits wide and can output even and odd 

Frame Buffer

Displayed Portion

VIDSCRNPAGE
start address

LINELENGTH + 1

VLINESTEP

S
C

R
N

L
IN

E
S

 +
 1

VIDSCRHPG
start address

(Dual Scan mode only)



7-10 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
words on both the upper and lower half of the bus. The FIFO has an underflow interrupt 
indicator that can be used to determine if the system is providing adequate bandwidth and 
low enough latency to support the selected display pixel depth, resolution, and refresh rate.

 7.4.3 Video Pixel MUX

The pixel reconstruction circuitry uses multiplexers and pipe-line registers to 'unpack' the 
video pixels that are output from the video FIFO. The stored FIFO words are transferred 2 at 
a time across a 64-bit bus. The multiplexers select a single pixel to go on the 24-bit output 
bus based on the P value that is written to the “PixelMode”  register. The multiplexers are 
controlled by a pixel counter that also increments based on the PixelMode.P value. The 
amount and frequency of data read from the FIFO is dependent on the number of bits per 
pixel. For example, in 8 bpp configuration (PixelMode.P = 0x2), the 64-bit FIFO output is 
changed for every eight pixels. In dual scan mode, selected by writing DSCAN = ‘1’ to the 
“PixelMode”  register, the upper 32 bits and lower 32 bits are read out in parallel and the 
upper-half screen and lower-half screen pixels are unpacked and loaded into the video 
stream sequentially.

 7.4.4 Blink Function

The Raster Engine provides blinking pixel control circuitry. This circuitry provides a means to 
blink pixels at a rate specified by a programmable count of video frames. The number of 
video frames for a blink cycle is controlled by the “BlinkRate”  register. There is only a single 
blink state bit, so all blinking pixels blink at the same programmed frequency. The most 
flexible way to blink pixels is to use a look-up-table (LUT). This is done by logically 
transforming the address into the look-up-table based on whether the pixel is a blink pixel, 
and whether it is currently in the blink state. For example, a red blinking pixel may be set up 
to normally address location 0x11 in the look-up-table. When not in the blink state, the color 
output from this location would be red. In the blink state, the address could be logically 
modified to 0x21. The color stored at the 0x21 location could be green or black or whatever 
other color that it is to be used in place of red in the blink state. To define a pixel as blink, 
some color information must be sacrificed. For every pixel color, there could be a blinking 
version. This would cut the possible number of system colors in half. 

For LUT blinking, the address is modified by using a masked AND/OR/XOR function. The 
mask is defined in the “BlinkMask”  register. Selection of whether the pixel data is ANDed, 
ORed, or XORed with the mask is set by writing to the M field in the “PixelMode”  register.

The LUT blinking solution is only useful for 4 bpp and 8 bpp modes because the total number 
of colors is limited to 256. The extra bit width in 16 bpp and 24 bpp modes is not used. 
Therefore, for 16 bpp, and 24 bpp modes, the LUT blink circuitry is usually bypassed (based 
on the C field in the “PixelMode”  register) and the blink function is performed by logical or 
mathematical operations on the pixel data. These operations can be programmed for Blink to 
Background, Blink Dimmer, Blink Brighter, or Blink to Offset by writing the appropriate value 
to the M field in the “PixelMode”  register. 

When Blink to Background mode is enabled, the blink circuitry replaces any blinking pixel 
with the “BkgrndOffset”  register value. Setting this register to the background screen color in 



DS785UM1 7-11
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
this mode will cause an object to appear and disappear. A drawback to this mode is that it 
may cause problems with correctly viewing overlapping objects. Blink Brighter and Blink 
Dimmer modes shift the pixel data values by one bit position. For Blink Brighter, the LSB is 
dropped, the MSBs are all shifted one bit lower, and the MSB is set to a “1”. For Blink 
Dimmer, the LSB is dropped, the MSBs are all shifted one bit lower, and the MSB is set to a 
“0“. Blink to Offset is simply adding the value in the BkgrndOffset register to blinking pixels. 
The shifting and offsetting can be programmed to be compatible with the selected pixel 
organization mode. 

Defining blink pixels in 16 bpp and 24 bpp modes also may sacrifice the total number of 
colors available. A blinking pixel is defined by the “PattrnMask”  and “PattrnMask”  registers. 
By using the PattrnMask register, either multiple or single bit planes may be used to specify 
blinking pixels. This will allow the number of definable blinking pixels to range from all pixel 
combinations blinking to only one pixel that blinks. This approach allows the option of 
minimizing the number of lost colors by reducing the number of blinking colors. BlinkPattrn is 
then used to define the value of the PATTRNMASK bits in the “BlinkPattrn”  register that 
should blink.

 7.4.5 Color Look-Up-Tables

The Raster Engine contains two 256 x 24-bit RAMs that are used as color pixel LUTs to 
provide a selection of 256 colors from a palette of 16 million colors. One LUT is inserted in the 
video pipeline, while the other is accessible via the AHB. Changing the SWITCH bit in the 
“LUTSwCtrl”  register toggles which LUT is in the pipe and which is accessible by the AHB. 
The LUTs are mapped to memory addresses and are accessible from the AHB one at a time. 
During active video display, the LUT switch command is synchronized to the beginning of the 
next vertical frame. When the video state machine is disabled the LUT switch occurs almost 
immediately. The status of actual switch occurrence can be monitored by reading the SSTAT 
bit in the “LUTSwCtrl”  register. This bit can be polled, or the frame interrupt can be enabled 
and used to time the switching. Each LUT can be used for 4 bpp and 8 bpp modes and is 
usually bypassed for 16 bpp and 24 bpp modes. Control for whether or not the LUTs are used 
or bypassed altogether in the video pipeline is performed by writing to the appropriate value 
to C field (Color field) in the “PixelMode”  register.

 7.4.6 Color RGB Mux

The color RGB mux is necessary for selecting the appropriate pixel format and routing it to 
the appropriate video output stream. The Color RGB mux formats data for the pixel shift logic, 
a color DAC interface, or the YCrCb interface. The color RGB mux primary mode of operation 
is controlled by the “C” value (color value) in the “PixelMode”  register. The primary mode of 
operation selects data from the grayscale generator, from the LUT, or from the video pipeline 
after the blink logic. When the hardware cursor is enabled by writing CLHEN = ‘1’ in the 
“CursorDScanLHYLoc”  register or CursorXYLoc.CEN = ‘1’ in the “CursorXYLoc”  register, 
CursorColor1/2 data values may be injected into the pipeline, or the primary incoming data 
may be inverted. The data formatting performed by the color RGB mux also depends on the 
“C” value (color value) in the “PixelMode”  register. When in 16-bit 555 or 565 data modes, 
the pixel data is reformatted to fit into a 24-bit bus. This includes copying the MSBs for the 



7-12 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
data into the unused LSBs of the bus to support the full color intensity range. This part of the 
multiplexing circuitry actually occurs before the blink logic stage. Once selected and 
conditioned, output data is sent to the pixel shift logic and the YCrCb logic. The data is further 
conditioned with blanking in another pipeline operation before being sent to a color DAC.

 7.4.7 Pixel Shift Logic

The pixel shifting logic on the output of the Video controller circuitry allows for reduced 
external data and clock rates by performing multiple pixel transfers in parallel. The output can 
be programmed to transfer a single pixel mapped to an 18-bit pixel output per clock (triple 6 
RGB on 18 active data lines), 2 pixels per clock up to 9 bits wide each (18 pixel data lines 
active), 4 pixels per clock up to 4 bits wide each (16 pixel data lines active), or 8 pixels per 
clock up to 2 bits wide each (16 pixel data lines active).   The interface can be programmed to 
output 2 2/3 - 3-bit pixels on the lower 8 bits of the bus per pixel clock. The interface can be 
programmed to operate in dual scan 2 2/3 pixel mode, placing 2 2/3 pixels from the upper 
and lower halves of the screen on the lower 8 bits of the bus and the next 8 bits of the bus per 
clock respectively. In dual scan mode, selected by writing DSCAN = ‘1’ to the “PixelMode”  
register, every other pixel in the pipeline is from the other half of the display. Therefore, the 
dual scan output transfer modes that are supported are 1 upper/1 lower pixel, 2 upper/2 lower 
pixels, and 4 upper/4 lower pixels corresponding to the 2 pixels per clock, 4 pixels per clock 
and 8 pixels per clock modes.

Table 7-3 shows output pixel transfer modes based on the shift mode “S” value (shift value) 
and the color mode “C” value (color value) in the “PixelMode”  register:



 D
S

785U
M

1
7-13

C
o

p
yrig

h
t 2007 C

irru
s L

o
g

ic 

R
aster E

n
g

in
e W

ith
 A

n
alo

g
/L

C
D

 In
teg

rated
 T

im
in

g
 an

d
 In

terface
E

P
93xx U

ser’s G
u

id
e

777

Table 7-3. Output Pixel Transfer Modes

Shift 
Mode

Color 
Mode

Output 
Mode

P(23) P(22) P(21) P(20) P(19) P(18) P(17) P(16) P(15) P(14) P(13) P(12) P(11) P(10) P(9) P(8) P(7) P(6) P(5) P(4) P(3) P(2) P(1) P(0)

 0x0
0x0
0x4
0x8

single pixel 
per clock up 

to 24 bits 
wide

R(1) R(0) G(1) G(0) B(1) B(0) R(7) R(6) R(5) R(4) R(3) R(2) G(7) G(6) G(5) G(4) G(3) G(2) B(7) B(6) B(5) B(4) B(3) B(2)

0x0 0x5
single 16-bit 
565 pixel per 

clock
R(3) R(2) G(5) G(4) B(3) B(2) R(4) R(3) R(2) R(1) R(0) R(4) G(5) G(4) G(3) G(2) G(1) G(0) B(4) B(3) B(2) B(1) B(0) B(4)

0x0 0x6
single 16-bit 
555 pixel per 

clock
R(3) R(2) G(3) G(2) B(3) P(2) R(4) R(3) R(2) R(1) R(0) R(4) G(4) G(3) G(2) G(1) G(0) G(4) B(4) B(3) B(2) B(1) B(0) B(4)

 0x1
0x0
0x4
0x8

single 24-bit 
pixel mapped 

to 18 bits 
each clk

X X X X X X R(7) R(6) R(5) R(4) R(3) R(2)
*

G(7) G(6) G(5) G(4) G(3) G(2)
*

B(7) B(6) B(5) B(4) B(3) B(2)
*

0x1 0x5

single 16-bit 
565 pixel 

mapped to 
18 bits each 

clk

X X X X X X R(4) R(3) R(2) R(1) R(0)
R(4)

* G(5) G(4) G(3) G(2) G(1)
G(0)

* B(4) B(3) B(2) B(1) B(0)
B(4)

*

0x1 0x6

single 16-bit 
555 pixel 

mapped to 
18 bits each 

clk

X X X X X X R(4) R(3) R(2) R(1) R(0) R(4)
*

G(4) G(3) G(2) G(1) G(0) G(4)
*

B(4) B(3) B(2) B(1) B(0) B(4)
*

0x2

0x0
0x8

progressive 
scan

2 pixels per 
shift clock

dual scan

P1(20)
R1(4)

*

P1(12)
G1(4)

*

P1(4)
B1(4)

*

P0(20)
R0(4)

*

P0(12)
G0(4)

*

P0(4)
B0(4)

*

P1(23)
R1(7)

P1(22)
G1(6)

P1(21)
G1(5)

P1(15)
G1(7)

P1(14)
G1(6)

P1(13)
G1(5)

P1(7)
B1(7)

P1(6)
B1(6)

P1(5)
B1(5)

P0(23)
R0(7)

P0(22)
R0(6)

P0(21)
R0(5)

P0(15)
G0(7)

P0(14)
G0(6)

P0(13)
G0(5)

P0(7)
B0(7)

P0(6)
B0(6)

P0(5)
B0(5)

Lower
P(20)
R(4)

*

Lower
P(12)
G(4)

*

Lower
P(4)
B(4)

*

Upper
P(20)
R(4)

*

Upper
P(12)
G(4)

*

Upper
P(4)
B(4)

*

Lower
P(23)
R(7)

Lower
P(22)
R(6)

Lower
P(21)
R(5)

Lower
P(15)
G(7)

Lower
P(14)
G(6)

Lower
P(13)
G(5)

Lower
P(7)
B(7)

Lower
P(6)
B(6)

Lower
P(5)
B(5)

Upper
P(23)
R(7)

Upper
P(22)
R(6)

Upper
P(21)
R(5)

Upper
P(15)
G(7)

Upper
P(14)
G(6)

Upper
P(13)
G(5)

Upper
P(7)
B(7)

Upper
P(6)
B(6)

Upper
P(5)
B(5)

0x3

0x0
0x8

progressive 
scan

4 pixels per 
shift clock
dual scan

P3(14)
G3(6)

*

P3(6)
B3(6)

*

P2(14)
B2(6)

*

P2(6)
B2(6)

*

P1(14)
G1(6)

*

P1(6)
B1(6)

*

P0(14)
G0(6)

*

P0(6)
B0(6)

*

P3(23)
R3(7)

P3(22)
R3(6)

*

P3(15)
G3(7)

P3(7)
B3(7)

P2(23)
R2(7)

P2(22)
R2(6)

*

P2(15)
G2(7)

P2(7)
B2(7)

P1(23)
R1(7)

P1(22)
R1(6)

*

P1(15)
G1(7)

P1(7)
B1(7)

P0(23)
R0(7)

P0(22)
R0(6)

*

P0(15)
G0(7)

P0(7)
B0(7)

Lower
P1(14)
G1(6)

*

Lower
P1(6)
B1(6)

*

Upper
P1(14)
G1(6)

*

Upper
P1(6)
B1(6)

*

Lower
P0(14)
G0(6)

*

Lower
P0(6)
B0(6)

*

Upper
P0(14)
G0(6)

*

Upper
P0(6)
B0(6)

*

Lower
P1(23)
R1(7)

Lower
P1(22)
R1(6)

*

Lower
P1(15)
G1(7)

Lower
P1(7)
B1(7)

Upper
P1(23)
R1(7)

Upper
P1(22)
R1(6)

*

Upper
P1(15)
G1(7)

Upper
P1(7)
B1(7)

Lower
P0(23)
R0(7)

Lower
P0(22)
R0(6)

*

Lower
P0(15)
G0(7)

Lower
P0(7)
B0(7)

Upper
P0(23)
R0(7)

Upper
P0(22)
R0(6)

*

Upper
P0(15)
G0(7)

Upper
P0(7)
B0(7)

0x4

0x0
0x8

progressive 
scan

8 pixels per 
shift clock
dual scan

P7(23)
R7
*

P6(23)
R6
*

P5(23)
R5
*

P4(23)
R4
*

P3(23)
R3
*

P2(23)
R2
*

P1(23)
R1
*

P0(23)
R0
*

P7(15)
G7
*

P7(7)
B7
*

P6(15)
G6
*

P6(7)
B6
*

P5(15)
G5
*

P5(7)
B5
*

P4(15)
G4
*

P4(7)
B4
*

P3(15)
G3
*

P3(7)
B3
*

P2(15)
G2
*

P2(7)
B2
*

P1(15)
G1
*

P1(7)
B1
*

P0(15)
G0
*

P0(7)
B0
*

Lower
P3(23)

R3
*

Upper
P3(23)

R3
*

Lower
P2(23)

R2
*

Upper
P2(23)

R2
*

Lower
P1(23)

R1
*

Upper
P1(23)

R1
*

Lower
P0(23)

R0
*

Upper
P0(23)

R0
*

Lower
P3(15)

G3
*

Lower
P3(7)

B3
*

Upper
P3(15)

G3
*

Upper
P3(7)

B3
*

Lower
P2(15)

G2
*

Lower
P2(7)

B2
*

Upper
P2(15)

G2
*

Upper
P2(7)

B2
*

Lower
P1(15)

G1
*

Lower
P1(7)

B1
*

Upper
P1(15)

G1
*

Upper
P1(7)

B1
*

Lower
P0(15)

G0
*

Lower
P0(7)

B0
*

Upper
P0(15)

G0
*

Upper
P0(7)

B0
*

0x5
0x0
0x8 2 2/3 pixels 

per clock

X X X X X X X X X X X X X X X X G2 B2 R1 G1 B1 R0 G0 B0

X X X X X X X X X X X X X X X X B5 R4 G4 B4 R3 G3 B3 R2

X X X X X X X X X X X X X X X X R7 G7 B7 R6 G6 B6 R5 G5



 D
S

785U
M

1
7-14

C
o

p
yrig

h
t 2007 C

irru
s L

o
g

ic 

R
aster E

n
g

in
e W

ith
 A

n
alo

g
/L

C
D

 In
teg

rated
 T

im
in

g
 an

d
 In

terface
E

P
93xx U

ser’s G
u

id
e

777
*These bits are an ORed combination of the bit value shown and the next significant bit below (This rounds the color value to nearest

color).

**These bits do not get a substitute and are defined to the values controlled by the pixel output mode in the upper part of the table.

0x6
0x0
0x8

dual 2 2/3 
pixels per 

clock

X X X X X X X X L G2 L B2 L R1 L G1 L B1 L R0 L G0 L B0 U G2 U B2 U R1 U G1 U B1 U R0 U G0 U B0

X X X X X X X X L B5 L R4 L G4 L B4 L R3 L G3 L B3 L R2 U B5 U R4 U G4 U B4 U R3 U G3 U B3 U R2

X X X X X X X X L R7 L G7 L B7 L R6 L G6 L B6 L R5 L G5 U R7 U G7 U B7 U R6 U G6 U B6 U R5 U G5

** **
CCIREN 

subs ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)

** ** LCDEN subs ** ** ** ** ** ** ** XECL YSCL ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

** ** ACEN subs ** ** ** ** ** ** AC ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

Table 7-3. Output Pixel Transfer Modes (Continued)

Shift 
Mode

Color 
Mode

Output 
Mode

P(23) P(22) P(21) P(20) P(19) P(18) P(17) P(16) P(15) P(14) P(13) P(12) P(11) P(10) P(9) P(8) P(7) P(6) P(5) P(4) P(3) P(2) P(1) P(0)



DS785UM1 7-15
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
 7.4.8 Grayscale/Color Generator for Monochrome/Passive Low Color 

Displays

The hardware raster engine has three built in matrix programmable grayscale generators. 
One generator is located on each of the red, green, and blue internal channels. These 
generators can be enabled to expand color depth or turn monochrome into grayscale through 
both spatial and temporal dithering. Dithering means that the circuit turns monochrome pixels 
on and off in a specific pattern and at a high toggle rate, and uses the integration perception 
of the human eye along with display persistence to achieve an average luminance between 
full on and full off. Using one of these generators allows creation of grayscale pixels on a 
monochrome display. Using all three of the generators with one on each red, green, and blue 
channel allows generation of additional colors on an 8 color LCD display. 

Grayscale shading is accomplished on each channel by altering when and how often a given 
pixel is active. The setup for when and how often pixels of each value 0-7 are active is 
programmed into the grayscale look-up-table memory for each channel. The look-up-table for 
each RGB channel is indexed by 4 values: 3 bits from the input pixel value (0-7), and for each 
input pixel value either the 3 frame or 4 frame counter, the 3 line or 4 line vertical counter, and 
the 3 column or 4 column horizontal pixel counter. Pixel values 0-7 in each channel are 
programmed as to whether a count by 3 or count by 4 counter is used for frame, horizontal, 
and vertical. 

The grayscale circuits are inserted into the video pipeline after the color LUT. The circuitry 
takes three bits from the output of the color LUT (one from each color) and uses them as the 
inputs for the grayscale LUT. These three bits are then processed by the grayscale circuitry to 
generate a new three bit output, based on the configuration of the grayscale LUT. The three 
bit output of the grayscale LUT is then fed through the pixel shifting logic and out to the Pixel 
Bus Pins. This provides 8 shades of gray per channel, including all off (black) and full on 
(white). Each circuit operates six separate 2-bit index counters; FRAME_CNT3, 
FRAME_CNT4, VERT_CNT3, VERT_CNT4, HORZ_CNT3, and HORZ_CNT4. Based on 
value of these counters, each grayscale look-up-table is programmed with values that define 
the on/off dithering operation for their respective three bits of the pixel value. 

For example, in color mode 8 with shift mode 0: 
Color LUT[23:21] -> Grayscale LUT[2] -> P[17:12] (All pins with Red color data)
Color LUT[15:13] -> Grayscale LUT[1] -> P[11:6] (All pins with Green color data)
Color LUT[7:5] -> Grayscale LUT[0] -> P[5:0] (All pins with Blue color data)

The following setup description refers to a single channel. First, the matrix size for each 3 bits 
of the pixel value (0 through 7) is defined. The matrix size is from 3 horizontal rows x 3 
vertical columns x 3 frames to 4H x 4V x 4F or any combinations of 3 or 4. The grayscale 
look-up-table is then filled in for each pixel with this matrix information. Because the look-up-
table is indexed by 4 values, it can be perceived as a multi-dimensional array. For each of the 
input pixel values 0-7, a 3H (Horizontal) x 3V (Vertical) x 3F (Frame) cube up to a 
4H (Horizontal) x 4V (Vertical) x 4F (Frame) cube can be defined.

Setting the grayscale matrix values in a channel for full off and full on is very straight forward.



7-16 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Assuming that pixel input value 0 is off, setting raster engine base + grayscale LUTx offset + 
0x00, 0x20, 0x40, and 0x60 to all ‘0’s ensures that a 0 pixel never turns on. Assuming that 
pixel 7 is full on, setting raster engine base + grayscale LUTx offset + 0x1C, 0x3C, 0x5C, and 
0x7C to all ‘1’s ensures that the value is always on. Table 7-6 shows the format for 
programming.

 7.4.8.1 HORZ_CNT3, HORZ_CNT4 Counters
These free running counters increment after displaying each pixel.

 7.4.8.2 VERT_CNT3, VERT_CNT4 Counters
These free running counters increment at the end of every vertical line.

 7.4.8.3 FRAME_CNT3, FRAME_CNT4 Counters
These free running counters increment at the end of each frame.

The GrySclLUT supports 3-bit pixel input. Each of the pixel combinations can define a unique 
combination of VERT, HORZ and FRAME counters, which provides for maximum flexibility in 
defining the rate at which a given pixel is manipulated as it is being displayed on the screen.

 7.4.8.4 HORZ_CNTx (pixel) timing
This timing is controlled by the HORZ_CNTx counter and will indicate what pixel count values 
will cause a given pixel to be turned on. It is possible to have a pixel turned on for all HORZ 
counts, zero HORZ counts, or a defined pattern of HORZ counts. This counter is incremented 
by the pixel clock.

 7.4.8.5 VERT_CNTx (line) timing
This timing is controlled by the VERT_CNTx counters and will indicate what line count values 
will cause a given pixel to be turned on. It is possible to have a pixel turn on for all VERT 
counts, zero VERT counts, or a defined pattern of VERT counts. This counter is incremented 
at the end of each line.

 7.4.8.6 FRAME_CNTx timing
This timing is controlled by the FRAME_CNTx counters and will indicate when a full frame of 
video has been displayed. It is possible to have a pixel turn on for all FRAME counts, zero 
frame counts, or a combination of frame counts. This counter is incremented at the end of 
each frame.

The GrySclLUT combines all of the above information into a single table. In this way, it is 
possible to define a pixel to be on in all conditions (all HORZ, VERT, and FRAME counts), 
zero conditions, or any combination.



DS785UM1 7-17
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
 7.4.8.7 Grayscale Look-Up Table (GrySclLUT)

Table 7-4. Grayscale Lookup Table (GrySclLUT) 

Frame
Ctr

Vert
Ctr

Horz
Ctr

VCNT 
(Lines)

11 11 11 11 10 10 10 10 01 01 01 01 00 00 00 00
GrySclLUT 
Address *4

HCNT 
(Pixels)

11 10 01 00 11 10 01 00 11 10 01 00 11 10 01 00 Frame
Pixel
Value

D18 D17 D16 base+80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000

D18 D17 D16 base+84 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 001

D18 D17 D16 base+88 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 010

D18 D17 D16 base+8C D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 011

D18 D17 D16 base+90 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 100

D18 D17 D16 base+94 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 101

D18 D17 D16 base+98 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 110

D18 D17 D16 base+9C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 111

X X X base+A0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 000

X X X base+A4 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 001

X X X base+A8 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 010

X X X base+AC D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 011

X X X base+B0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 100

X X X base+B4 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 101

X X X base+B8 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 110

X X X base+BC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 111

X X X base+C0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 000

X X X base+C4 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 001

X X X base+C8 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 010

X X X base+CC D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 011

X X X base+D0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 100

X X X base+D4 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 101

X X X base+D8 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 110

X X X base+DC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 111

X X X base+E0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 000

X X X base+E4 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 001

X X X base+E8 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 010

X X X base+EC D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 011

X X X base+F0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 100

X X X base+F4 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 101

X X X base+F8 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 110

X X X base+FC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 111



7-18 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Where FRAME[1:0] = FRAME_CNT3 or FRAME_CNT4 as defined by FRAME at address 
Pixel_In,

VCNT[1:0] = VERT_CNT3 or VERT_CNT4 as defined by VERT at address Pixel_In, and

HCNT[1:0] = HORZ_CNT3 or HORZ_CNT4 as defined by HORZ at address Pixel_In.

This is the GrySclLUT table in an easily readable form. To understand how to use this table 
and to know how to fill the table with correct values requires a good understanding on how 
the table is used by the grayscale logic.

 7.4.8.8 GrySclLUT Timing Diagram
Table 7-5 shows the timing diagram. The clock column represents a free running master 
clock for the display. This clock controls which pixel is being accessed as the image is being 
rasterized on the display.

Assume that the first 8 registers have the HCNT, VCNT and FRAME counter registers set up 
for 4 counts. The last column shows which register is used to retrieve the look up value and 
the bit position within that register that is used as the source to send to the COLORMUX for 
the given clock.

Clocks 4, 9, 14, and 19 represent all remaining pixels on the line. Clocks 24 and 29 represent 
all remaining pixels for the frame. These entries will keep this example table to a manageable 
size.

The FRAME count and PIXEL value are used to indicate which register contains the data. 
HCNT and VCNT are used to indicate which bit in the identified register is to be used for the 
given grayscale value.

Table 7-5. Grayscale Timing Diagram

Clock HCNT VCNT FRAME PIXEL Register Address / Value

Clock HCNT VCNT FRAME PIXEL Register Address / Value

0 0 0 0 5 (base + 94) / D0

1 1 0 0 5 (base + 94) / D1

2 2 0 0 5 (base + 94) / D2

3 3 0 0 5 (base + 94) / D3

4 “ “ “ “

5 0 1 0 5 (base + 94) / D4

6 1 1 0 5 (base + 94) / D5

7 2 1 0 5 (base + 94) / D6

8 3 1 0 5 (base + 94) / D7

9 “ “ “ “

10 0 2 0 5 (base + 94) / D8

11 1 2 0 5 (base + 94) / D9

12 2 2 0 5 (base + 94) / D10

13 3 2 0 5 (base + 94) / D11

14 “ “ “ “

15 0 3 0 5 (base + 94) / D12

16 1 3 0 5 (base + 94) / D13

17 2 3 0 5 (base + 94) / D14



DS785UM1 7-19
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

At clock 0, the HCNT, VCNT and FRAME counters are 0x0. The pixel to display is a 5, which 
translates to register base + 0x94, bit D0. At the next clock tick, the fastest running counter 
(HCNT) has incremented, but VCNT and FRAME remain the same. Given the same pixel 
value (5), bit position D1 is used as the value that is sent to the display. 

18 3 3 0 5 (base + 94) / D15

19 “ “ “ “

20 0 0 1 5 (base + b4) / D0

21 1 0 1 5 (base + b4) / D1

22 2 0 1 5 (base + b4) / D2

23 3 0 1 5 (base + b4) / D3

24 “ “ “ “

25 0 0 2 5 (base + d4) / D0

26 1 0 2 5 (base + d4) / D1

27 2 0 2 5 (base + d4) / D2

28 3 0 2 5 (base + d4) / D3

29 “ “ “ “

30 0 0 3 5 (base + f4) / D0

31 1 0 3 5 (base + f4) / D1

32 2 0 3 5 (base + f4) / D2

33 3 0 3 5 (base + f4) / D3

Table 7-6. Programming Format 

Fra
me

Ve
rt

Ho
rz

VCNT 
(lines)

11 11 11 11 10 10
1
0

1
0

0
1

0
1

0
1

0
1

0
0

0
0

0
0

0
0

GrySclLU
T 

Address 
*4

Ctr
Ct
r

Ctr
HCNT 

(pixels)
11 10 01 00 11 10

0
1

0
0

1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

Frame
Pix
el

D18
D
17

D1
6

register
address

D
15

D
14

D
13

D
12

D
11

D1
0

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

Val
ue

X X X
base + 
0x00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000

base + 
0x20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 000

base + 
0x40

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 000

base + 
0x60

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 000

X X X
base + 
0x1C

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 111

base + 
0x3C

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 111

base + 
0x5C

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 111

base + 
0x7C

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 111

Table 7-5. Grayscale Timing Diagram (Continued)

Clock HCNT VCNT FRAME PIXEL Register Address / Value



7-20 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
The values in between full on and full off are more difficult to determine and depend on the 
display characteristics such as persistence, turn on time, and refresh rate. To achieve 
difference in shades of gray, it is typical to have more values below the half luminance 
average due to the higher sensitivity to luminance variations by the human eye at lower 
levels. Other problems that occur with choosing patterns and the operating matrix parameters 
are flickering (temporal distortion), walking patterns (spatial distortion), and spatial 
interference patterns.

Take, for example, a 50% duty cycle. We could define the matrix as a 4Hx4Vx4F as shown in 
Figure 7-3. However, we effectively halved the refresh rate of these pixels and, depending on 
the refresh rate of the display, are likely to see flickering for this shade.

 

 Figure 7-3. Graphics Matrix for 50% Duty Cycle

To avoid flickering, it is better to play a spatial trick and turn on every other pixel so that the 
eye integrates the on and off pixels between two consecutive frames. However, in the case 
given in Figure 7-3, a spatial interference can be caused if an image displayed in this 
grayscale consists of every other column activated. For this case, we would be right back to 
the flickering problem shown in Figure 7-4. This would be true if we switched to a checker 
board pattern and displayed a checker board image or almost any other pattern.

Frame 0 H O R Z Frame 1

V 1 1 1 1 0 0 0 0

E 1 1 1 1 0 0 0 0

R 1 1 1 1 0 0 0 0

T 1 1 1 1 0 0 0 0

Frame 2 Frame 3

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0



DS785UM1 7-21
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

 Figure 7-4. Sample Matrix Causing Flickering 

To minimize these type of spatial interference patterns, it is better to mix up the pattern 
sequence similar to that shown in Figure 7-5. Note that the pattern mixes sets of two adjacent 
pixels with sets of every other pixel. Depending on the display and patterns displayed, this 
may create another type of apparent image distortion referred to as a walking pattern. One of 
the matrix indices may need to be changed to count by 3 to eliminate this combination of 
temporal and spatial distortion.

 Figure 7-5. Sample Matrix That Avoids Flickering 

Frame 0 H O R Z Frame 1

V 1 0 1 0 0 1 0 1

E 1 0 1 0 0 1 0 1

R 1 0 1 0 0 1 0 1

T 1 0 1 0 0 1 0 1

Frame 2 Frame 3

1 0 1 0 0 1 0 1

1 0 1 0 0 1 0 1

1 0 1 0 0 1 0 1

1 0 1 0 0 1 0 1

Frame 00

H

0
0

O

0
1

R

1
0

Z

1
1

Frame 01

V    00 1 1 0 0 0 0 1 1

E    01 1 0 1 0 0 1 0 1

R    10 0 0 1 1 1 1 0 0

T    11 1 0 1 0 0 1 0 1

Frame 10 Frame 11

1 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

1 0 1 0 0 1 0 1

0 0 1 1 1 1 0 0



7-22 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Assuming the 3 bit input pattern that represents this 50% duty cycle grayscale is 0x3 (or 
011b), the values in Table 7-7 should be used to program this pattern into the grayscale look-
up-table.   

Since all patterns must be evaluated against their specific use, no more examples for half 
intensity will be offered. Instead, another example will be used to make a walking distortion 
more obvious.

Take the example of a one-third luminous intensity grayscale pattern. Assume a 3Hx3Vx3F 
matrix for this definition. Wanting the intensity to be evenly distributed and given the three 
frame interval, any cell in the matrix should only be active for one frame. The matrix could be 
filled in as in Figure 7-6.

 Figure 7-6. Programming for One-third Luminous Intensity 

Table 7-7. Programming 50% Duty Cycle Into Lookup Table

Frame Vert Horz VCNT (lines)
1
1

1
1

1
1

1
1

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
0

0
0

0
0

0
0

GrySclLUT 
Address *4

Ctr Ctr Ctr
HCNT 

(pixels)
1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

Frame Pixel

D18 D17 D16
Register 
Address

D
1
5

D
1
4

D
1
3

D
1
2

D
1
1

D
1
0

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

Value

1 1 1 base + 0x0C 0 1 0 1 1 1 0 0 0 1 0 1 0 0 1 1 00 011

base + 0x2C 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 01 011

base + 0x4C 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 10 011

base + 0x6C 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 11 011

Frame 0 H O R Z Frame 1

V 1 0 0 0 1 0

E 0 1 0 0 0 1

R 0 0 1 1 0 0

T

Frame 2

0 0 1

1 0 0

0 1 0



DS785UM1 7-23
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Please note that as the frame number progresses, the bit pattern in each row moves to the 
right one pixel. This type of pattern shown in an area may cause diagonal lines to appear as 
though they are moving to the right. As previously stated, any image distortion greatly 
depends on the application. However, the pattern shown in Figure 7-7 will have less of a 
tendency to demonstrate a walking distortion.

 Figure 7-7. Creating Bit Patterns that Move to the Right

Assuming that the 3-bit input pattern that represents this 33% duty cycle grayscale is 0x2 (or 
010b), the values in Table 7-8 are used to program this pattern into the grayscale look-up-
table. In this mode, the X locations are ignored by the grayscale generation.   

Finally, just for demonstration purposes, a matrix with mixed 3 and 4 count axes is shown in 
Figure 7-8.

Frame 0 H O R Z Frame 1

V 1 0 0 0 1 0

E 0 0 1 0 1 0

R 0 1 0 0 0 1

T

Frame 2

0 0 1

1 0 0

1 0 0

Table 7-8. Programming 33% Duty Cycle into the Lookup Table 

Frame Vert Horz VCNT (lines)
1
1

1
1

1
1

1
1

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
0

0
0

0
0

0
0

GrySclLUT 
Address *4

Ctr Ctr Ctr
HCNT 

(pixels)
1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

Frame
Pixel
Value

D18 D17 D16
register 
address

D
1
5

D
1
4

D
1
3

D
1
2

D
1
1

D
1
0

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

0 0 0 base + 0x08 X X X X X 0 1 0 X 1 0 0 X 0 0 1 00 010

base + 0x28 X X X X X 1 0 0 X 0 1 0 X 0 1 0 01 010

base + 0x48 X X X X X 0 0 1 X 0 0 1 X 1 0 0 10 010

base + 0x68 X X X X X X X X X X X X X X X X 11 010



7-24 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

 Figure 7-8. Three and Four Count Axis 

Assuming that the 3-bit input pattern that represents this 33% duty cycle grayscale is 0x2 or 
010b, the values in Table 7-9 are used to program this pattern into the grayscale look-up-
table. In this mode, the X locations are ignored by the grayscale generation.

 7.4.9 Hardware Cursor

The raster engine provides support for a hardware cursor. The hardware cursor has a 
separate bus mastering interface that allows it’s image to be stored anywhere in memory. 
Software provides a location start, reset, size, X and Y position, and two cursor colors. The 
hardware loads a line at a time from memory and multiplexes the video stream data based on 
the cursor values. The X and Y locations are compared to the horizontal and vertical counters 
and trigger the state machine to enable the cursor output overlay.

Frame 0 H O R Z Frame 1

V 1 0 0 0 0 1 0 0

E 0 0 1 1 0 1 0 0

R 0 1 0 0 0 0 1 1

T

Frame 2

0 0 1 1

1 0 0 1

1 0 0 0

Table 7-9. Programming 33% Duty Cycle into the Lookup Table 

Frame Vert Horz VCNT (lines)
1
1

1
1

1
1

1
1

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
0

0
0

0
0

0
0

GrySclLUT 
Address *4

Ctr Ctr Ctr
HCNT 

(pixels)
1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

1
1

1
0

0
1

0
0

Frame Pixel

D18 D17 D16
Register 
address

D
1
5

D
1
4

D
1
3

D
1
2

D
1
1

D
1
0

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

Value

0 0 0 base + 0x08 X X X X 0 0 1 0 1 1 0 0 0 0 0 1 00 010

base + 0x28 X X X X 1 1 0 0 0 0 1 0 0 0 1 0 01 010

base + 0x48 X X X X 0 0 0 1 1 0 0 1 1 1 0 0 10 010

base + 0x68 X X X X X X X X X X X X X X X X 11 010



DS785UM1 7-25
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
“Start” is the beginning word location of the part of the cursor image to be displayed first. The 
image is 2-bits per pixel, and is stored linearly. The amount of storage space is dependent on 
the width and height of the cursor. The two bits per pixel stored define screen image 
(transparent), invert screen image, display color1, and display color2.

The 2-bits per pixel stored cursor image is displayed as:
00 - Transparent
01 - Invert video stream
10 - CursorColor1 during no blink or CursorBlinkColor1 during blink
11 - CursorColor2 during no blink or CursorBlinkColor2 during blink 

“Reset” is the beginning word location of the part of the cursor which is displayed next after 
reaching the last line of the cursor. These locations are necessary for dual scan display of 
cursor information. If the cursor is totally in the upper half or lower half of the screen, the Start 
and Reset locations are the same. Otherwise, the cursor will start being overlaid on the video 
information at the start address, and when the dual scan height counter generates a carry, 
the cursor overlay will jump to the reset value. The cursor will then continue to be overlaid 
when the Y location is reached, and will jump to the start address value when the height 
counter for the upper half generates a carry.

Offsetting these values and changing the width of the cursor to be different from the cursor 
step value allows the right 48, 32, or 16 pixels of a larger cursor to be displayed only. 
Furthermore, offsetting the starting X location off of the left edge of the screen will allow pixel 
placement of the cursor off of the screen edge.

The size is specified as: width adjustable to 16, 32, 48, or 64 pixels, a height in lines up to 64 
pixels (controls the top half of the screen only in dual scan mode), a step size for the number 
of words in a cursor line (up to 4), and a height of up to 64 lines on the bottom half of the 
screen (used in dual scan mode only).

The Y location value controls the starting vertical Y location of the cursor image. The value is 
compared to the vertical line counter and should be set by software to be between the active 
start and active stop vertical line values. The cursor hardware will clip the cursor at the 
bottom of the screen. To prevent cursor distortion, the new Y location value will not be used 
until the next frame.

Table 7-10. Cursor Memory Organization

32-bit Word

Byte 3 2 1 0

Bit 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

Pixel 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



7-26 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
The X location value controls the starting horizontal X location of the cursor image. The value 
is compared to the horizontal pixel counter and should be set by software to be between the 
active start and active stop horizontal pixel values. The cursor hardware will clip the cursor at 
the right edge of the screen. This value is also used to control the starting location for the 
cursor image on the upper half of the screen during dual scan mode. To prevent cursor 
distortion, the new X location value will not be used until the next frame.

During dual scan display mode, selected by writing DSCAN = ‘1’ to the “PixelMode”  register, 
the lower half Y value controls the starting vertical Y location on the lower half of the screen 
for the cursor image. The value is compared to the vertical line counter and should be set by 
software to be between the active start and active stop vertical line values. The cursor 
hardware will clip the cursor at the bottom of the screen. To prevent cursor distortion, the new 
location value will not be used until the next frame.

The hardware cursor circuitry has a separate blinking function. The rate is a 50% duty cycle 
programmable number of vertical frame intervals. When a blink frame is active, the color 
RGB mux switches in 24-bit “CursorBlinkColor1,”  or “CursorBlinkColor2”  values for 
“CursorColor1,”  or “CursorColor2,”  respectively.

 7.4.9.1 Registers Used for Cursor
The registers used for configuring the Hardware Cursor are: “CursorAdrStart” , 
“CursorAdrReset” , “CursorSize” , “CursorColor1,”  “CursorColor2,” , “CursorXYLoc”  and 
CursorDScanLHYLoc. The following subsections describe the function of each of these 
registers. 

 7.4.9.1.1 CursorAdrStart Register

This register contains the memory starting address for the cursor image.

 7.4.9.1.2 CursorAdrReset Register

This register contains the address for the part of the cursor that is displayed next after 
reaching the last line of the cursor. This register is needed to support DUAL scan displays. 
For non-dual scan displays, this address is the same as that in the CursorAdrStart register.

 7.4.9.1.3 CursorSize Register

This register selects four parameters that will impact the cursor size: CSTEP, CLINS, CWID, 
and DLNS.

CSTEP

Two bits select the cursor step size:

0 0 Step by 1 word or 16 pixels
0 1 Step by 2 words or 32 pixels
1 0 Step by 3 words or 48 pixels
1 1 Step by 4 words or 64 pixels



DS785UM1 7-27
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
CLINS

Six bits select the height of the cursor image. The height is measured in lines and should be 
set to a value of one less then the desired number of lines.

CWID

Two bits select the cursor width:

0 0 Width is 1 word or 16 pixels
0 1Width is 2 words or 32 pixels
1 0 Width is 3 words or 48 pixels
1 1 Width is 4 words or 64 pixels

DLNS

Six bits are used in DUAL SCAN mode, where DUAL SCAN mode is selected by writing 
DSCAN = ‘1’ to the “PixelMode”  register.

 7.4.9.1.4 CursorColor1 Register

This register is set to the cursor color value that is used when the pixel color value is a 0x2 
(10 binary).

 7.4.9.1.5 CursorColor2 Register

This register is set to the cursor color value that is used when the pixel color value is a 0x3 
(11 binary).

 7.4.9.1.6 CursorXYLoc Register

This register provides the place in the X and Y position of the image where the cursor should 
be inserted. The X position is represented by the XLOC bits and the Y position is represented 
by the YLOC bits in the “CursorXYLoc”  register. The XLOC bits and YLOC bits are compared 
with the respective counter (YLOC is the line counter, XLOC is the pixel counter). These 
values must fall between the active start and stop parameters for the display.

This register also contains the enable bit, CEN, for the hardware cursor. Writing a ‘1’ to this bit 
enables the hardware cursor.

Note:  Very rarely, a vertical line appears when the hardware cursor becomes enable or 
disabled. This line is a few pixels wide and only lasts for one frame. It is hard to catch. In 
order to prevent this problem: 1. Do not enable/disable the cursor when changing the 
cursor bitmaps, and 2. When disabling the cursor, change the CursorXYLOc register to 
point to a blank cursor image. 

 7.4.9.1.7 CursorDScanLHYLoc Register

See “CursorDScanLHYLoc”  register.



7-28 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
 7.4.10 Video Timing

The video timing circuitry consists of a horizontal down counter and a vertical down counter. 
Signal timing for a specific video format is generated by programmable values that are 
compared to the count values. 

An AC signal is generated to support either bias voltage switching for LCDs or a field 
indicator for interlaced video. The An AC signal, if ACEN = ‘1’ in the “VideoAttribs”  register, is 
output on the P[17] pin. The toggle rate of the AC signal is selected by writing to the “ACRate”  
register.

LCD shifting signals, XECL and YSCL, are generated to support simple LCDs. These signals, 
if LCDEN = ‘1’ in the “VideoAttribs”  register, are output on pixel data pins P[16] and P[15], 
respectively. XECL is generated every 64 pixel clocks. YSCL is the inversion of HSYNCn.

The Raster Engine provides an end of frame interrupt, when enabled, to the interrupt 
controller. This interrupt defines when the last information has been sent to the display for the 
current frame. It indicates the start of an interval when changes can be made to the LUT or 
source for the displayed image without affecting the display. It must be configured as an edge 
triggered interrupt. Changes such as a new cursor location or a new screen image location 
automatically change at this time, under hardware control. The interval for making LUT 
changes, etc. without affecting the displayed image depends on the display’s technology. The 
time duration is equal to the vertical blanking interval (VLinesTotal duration - VACTIVE 
duration). 

In addition, the programmable VCLR and HCLR fields in the “SigClrStr”  register are used as 
a secondary interrupt during normal operation, where the interrupt can be programmed to 
trigger at any vertical and horizontal counter combination.

The frequency of the clock used for video timing and the entire video pipeline must meet the 
requirements of the display type. The video clock frequency is selected by writing to the 
VidClkDiv register (see Chapter 5). The video circuitry is targeted to run up to 132MHz. This 
corresponds to a 1280 pixels by 1024 pixels display size, and non-interlaced video at a 80Hz 
frame refresh.

Note: Total Bus/SDRAM bandwidth is shared between the Raster Engine and other device 
controllers. The pixel depth, display size, and display refresh rate can be limited by the 
Bus/SDRAM bandwidth that is available to the Raster Engine.

The programmed values for the video timing section of the raster engine are shown in 
Figure 7-9, "Progressive/Dual Scan Video Signals" and Figure 7-10, "Interlaced Video 
Signals". Independent horizontal and vertical down counters are used as a reference for all 
other signals. The synchronization, blanking, and active video control signalling is generated 
by comparing programmed values to the counters.



DS785UM1 7-29
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

 Figure 7-9. Progressive/Dual Scan Video Signals   

Vertical Back Porch
Vertical Front

Porch

Vertical Active
Video

Horizontal Back
Porch

Horizontal Front
Porch

Horizontal Active
Video

LINECARRY (CLKS)

VLINESTOTAL

VACTIVESTRT
VACTIVESTOP

VSYNCn

VACTIVE

HSYNCn

HACTIVE

0h0h 1hVLINESTOTAL VLINESTOTALVLINESTOTAL -1

Vertical
down

counter

0h0h 1h

HCLKSTOTAL HCLKSTOTAL

HCLKSTOTAL -1

Horizontal
down

counter

VSYNCSTART
VSYNCSTOP

SPCLK
DURING
Vertical

VCLKSTOP
VCLKSTART

Vertical Sync
Interval

HACTIVESTRT
HACTIVESTOP

HSYNCSTART
HSYNCSTOP

HCLKSTOP
HCLKSTART

SPCLK
DURING
Horizontal

VBLANKn

VBLANKSTRT

VBLANKSTOP

HBLANKn

HBLANKSTRT
HBLANKSTOP



7-30 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

 Figure 7-10. Interlaced Video Signals

Horizontal Back
Porch

Horizontal Front
Porch

Horizontal Active
Video

LINECARRY (CLKS)

VLINESTOTAL

VACTIVESTRT

VSYNCn

VACTIVE

HSYNCn

HACTIVE

0h0h 1hVLINESTOTAL VLINESTOTAL

Vertical
down

counter

0h0h 1h

HCLKSTOTAL HCLKSTOTAL

HCLKSTOTAL -1

Horizontal
down

counter

VSYNCSTART
VSYNCSTOP

SPCLK
DURING
Vertical

VCLKSTRT
VCLKSTOP

HACTIVESTRT
HACTIVESTOP

HSYNCSTART
HSYNCSTOP

HCLKSTOP
HCLKSTART

SPCLK
DURING
Horizontal

VBLANKn

VBLANKSTOP
VBLANKSTRT

HBLANKn

HBLANKSTRT
HBLANKSTOP

VACTIVESTOP

VLINESTOTAL/2

CURSORDSCANHYLOC

HSIGSTOP

HSIGSTRT

VSIGSTOP

VSIGSTRT

FIELD0 FIELD1



DS785UM1 7-31
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
 7.4.10.1 Setting the Video Memory Parameters

The Raster Engine uses SDRAM for video frame buffers. The SDRAM locations for the video 
frame buffers are defined by four registers: “VidScrnPage” , “ScrnLines” , “LineLength” , and 
“VLineStep” .

 7.4.10.1.1 Setting up the VidScrnPage Register

The VidScrnPage register provides the starting address for the video memory relative to the 
beginning of SDRAM memory space. With the combination of SDSEL in VideoAttribs register, 
it forms the absolute address for the starting location of the video memory. It is possible to 
provide for a panning feature by altering the address of the start location at run time. This 
address also represents the 0,0 pixel position, which is in the upper left corner of the video 
image.

 7.4.10.1.2 Setting up the ScrnLines Register

The “ScrnLines”  register is used by the Raster Engine to specify the number of lines of 
LineLength size that are to be fetched and forwarded to the FIFO. The ‘number of lines’ must 
be programmed to be one less than the desired number of lines, because a programmed 
value of 0x0 specifies a single line. The maximum value is 0x7FF for 2048 lines.

 7.4.10.1.3 Setting up the LineLength Register

The “LineLength”  register contains the number of 32-bit words that the Raster Engine must 
fetch from SDRAM for each scan line. This value is always one less than the needed number 
of 32-bit words because a programmed value of 0x0 specifies a single 32-bit word. 

For example, a display width of eighty 8-bit pixels requires that twenty 32-bit words be 
fetched from the SDRAM video frame buffer for each scan line, since four 8-bit pixels can be 
packed into a single 32-bit word (80/4=20). 

 7.4.10.1.4 Setting up the VLineStep Register

At the end of fetching LineLength of data for the first scan line, the Raster Engine will take the 
value in the “VLineStep”  register and add it to the base address (“VidScrnPage” ) to 
determine the starting SDRAM address for the next scan line. Generally, this value is the 
same as LineLength + 0x1. However, it is possible to have an image in SDRAM that is larger 
then the current display. This larger image can be cropped by the proper programming of 
“VidScrnPage” , “VLineStep” , and “ScrnLines” registers.

 7.4.10.1.5 Memory Setup Example

Assume that a video display is 640 x 480 with a color depth of 4 bpp and that the start of 
video memory (display pixel coordinate 0,0) is the address determined by SDSEL + 0x1000. 
The register settings for this example are:

VidScrnPage = 0x1000 (assume SDSEL = 0)

ScrnLines = 480 - 1 = 479 = 0x1DF

LineLength = (640 x 4bpp / 32) - 1 = 79 = 0x4F



7-32 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
VLineStep = 640 x 4bpp/32

 7.4.10.2 PixelMode
Pixel data is transferred from the FIFO to the Video Pixel Mux two 32-bit words at a time (total 
of 64 bits). Bits[2:0] of the “PixelMode”  register specify the pixel depth as shown in Table 7-
11. The Video Pixel MUX uses the “PixelMode”  register to determine how many pixels are 
contained in the 64 bits of data. The Video Pixel Mux extracts pixel data from the 64-bits and 
passes that pixel data to the BLINK logic one pixel at a time.

Note: All other combinations for these three bits are illegal.

 7.4.11 Blink Logic

The blink logic facilitates blinking of individual pixels as they move through the video pipeline. 
The blink frequency is controlled by the “BlinkRate”  register. All blinking pixels blink at the 
same rate.

 7.4.11.1 BlinkRate
This value is used to control the number of video frames that occur before the pixel value that 
is assigned to blink is switched between its non-blinked and blinked values. The actual rate is 
calculated by:

Blink cycle = 2 x (1 / VCLK) x HClkTotal x VLinesTotal x (255 - BlinkRate)

where:

VCLK is the basic clock rate of the video logic

HClkTotal is the value contained in the “HClkTotal”  register

VLinesTotal is the value contained in the “VLinesTotal”  register

BlinkRate is the value contained in the “BlinkRate”  register

 7.4.11.2 Defining Blink Pixels
A blink pixel must be defined before the blink logic is applied to a given pixel. The 
“BlinkPattrn”  and “PattrnMask”  registers are used to define the blink pixels.

Table 7-11. Bits P[2:0] in the PixelMode Register

bit P2 bit P1 bit P0 Function

0 0 0 Pixel Multiplexor disabled

0 0 1 4 bits per pixel

0 1 0 8 bits per pixel

1 0 0 16 bits per pixel

1 1 0 24 bits per pixel



DS785UM1 7-33
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
 7.4.11.2.1 PattrnMask Register

This register defines which bits in a pixel are blink bits. To enable an individual bit for 
comparison requires setting that corresponding bit to “1”. To disable an individual bit for 
comparison set the bit position to “0”.

For example, in 8bpp mode, the PattrnMask is defined as 0x0000_0080. This means that the 
MSB of a pixel is used to assist is defined as a blink bit.

 7.4.11.2.2 BlinkPattrn Register

The “BlinkPattrn”  register is used to further refine which pixel pattern defines a blink pixel. 
The pixel value is first masked by the PattrnMask value in the “PattrnMask”  register and the 
result is compared to BlinkPattrn value in the “BlinkPattrn”  register. If the comparison results 
in a match, the pixel is considered to be a valid blink pixel.

For example:

An 8-bit pixel is defined as 0xAF (0b1010_1111b). 
PattrnMask is defined as 0x0000_00C0. 
BlinkPattrn is defined as 0x0000_0080.

PattrnMask = 0xC0 defines the two MSBs of 8-bit pixels as potential blink bits. If the two 
corresponding MSBs in the BlinkPattrn register are ‘10’ and the two MSBs of the pixel value 
are ‘10’, then the pixel of value = 0xAF is a blink pixel. In fact, all pixel values of 10xx_xxxx 
are blink pixels. If BlinkPattrn was changed to 0x0000_0048 above, a pixel of value 0xAF 
would not be a blink pixel.

 7.4.11.2.3 BlinkMask Register

The “BlinkMask”  register is only used if the blink mode definition bits M[3:0] in the 
“PixelMode”  register are set for an AND, OR, or XOR operation. The value in the “BlinkMask”  
register is ANDed (clearing bits), ORed (setting bits), or XORed (inverting bits) with a pixel 
that addresses the LUT. The mask allows a blinking pixel to jump from a normal color 
definition location to a blink color definition location in the LUT.

 7.4.11.3 Types of Blinking
Once a pixel has been defined as a blink pixel, it is necessary to provide information on how 
that pixel will blink. The blink type provides determines what operations are performed on the 
pixel data as it moves through the blink logic to transform it into a blinking pixel.

There are 10 ways to blink a pixel once it has been defined as a blinking pixel. The blink type 
is defined by the M[3:0] bits in the “PixelMode”  register:

0000 - Blink Disabled

0001 - AND Blinking. 

The pixel data is ANDed with the “BlinkMask”  register. The modified pixel data will 
continue through the pipeline.

LUT Blink:



7-34 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
If the LUT is enabled, the pixel data is passed to the LUT. The new pixel data value will 
be used to index into the LUT. The value at that index location will be passed on to the 
Color Mux.

Non LUT Blink:

If the LUT is not enabled, the modified pixel data is moved directly into the Color Mux. 
This new pixel value is used by the Color Mux as the 'new' value for the blinking pixel.

0010 - OR Blinking:

The pixel data is ORed with the BlinkMask register. The modified pixel data will continue 
through the pipeline. See AND blinking for details on the differences between LUT and 
non-LUT blinking.

0011 - XOR Blinking:

The pixel data is XORed with the “BlinkMask”  register. The modified pixel data will 
continue through the pipeline. See AND blinking for details on the differences between 
LUT and non-LUT blinking.

0100 - Background Blinking:

The pixel data is replaced with the value in the “BkgrndOffset”  register and the new 
pixel value is placed into the pipeline and sent to the Color Mux.

0101 - Offset Single Blinking:

The pixel data is manipulated by adding the value of the “BkgrndOffset”  register with 
the pixel data. The resulting pixel data will be placed into the pipeline and then sent to 
the Color Mux.

0110 - Offset 888 Blinking:

The 24 bits of data is made up of three 8-bit values that represent the RGB colors. This 
mode will treat each of the 8 bit values as a single value, and apply the blinking rules 
defined for the Offset Single Blinking mode. 

The “BkgrndOffset”  value is itself treated as an 888 pixel where each of the 
corresponding 8 bits represent the value that will be added to the corresponding color.

0111 through 1011 - Not used

1100 - Dim Single Blinking:

The pixel that is identified as a blinking pixel is manipulated:

1.The LSB is dropped

2.The remaining bits are shifted right by one

3.The MSB is set to ‘0’

1101 - Bright Single Blinking:

The pixel that is identified as a blinking pixel is manipulated:



DS785UM1 7-35
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
1. The MSB is dropped

2. The remaining bits are shifted left by one

3.The LSB is set to ‘1’

1110 - Dim 888 Blinking:

The 24 bits of data is made up of three 8-bit values that represent the RGB colors. Each 
of the 8 bit values is treated as a single value, and the blinking rules defined for the Dim 
Single Blinking mode are applied.

1111 - Bright 888 Blinking:

The 24 bits of data is made up of three 8-bit values that represent the RGB colors. Each 
of the 8 bit values is treated as a single value, and the blinking rules defined for the 
Bright Single Blinking mode are applied.

 7.4.12 Color Mode Definition

One of four modes may be selected to define pixel color: Pixel Look-Up Table Mode, Triple 8-
Bit Mode, 16-Bit 565 Mode, and 16-Bit 555 Mode.

 7.4.12.1 Pixel Look-up Table Mode
The Raster Engine contains a 256 x 24 bit RAM that is used as pixel look-up-table (LUT) for 
pixel depths up to 8-bits. Appropriate blink operations, if any, are performed on the pixel data 
fetched from the video memory and the resulting pixel data value is used as an index into the 
LUT. The pixel value located at the index position continues through the video pipeline.

The LUT is memory mapped and may be written at any time. However, if it is written during a 
non-blanking interval, the display may be momentarily corrupted.

Writing 0x0 to the C[3:0] bits (color bits) in the PixelMode register to 0x0 enables the LUT.

 7.4.12.2 Triple 8-bit Color Definition Mode
The 24 bits of data is divided into three color planes, where the RED, GREEN, and BLUE 
each have 8 bits of color definition.

 7.4.12.3 16-bit 565 Color Definition Mode 
The 16 bits of data is divided into three color planes, where the RED and BLUE each have 5 
bits for color definition and the GREEN has 6 bits for color definition.

 7.4.12.4 16-bit 555 Color Definition Mode
The 16 bits of data is divided into three color planes, where the RED, GREEN, and BLUE 
each have 5 bits of color definition. The MSB of the 16-bit data is not used.



7-36 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
 7.5 Registers

Table 7-12. Raster Engine Register List

Address Name
SW 

locked
Type Size Description

0x8003_0000 VLinesTotal Write Read/Write 11 bits Total Number of vertical frame lines

0x8003_0004 VSyncStrtStop Write Read/Write 22 bits Vertical sync pulse setup

0x8003_0008 VActiveStrtStop Write Read/Write 22 bits Vertical active setup

0x8003_0228 VBlankStrtStop Write Read/Write 22 bits Vertical blanking setup

0x8003_000C VClkStrtStop Write Read/Write 22 bits Vertical clock active frame

0x8003_0010 HClkTotal Write Read/Write 11 bits Total Number of horizontal line clocks

0x8003_0014 HSyncStrtStop Write Read/Write 22 bits Horizontal sync pulse setup

0x8003_0018 HActiveStrtStop Write Read/Write 22 bits Horizontal active setup

0x8003_022C HBlankStrtStop Write Read/Write 22 bits Horizontal blanking setup

0x8003_001C HClkStrtStop Write Read/Write 22 bits Horizontal clock active frame

0x8003_0020 Brightness No Read/Write 16 bits PWM brightness control

0x8003_0024 VideoAttribs Write Read/Write 16 bits Video state machine parameters

0x8003_0028 VidScrnPage No Read/Write 32 bits Starting address of video screen

0x8003_002C VidScrnHPage No Read/Write 32 bits
Starting address of video screen half 

page

0x8003_0030 ScrnLines No Read/Write 11 bits
Number of active lines scanned to the 

screen

0x8003_0034 LineLength No Read/Write 12 bits Length in words of data for lines

0x8003_0038 VLineStep No Read/Write 13 bits Memory step for each line

0x8003_003C LineCarry Write Read/Write 11 bits Horizontal/vertical offset parameter

0x8003_0040 BlinkRate No Read/Write 8 bits Blink counter setup

0x8003_0044 BlinkMask No Read/Write 24 bits
Logic mask applied to pixel to 

perform blink operation

0x8003_0048 BlinkPattrn No Read/Write 24 bits
Compare value for determining 

blinking pixels.

0x8003_004C PattrnMask No Read/Write 24 bits Mask to limit pattern.

0x8003_0050 BkgrndOffset No Read/Write 24 bits
Background color or blink offset 

value.

0x8003_0054 PixelMode No Read/Write 15 bits Pixel mode definition setup register.

0x8003_0058 ParllIfOut No Read/Write 9 bits
Parallel interface write/control 

register.

0x8003_005C ParllIfIn No Read/Write 8 + 8 bits Parallel interface read/setup register.



DS785UM1 7-37
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

Note: The raster engine registers are intended to be word accessed only. Since the least 
significant bytes of the address bus are not decoded, byte and half word accesses are 
illegal and may have unpredictable results.

0x8003_0060 CursorAdrStart No Read/Write 32 bits
Word location of the top left corner of 

cursor to be displayed.

0x8003_0064 CursorAdrReset No Read/Write 32 bits
Location of first word of cursor to be 

scanned after last line.

0x8003_0068 CursorSize No Read/Write 16 bits
Cursor height, width, and step size 

register.

0x8003_006C CursorColor1, No Read/Write 24 bits
Cursor color overlaid when cursor 

value is 10.

0x8003_0070 CursorColor1, No Read/Write 24 bits
Cursor color overlaid when cursor 

value is 11.

0x8003_0074 CursorXYLoc No Read/Write 11 +1 + 11 bits Cursor X and Y location register

0x8003_0078 CursorDScanLHYLoc No Read/Write 1 + 11 bits
Cursor dual scan lower half Y 

location register

0x8003_021C CursorColor2, No Read/Write 24 bits
Color when cursor value is 10 and 

cursor is in blink state.

0x8003_0220 CursorBlinkColor1, No Read/Write 24 bits
Color when cursor value is 11 and 

cursor is in blink state.

0x8003_0224 CursorBlinkRateCtrl No Read/Write 1+8 bits Enable and rate for cursor blinking.

0x8003_007C RasterSWLock Read Read/Write 8 bits
Software Lock register. This register 

unlocks registers that have a 
SWLOCK.

0x8003_0080 - 0x8003_00FC GrySclLUTR, No Read/Write 32 x 19 Grayscale matrix Red

0x8003_0200 VidSigRsltVal No Read Only 16 bits Video signature result value.

0x8003_0204 VidSigCtrl No Read / Write 32 bits Video signature Control register.

0x8003_0208 VSigStrtStop No Read/Write 11 + 11 bits vertical signature bounds setup

0x8003_020C HSigStrtStop No Read/Write 11 + 11 bits Horizontal signature bounds setup

0x8003_0210 SigClrStr No Read/Write 11 + 11 bits Signature clear and store location

0x8003_0214 ACRate No Read/Write 11 bits
LCD AC voltage bias control counter 

setup

0x8003_0218 LUTSwCtrl No Read/Write 2 bits LUT switching control

0x8003_0230 EOLOffset No Read/Write 16 bits End of line offset register

0x8003_0234 FIFOLevel No Read/Write 6 bits FIFO fill level register

0x8003_0280 - 0x8003_02FC GrySclLUTG, No Read/Write 32 x 19 Grayscale matrix Green

0x8003_0300 - 0x8003_037C GrySclLUTB No Read/Write 32 x 19 Grayscale matrix Blue

0x8003_0400 - 0x8003_07FC ColorLUT No Read/Write 256 x 24 RAM Color Look-Up-Table

Table 7-12. Raster Engine Register List (Continued)

Address Name
SW 

locked
Type Size Description



7-38 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Vertical Frame Timing Registers

VLinesTotal 

Address: 0x8003_0000

Default: 0x0000_0000

Definition: Total horizontal lines that compose a vertical frame

Bit Descriptions:

RSVD: Reserved - Unknown during read

TOTAL: VLines Total - Read/Write

The VLines Total value written to this field specifies the 
total number of horizontal lines for a video frame including 
synchronization, blanking, and active lines. This value is 
used to preset the Vertical down counter. Please refer to 
video the signalling timing diagrams shown in Figure 7-9 
and Figure 7-10.

VSyncStrtStop 

Address: 0x8003_0004

Default: 0x0000_0000

Definition: Vertical Sync Pulse Start/Stop register

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TOTAL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



DS785UM1 7-39
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
When the Vertical counter counts down to the written 
STOP value, the VSYNC signal on the V_CSYNC pin will 
go inactive if CSYNC = ‘0’ and SYNCEN = ‘1’ in the 
VideoAttribs register. Please refer to the video signalling 
timing diagrams shown in Figure 7-9 and Figure 7-10.

STRT: Start - Read/Write

When the Vertical counter counts down to the written 
STRT value, the VSYNC signal on the V_CSYNC pin will 
go active if CSYNC = ‘0’ and SYNCEN = ‘1’ in the 
VideoAttribs register.

VActiveStrtStop 

Address: 0x8003_0008

Default: 0x0000_0000

Definition: Vertical Active Start/Stop register

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Vertical down counter 
at which the VACTIVE signal becomes inactive (stops). 
This indicates the end of the active video portion for the 
Vertical frame. Please refer to the video signalling timing 
diagrams in Figure 7-9 and Figure 7-10. VACTIVE is an 
internal block signal. The active video interval is controlled 
by the logical OR of VACTIVE and HACTIVE.

STRT: Start - Read/Write

The STRT value is the value of the Vertical down counter 
at which the VACTIVE signal becomes active (starts). This 
indicates the start of the active video portion for the 
Vertical frame. Please refer to the video signalling timing 
diagrams in Figure 7-9 and Figure 7-10. VACTIVE is an 
internal block signal. The active video interval is controlled 
by the logical OR of VACTIVE and HACTIVE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



7-40 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
VBlankStrtStop 

Address: 0x8003_0228

Default: 0x0000_0000

Definition: Vertical BLANK signal Start/Stop register

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Vertical down counter 
at which the VBLANKn signal becomes inactive (stops). 
This is used to generate the BLANKn signal that is used 
by external devices and indicates the end of the active 
video portion for the Vertical frame. Please refer to video 
signalling timing diagrams in Figure 7-9 and Figure 7-10. 
VBLANKn is an internal block signal. The NBLANK output 
is a logical AND of NVBLANK and HBLANKn.

STRT: Start - Read/Write

The STRT value is the value of the Vertical down counter 
at which the VBLANKn signal becomes active (starts). 
This is used to generate the BLANKn signal that is used 
by external devices and indicates the start of the active 
video portion for the Vertical frame. Please refer to video 
signalling timing diagrams in Figure 7-9 and Figure 7-10. 
VBLANKn is an internal block signal. The NBLANK output 
is a logical AND of NVBLANK and HBLANKn.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



DS785UM1 7-41
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
VClkStrtStop 

Address: 0x8003_000C

Default: 0x0000_0000

Definition: Vertical Clock Start/Stop register

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP timing register contains the value of the Vertical 
down counter at which the VCLKEN signal goes inactive 
(stops). This indicates the end of the video clock for the 
Vertical frame. Please refer to video signalling timing 
diagrams in Figure 7-9 and Figure 7-10. VCLKEN is an 
internal block signal. The SPCLK output is enabled by the 
logical AND of VCLKEN and HCLKEN.

STRT:Start - Read/Write

The STRT timing register contains the value of the Vertical 
down counter at which the VCLKEN signal becomes 
active (starts). This indicates the start of the video clock for 
the Vertical frame. Please refer to video signalling timing 
diagrams in Figure 7-9 and Figure 7-10. VCLKEN is an 
internal block signal. The SPCLK output is enabled by the 
logical AND of VCLKEN and HCLKEN. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



7-42 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Horizontal Frame Timing Registers

HClkTotal

Address: 0x8003_0010

Default: 0x0000_0000

Definition: Total pixel clocks that compose a horizontal line

Bit Descriptions:

RSVD: Reserved - Unknown during read

TOTAL: Total - Read/Write

The HClk Total timing register contains the total number of 
clocks for a horizontal video line including synchronization, 
blanking, and active clocks. This value is used to preset 
the Horizontal down counter. Please refer to video 
signalling timing diagrams in Figure 7-9 and Figure 7-10.

HSyncStrtStop 

Address: 0x8003_0014

Default: 0x0000_0000

Definition: HorizontaL Sync Start/Stop Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TOTAL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



DS785UM1 7-43
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
The STOP value is the horizontal down counter value at 
which the HSYNCn signal becomes inactive (stops). When 
the Horizontal counter counts down to the STOP value, 
the HSYNCn signal goes inactive. Please refer to video 
signalling timing diagrams in Figure 7-9 and Figure 7-10.

STRT:Start - Read/Write

The STRT value is the horizontal down counter value at 
which the HSYNCn signal becomes active (starts). When 
the Horizontal counter counts down to the STRT value, the 
HSYNCn signal goes active (starts). Please refer to video 
signalling timing diagrams in Figure 7-9 and Figure 7-10. 

HActiveStrtStop 

Address: 0x8003_0018

Default: 0x0000_0000

Definition: Horizontal Active period Start/Stop register 

Note: When horizontal clock gating is required, set the STRT and STOP fields in the 
HActiveStrtStop register to the STRT and STOP values in HClkStrtStop + 5. This is a 
programming requirement that is easily overlooked.

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Horizontal down 
counter at which the HACTIVE signal becomes inactive 
(stops). This indicates the end of the active video portion 
for the Horizontal line. Please refer to video signalling 
timing diagrams in Figure 7-9 and Figure 7-10. HACTIVE 
is an internal block signal. The active video interval is 
controlled by the logical OR of VACTIVE and HACTIVE.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



7-44 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
STRT: Start - Read/Write

The STRT value is the value of the Horizontal down 
counter at which the HACTIVE signal becomes active 
(starts). This indicates the start of the active video portion 
for the Horizontal line. Please refer to video signalling 
timing diagrams in Figure 7-9 and Figure 7-10. HACTIVE 
is an internal block signal. The active video interval is 
controlled by the logical OR of VACTIVE and HACTIVE.

HBlankStrtStop 

Address: 0x8003_022C

Default: 0x0000_0000

Definition: Horizontal Blank signal Start/Stop register

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Horizontal down 
counter at which the HBLANK signal becomes inactive 
(stops). This is used to generate the BLANKn signal that is 
used by external devices to indicate the end of the active 
video portion for the Horizontal line. Please refer to video 
signalling timing diagrams in Figure 7-9 and Figure 7-10. 
HBLANK is an internal clock signal. The BLANKn output is 
a logical AND of VBLANK and HBLANK.

STRT:Start - Read/Write

The STRT value is the value of the Horizontal down 
counter at which the HBLANK signal becomes active 
(starts). This is used to generate the BLANKn signal that is 
used by external devices to indicate the start of the active 
video portion for the Horizontal line. Please refer to video 
signalling timing diagrams in Figure 7-9 and Figure 7-10. 
HBLANK is an internal clock signal. The BLANK output is 
a logical AND of VBLANK and HBLANK 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



DS785UM1 7-45
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
HClkStrtStop 

Address: 0x8003_001C

Default: 0x0000_0000

Definition: Horizontal Clock Active Start/Stop register

Note:  When horizontal clock gating is required, set the STRT and STOP fields in the 
HActiveStrtStop register to the STRT and STOP values in HClkStrtStop + 5. This is a 
programming requirement that is easily overlooked.

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Horizontal down 
counter at which the HCLKEN signal becomes inactive 
(stops). This indicates the end of the video clock for the 
Horizontal frame. Please refer to video signalling timing 
diagrams in Figure 7-9 and Figure 7-10. HCLKEN is an 
internal clock signal. The SPCLK output is enabled by the 
logical AND of VCLKEN and HCLKEN.

STRT: Start - Read/Write

The STRT value is the value of the Horizontal down 
counter at which the HCLKEN signal becomes active 
(starts). This indicates the start of the video clock for the 
Horizontal frame. Please refer to video signalling timing 
diagrams in Figure 7-9 and Figure 7-10. HCLKEN is an 
internal clock signal. The SPCLK output is enabled by the 
logical AND of VCLKEN and HCLKEN.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



7-46 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Frame Buffer Memory Configuration Registers

VidScrnPage 

Address: 0x8003_0028

Default: 0x0000_0000

Definition: Video Screen Page Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

PAGE: Video Screen Page Starting SDRAM Address - Read/Write

Corresponds to the word address relative to the beginning 
of SDRAM of the upper left corner of the video screen to 
be scanned out. The absolute AHB address for the video 
screen page is determined by the combination of this bit 
field as well as the SDSEL bit held in the “VideoAttribs” 
register.

NA: Not Assigned. Will return written value during a read.

VidScrnHPage 

Address: 0x8003_002C

Default: 0x0000_0000

Definition: Video Screen Half Page Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PAGE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAGE NA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PAGE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAGE NA



DS785UM1 7-47
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
PAGE: Video Screen Half-page Starting SDRAM Address - 

Read/Write

If DSCAN = ‘1’ in the PixelMode register, the Video Screen 
Half-page Starting SDRAM Address value written to this 
field corresponds to the upper left corner of the bottom half 
of the video screen. 

NA: Not Assigned. Will return written value during a read.

ScrnLines 

Address: 0x8003_0030

Default: 0x0000_0000

Definition: Video Screen Lines Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

LINES: Lines - Read/Write

The Lines value written to this field specifies the number of 
lines to be scanned to the display during normal and half-
page mode operation.

LineLength 

Address: 0x8003_0034

Default: 0x0000_0000

Definition: Video Line Length Register

Bit Descriptions:

RSVD: Reserved. Unknown during read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LINES

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LEN



7-48 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
LEN: Length - Read/Write

The Length value written to this field specifies, in 32-bit 
words, the length of video lines that are scanned to the 
display. Please see “Setting up the LineLength Register” 
on page 7-31 and “Memory Setup Example” on page 7-31.

The remainder of the last word in a video line may not be 
used as long as the blanking time is greater than the 
remaining number of pixels. The extra pixels will enter the 
video chain, but will exit the pipeline during the blanking 
interval. When the end of LEN is reached, STEP in the 
VLineStep register is added to the address for video data.

VLineStep 

Address: 0x8003_0038

Default: 0x0000_0000

Definition: Video Line Step Size Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

STEP: Step - Read/Write

When the end of the video line is reached (see LEN in 
LineLength register), the Step value written to this field 
(specified in 32-bit words) is added to the address for 
every video line that is scanned to the display. Please see 
“Memory Setup Example” on page 7-31.

 This allows the screen width to be smaller than the video 
image width in SDRAM.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STEP



DS785UM1 7-49
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
LineCarry 

Address: 0x8003_003C

Default: 0x0000_0000

Definition: Horizontal Line Carry Value register

Bit Descriptions:

RSVD: Reserved - Unknown during read

LCARY: Line Carry - Read/Write 

When the Horizontal down counter counts down to the 
written LCARY value, a carry is sent to increment the 
Vertical counter. This provides for timing skew between 
the vertical and horizontal video signals. Please refer to 
the video signalling timing diagrams in Figure 7-9 and 
Figure 7-10.

EOLOffset 

Address: 0x8003_0230

Default: 0x0000_0000

Definition: End-of-line Offset Register.

Bit Descriptions:

RSVD: Reserved - Unknown during read

OFFSET: Offset - Read/Write 

The Offset value written to this field is added to the 
address at the end of every other video line if the Offset 
value is not 0x0. This allows splitting the left and right 
halves of the display. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LCARY

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OFFSET



7-50 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
If the Offset value is 0x0, no offset is used and addressing 
proceeds normally.

Other Video Registers

Brightness 

Address: 0x8003_0020

Default: 0x0000_0000

Definition: Brightness Control register.

Bit Descriptions:

RSVD: Reserved - Unknown during read

CMP: Compare - Read/Write

The Compare value written to this field determines the 
brightness control duty cycle (see CNT below) - that is, 
when the brightness signal to the BRIGHT pin is ‘1’ or ‘0’. 

CNT: Count - Read/Write

The Count value written to this field specifies the number 
of horizontal lines counted during a brightness waveform 
period. The counter counts down from the Count value to 
0x0.

The CNT value and the CMP value are used to construct a 
brightness control waveform on the BRIGHT pin by this 
relationship:

When Count > Compare, or Count = Compare, the 
brightness signal to the BRIGHT pin is ‘0’.

When Count < Compare, the brightness signal to the 
BRIGHT pin is ‘1’.

The BRIGHT pin is ‘0’ (zero% brightness) after reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP CNT



DS785UM1 7-51
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
VideoAttribs 

Address: 0x8003_0024

Default: 0x0000_0000

Definition: Video Signal Attributes register.

Bit Descriptions:

RSVD: Reserved - Unknown during read

SDSEL: SDRAM Selector - Read/Write

Writing to these two bits defines which SDCSn[3:0] pin is 
used to access the video frame buffer in SDRAM:

00 SDCSn[0]
01 SDCSn[1]
10 SDCSn[2]
11 SDCSn[3]

SDCSn[3] is selected by default on hardware reset.

BKPXD: Blank Pixel Data - Read/Write

Writing BKPXD = ‘1’ forces the pixel data on the P[17:0] 
pins to be 0x0 when the blanking signal on the BLANK pin 
is ‘0’.

0 - Disable

1 - Enable

This allows the use of an inexpensive external DAC that 
does not contain data blanking logic.

DVERT: Double Vertical - Read/Write

Writing DVERT = ‘1’ forces the values of the defined bit-
fields in the VLinesTotal, VSyncStrtStop, VActiveStrtStop, 
VBlankStrtStop, and VClkStrtStop registers to be doubled 
(2X programmed value) when used.

0 - Disable

1 - Enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD SDSEL BKPXD DVERT DHORZ EQUSER INTRLC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT INTEN PIFEN CCIREN RSVD LCDEN ACEN INVCLK BLKPOL HSPOL V/CPOL CSYNC DATEN SYNCEN PCLKEN EN



7-52 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
DHORZ: Double Horizontal - Read/Write 

Writing DHORZ = ‘1’ forces the values of the defined bit-
fields in the HClkTotal, HSyncStrtStop, HActiveStrtStop, 
HBlankStrtStop, and HClkStrtStop registers to be doubled 
(2X programmed value) when used.

0 - Disable

1 - Enable

EQUSER: Equalization/Serration - Read/Write

If SYNCEN = ‘1’ and CSYNC = ‘1’ (both defined below), 
writing EQUSER = ‘1’ forces equalization and serration 
pulses to be inserted into the composite synchronization 
signal on the V_CSYNC pin.

0 - Disable

1 - Enable

INTRLC: Interlace - Read/Write

Writing INTRLC = ‘1’ enables interlaced frame timing.

0 - Disable

1 - Enable

INT: Interrupt - Read/Write

If INTEN = ‘1’, an INT = ‘1’ status indicates that the end of 
active video interrupt has occurred.

0 - No interrupt

1 - Interrupt occurred

Write “0” to clear, write “1” to test.

INTEN: Interrupt Enable - Read/Write

Writing INTEN = ‘1’ enables the end of active video 
interrupt.

0 - Disable
1 - Enable

PIFEN: Parallel Interface Enable - Read/Write 

0 - Enable interface for normal display operation
1 - Enable interface for Smart Panel operation

Writing PIFEN = ‘1’ redefines the signals on these pins for 
Smart Panel operation:



DS785UM1 7-53
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
V_CSYNC --> D7 (Smart Panel)

HSYNC --> D6

BLANK --> D5

P17 --> D4

P3 --> D3

P[2:0]  --> D[2:0]

SPCLK --> E

A Smart Panel has an integrated controller and frame 
buffer. Smart Panel R/W and RS signals must be 
implemented via GPIOs and controlled via software.

CCIREN: CCIR Enable - Read/Write

The value written to this bit selects which video output 
signals are generated:

0 - Normal signals

1 - CCIR656 YCrCb digital video signals

LCDEN: LCD Enable - Read/Write

The value written to this bit specifies the function of the 
signals to the P[16] pin and P[15] pin: 

0 -  Pixel data bits 16 and 15 are routed to pins P16 and 
P15, respectively

1 - XECL and YSCL signals are routed to pins P16 and 
P15, respectively. The XECL and YSCL signals are used 
to enable LCD drivers and register shifting

ACEN: AC Enable - Read/Write

Writing ACEN = ‘1’ routes an LCD AC Waveform to pin 
P17.

0 - Pixel data bit 17 is routed to pin P17

1 - LCD AC Wave Form is routed to pin P17. The 
waveform toggles with each new vertical frame.

INVCLK: Invert Pixel Clock - Read/Write

The value written to this bit selects the active edge of 
SPCLK on the SPCLK pin:

0 - Pixel data output changes on the rising edge of the 
clock on the SPCLK pin



7-54 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
1 - Pixel data output changes on falling edge of the clock 
on the SPCLK pin

BLKPOL: Blank Polarity - Read/Write

The value written to this bit selects the polarity of the 
blanking signal on the BLANK pin:

0 - BLANK is active LOW (default)

1 - BLANK is active HIGH

HSPOL: Horizontal Sync Polarity - Read/Write

The value written to this bit selects the polarity of the 
horizontal synchronization signal on the HSYNC pin:

0 - HSYNC is active LOW (default)

1 - HSYNC is active HIGH

V/CPOL: Vertical / Composite Polarity - Read/Write

The value written to this bit selects the polarity of the 
synchronization signal on the V_CSYNC pin:

0 - V_CSYNC is active LOW (default)

1 - V_CSYNC is active HIGH

CSYNC: Composite Sync - Read/Write

The value written to this bit selects whether the Vertical 
Sync or the Composite Sync signal is routed to the 
V_CSYNC pin:

0 - Vertical Sync

1 - Composite Sync

DATEN: Pixel Data Enable - Read/Write

The value written to this bit selects whether pixel data is 
output to the P[x] pins, or not:

0 - Pixel data output disabled

1 - Pixel data output enabled

SYNCEN: Video Sync Enable - Read/Write

The value written to this bit selects whether 
synchronization signals are output to the H_SYNC and 
V_CSYNC pins, or not:

0 - Video SYNC outputs disabled

1 - Video SYNC outputs enabled



DS785UM1 7-55
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
PCLKEN: Pixel Clock Enable - Read/Write

The value written to this bit selects whether the pixel clock 
or smart panel clock are output to the SPCLK pin, or not:

0 - SPCLK pin at high impedance

1 - PCLK or SCLK active on SPCLK pin

The PIFEN bit above selects PCLK vs. SCLK.

EN: Enable Video State Machine - Read/Write

The value written to this bit selects whether the video state 
machine is enabled, or not:

0 - Video state machine off

1 - Video state machine enabled

RasterSWLock

Address: 0x8003_007C

Default: 0x0000_0000

Definition: Raster Software Lock register

Bit Descriptions:

RSVD: Reserved - Unknown during read

SWLCK: Software Lock - Read/Write

WRITE: Writing 0X0000_00AA to this register will unlock 
all locked registers until the next block access.

READ: During a read operation, SWLCK[0] has this 
meaning:

1 - Unlocked for current bus access

0 - Locked 

The Read feature of the RasterSWLock register is used for 
testing the locking function. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SWLCK



7-56 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
ACRate

Address: 0x8003_0214

Default: 0x0000_0000

Definition: AC Toggle Rate register

Bit Descriptions:

RSVD: Reserved - Unknown during read

RATE: Rate - Read/Write

The RATE field must be written with a value that is one 
less than the number of horizontal video lines before the 
AC LCD bias signal is to toggle. Care must be taken when 
choosing this value while using the grayscale dithering 
algorithms, as a DC build-up may occur if the pixel timing 
for the ‘on’ state of the pixel is concurrent with the bias 
frequency.

FIFOLevel 

Address: 0x8003_0234

Default: 0x0000_0010

Definition: FIFO Refill Level register

Bit Descriptions:

RSVD: Reserved - Unknown during read

LEVEL: Level - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RATE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LEVEL



DS785UM1 7-57
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
This field should be written with a value that specifies the 
number of words that the FIFO empties before the FIFO 
requests that it be refilled. Values greater than 16 should 
be used with extreme caution as they can cause the 
Raster Engine to underflow, causing video jitter or other 
visual defects.

PixelMode 

Address: 0x8003_0054

Default: 0x0000_0000

Definition: Pixel Mode register

Bit Descriptions:

RSVD: Reserved - Unknown during read

0: Must be written as ‘0’

TRBSW: Two and Two-Thirds Red/Blue Swap - Read/Write

Writing a Two and two-thirds Red/Blue Swap value to this 
bit selects the ordering of Red and Blue pixels for data 
shifted displays:

0 - Normal: Blue is the low order bits followed by green 
and red

1 - Reverse: Red is low order bits followed by green and 
blue

DSCAN: Dual Scan - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRBSW DSCAN C M S P



7-58 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Writing a Dual Scan value to this bit selects whether the 
display is used in single scan mode, or dual scan mode 
where the display is divided into a ‘top’ half and a ‘bottom’ 
half. In dual scan mode, the video frame buffer in SDRAM 
must be organized such that ‘top’ and ‘bottom’ pixels 
alternate in consecutive locations. ‘Top’ and ‘bottom’ pixels 
are fetched and input to the Raster Engine’s video 
pipeline. The output shifter is set up to drive the top and 
bottom half screen data at the same time. Dual scan mode 
is intended for passive matrix LCD screens that require 
both halves of the screen to be scanned out at the same 
time. However, dual scan mode could also be used to 
drive two separate synchronized displays, each with 
different data.

0 - Single Scan (full page)

1 - Dual Scan (two half pages)

C: Color - Read/Write

The Color Mode is specified by selecting a value from 
Table 7-13 and writing it to this field. 

M: Mode - Read/Write

The Blink Mode is specified by selecting a value from 
Table 7-14 and writing it to this field. 

Table 7-13. Color Mode Definition Table 

C3 C2 C1 C0 Color Mode

0 0 0 0 Use LUT Data

0 1 0 0 Triple 8 bits per channel

0 1 0 1  16-bit 565 color mode

X 1 1 0  16-bit 555 color mode

1 X X X  Grayscale Palettes Enabled

Table 7-14. Blink Mode Definition Table

M3 M2 M1 M0 Blink Mode

0 0 0 0 Blink Mode Disabled

0 0 0 1 Pixels ANDed with Blink Mask

0 0 1 0 Pixels ORed with Blink Mask

0 0 1 1 XORed with Blink Mask

0 1 0 0 Blink to background register Value



DS785UM1 7-59
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

S: Shift - Read/Write

The Shift Mode is specified by selecting a value from 
Table 7-15 and writing it to this field.

P: Pixel - Read/Write

The number of bits per pixel that are output on the P[x] 
pins is specified by selecting a value from Table 7-16 and 
writing it to this field. 

The Graphics Engine has a separate setting for this value, 
which may or may not be the same.

0 1 0 1 Blink to offset color single value mode

0 1 1 0  Blink to offset color 888 mode (555,565)

0 1 1 1 Undefined

1 1 0 0 Blink dimmer single value mode

1 1 0 1 Blink brighter single value mode

1 1 1 0 Blink dimmer 888 mode (555,565)

1 1 1 1 Blink brighter 888 mode (555,565)

Table 7-15. Output Shift Mode Table

S2 S1 S0 Shift Mode

0 0 0 1 - pixel per pixel clock (up to 24 bits wide)

0 0 1 1 - pixel mapped to 18 bits each pixel clock

0 1 0 2 - pixels per shift clock (up to 9 bits wide each)

0 1 1 4 - pixels per shift clock (up to 4 bits wide each)

1 0 0 8 - pixels per shift clock (up to 2 bits wide each)

1 0 1 2 2/3 3-bit pixels per clock over 8 bit bus

1 1 0  Dual Scan 2 2/3 3-bit pixels per clock over 8-bit bus

1 1 1 Undefined - Defaults to 1 - pixel per pixel clock

Table 7-16. Bits per Pixel Scanned Out 

P2 P1 P0 Pixel Mode

0 0 0 pixel multiplexer disabled

0 0 1 4 bits per pixel

0 1 0 8 bits per pixel

0 1 1 do not use

Table 7-14. Blink Mode Definition Table (Continued)

M3 M2 M1 M0 Blink Mode



7-60 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7

ParllIfOut

Address: 0x8003_0058

Default: 0x0000_0000

Definition: Parallel Interface Output/Control Register.
This register, if PIFEN = ‘1’ in the VideoAttribs register, is used to access a 
Smart Panel. A Smart Panel has an integrated controller and frame buffer.

Bit Descriptions:

RSVD: Reserved - Unknown during read

RD: Read control bit - Write Only

Writing a ‘0’ to this bit location will initiate a parallel 
interface write cycle; writing a ‘1’ will initiate a parallel 
interface read cycle:

1 - Start Smart Panel write cycle

0 - Start Smart Panel read cycle

DAT: Data - Write Only

The value written to this field is output on the parallel 
interface pins during a write cycle. Writing PIFEN = ‘1’ to 
the VideoAttribs register redefines the signals on these 
pins for Parallel Interface (Smart Panel) operation:

V_CSYNC --> D7 (Smart Panel)

HSYNC --> D6

BLANK --> D5

P17 --> D4

1 0 0 16 bits per pixel

1 0 1 do not use

1 1 0 24 bits per pixel packed

1 1 1 32 bits per pixel (24 bits per pixel unpacked)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RD DAT

Table 7-16. Bits per Pixel Scanned Out  (Continued)

P2 P1 P0 Pixel Mode



DS785UM1 7-61
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
P3 --> D3

P[2:0]  --> D[2:0]

SPCLK --> E

Smart Panel R/W and RS signals must be implemented 
via GPIOs and controlled via software.

ParllIfIn 

Address: 0x8003_005C

Default: 0x0000_0000

Definition: Parallel Interface Output/Control Register
This register, if PIFEN = ‘1’ in the VideoAttribs register, is used to access a 
Smart Panel. A Smart Panel has an integrated controller and frame buffer.

Bit Descriptions:

RSVD: Reserved - Unknown during read

ESTRT: Enable Start - Read/Write

The Enable Signal Start Value for the parallel interface 
down counter should be written to this field. When the 
parallel interface counter counts down to this value during 
a write cycle (see RD bit in the ParllIfOut register for write 
cycle), the E enable signal on the E pin goes active. 

The E enable signal becomes inactive just before the 
counter counts down to 0x0, although data remains driven 
on the D[7:0] pins throughout the 0x0 count. This allows 
data to be driven for one additional clock cycle, providing 
data hold time to the Smart Panel.

CNT: Count - Read/Write

The counter preload value that is written to this field gets 
loaded into the parallel interface down counter. When a 
write or read cycle is initiated by writing to the RD bit in the 
ParllIfOut register, the counter begins to count down from 
this value. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD ESTRT CNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DAT



7-62 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Smart Panel R/W and RS signals must be implemented 
via GPIOs and controlled via software. The difference 
between the CNT[3:0] value and the ESTRT[3:0] value is 
what guarantees set up time for these GPIO signals to the 
Smart Panel before the rising edge of the E enable signal 
on the E pin.

DAT: Data - Read Only

This parallel interface data is input to the EP93xx 
processor from the Smart Panel during a read cycle (see 
RD bit in the ParllIfOut register for read cycle). The D[7:0] 
bits from the Smart Panel are loaded into this DAT field, 
respectively, on the falling edge of the ‘E’ enable control 
signal on the E pin.

Writing PIFEN = ‘1’ to the VideoAttribs register redefines 
the signals on these pins for Parallel Interface (Smart 
Panel) operation:

V_CSYNC --> D7 (Smart Panel)

HSYNC --> D6

BLANK --> D5

P17 --> D4

P3 --> D3

P[2:0]  --> D[2:0]

SPCLK --> E

Smart Panel R/W and RS signals must be implemented 
via GPIOs and controlled via software.



DS785UM1 7-63
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Blink Control Registers

BlinkRate 

Address: 0x8003_0040

Default: 0x0000_0000

Definition: Blink Rate Control register

Bit Descriptions:

RSVD: Reserved - Unknown during read

RATE: Rate - Read/Write

The blink rate value that is written to this field controls the 
number of video frames that occur before the LUT 
addresses assigned to ‘blink’ change between masked 
and unmasked (see “Blink Function” on page 7-10). The 
on/off blink cycle is controlled by this equation:

Blink Cycle = 2 x (1/VCLK) x HClkTotal x VLinesTotal x 
(255 - BlinkRate)

BlinkMask 

Address: 0x8003_0044

Default: 0x0000_0000

Definition: Blink Mask register
This register is used in conjunction with the BlinkPattrn register to determine 
which pixels that are fetched from SDRAM are blink pixels.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RATE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD MASK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MASK



7-64 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Bit Descriptions:

RSVD: Reserved - Unknown during read

MASK: Mask - Read/Write

The Blink Mask value that is written to this field is logical 
ANDed, ORed, or XORed with the pixel data that 
addresses the LUT. The mask allows a blinking pixel to 
jump from the normal color definition location to a blink 
color definition location in the look-up-table. 

The logical operator is selected by writing to the M field in 
the PixelMode register. The functions of the BlinkMask 
AND/OR/XOR operation can be viewed as: 

ANDing modifies the LUT address by clearing bits

ORing modifies the LUT address by setting bits 

XORing modifies the LUT address by inverting bits

BlinkPattrn 

Address: 0x8003_0048

Default: 0x0000_0000

Definition: Blink Pattern register
This register is used in conjunction with the BlinkMask register to determine 
which pixels that are fetched from SDRAM are blink pixels (see “BlinkPattrn 
Register” on page 7-33).

Bit Descriptions:

RSVD: Reserved - Unknown during read

PATRN: Pattern - Read/Write

The pixel value is first operated on by the Mask field in the 
BlinkMask register. The result is then compared to the 
blink pattern value that is written to this PATRN field. If the 
comparison results in a match, the pixel is validated as a 
blink pixel.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PATRN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PATRN



DS785UM1 7-65
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
PattrnMask 

Address: 0x8003_004C

Default: 0x0000_0000

Definition: Blink Pattern Mask register

Bit Descriptions:

RSVD: Reserved - Unknown during read

PMASK: Pattern Mask - Read/Write

The Blink Pattern Mask value that is written to this field 
defines which bits of the PATRN field in the BlinkPattrn 
register are used to validate a blink pixel:

0 - Bit used for comparison

1 - Bit not used for comparison

BkgrndOffset

Address: 0x8003_0050

Default: 0x0000_0000

Definition: Blink Background Color / Blink Offset value register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PMASK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMASK

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD BGOFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BGOFF



7-66 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Bit Descriptions:

RSVD: Reserved - Unknown during read

BGOFF: Background Off - Read/Write

The function of Background Off value that is written to this 
field is defined by the selected blink mode. 

When the value of the M field in the PixelMode is written to 
select ‘blink to background’ mode, the BGOFF field 
defines a 24-bit color for the background. 

When the value of the M field in the PixelMode is written to 
select ‘blink to offset’ mode, the BGOFF field defines the 
mathematical offset value for the blink color. The format for 
the mathematical offset is based on the color display mode 
- that is, 888, 565, 555 (see “Types of Blinking” on page 7-
33).

Hardware Cursor Registers

CursorAdrStart

Address: 0x8003_0060

Default: 0x0000_0000

Definition: Cursor Image Address Start register

Bit Descriptions:

 ADR: Address - Read/Write

The Cursor Address Start value that is written to this field 
specifies the SDRAM location that contains the start of the 
cursor image. The cursor image is 2-bits per pixel, and is 
stored linearly. The amount of storage space is dependent 
on the width and height of the cursor. 

NA: Not Assigned - Will return the written value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADR NA



DS785UM1 7-67
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
CursorAdrReset 

Address: 0x8003_0064

Default: 0x0000_0000

Definition: Cursor Image Address Reset register

Bit Descriptions:

ADR: Address - Read/Write

The Cursor Address Reset value that is written to this field 
specifies the SDRAM location of the part of the cursor that 
will be displayed next after reaching the last line of the 
cursor. 

Both start and reset locations are necessary for Dual Scan 
display of cursor information. If the cursor is totally in the 
upper half or lower half of the screen, the Start and Reset 
locations will be the same. Otherwise the cursor will start 
being overlaid on the video information at the start 
address, and when the dual scan height counter 
generates a carry, will jump to the reset value. The cursor 
will then continue to be overlaid when the Y location is 
reached, and will jump to the start address value when the 
height counter for the upper half generates a carry. 

Offsetting the reset value and changing the width of the 
cursor to be different from the cursor step value allows the 
right 48, 32, or 16 pixels of a larger cursor to be displayed 
only. Furthermore, offsetting the reset X location off of the 
left edge of the screen will allow pixel placement of the 
cursor off of the screen edge.

NA: Not Assigned - Will return the written value

 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADR NA



7-68 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
CursorSize

Address: 0x8003_0068

Default: 0x0000_0000

Definition: Cursor Height, Width, and Step Size register

Bit Descriptions:

RSVD: Reserved - Unknown during read

DLNS: Dual Scan Lower Half Lines - Read/Write

If DSCAN = ‘1’ in the PixelMode register, the Dual Scan 
Lower Half Lines value that is written to this field specifies 
the number of cursor lines that are displayed in the lower 
half of the display. 

CSTEP: Cursor Step Size - Read/Write

The Cursor Step Size value that is written to this field 
specifies the counter step size for the width of the cursor 
image:

00 - Step by 1 word or 16 pixels at a time

01 - Step by 2 words or 32 pixels at a time

10 - step by 3 words or 48 pixels at a time

11 - Step by 4 words or 64 pixels at a time

CLINS: Cursor Lines - Read/Write

The Cursor Lines value that is written to this field specifies 
the height in lines of the cursor image. The value should 
be set to ‘number of cursor lines minus one’. 

In dual scan mode this field should be set to the ‘number 
of cursor lines minus one’ to be displayed in the top half of 
the display.

CWID: Cursor Width - Read/Write

The Cursor Width value that is written to this field specifies 
the ‘displayed word width minus one’ of the cursor image:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DLNS CSTEP CLINS CWID



DS785UM1 7-69
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
00 - Display 1 word (16 pixels)

01 - Display 2 words (32 pixels)

10 - Display 3 words (48 pixels)

11 - Display 4 words (64 pixels)

CursorColor1, 

CursorColor2, 

CursorBlinkColor1, 

CursorBlinkColor2

Address: CursorColor1 - 0x8003_006C
CursorColor2 - 0x8003_0070
CursorBlinkColor1 - 0x8003_021C
CursorBlinkColor2 - 0x8003_0220

Default: 0x0000_0000

Definition: Cursor Color registers

Bit Descriptions:

RSVD: Reserved - Unknown during read

COLOR: Color - Read/Write

The Color value that is written to this field specifies the 
cursor image color that is inserted directly into the video 
pipeline. This color overlays all other colors when the 
cursor is enabled. This color does not go through the LUT. 

The 2-bits-per-pixel cursor image is stored anywhere in 
SDRAM. When cursor pixels are fetched from SDRAM, 
they are decoded and displayed as:

00 - Transparent
01 - Invert video stream
10 - CursorColor1 during no blink; CursorBlinkColor1 
during blink
11 - CursorColor2 during no blink; CursorBlinkColor2 
during blink 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD COLOR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COLOR



7-70 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
CursorXYLoc 

Address: 0x8003_0074

Default: 0x0000_0000

Definition: Cursor X and Y Location register

Bit Descriptions:

RSVD: Reserved - Unknown during read

YLOC: Y Location - Read/Write

The Y Location value written to this field specifies the 
starting vertical Y location of the cursor image. The value 
is compared to the vertical line counter and it should be 
specified to be between the active start and active stop 
vertical line values. 

The cursor hardware will clip the cursor at the bottom of 
the screen. To prevent cursor distortion, a new Y Location 
value will not be used until the next frame.

CEN: Cursor Enable - Read/Write

Writing a ‘1’ to this bit enables the hardware to insert the 
defined cursor into the image output video stream. The 
cursor image fetched from an SDRAM location that is 
defined by the CursorAdrStart register is combined with 
the output video stream. Writing a ‘0’ to this bit disables 
the cursor.

0 - Hardware cursor not enabled

1 - Hardware cursor enabled

When Dual Scan mode is enabled by writing DSCAN = ‘1’ 
in the PixelMode register, this Cursor Enable bit specifies 
that some or all of the cursor is located in the upper half of 
the display.

XLOC: Y Location - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD YLOC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CEN RSVD XLOC



DS785UM1 7-71
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
The X Location value written to this field specifies the 
starting horizontal X location of the cursor image. The 
value is compared to the horizontal pixel counter and it 
should be specified to be between the active start and 
active stop horizontal pixel values.

This X Location value is also used to specify the starting 
location for the cursor image in the upper half of the 
display when Dual Scan mode is enabled by writing 
DSCAN = ‘1’ in the PixelMode register.

The cursor hardware will clip the cursor at the right edge of 
the screen. To prevent cursor distortion, a new X Location 
value will not be used until the next frame.

CursorDScanLHYLoc

Address: 0x8003_0078

Default: 0x0000_0000

Definition: Cursor Y Location register

Bit Descriptions:

RSVD: Reserved - Unknown during read

CLHEN: Cursor Lower Half Enable - Read/Write

Writing a ‘1’ to this bit specifies that some or all of the 
cursor image is located in the lower half of the display. 
Writing a ‘0’ to this bit specifies the opposite.

0 - Hardware cursor not located in lower half of display

1 - Hardware cursor located in lower half of display

YLOC: Y Location - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLHEN RSVD YLOC



7-72 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
When Dual Scan mode is enabled by writing DSCAN = ‘1’ 
in the PixelMode register, the Y Location value written to 
this field specifies the starting vertical Y location (in the 
lower half of the display) of the cursor image. The value is 
compared to the vertical line counter and it should be 
specified to be between the active start and active stop 
vertical line values. 

The cursor hardware will clip the cursor at the bottom of 
the display. To prevent cursor distortion, a new Y Location 
value will not be used until the next frame.

CursorBlinkRateCtrl 

Address: 0x8003_0224

Default: 0x0000_0000

Definition: Blink Rate Control register

Bit Descriptions:

RSVD: Reserved - Unknown during read

EN: Enable - Read/Write

Writing a ‘1’ to this bit enables hardware cursor blinking 
and enables the blink rate counter. Writing a ‘0’ to this bit 
disables hardware cursor blinking and disables the blink 
rate counter:

0 - Hardware cursor blinking not enabled

1 - Hardware cursor blinking enabled

 When EN = ‘1’ and the 2-bit cursor pixel fetched from 
SDRAM is ‘10’, CursorColor2, is used for the ‘on’ part of 
the blink toggle and CursorColor1, is used for the ‘off’ part 
of the blink toggle. 

When EN = ‘1’ and the 2-bit cursor pixel fetched from 
SDRAM is ‘11’, CursorBlinkColor1, is used for the ‘on’ part 
of the blink toggle and CursorColor1, is used for the ‘off’ 
part of the blink toggle. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD EN RATE



DS785UM1 7-73
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
When EN = ‘0’ and the 2-bit cursor pixel fetched from 
SDRAM is ‘10’, CursorColor1, is used for the non-blinking 
cursor image.

When EN = ‘0’ and the 2-bit cursor pixel fetched from 
SDRAM is ‘11’, CursorColor1, is used for the non-blinking 
cursor image.

RATE: Rate - Read/Write

When EN = ‘1’, the Rate value written to this field specifies 
the number of video frames that will occur before switching 
between CursorColor1 or CursorColor2, and 
CursorBlinkColor1 or CursorBlinkColor2, respectively. 

An on/off cursor blink cycle is controlled by the equation:

Blink Cycle = 2 x (1/VCLK) x HClkTotal.Total x
                                             VLinesTotal.Total x (255 - RATE)

LUT Registers

GrySclLUTR, 

GrySclLUTG,

 GrySclLUTB 

Address: GrySclLUTR - 0x8003_0080 through 0x8003_00FC 
GrySclLUTG - 0x8003_0280 through 0x8003_02FC 
GrySclLUTB - 0x8003_0300 through 0x8003_037C

Default: 0x0000_FFFF in offset locations 0x7, 0x15, 0x23, and 0x31
0x0000_0000 in all other locations

Definition: Grayscale Look-Up-Tables

Bit Descriptions:

RSVD: Reserved - Unknown during read

FRAME: Frame Counter Selection - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD FRAME VERT HORZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D



7-74 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Writing a Frame Counter Selection value to this bit selects 
which Frame Counter is used for the current 3-bit pixel 
value: 

0 - use FRAME_CNT3 
1 - use FRAME_CNT4 

This bit is only defined for address locations GrySclLUTx 
Base + 0x000 to GrySclLUTx Base + 0x01C.

VERT: Vertical Counter Selection - Read/Write

Writing a Vertical Counter Selection value to this bit 
selects which Vertical Counter is used for the current 3-bit 
pixel value: 

0 - use FRAME_CNT3 
1 - use FRAME_CNT4 

This bit is only defined for address locations GrySclLUTx 
Base + 0x000 to GrySclLUTx Base + 0x01C.

HORZ: Horizontal Counter Selection - Read/Write

Writing a Horizontal Counter Selection value to this bit 
selects which Horizontal Counter is used for the current 3-
bit pixel value: 

0 - use FRAME_CNT3 
1 - use FRAME_CNT4 

This bit is only defined for address locations GrySclLUTx 
Base + 0x000 to GrySclLUTx Base + 0x01C.

D: Matrix Position Enable - Read/Write 



DS785UM1 7-75
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Writing ‘1’s to these Matrix Position Enable bits enables 
the control/dither of the monochrome data outputs 
according the to horizontal position, the vertical position, 
the frame, and the 3-bit incoming pixel value. Please 
reference Table 7-17 below to determine D bit positions in 
the matrix.

Table 7-17. Grayscale Look-Up-Table (LUT) 

Frame
Ctr

Vert
Ctr

Horz
Ctr

VCNT 
(lines)

11 11 11 11 10 10 10 10 01 01 01 01 00 00 00 00
GSLUT 

Address *4

HCNT 
(pixels)

11 10 01 00 11 10 01 00 11 10 01 00 11 10 01 00 Frame
Pixel
Value

D18 D17 D16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 000

D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 001

D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 010

D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 011

D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 100

D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 101

D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 00 110

D18 D17 D16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 111

X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 000

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 001

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 010

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 011

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 100

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 101

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 01 110

X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 111

X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 000

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 001

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 010

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 011

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 100

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 101

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 10 110

X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 111

X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 000

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 001

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 010

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 011

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 100

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 101

X X X D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 11 110

X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 111



7-76 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Where: 

FRAME[1:0] = FRAME_CNT3 or FRAME_CNT4 as defined by FRAME at address Pixel_In

VCNT[1:0] = VERT_CNT3 or VERT_CNT4 as defined by VERT at address Pixel_In

HCNT[1:0] = HORZ_CNT3 or HORZ_CNT4 as defined by HORZ at address Pixel_In

LUTSwCtrl 

Address: 0x8003_0218

Default: 0x0000_0000

Definition: LUT Switching Control register

Bit Descriptions:

RSVD: Reserved - Unknown during read

SSTAT: Switch Status - Read Only

When SWTCH = ‘0’, Switch Status = ‘1’ means that RAM0 
is in the video pipeline and RAM1 is accessible to the bus. 

When SWTCH = ‘1’, Switch Status = ‘1’ means that RAM1 
is in the video pipeline and RAM0 is accessible to the bus. 

During active video, the switch does not occur until the 
beginning of the next frame. When the video state 
machine is disabled, the switch occurs almost 
immediately.

SWTCH: Switch - Read/Write

Writing a Switch value to this bit selects which of these 
conditions is present when SSTAT = ‘1’: 

0 - RAM0 in video pipeline, RAM1 is accessible from bus
1 - RAM1 in video pipeline, RAM0 is accessible from bus.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SSTAT SWTCH



DS785UM1 7-77
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
ColorLUT

Address: 0x8003_0400 through 0x8003_07FC

Default: Unknown after power up

Definition: Color Look-Up-Table

Bit Descriptions:

Note: Triple 8-bit RGB is the most common way to use the LUT. However, The LUT may be 
organized differently depending on the needs of the display technology.

RSVD: Reserved - Unknown during read

R, G, B: Red, Green, Blue Color - Read/Write

Triple 8-bit Red, Green, and Blue Look-Up-Table (LUT) 
data is written to and read from these LUT locations. The 
position in the LUT where the RGB data is read/written is 
determined by the word address value ADR[9:2]. When 
the LUT is in the video pipeline, pixel data [23:0] is output 
from LUT word location ADR[9:2].

Video Signature Registers

VidSigRsltVal 

Address: 0x8003_0200

Default: 0x0000_0000

Definition: Video Output Signature Result Value register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD R

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G B

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIGVAL



7-78 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Bit Descriptions:

RSVD: Reserved - Unknown during read

SIGVAL: Signature Results Value - Read ONly

The Signature Results Value contained in this field is the 
16-bit result of the video output signature calculation. This 
Signature Results Value is usually updated once per frame 
based on the SigClrStr location. During grayscale 
operation, the Signature Results Value is updated once 
every 12 frames.

VidSigCtrl 

Address: 0x8003_0204

Default: 0x0000_0000

Definition: Video Output Signature Control register

Bit Descriptions:

EN: Enable - Read/Write

Writing a ‘1’ to this bit enables the Linear Feedback Shift 
Register (LFSR).

Writing a ‘0’ to this bit disables the LFSR.

RSVD: Reserved - Unknown during read

SPCLK: Smart Panel/Pixel Clock - Read/Write

Writing a ‘1’ to this bit enables the SPCLK output for 
calculation in the video signature.

Writing a ‘0’ to this bit disables the SPCLK output for 
calculation in the video signature.

BRIGHT: Bright - Read/Write

Writing a ‘1’ to this bit enables the Brightness control 
output for calculation in the video signature.

Writing a ‘0’ to this bit disables the Brightness control 
output for calculation in the video signature.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EN RSVD SPCLK BRIGHT CLKEN BLANK HSYNC VSYNC PEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEN



DS785UM1 7-79
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
CLKEN: Clock Enable - Read/Write

Writing a ‘1’ to this bit enables the CLKEN control for 
calculation in the video signature.

Writing a ‘0’ to this bit disables the CLKEN control for 
calculation in the video signature.

BLANK: Blank - Read/Write

Writing a ‘1’ to this bit enables the BLANK output for 
calculation in the video signature.

Writing a ‘0’ to this bit disables the BLANK output for 
calculation in the video signature.

HSYNC: Horizontal Synchronization - Read/Write

Writing a ‘1’ to this bit enables the HSYNC output for 
calculation in the video signature.

Writing a ‘0’ to this bit disables the HSYNC output for 
calculation in the video signature.

VSYNC: Vertical Synchronization - Read/Write

Writing a ‘1’ to this bit enables the VSYNC output for 
calculation in the video signature.

Writing a ‘0’ to this bit disables the VSYNC output for 
calculation in the video signature.

PEN: Pixel Bits Enable - Read/Write

Writing ‘1’s to these bits enables respective pixel bits for 
calculation in the video signature.

Writing ‘0’s to these bits disables respective pixel bits for 
calculation in the video signature.

VSigStrtStop 

Address: 0x8003_0208

Default: 0x0000_0000

Definition: Vertical Signature Bounds Start/Stop register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



7-80 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the Vertical down counter 
at which the VSIGEN signal becomes inactive (stops).This 
indicates the end of the signature calculation for the 
Vertical frame. VSIGEN is an internal block signal. The 
SIG_ENABLE control to the video signature analyzer is 
enabled by the logical AND of VSIGEN and HSIGEN. 

STRT: Start - Read/Write

The STRT value is the value of the Vertical down counter 
at which the VSIGEN signal becomes active (starts).This 
indicates the start of the signature calculation for the 
Vertical frame. VSIGEN is an internal block signal. The 
SIG_ENABLE control to the video signature analyzer is 
enabled by the logical AND of VSIGEN and HSIGEN. 

HSigStrtStop  

Address: 0x8003_020C

Default: 0x0000_0000

Definition: Horizontal Signature Bounds Start/Stop register

Bit Descriptions:

RSVD: Reserved - Unknown during read

STOP: Stop - Read/Write

The STOP value is the value of the horizontal down 
counter at which the HSIGEN signal becomes inactive 
(stops). This indicates the end of the signature calculation 
for a horizontal line. HSIGEN is an internal block signal. 
The SIG_ENABLE control to the video signature analyzer 
is enabled by the logical AND of VSIGEN and HSIGEN.

STRT: Start - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD STOP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STRT



DS785UM1 7-81
Copyright 2007 Cirrus Logic 

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7
The STRT value is the value of the horizontal down 
counter at which the HSIGEN signal becomes active 
(starts). This indicates the start of the signature calculation 
for a horizontal line. HSIGEN is an internal block signal. 
The SIG_ENABLE control to the video signature analyzer 
is enabled by the logical AND of VSIGEN and HSIGEN. 

SigClrStr  

Address: 0x8003_0210

Default: 0x0000_0000

Definition: Signature Clear and Store Location register

Bit Descriptions:

RSVD: Reserved. Unknown during read.

VCLR: Vertical Clear - Read/Write

The VCLR value is the value of the Vertical down counter 
at which the VSIGCLR signal is active. This indicates the 
line for clearing the LFSR and storing the result value for 
the Vertical frame. VSIGCLR is an internal block signal. 
The SIG_CLR control to the video signature analyzer is 
generated by the logical AND of VSIGCLR and HSIGCLR. 
The SigClrStr control signal is also routed to an edge 
trigger capable interrupt on the interrupt controller for use 
as a programmable secondary raster engine interrupt 
output.

HCLR: Horizontal Clear - Read/Write

The HCLR value is the value of the Vertical down counter 
at which the HSIGCLR signal is active. This indicates the 
specific horizontal pixel clock for clearing the LFSR and 
storing the result value within a horizontal line. HSIGCLR 
is an internal block signal. The SIG_CLR control to the 
video signature analyzer is generated by the logical AND 
of VSIGCLR and HSIGCLR. The SigClrStr control signal is 
also routed to an edge trigger capable interrupt on the 
interrupt controller for use as a programmable secondary 
raster engine interrupt output.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD VCLR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD HCLR



7-82 DS785UM1
Copyright 2007 Cirrus Logic

Raster Engine With Analog/LCD Integrated Timing and Interface
EP93xx User’s Guide

77

7



DS785UM1 8-1
Copyright 2007 Cirrus Logic 

88

8
Chapter 8

8Graphics Accelerator

 8.1 Overview

Note: The chapter applies only to the EP9307 and EP9315 procesors. 

The hardware Graphics Accelerator improves graphic performance by handling block copy, 
block fill, and hardware line draw functions. The Graphics Accelerator is used to off-load 
graphics functions from the ARM Core. Pixel depths supported by the Graphics Accelerator 
are 4, 8, 16 or 24 bits per pixel. The 24 bits per pixel mode can be operated as packed (4 
pixels every 3 words) or unpacked (1 pixel per word with the high byte unused.) The Block 
Copy function of the Graphics Accelerator is similar to a DMA (Direct Memory Access) 
transfer that understands:

1. Pixel organization

2. Block width

3. Transparency, and

4. Transformation from 1 bpp (bit per pixel) to higher 4, 8, 16 or 24 bpp. 

The Line Draw functions allow for solid lines or dashed lines. The colors for line drawing can 
be either foreground color and background color or foreground color with the background 
being transparent. The Graphics Accelerator also has an interrupt to indicate completion, or 
termination due to error, of the current function. 

 8.2 Block Processing Modes 
The block transfer modes allow transferring blocks of data from the source to the destination. 
Block transfers occur between two memory areas that are the same size or from a packed 
source to unpacked destination. It is not possible to copy from a large source to a smaller 
destination. Three data path options are provided during block transfers: 

1. Transparency

2. Logical AND/OR/XOR Mask, and

3. Logical AND/OR/XOR Destination

Since the block transfer features are all in the data path, transfers may be performed with any 
combination of the previous functions enabled. When combining functions, the precedence is 
Mask logic first, destination logical combination second, and finally transparency. 



8-2 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
 8.2.1 Copy

It is possible to copy data from the source memory to the destination memory using the copy 
form of block transfer. A copy is accomplished by not enabling any of the data path options, 
i.e. Transparency, Logical Mask, or Destination Mask. 

 8.2.1.1 Transparency 
Transparency is used to preserve pixels in the destination memory. When a pixel in the 
source block is defined as a transparent pixel, the corresponding destination pixel will be left 
un-modified by the block transfer. A pixel is defined as transparent when it matches the pixel 
value that is loaded into the TRANSPATTRN register. Comparisons are made based on the 
bits per pixel mode of the transfer.

 8.2.1.2 Logical Mask 
Logical Mask is used to manipulate the pixel data as it is copied from the source location to 
the destination. The source data will not be modified unless the source is also the destination. 
All pixel data is manipulated based on the value of the “BLOCKMASK” register and the 
desired operation. The operations, using “C” syntax, of Logical Mask are: 

    AND - This operator is used to remove pattern attributes from a pixel. 

          Dest = BLOCKMASK & Src;

    OR - This operator may be used to add regular pattern attributes to a pixel.

          Dest = BLOCKMASK | Src; 

    XOR - This operator is used for pixel bit plane inversion.

          Dest = BLOCKMASK ^ Src; (where ^ is an XOR operation)

 8.2.1.3 Logical Destination
Logical Destination provides for the modification of the destination data based on the value of 
the source pixels. The operations, using “C” syntax, of Logical Destination are:

    AND - This operator is used to remove pattern attributes from a pixel. 

          Dest = Dest & Src;

    OR - This operator is used to add regular pattern attributes to a pixel. 

          Dest = Dest | Src;

    XOR - This operator is used for pixel bit plane inversion. 

          Dest = Dest ^ Src;   (where ^ is an XOR operation)

 8.2.1.4 Operation Precedence
The order of precedence is: 

1. Logical Mask 



DS785UM1 8-3
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
2. Logical Destination 

3. Transparency 

 8.2.2 Remapping 

The Graphics Accelerator supports single bit pixel remapping with foreground/background or 
foreground/transparency to system color depth images (1 bpp mapped to 4, 8, 16 or 24 bpp 
expansion.) Images stored as a single bit plane can be expanded with a foreground color and 
either transparent or background color. Remapping can be used for fast transfer of text, 
single color patterns, and single color bit maps to video memory. 

Note:The Graphics Accelerator only supports movement in the positive direction for X and Y. In 
other words, use the remapping function only from the display top to bottom and from the 
display left to right. 

 8.2.3 Block Fills 

The Graphics Accelerator supports pixel addressed Block Fills and Block Copies with 4, 8, 
16, or 24 bpp resolution. During Block Fills, rectangular blocks of pixels are replaced with the 
pixel value that is in the “BLOCKMASK” register. For unpacked 24 bpp fills, the high byte is 
set to 0x00. 

 8.2.4 Packed Memory Transfer

A packed source means that all bits in a word are used for the source image. The only 
exception is the last word, which is not required to be used if the image size does not require 
the storage. A packed source DOES NOT mean that all words are packed together. The lines 
may have none, or one or more word(s) between each line. A line is defined as a continuous 
block of words that contains pixel data. 

In packed mode, the source can have a different layout than the destination. This is different 
from non-packed mode where the “BLKSRCWIDTH” and “BLKDESTHEIGHT” are the same. 

To enable a Packed Source transfer set the PACKD bit in the “BLOCKCTRL” register. 

 8.3 Line Draws
The Graphics Engine supports two types of hardware accelerated lines draws:

1. Breshenham Line Draw, or 

2. Pixel Step Line Draw 

The only programming difference between the two line draw algorithms is how the line 
increment registers are set. The lines may be drawn using solid lines or patterned lines. 
Accelerated line draw makes it possible to draw a single pixel width line between any two 
points with sub pixel accuracy. 



8-4 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
 8.3.1 Breshenham Line Draws 

Based on Breshenham's algorithm, this is the fastest of the two lines draws. Patterned lines 
drawn are aligned to the major axis. Steps made in the major axis are made on a 4095/4096 
pixel step per clock basis. This allows the algorithm to complete the line with the amount of 
pixel draws in the major axis. Steps in the minor axis are made in sub pixel increments. 

Patterned lines drawn in this mode are aligned to the major axis. A pattern up to 16 bits long 
repeats on an interval up to 16 bits. This type of patterning is commonly used. 

 8.3.2 Pixel Step Line Draws 

This is a sub-pixel accumulation line draw that will typically take longer to draw than a 
Breshenham line draw. The major advantage of the pixel step line draw is that it provides 
angularly corrected patterns. This means that the pattern of the line is applied along the line 
at the appropriate angle. The number of algorithm iterations is calculated based on the 
calculated pixel length of the line (Pythagorean theorem). A pattern up to 16 bits long repeats 
on an interval up to 16 bits. In this mode, visual correctness is emphasized over 
completeness. For higher definition patterns, details of the pattern may be lost. 

Wide lines are not hardware accelerated, but may be generated by stepping and repeating 
single pixel width lines. 

If speed is critical, horizontal un-patterned lines may be drawn by single pixel deep block fills. 

Note:Line drawing in the negative X or Y directions is not supported by the hardware. 

 8.4 Memory Organization for Graphics Accelerator
Table 8-1 shows a hypothetical 8 x 6 pixel matrix as it would appear on a display. 

P(x,y) is defined as a pixel at location x,y from the upper left corner of the screen.

Table 8-1. Screen Pixels 

X-Axis

Y-Axis P(0,0) P(1,0) P(2,0) P(3,0) P(4,0) P(5,0) P(6,0) P(7,0)

P(0,1) P(1,1) P(2,1) P(3,1) P(4,1) P(5,1) P(6,1) P(7,1)

P(0,2) P(1,2) P(2,2) P(3,2) P(4,2) P(5,2) P(6,2) P(7,2)

P(0,3) P(1,3) P(2,3) P(3,3) P(4,3) P(5,3) P(6,3) P(7,3)

P(0,4) P(1,4) P(2,4) P(3,4) P(4,4) P(5,4) P(6,4) P(7,4)

P(0,5) P(1,5) P(2,5) P(3,5) P(4,5) P(5,5) P(6,5) P(7,5)



DS785UM1 8-5
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
 8.4.1  Memory Organization for 1 Bit Per Pixel (bpp)

The 1 bpp storage format is for storing compressed image data for remapping only. This data 
cannot be displayed until it is remapped into a supported color depth. Table 8-2 shows how 
compressed 1 bpp images are stored in memory as 8 pixels per byte. 

 8.4.2 Memory Organization for 4-Bits Per Pixel 

The 4 bpp storage format can be used to support monochrome, 8 levels of grayscale, and 8 
or 16 color displays. The actual frame buffer can be organized as 2 pixels per byte or 1 pixel 
per byte. The Graphics Accelerator engine treats 4 bpp with 1 pixel per byte as 8 bpp mode. 
Table 8-3 shows how 4 bpp images are stored in memory as 2 pixels per byte. 

 8.4.3 Memory Organization for 8-Bits Per Pixel

The 8 bpp storage format can be used to support 8 level grayscale and color displays. For 
color displays, this mode would use a software changeable palette in the Raster Engine to 
map 256 color selections to 24-bit colors. Table 8-4 shows how 8 bpp images are stored in 
memory as 1 pixel per byte.

Table 8-2. bpp Memory Organization

31 24 23 16 15 8 7 0

0x0000 P(7,3)....... ......P(0,3) P(7,2)....... ......P(0,2) P(7,1)....... ......P(0,1) P(7,0)....... ......P(0,0)

0x0004 X X X X P(7,5)....... ......P(0,5) P(7,4)....... ......P(0,4)

Table 8-3. 4 bpp Memory Organization

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

0x0000 P(6,0) P(7,0) P(4,0) P(5,0) P(2,0) P(3,0) P(0,0) P(1,0)

0x0004 P(6,1) P(7,1) P(4,1) P(5,1) P(2,1) P(3,1) P(0,1) P(1,1)

0x0008 P(6,2) P(7,2) P(4,2) P(5,2) P(2,2) P(3,2) P(0,2) P(1,2)

0x0000 P(6,3) P(7,3) P(4,3) P(5,3) P(2,3) P(3,3) P(0,3) P(1,3)

0x0004 P(6,4) P(7,4) P(4,4) P(5,4) P(2,4) P(3,4) P(0,4) P(1,4)

0x0008 P(6,5) P(7,5) P(4,5) P(5,5) P(2,5) P(3,5) P(0,5) P(1,5)



8-6 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
  

 8.4.4 Memory Organization for 16-Bits Per Pixel

The 16 bpp storage format can be used to support high color displays. This mode would 
typically be used to implement a 5-bit blue, 6-bit green, 5-bit red color scheme or a 5-bit blue, 
5-bit green, 5-bit red color scheme. The least significant byte in 16 bpp mode could also be 
used in conjunction with the Raster Engine palette to map 256 color selections to 24 bit 
colors. With 256 color mapping, the most significant byte for each pixel would not be used for 
color information. Table 8-5 shows how 16 bpp images are stored in memory as 1 pixel for 
every two bytes. 

Table 8-4. 8 bpp Memory Organization

31 24 23 16 15 8 7 0

0x0000 P(3,0) P(2,0) P(1,0) P(0,0)

0x0004 P(7,0) P(6,0) P(5,0) P(4,0)

0x0008 P(3,1) P(2,1) P(1,1) P(0,1)

0x000C P(7,1) P(6,1) P(5,1) P(4,1)

0x0010 P(3,2) P(2,2) P(1,2) P(0,2)

0x0014 P(7,2) P(6,2) P(5,2) P(4,2)

..... ..... ..... ..... .....

0x0028 P(3,5) P(2,5) P(1,5) P(0,5)

0x002C P(7,5) P(6,5) P(5,5) P(4,5)

Table 8-5. 16 bpp Memory Organization 

31 16 15 0

0x0000 P(1,0) P(0,0)

0x0004 P(3,0) P(2,0)

0x0008 P(5,0) P(4,0)

0x000C P(7,0) P(6,0)

0x0010 P(1,1) P(0,1)

0x0014 P(3,1) P(2,1)

0x0018 P(5,1) P(4,1)

0x001C P(7,1) P(6,1)

..... ..... .....

0x0050 P(1,5) P(0,5)

0x0054 P(3,5) P(2,5)

0x0058 P(5,5) P(4,5)

0x005C P(7,5) P(6,5)



DS785UM1 8-7
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
 8.4.5 Memory Organization for 24-Bits Per Pixel

The 24 bpp packed or unpacked storage formats can be used to support higher color 
displays. These modes would typically be used to implement an 8-bit blue, 8-bit green, 8-bit 
red color scheme. Table 8-6 shows how 24 bpp packed images are stored in memory as 1 
pixel for every three bytes. Table 8-7 shows how 24 bpp unpacked images are stored in 
memory  

Table 8-6. 24 bpp Packed Memory Organization (4 pixel/ 3 words)

31 24 23 16 15 8 7 0

0x0000 P(1,0)B P(0,0)R P(0,0)G P(0,0)B

0x0004 P(2,0)G P(2,0)B P(1,0)R P(1,0)G

0x0008 P(3,0)R P(3,0)G P(3,0)B P(2,0)R

0x000C P(5,0)B P(4,0)R P(4,0)G P(4,0)B

0x0010 P(6,0)G P(6,0)B P(5,0)R P(5,0)G

0x0014 P(7,0)R P(7,0)G P(7,0)B P(6,0)R

..... ..... ..... ..... .....

0x0078 P(1,5)B P(0,5)R P(0,5)G P(0,5)B

0x007C P(2,5)G P(2,5)B P(1,5)R P(1,5)G

0x0080 P(3,5)R P(3,5)G P(3,5)B P(2,5)R

0x0084 P(5,5)B P(4,5)R P(4,5)G P(4,5)B

0x0088 P(6,5)G P(6,5)B P(5,5)R P(5,5)G

0x008C P(7,5)R P(7,5)G P(7,5)B P(6,5)R

Table 8-7. 24 bpp Unpacked Memory Organization (1 pixel/ 1 word) 

31 24 23 16 15 8 7 0

0x0000 unused P(0,0)R P(0,0)G P(0,0)B

0x0004 unused P(1,0)R P(1,0)G P(1,0)B

0x0008 unused P(2,0)R P(2,0)G P(2,0)B

0x000C unused P(3,0)R P(3,0)G P(3,0)B

0x0010 unused P(4,0)R P(4,0)G P(4,0)B

0x0014 unused P(5,0)R P(5,0)G P(5,0)B

0x0018 unused P(6,0)R P(6,0)G P(6,0)B

0x001C unused P(7,0)R P(7,0)G P(7,0)B

0x0020 unused P(0,1)R P(0,1)G P(0,1)B

.... ..... ..... ..... .....

0x00A0 unused P(0,5)R P(0,5)G P(0,5)B

0x00A4 unused P(1,5)R P(1,5)G P(1,5)B

0x00A8 unused P(2,5)R P(2,5)G P(2,5)B

0x00AC unused P(3,5)R P(3,5)G P(3,5)B



8-8 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8

 8.4.6 Memory Map Access

The Graphics Accelerator has access to the entire memory map. Therefore pixel block 
function processing is not limited to graphics and video memory. Font storage, bit map 
storage, etc. can be stored anywhere in the memory map. To alleviate page miss penalties 
for copies between SDRAM memory pages, the Graphics Accelerator uses a 32-entry copy 
buffer during block transfers.

 8.5  Register Programming
Some of the registers used to operate the Graphics Accelerator need extra explanation for 
proper usage. There are two sets such registers. They specify Word Count and Pixel 
End/Start values.

 8.5.1 Word Count

The “BLKSRCWIDTH” and “BLKDESTWIDTH” registers must be written with the ‘number of 
32-bit words minus 1’ that are to be fetched from the SDRAM buffer. If any pixel bit is in a 
word. it must be counted as a full word.

 8.5.1.1 Example: 8 BPP mode
If a Block Copy starts at pixel 0 and 7 pixels are to be copied, the “BLKSRCWIDTH” register 
would be loaded with a 0x1 (2 words - 1 word = 0x1) since the 7th pixel resides in word 1 and 
the 0th pixel resides in word 0. The pixels fetched are highlighted in Table 8-8.

If a Block Copy starts at pixel 0 and 2 pixels are to be copied, the “BLKSRCWIDTH” register 
would be loaded with 0x0 (1 word - 1 word = 0x0). The pixels fetched are highlighted in 
Table 8-9.

0x00B0 unused P(4,5)R P(4,5)G P(4,5)B

0x00B4 unused P(5,5)R P(5,5)G P(5,5)B

0x00B8 unused P(6,5)R P(6,5)G P(6,5)B

0x00BC unused P(7,5)R P(7,5)G P(7,5)B

Table 8-8. Transfer Example 1

Address 31 0 31 0 31 0 31 0

0x0000 - 
0x000C

FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00

Table 8-7. 24 bpp Unpacked Memory Organization (1 pixel/ 1 word) 



DS785UM1 8-9
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8

If a Block Copy starts at pixel 3 and 10 pixels are to be copied, the “BLKSRCWIDTH” register 
would be loaded with 0x3 (4 words - 1 word = 0x3). The pixels fetched are highlighted in 
Table 8-10. 

 8.5.1.2 Example: 24 BPP (packed) mode
If a Block Copy starts at pixel 0 and copies 5 pixels, the “BLKSRCWIDTH” register would be 
filled with 0x3. This is because the first four pixels consume 3 words and the 5th pixel 
consumes part of 1 word. This is a total of 4 words. So, the word width is 4 words - 1 word = 
0x3. The pixels fetched are highlighted in Table 8-11. 

If a Block Copy starts at pixel 2 and copies 6 pixels, the “BLKSRCWIDTH” register would be 
filled with 0x4. This is because the 1st pixel consumes part of the 1st word and the 4 
remaining pixels consume the next 4 words. So, the word width is 5 words - 1 word = 0x4. 
The pixels fetched are highlighted in Table 8-12.    

 8.5.2 Pixel End and Start

Two registers are used to control where in a word the first and last pixels reside. This is 
required since in all color depths more than 1 pixel can reside in a word of memory. This fact 
requires that the programmer provide the hardware with the exact information of where in a 
32-bit word a pixel starts or ends. One register, “SRCPIXELSTRT”, is used for the source 

Table 8-9. Transfer Example 2

Address 31 0 31 0 31 0 31 0

0x0000 - 
0x000C

FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00

Table 8-10. Transfer Example 3

Address 31 0 31 0 31 0 31 0

0x0000 - 
0x000C

FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00

Table 8-11. Transfer Example 4 

Address 31 0 31 0 31 0 31 0

0x0000 - 
0x000C

55 44 44 44 33 33 33 22 22 22 11 11 11 00 00 00

Table 8-12. Transfer Example 5

Address 31 0 31 0 31 0 31 0

0x0000 - 
0x000C

55 44 44 44 33 33 33 22 22 22 11 11 11 00 00 00

0x0010 - 
0x001C

AA AA 99 99 99 88 88 88 77 77 77 66 66 66 55 55



8-10 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
memory and the other register, “DESTPIXELSTRT”, is used for the destination memory. All 
start and stop values described below apply for source and destination values.

The two registers operate in an identical fashion for source and destination. To see how they 
operate requires looking at several tables that show the memory layout for pixels in the 
various color modes. 

 8.5.2.1 4 BPP Word Layout 
This 4 BPP mode example is somewhat difficult because the pixels are not in sequential 
order. For a Block Copy where 8 pixels are transferred per scan line, let the starting SDRAM 
address of the source image be 0x0000. Table 8-13 shows that Pixel 0 starts at bit 4, Pixel 1 
starts at bit 0, etc. The start pixel, P0, is in the word at address 0x0000 and has a beginning 
bit position of 4. This makes 4 = 0x4 the value that is used for the SPEL field in the 
“SRCPIXELSTRT” register.   

Let the starting SDRAM address of the destination image be 0x0020. Table 8-14 shows that 
Pixel 0 starts at bit 20, Pixel 1 starts at bit 16, etc. The start pixel, P0, is in the word at address 
0x0020 and has a beginning bit position of 20. This makes 20 = 0x14 the value that is used 
for the SPEL field in the “DESTPIXELSTRT” register. 

The end pixel, P7, is in the word at address 0x0024 and has a beginning bit position of 8. This 
makes 8 = 0x8 the value that is used for the EPEL field in the “DESTPIXELSTRT” register.

Note:The word count for this example would be: 2 - 1 = 1 words, since P7 ends in the 2nd word. 
So, WIDTH = 0x1 would be written to the “BLKDESTWIDTH” register.

Table 8-13. 4 BPP Memory Layout for Source Image

Address 31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

0x0000 P6 P7 P4 P5 P2 P3 P0 P1

Table 8-14. 4 BPP Memory Layout for Destination Image

Address 31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

0x0020 P2 P3 P0 P1

0x0024 P6 P7 P4 P5



DS785UM1 8-11
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
 8.5.2.2 8 BPP Word Layout 

For a Block Copy where 4 pixels are transferred per scan line, let the starting SDRAM 
address of the source image be 0x0000. Table 8-15 shows that Pixel 2 starts at bit 16, Pixel 3 
starts at bit 24, etc. The start pixel, P2, is in the word at address 0x0000 and has a beginning 
bit position of 16. This makes 16 = 0x10 the value that is used for the SPEL field in the 
“SRCPIXELSTRT” register.

Let the starting SDRAM address of the destination image be 0x0030. Table 8-16 shows that 
Pixel 2 starts at bit 16, Pixel 3 starts at bit 34, etc. The start pixel, P2, is in the word at address 
0x0030 and has a beginning bit position of 16. This makes 16 = 0x10 the value that is used 
for the SPEL field in the “DESTPIXELSTRT” register. 

The end pixel, P5, is in the word at address 0x0034 and has a beginning bit position of 8. This 
makes 8 = 0x8 the value that is used for the EPEL field in the “DESTPIXELSTRT” register.

Note:The word count for this example would be: 2 - 1 = 1 words, since P5 ends in the 2nd word. 
So, WIDTH = 0x1 would be written to the “BLKDESTWIDTH” register.

 8.5.2.3 16 BPP WORD Layout
For a Block Copy where 8 pixels are transferred per scan line, let the starting SDRAM 
address of the source image be 0x0000. Table 8-17 shows that Pixel 0 starts at bit 0, Pixel 1 
starts at bit 16, etc. The start pixel, P0, is in the word at address 0x0000 and has a beginning 
bit position of 0. This makes 0 = 0x0 the value that is used for the SPEL field in the 
“SRCPIXELSTRT” register.

Table 8-15. 8 BPP Memory Layout for Source Image

Address 31 24 23 16 15 8 7 0

0x0000 P3 P2 P1 P0

0x0004 P7 P6 P5 P4

Table 8-16. 8 BPP Memory Layout for Destination Image

Address 31 24 23 16 15 8 7 0

0x0030 P3 P2 P1 P0

0x0034 P7 P6 P5 P4

Table 8-17. 16 BPP Memory Layout for Source Image

Address 31 16 15 0

0x0000 P1 P0

0x0004 P3 P2

0x0008 P5 P4

0x000C P7 P6



8-12 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
Let the starting SDRAM address of the destination image be 0x0044. Table 8-18 shows that 
Pixel 0 starts at bit 16. The start pixel, P0, is in the word at address 0x0044 and has a 
beginning bit position of 16. This makes 16 = 0x10 the value that is used for the SPEL field in 
the “DESTPIXELSTRT” register. 

The end pixel, P7, is in the word at address 0x0054 and has a beginning bit position of 0. This 
makes 0 = 0x0 the value that is used for the EPEL field in the “DESTPIXELSTRT” register.

Note:The word count for this example would be: 5 - 1 = 4 words, since P7 ends in the 5th word. 
So, WIDTH = 0x4 would be written to the “BLKDESTWIDTH” register.

 8.5.2.4 24 BPP mode
This 24 BPP mode is the most difficult because, unlike the other modes, pixels will span 
words. For a Block Copy where 6 pixels are transferred per scan line, let the starting SDRAM 
address of the source image be 0x0000. Table 8-19 shows that Pixel 1 starts at bit 24. The 
start pixel, P1, is in the word at address 0x0000 and has a beginning bit position of 24. This 
makes 24 = 0x18 the value that is used for the SPEL field in the “SRCPIXELSTRT” register. 

Let the starting SDRAM address of the destination image be 0x0058. Table 8-20 shows that 
Pixel 1 starts at bit 24. The start pixel, P1, is in the word at address 0x0058 and has a 
beginning bit position of 24. This makes 24 = 0x18 the value that is used for the SPEL field in 
the “DESTPIXELSTRT” register. 

The end pixel, P6, is in the word at address 0x006C and has a beginning bit position of 0. 
This makes 0 = 0x0 the value that is used for the EPEL field in the “DESTPIXELSTRT” 
register.

Table 8-18. 16 BPP Memory Layout for Destination Image

Address 31 16 15 0

0x0044 P0

0x0048 P2 P1

0x004C P4 P3

0x0050 P6 P5

0x0054 P7

Table 8-19. 24 BPP Memory Layout for Source Image 

Address 31 24 23 16 15 8 7 0

0x0000 P1 P0 P0 P0

0x0004 P2 P2 P1 P1

0x0008 P3 P3 P3 P2

0x000C P5 P4 P4 P4

0x0010 P6 P6 P5 P5

0x0014 P7 P7 P7 P6



DS785UM1 8-13
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
Note:The word count for this example would be: 6 - 1 = 5 words, since P6 ends in the 6th word. 

The word count takes into account the whole pixel, not just the starting location. So, 
WIDTH = 0x5 would be written to the “BLKDESTWIDTH” register.

 8.6 Register Usage
Since some registers have different meanings based on the type of transfer being performed, 
the next section will give the use and meaning of the register during the various graphics 
transfers.

 8.6.1 Breshenham’s Algorithm Line Draw

The following sequence describes how to set up the registers that are used for a 
Breshenham algorithm line draw:

1. Setup LINEINIT Register

Write YINIT = 0x800 (2048) and XINIT = 0x800 in the “LINEINIT” register.

2. Setup LINEPATTERN Register

A. Write desired values to the Pattern (PTRN) and Count (CNT) fields to create solid or 
patterned lines. The “LINEPATTRN” register contains a 4-bit pattern Count (CNT) 
value and a 16-bit Pattern (PTRN) that defines 16 pixel on/off patterns for line 
functions. CNT specifies the position of the last bit used in the PTRN field starting at 
bit 0 of the PTRN field.

B. For a solid line, write CNT = 0xF and PTRN = 0xFFFF to the “LINEPATTRN” 
register. The solid line will have the color value that is written to the MASK field in 
the “BLOCKMASK” register.

C. For a pattern of 8 ‘on’ pixels and 8 ‘off’ pixels, write CNT = 0xF and PTRN = 0x00FF 
to the “LINEPATTRN” register. The 8 ‘on’ pixels would have the color value that is 
written to the MASK field in the “BLOCKMASK” register. The 8 ‘off’ pixels would 
either be transparent as specified by BG = ‘0’ in the “BLOCKCTRL” register or have 
the color value written to the “BACKGROUND” register as specified by BG = ‘1’ in 
the “BLOCKCTRL” register. Using DX/DY line draw, the pattern will be more 
consistent for any line regardless of angle.

Table 8-20.  24 BPP Memory Layout for Destination Image

Address 31 24 23 16 15 8 7 0

0x0058 P1 P0 P0 P0

0x005C P2 P2 P1 P1

0x0060 P3 P3 P3 P2

0x0064 P5 P4 P4 P4

0x0068 P6 P6 P5 P5

0x006C P7 P7 P7 P6



8-14 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
3. Setup DESTLINELENGTH Register 

A. Determine how many pixels occupy a 32-bit word. For example, four 8-bit pixels can 
occupy a 32-bit word. 

B. Determine the width of the display in pixels. For example, a 640x480 display has a 
width of 640 pixels.

C. The line length is determined by the ‘stride’ of the display, that is, how many 32-bit 
words are needed to populate the width of the display with pixels. From steps A and 
B, the stride for this example is 640 pixels divided by 4, where 4 is the number of 8-
bit pixels that occupy a word. So, for this example, destination line length is 640 
divided by 4 = 160 = 0xA0.

D. Write 0x0000_00A0 to the “DESTLINELENGTH” register.

4. Setup DESTPIXELSTRT Register

Write desired values to the EPEL and SPEL fields in the “DESTPIXELSTRT” register. 
See “Pixel End and Start” on page 8-9 for details.

5. Setup BLKDESTSTRT Register

Write the SDRAM address for the starting pixel of the 1st line to the ADR field in the 
“BLKDESTSTRT” register.

6. Setup BACKGROUND Register

If BG = ‘1’ in the “BLOCKCTRL” register, write the desired background color value to 
the BG field in the “BACKGROUND” register; if BG = ‘0’ in the “BLOCKCTRL” register, 
the color value written to the “BACKGROUND” register is ignored. The ‘off’ pattern bits, 
if any, will be displayed using the background color.

7. Setup BLOCKMASK Register

Write the desired foreground color value to the MASK field in the “BLOCKMASK” 
register. 

8. Setup LINEINC Register

Write the values determined below to the YINC and XINC fields in the “LINEINC” 
register:

if abs(x2 - x1) == abs(y2 -y1) 

Write YINC = 0xFFF (4095)

Write XINC = 0xFFF (4095)

if abs(x2 -x1) < abs(y2 - y1) 

Write YINC = 0xFFF (4095)

Write XINC = (abs(x2 - x1) / abs(y2 -y1)) * 4095). Round up to the nearest 
whole integer value.

if abs(x2 -x1) > abs(y2 - y1) 

Write YINC = (abs(y2 - y1) / abs(x2 - x1)) * 4095). Round to the nearest whole 
integer value.

Write XINC = 0xFFF (4095)



DS785UM1 8-15
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
9. Setup BLKDESTWIDTH Register

Write ‘abs(X2 -X1) modulo 4096, minus 1’ to the WIDTH field in the “BLKDESTWIDTH” 
register.

10.Setup BLKDESTHEIGHT Register

Write ‘abs(Y2 - Y1) / 4096, minus 1’ to the HEIGHT field in the “BLKDESTHEIGHT” 
register.

11.Setup BLOCKCTRL Register

A. Clear the “BLOCKCTRL” register by writing 0x0000_0000 to it. 

B. Set the LINE bit to ‘1’

C. If X2 > X1, set the DXDIR bit to ‘1’, else set the DXDIR bit to ‘0’

D. If Y2 > Y1, set the DYDIR bit to ‘1’, else set the DYDIR bit to ‘0’

E. Either set the BG bit to ‘1’ to use the background color specified in “BACKGROUND” 
register or set the BG bit to ‘0’ for transparent background.

F. Set the P bits to the value for the desired BPP color depth

G. If interrupts are desired, set the INTEN bit to ‘1’

H. Set the EN bit to ‘1’

The final step is to wait for an interrupt or poll for EN = ‘0’ in the BLOCKCTRL register. When 
the EN bit becomes cleared to ‘0’, the line draw function is complete.

 8.6.2 Example of Breshenham’s Algorithm Line Draw

To achieve the following display and pattern, follow Steps 1 to 14 in this section.

• Display size is 640 x 480 x 16-bits per pixel

• Display memory starts at physical location 0x0000_0000

• Pattern is 8 transparent pixels and 8 white pixels

• X2 = 20, X1 = 101

• Y2 = 20, Y1 = 301

The following sequence describes how to set up those registers that are used for a 
Breshenham’s algorithm line draw.

1. Write XINIT = 0x800 (2048) and YINIT = 0x800 to the “LINEINIT” register

2. Write PTTN = 0x00FF and CNT = 0xF to the “LINEPATTRN” register

3. Write LEN = 0x140 to the “DESTLINELENGTH” register, where LEN = 640 (pixels) x 1/2 
(1 / # of 16-bit pixels in word) = 640 x 1/2 = 320 = 0x140 

4. Write SPEL = 0x8 and EPEL = 0x0 to the “DESTPIXELSTRT” register, where:



8-16 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
SPEL = [X2% 2 (pixel depth / 8-bit byte)] x 8 = [101% 2 (16-bits / 8-bits)] x 8-bits = 
[101% 2] x 8 = 1 x 8 = 8 = 0x8, and

EPEL = [X1% 2 (pixel depth / 8-bit byte)] x 8 = [20% 2 (16-bits / 8-bits)] x 8-bits = [20% 
2] x 8 = 0 x 0 = 0 = 0x0

5. Write the word-aligned value of the SDRAM address ‘for the beginning of the line draw’ 
to the “BLKDESTSTRT” register.

6. Write the desired background color value to the BG field in the “BACKGROUND” 
register. The ‘off’ pattern bits of the line will be displayed using the background color.

7. Write the desired foreground color value to the MASK field in the “BLOCKMASK” 
register. The ‘on’ pattern bits of the line will be displayed using the foreground color.

8. Write YINC = 0xFFF and XINC = 0x49C to the “LINEINC” register, where

YINC = 4095 = 0xFFF

XINC = [abs(X2 - X1) / abs(Y2 - Y1)] x 4095 = [abs(20 - 101) / abs(20-301)] x 4095 = 
(81 / 281) x 4095 = 1180.409, which rounds to 1180 = 0x49C

9. Write WIDTH = 0x50 to the “BLKDESTWIDTH”:register, where

WIDTH = abs(X2 - X1)% 4096 - 1 = abs(20 - 101)% 4096 - 1 = 81% 4096 - 1 = 81 - 1 = 
80 = 0x50

10. Write HEIGHT = 0x0 to the “BLKDESTHEIGHT” register, where

HEIGHT = [abs(Y2 - Y1) - 1] / 4096 = [abs(20 - 301) - 1]/ 4096 = (281 - 1) / 4096 = 
0.0686 = 0x0

11. Clear the “BLOCKCTRL” register by writing 0x0000_0000 to it

12.Write Line = ‘1’, DXDIR = ‘0’, DYDIR = ‘0’, BG = ‘0’, P = 0x4, and INTEN = ‘1’ to the 
“BLOCKCTRL” register

13.Write EN = ‘1’ to the “BLOCKCTRL” register

14.Wait for an interrupt or poll for EN = ‘0’ in the “BLOCKCTRL” register. When the EN bit 
becomes cleared to ‘0’, the Breshenham’s Algorithm line draw function is complete.

 8.6.3 Block Fill Function

The following sequence describes how to carry out a Block Fill function:

1. Setup BLOCKMASK Register

Write the desired pixel-fill value to the MASK field in the “BLOCKMASK” register. The 
pixel-fill value is dependant on the color depth.

2. Setup DESTPIXELSTRT Register

Write the desired values to the SPEL field and the EPEL field in the “DESTPIXELSTRT” 
register.



DS785UM1 8-17
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
SPEL is the starting pixel position within the word that the pixel-fill will begin with. EPEL 
is the ending pixel position within the word that the pixel-fill will end with. See Section 
8.5.2. Pixel End And Start. Use the DESTPIXELSTRT calculation in the block copy 
example shown in Section 8.6.4.1.

3. Setup DESTLINELENGTH Register

Write the line length value to the LEN field in the “DESTLINELENGTH” register, where 
LEN is determined by: 

A. Find how many pixels occupy a 32-bit word. For example, four 8-bit pixels can 
occupy a 32-bit word. 

B. Find the width of the display in pixels. For example, a 640x480 display has a width 
of 640 pixels.

C. The line length, LEN, is determined by the stride of the display, that is, how many 
32-bit words are needed to populate the width of the display with pixels. From steps 
1 and 2, the stride for this example is 640 pixels divided by 4, where 4 is the number 
of 8-bit pixels that occupy a word. So, for this example, line length is 640 divided by 
4 = 160 = 0xA0.

Usually the same LEN value is used in both the “DESTLINELENGTH” register and the 
“SRCLINELENGTH” register. 

4. Setup BLKDESTWIDTH Register

Write the value of ‘Stride minus 1’ to the WIDTH field in the “BLKDESTWIDTH” register, 
where WIDTH is determined by: 

A. Find how many pixels occupy a 32-bit word. For example, four 8-bit pixels can 
occupy a 32-bit word. 

B. Find the width of the image in pixels. For example, a 20 x 10 image has a width of 20 
pixels.

C. The stride of the image is how many 32-bit words are needed to populate the width 
of the image with pixels. From steps 1 and 2, the stride for this example is 20 pixels 
divided by 4, where 4 is the number of 8-bit pixels that occupy a word. So, the stride 
is 20 divided by 4 = 5. However, the value of WIDTH is defined as the value of stride 
less 1. So, WIDTH = 5 - 1 = 4 = 0x004.

5. Setup BLKDESTHEIGHT Register

Write the desired value to the HEIGHT field in the “BLKDESTHEIGHT” register, where 
HEIGHT = the height in lines of the fill area minus 1.

For example, a 20-pixels x 10-lines image has a height of 10 lines. So, HEIGHT = 10 - 1 
= 9 = 0x9.

6. Setup BLKDESTSTRT Register

Write the word-aligned value of the SDRAM address ‘for the beginning of the block fill’ 
to the “BLKDESTSTRT” register.



8-18 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
7. Setup BLOCKCTRL Register

For (example) 16-bit pixels and Mask AND Mode:

A. Clear the “BLOCKCTRL” register by writing 0x0000_0000 to it

B. Write Fill = ‘1’, BG = ‘0’, M = 0x1, P = 0x4, and INTEN = ‘1’ to the “BLOCKCTRL” 
register

C. Write EN = ‘1’ to the “BLOCKCTRL” register

8. Wait for an Interrupt or Poll for EN = ‘0’ in the BLOCKCTRL Register. 

When the EN bit becomes cleared to ‘0’, the Block Fill Algorithm function is complete.

 8.6.4 Block Copy Function

The following sequence describes how to set up the registers used for a Block Copy function:

1. Setup Source Memory

A. Write the desired values to the SPEL field and the EPEL field in the 
“SRCPIXELSTRT” register.

SPEL is the starting pixel position within the word that the pixel-copy will begin with. 
EPEL is the ending pixel position within the word that the pixel-copy will end with. See 
Section 8.5.2.

For example, if the image to be copied is at position (51, 75) and the pixel depth is 16-
bits, the value for SPEL is (51 x 16)% 32 = 16 = 0x10 and the value for EPEL is (75 x 
16)% 32 = 16 = 0x10

B. Write the word-aligned value of the SDRAM address ‘for the beginning of the image 
that is to be copied’ to the “BLKDESTSTRT” register.

C. Write the line length value to the LEN field in the “SRCLINELENGTH” register, 
where LEN is determined by: 

(1).Find how many pixels occupy a 32-bit word. For example, four 8-bit pixels can 
occupy a 32-bit word. 

(2).Find the width of the display in pixels. For example, a 640x480 display has a 
width of 640 pixels.

(3).The line length, LEN, is determined by the stride of the display, that is, how 
many 32-bit words are needed to populate the width of the display with pixels. 
From steps 1 and 2, the stride for this example is 640 pixels divided by 4, 
where 4 is the number of 8-bit pixels that occupy a word. So, for this example, 
line length is 640 divided by 4 = 160 = 0xA0.

Usually the same LEN value is used in both the “SRCLINELENGTH” register
and the “DESTLINELENGTH” register.

D. Write the value of the WIDTH field to the “BLKSRCWIDTH” register, where WIDTH 
is the number of 32-bit words, minus 1, that are needed to contain the pixels that 



DS785UM1 8-19
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
comprise the first scan line of the source image.

For example, Table 8-21 shows that six 32-bit words are needed to contain six 24-
bit pixels. So, LEN = 6 - 1 = 5 = 0x5.

2. Setup Destination Memory

A. Write the desired values to the SPEL field and the EPEL field in the 
“DESTPIXELSTRT” register.

SPEL is the starting pixel position within the word that the pixel-copy will begin with. 
EPEL is the ending pixel position within the word that the pixel-copy will end with. 
See Section 8.5.2.

For example, if the image is to be copied to position (81, 105) and the pixel depth is 
16-bits, the value for SPEL is (81 x 16)% 32 = 16 = 0x10 and the value for EPEL is 
(105 x 16)% 32 = 16 = 0x10

B. Write the word-aligned value of the SDRAM address ‘for the beginning of the copy 
destination’ to the “BLKDESTSTRT” register.

C. Write the line length value to the LEN field in the “DESTLINELENGTH” register, 
where LEN is determined by: 

(1).Find how many pixels occupy a 32-bit word. For example, four 8-bit pixels can 
occupy a 32-bit word. 

(2).Find the width of the display in pixels. For example, a 640x480 display has a 
width of 640 pixels.

(3).The line length, LEN, is determined by the stride of the display, that is, how 
many 32-bit words are needed to populate the width of the display with pixels. 
From steps 1 and 2, the stride for this example is 640 pixels divided by 4, 
where 4 is the number of 8-bit pixels that occupy a word. So, for this example, 
line length is 640 divided by 4 = 160 = 0xA0.

Usually the same LEN value is used in both the “DESTLINELENGTH” register
and the “SRCLINELENGTH” register.

D. Write the value of the WIDTH field to the “BLKDESTWIDTH” register, where WIDTH 
specifies the number of 32-bit words, minus 1, that are needed to contain the pixels 
that comprise the 1st scan line of the destination image. For an example, please 

Table 8-21. Words Needed for Six 24-Bit Pixels

Address 31 24 23 16 15 8 7 0

0x0000 P1 P0 P0 P0

0x0004 P2 P2 P1 P1

0x0008 P3 P3 P3 P2

0x000C P5 P4 P4 P4

0x0010 P6 P6 P5 P5

0x0014 P7 P7 P7 P6



8-20 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
refer to the note in Section 8.5.2.4 on page 8-12.

E. Write the desired value to the HEIGHT field in the “BLKDESTHEIGHT” register, 
where HEIGHT = the height in lines of the image that is to be copied minus 1.

For example, a 20-pixels x 10-lines image has a height of 10 lines. So, HEIGHT = 
10 - 1 = 9 = 0x9.

F. The “BLOCKCTRL” register must be cleared to 0x0. This action clears out the 
previous graphics instruction. The EOI bit field must be cleared to ‘0’ regardless of 
the interrupt enable status. 

The PACKD bit must be configured to indicate if the image to be copied has the 
same size for the source and the destination. Setting the PACKD bit allows transfers 
from images that are packed into whole word areas. 

The P bits must be configured for the BPP depth of the image to be copied. 

When using the AND/OR/XOR mask function, the M bits must be configured for the 
appropriate function. 

When using the AND/OR/XOR destination function, the D bits must be configured 
for the appropriate function. 

When using transparency, the TRANS bit must be enabled to ‘1’. This allows data 
from the source to be compared with the transparency pixel pattern to determine if 
the destination pixel is to be modified before it is written. Without this bit enabled, a 
direct block copy would occur.

The SYDIR, SXDIR and DYDIR, DXDIR direction bits must be configured. These 
bits control the direction for the line accumulator, Y, and the word/pixel counter, X. In 
a left to right and top to bottom transfer:

(1).if the destination is not exactly the same as the source, or

(2).if the destination partially overlaps the source and has a destination starting 
word address greater than the source starting word address, then the source 
information may be corrupted before being read. For this condition, the 
direction bits for the transfer must be changed from left to right and top to 
bottom to right to left and bottom to top.

Note: Setting the source direction bits different from the destination direction bits is illegal and 
will have unpredictable results.

G. The INTEN bit must configured to enable or disable an interrupt signal to the ARM 
Core that occurs upon completion of the acceleration function.

H. After Step G is complete, write EN = ‘1’ to start the Block Copy function.

I. Wait for an interrupt or poll for EN = ‘0’. When the EN bit is cleared to ‘0’, the Block 
Copy function sequence is done.



DS785UM1 8-21
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
 8.6.4.1 Example of Block Copy

To achieve the following display and pattern, follow Steps A to I in this section.

• Screen Size is 640x480x16-bits/pixel

• Screen memory starts at physical address 0x0000_0000

• Image to be copied is at physical address 0x0000_0960

• Image to be copied is at position (51, 75)

• Image destination is at position (300, 115)

• Source and destination width is 30 pixels

A. SRCPIXELSTRT = (51 * 16)% 32 = 16

B. BLKSRCSTRT = 0x960

C. SRCLINELENGTH = 640 / 2 pixels per word = 320 = 0x140

D. DESTPIXELSTRT:

SPEL = [(640 * 115) + 300] * 16% 32 = 0 = 0x0

    EPEL = {[640 * (115 + 20)] + 300 +20} * 16% 32 = 0 = 0x0

E. BLKDESTSTRT =[(640 * 115) + 300] * 2 = 147800 = 0x24158

F. BLKDESTWIDTH = (30 / 2) - 1 = 14 = 0xE

G. BLKDESTHEIGHT = 20

H. BLOCKCTRL:

Write 0x0000_0000 to the BLOCKCTRL register to clear it.

Write PACKD = ‘0’ to specify that the size of the source and destination images are the 
same.

Write P = 0x4 to specify 16-bits/pixel.

Write SXDIR = ‘0’, SYDIR = ‘0’, DXDIR = ‘0’, DYDIR = ‘0’ to specify that pixels are 
placed into the destination image left to right and top to bottom.

Write FILL = ‘1’ to enable the block copy or Block Copy function.

Write INTEN = ‘1’ to enable the Graphics Accelerator interrupt.

Write EN = ‘1’ to initiate graphics processing

I. The final step is to wait for an interrupt or poll for EN = ‘0’. When the EN bit becomes 
cleared to ‘0’, the Block Copy function is complete.



8-22 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
 8.7 Registers 

Note: Graphics Accelerator registers are intended to be word accessed only. Since the least 
significant bytes of the address bus are not decoded, byte and half word accesses are 
illegal and may yield unpredictable results.

Table 8-22. Graphics Accelerator Registers

Address Name
SW 

locked
Type Size Description

0x8004_0000 “SRCPIXELSTRT” No Read/Write 5 bits Source Pixel Start Register

0x8004_0004 “DESTPIXELSTRT” No Read/Write 5 + 5 bits Destination Pixel Start/End Register

0x8004_0008 “BLKSRCSTRT” No Read/Write 32 bits Block Source Word Address Start Register

0x8004_000C “BLKDESTSTRT” No Read/Write 32 bits Block Destination Word Address Start Register

0x8004_0010 “BLKSRCWIDTH” No Read/Write 12 bits Block Function Source Width Register

0x8004_0014
SRCLINELENGTH“S

RCLINELENGTH”
No Read/Write 12 bits Block Source Line Length Register

0x8004_0018 “BLKDESTWIDTH” No Read/Write 12 bits Block Function Destination Width Register

0x8004_001C “BLKDESTHEIGHT” No Read/Write 11 bits Block Function Destination Height Register

0x8004_0020 “DESTLINELENGTH” No Read/Write 12 bits Destination Line Length Register

0x8004_0024 “BLOCKCTRL” No Read/Write 16 bits Block Function Control Register

0x8004_0028 “TRANSPATTRN” No Read/Write 24 bits Block Function Transparency Register

0x8004_002C “BLOCKMASK” No Read/Write 24 bits Block Function Mask Register

0x8004_0030 “BACKGROUND” No Read/Write 24 bits Block Function Background Register

0x8004_0034 “LINEINC” No Read/Write 12 + 12 bits Line Draw Increment Register

0x8004_0038 “LINEINIT” No Read/Write 12 + 12 bits Line Draw Initialization Register

0x8004_003C “LINEPATTRN” No Read/Write 20 bits Line Pattern Register



DS785UM1 8-23
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
Register Descriptions

SRCPIXELSTRT

Address: 0x8004_0000 - Read/Write

Default: 0x0000_0000

Mask: 0x0000_001F

Definition: Source Pixel Start register

Bit Descriptions:

RSVD: Reserved - Unknown during read

PEL: Source Pixel Location - Read/Write

For the starting pixel (at the starting X-Y coordinate of the 
1st scan line) of the source image for a block copy, the 
value in this field specifies where the beginning bit of the 
pixel is located in a 32-bit word. For example, if the 
beginning bit of a 16-bit pixel is located at bit 16 of a 32-bit 
word, PEL = 0x10.

The PEL field and the ADR field in the “BLKSRCSTRT” 
register together define the starting pixel’s address in the 
SDRAM frame buffer. In REMAP mode, the starting 
location written to the PEL field can be defined with bit-
level granularity. For all other modes, the granularity must 
be a multiple of the pixel size: e.g. in 8 bpp mode, 
acceptable PEL values are 0x00, 0x08, 0x10, and 0x18.

DESTPIXELSTRT 

Address: 0x8004_0004 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PEL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD EPEL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SPEL



8-24 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
Default: 0x0000_0000

Mask: 0x001F_001F

Definition: Destination Pixel Start/End register

Bit Descriptions:

RSVD: Reserved - Unknown during read

EPEL: Destination Pixel Location - Read/Write

For the ending pixel (at the ending X-Y coordinate of the 
1st scan line) of the destination image for a block copy, the 
value in this field specifies where the beginning bit of the 
ending pixel is located in a 32-bit word. For example, if the 
beginning bit of an 8-bit pixel is located at bit 24 of a 32-bit 
word, EPEL = 0x18.

The EPEL field and the ADR field in the “BLKDESTSTRT” 
register together define the destination ending pixel’s 
address in the SDRAM frame buffer. Granularity must be a 
multiple of the pixel size in all video display modes. For 
example,.acceptable values in 8 bpp mode are 0x00, 
0x08, 0x10, and 0x18.

SPEL: Source Pixel Location - Read/Write

For the starting pixel (at the starting X-Y coordinate of the 
1st scan line) of the destination image for a block copy, the 
value in this field specifies where the beginning bit of the 
pixel is located in a 32-bit word. For example, if the 
beginning bit of a 16-bit pixel is located at bit 16 of a 32-bit 
word, PEL = 0x10.

The SPEL field and the ADR field in the “BLKDESTSTRT” 
register together define the destination starting pixel’s 
address in the SDRAM frame buffer. Granularity must be a 
multiple of the pixel size in all video display modes. For 
example,.acceptable values in 8 bpp mode are 0x00, 
0x08, 0x10, and 0x18.

BLKSRCSTRT

Address: 0x8004_0008 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADR NA



DS785UM1 8-25
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
Default: 0x0000_0000

Mask: 0xFFFF_FFFC

Definition: Block Source Word Address Start register

Bit Descriptions:

ADR: Address - Read/Write

The value in this field specifies the word address of the 
SDRAM frame buffer location that contains the starting 
pixel (of the first scan line) of the source image.

The ADR field and the PEL field in the “SRCPIXELSTRT” 
register together define the starting pixel’s address in the 
SDRAM frame buffer of the source image.

NA: Not Assigned - Not used, returns written value

BLKDESTSTRT

Address: 0x8004_000C - Read/Write

Default: 0x0000_0000

Mask: 0xFFFF_FFFC

Definition: Block Destination Word Address Start register

Bit Descriptions:

ADR: Address - Read/Write

The value in this field specifies the word address of the 
SDRAM frame buffer location that contains the starting 
pixel (of the first scan line) of the destination image.

The ADR field and the SPEL field in the 
“DESTPIXELSTRT” register together define the starting 
pixel’s address in the SDRAM frame buffer of the 
destination image.

NA: Not Assigned - Not used, returns written value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADR NA



8-26 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
BLKSRCWIDTH 

Address: 0x8004_0010 - Read/Write

Default: 0x0000_0000

Mask: 0x0000_0FFF

Definition: Block Function Source Width Register

Bit Descriptions:

RSVD: Reserved. Unknown during read.

WIDTH: Width - Read/Write

For a Block Copy function, the value in this field specifies 
the number of 32-bit words, minus 1, that are needed to 
contain the pixels in the 1st scan line of the source image. 
For an example, please refer to Table 8-18 on page 8-12. 
Six 32-bit words are needed to contain six 24-bit pixels. 
So, WIDTH = 6 - 1 = 5 = 0x5.

The maximum value for the field is 0xFFE = 4095 words.

SRCLINELENGTH

Address: 0x8004_0014 - Read/Write

Default: 0x0000_0000

Mask: 0x0000_0FFF

Definition: Block Source Line Length Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

LEN: Length - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WIDTH

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LEN



DS785UM1 8-27
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
The value in this field specifies the number of 32 bit words, 
minus 1, that are needed to contain all of the pixels that 
comprise width of the display. The value of LEN is 
determined by: 

1) Find how many pixels occupy a 32-bit word. For 
example, four 8-bit pixels can occupy a 32-bit word. 

2) Find the width of the display in pixels. For example, a 
640x480 display has a width of 640 pixels.

3) The line length, LEN, is determined by the stride of the 
display, that is, how many 32-bit words are needed to 
populate the width of the display with pixels. From steps 1 
and 2, the stride for this example is 640 pixels divided by 
4, where 4 is the number of 8-bit pixels that occupy a 
word. So, for this example, LEN = 640 / 4 = 160 = 0xA0.

Usually the same LEN value is used in both the 
SRCLINELENGTH register and the DESTLINELENGTH 
register.

BLKDESTWIDTH 

Address: 0x8004_0018 - Read/Write

Default: 0x0000_0000

Mask: 0x0000_0FFF

Definition: Block Function Destination Width Register.

Bit Descriptions:

RSVD: Reserved - Unknown during read

WIDTH: Width - Read/ Write

For Block Fill and Block Copy functions, the value in this 
field specifies the number of 32-bit words, minus 1, that 
are needed to contain the pixels in the 1st scan line of the 
destination image. For example, please refer to the note in 
Section 8.5.2.4 on page 8-12. The maximum value for the 
field is 0xFFE = 4095 words.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WIDTH



8-28 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
For Line Draw functions, the method to determine the 
value of WIDTH is dependent on the line draw algorithm. 
For the Burnishing algorithm, please refer to 
BLKDESTWIDTH in Section 8.6.1 on page 8-13. For the 
DX/DY algorithm, please refer to BLKDESTWIDTH in 
Section 8.6.3 on page 8-16. The value of WIDTH is 
multiplied by the value of HEIGHT in the 
BLKDESTHEIGHT register to determine the number of 
line draw iterations.

BLKDESTHEIGHT

Address: 0x8004_001C - Read/Write

Default: 0x0000_0000

Mask: 0x0000_07FF

Definition: Block Function Destination Height Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

HEIGHT:   Height - Read/Write

For Block Fill or Block Copy functions, the value in this 
field specifies the height in ‘lines minus 1’ of the 
destination image. Since there is no BLKSRCHEIGHT 
register, the source image must have the same height as 
the destination image.

For Line Draw functions, the value in this field specifies the 
distance in ‘lines minus 1’ between Y_dest_end and 
Y_dest_start. The method to determine the value of 
HEIGHT is dependent on the line draw algorithm. For the 
Breshenham algorithm, please refer to BLKDESTHEIGHT 
in Section 8.6.1 on page 8-13. The value of HEIGHT is 
multiplied by the value of WIDTH in the BLKDESTWIDTH 
register to determine the number of line draw iterations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD HEIGHT



DS785UM1 8-29
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
DESTLINELENGTH 

Address: 0x8004_0020 - Read/Write

Default: 0x0000_0000

Mask: 0x0000_0FFF

Definition: Block Destination Line Length Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

LEN: Length - Read/Write

The value in this field specifies the number of 32 bit words, 
minus 1, that are needed to contain all of the pixels that 
comprise width of the display. The value of LEN is 
determined by: 

1) Find how many pixels occupy a 32-bit word. For 
example, four 8-bit pixels can occupy a 32-bit word. 

2) Find the width of the display in pixels. For example, a 
640x480 display has a width of 640 pixels.

3) The line length, LEN, is determined by the stride of the 
display, that is, how many 32-bit words are needed to 
populate the width of the display with pixels. From steps 1 
and 2, the stride for this example is 640 pixels divided by 
4, where 4 is the number of 8-bit pixels that occupy a 
word. So, for this example, LEN = 640 / 4 = 160 = 0xA0.

Usually the same LEN value is used in both the 
DESTLINELENGTH register and the SRCLINELENGTH 
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LEN



8-30 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
BLOCKCTRL 

Address: 0x8004_0024 - Read/Write

Default: 0x0000_0000

Mask: 0x001F_FFFF

Definition: Block Function Control Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

PACKD: Packed Image Bit - Read/Write

This bit is normally ‘0’ to indicate that the source and 
destination images during a Block Copy function are the 
same size. 

When this bit is '1', the a block transfer image source is 
stored in packed format. Packed format indicates that the 
source image is not the same dimensions as the 
destination image, and that source information transfers 
are whole words with the possible exceptions of the 
beginning and ending words. This allows images to be 
packed into any square configuration of whole words, 
including a serial stream.

P: Bits Per Pixel - Read/Write

The value of this field, as shown in Table 8-23, specifies 
the pixel mode (depth) that is used for Graphics 
Accelerator functions. The Raster Engine has a similar 
pixel depth field, but it’s value is independent from this P 
value and may be either different or the same.

 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PACKD P ERROR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INTEOI BG REMAP D1 D0 M1 M0 SYDIR SXDIR DYDIR DXDIR LINE FILL TRANS INTEN EN

Table 8-23. Pixel Mode Encoding

P2 P1 P0 Pixel Mode

0 0 0 not defined

0 0 1 4 bit per pixel

0 1 0 8 bits per pixel



DS785UM1 8-31
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8

ERROR: Error Indicator - Read/Write

1 - Bus error has occurred

0 - No error.

INTEOI: Interrupt / End of Interrupt - Read/Write

Reading this bit returns the status of the Block Fill or Block 
Copy function interrupt (active high):

‘1’ -  Interrupt request. Indicates Block Fill or Block Copy 
function has completed.

‘0’ - No interrupt request. Indicates Block Fill or Block 
Copy function has not completed.

Writing ‘0’ to this bit will clear the interrupt request; writing 
‘1’ to this bit will generate an interrupt request. 

This bit may be used to cancel a ‘broken’ graphics function 
that never completes. Masking the interrupt by writing 
INTEN = ‘0’, and writing INTEOI = ‘1’ will halt the current 
Graphics Accelerator function.

BG: Background - Read/Write 

When this bit is ‘0’ during remap (REMAP = ‘0’), source 
image pixels that have a value of ‘0’ are unaffected 
(transparent) when they are copied to the destination 
image.

When this bit is ‘1’ during remap (REMAP = ‘1’), source 
image pixels that have a value of ‘0’ are copied to the 
destination image with the color value in the BG field of the 
BACKGROUND register. 

Reading this bit returns a valid value only when EN = '1'.

REMAP: Pixel Expansion Mapping Function Enable - Read/Write 

The value of REMAP enables or disables the Pixel 
Expansion Mapping Function:

0 1 1 not defined

1 0 0 16 bits per pixel

1 0 1 not defined

1 1 0 24 bits per pixel packed

1 1 1 32 bits per pixel (24 bpp unpacked)

Table 8-23. Pixel Mode Encoding

P2 P1 P0 Pixel Mode



8-32 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
‘1’ - Pixel Expansion Mapping Function enabled

‘0’ - Pixel Expansion Mapping Function disabled

The Pixel Expansion Mapping Function converts single bit 
pixels in the source image to defined pixel-depth (see 
Table 8-23) pixels in the destination image.

When BG = ‘0’, source image pixels are unaffected 
(transparent) when they are copied to the destination 
image. When BG = ‘1’, source image pixels that have a 
value of ‘0’ are copied to the destination image with the 
color value in the BG field of the BACKGROUND register 
and source image pixels that have a value of ‘1’ are copied 
to the destination image with the color value in the MASK 
field of the BLOCKMASK register.

D: Destination Mode - Read/Write

The value in the this field specifies the destination mode:
‘00’ - Disabled
‘01’ - Destination AND Mode
‘10’ - Destination OR Mode
‘11’ - Destination XOR Mode

M: Mask Mode - Read/Write

The value in the this field specifies the mask mode:
‘00’ - Disabled
‘01’ - Mask AND Mode
‘10’ - Mask OR Mode
‘11’ - Mask XOR Mode

SYDIR, SXDIR:   Counter/Accumulator Direction - Read/Write

Write the values of the DYDIR and DXDIR bits to the 
SYDIR and DXDIR bits, respectively.

DYDIR, DXDIR: Counter/Accumulator and Line Direction - Read/Write

The value of these bits specifies the general direction that 
the current Graphics Acceleration function places pixels 
on the display: 

For a Block Fill or Block Copy function: 

DXDIR = ‘1’ - Left in X

DXDIR = ‘0’ - Right in X

DYDIR = ‘1’ - Up in Y



DS785UM1 8-33
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
DYDIR = ‘0’ - Down in Y

For a Line Draw function:

DXDIR = ‘1’ - If X2 > X1

DXDIR = ‘0’ - If X2 <= X1 

DYDIR = ‘1’ - If Y2 > Y1

DYDIR = ‘0’ - If Y2 <= Y1

LINE: Line Draw Function Enable - Read/Write 

‘0’ - Line draw disabled
‘1’ - Line draw enabled

Reading this bit returns a valid value only when EN = '1'.

FILL: FILL Function Enable - Read/Write

‘0’ - Fill disabled
‘1’ - Fill (with mask value) enabled

Reading this bit returns a valid value only when EN = '1'.

TRANS: Transparency Enable - Read/Write 

‘0’ - Transparency disabled
‘1’ - Transparency enabled

Reading this bit returns a valid value only when EN = '1'.

INTEN: Graphics Accelerator Interrupt Enable - Read/Write

‘0’ - Interrupt disabled
‘1’ - Interrupt enabled

EN: Initiate Graphics Acceleration Function - Read/Write

Read:

‘0’ - Graphics processing completed
‘1’ - Graphics processing in progress

Write:

‘0’ - Terminate current graphics processing function
‘1’ - Initiate graphics processing function



8-34 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
TRANSPATTRN 

Address: 0x8004_0028 - Read/Write

Default: 0x0000_0000

Mask: 0x00FF_FFFF

Definition: Block Function Transparency Pattern Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

PATRN: Transparent Bit Pattern - Read/Write

The value in this field specifies a transparent bit pattern. 
Transparent pixel transfers are not written. The 
transparent pixel definition is located in the least 
significant BPP part of the field for modes less than 
24 bpp. Bits 0-23 are used for 24 bpp mode, bits 0-15 are 
used for 16 bpp mode, bits 0-7 are used for 8 bpp mode, 
and bits 0-3 are used for 4 bpp mode.

BLOCKMASK 

Address: 0x8004_002C - Read/Write

Default: 0x0000_0000

Mask: 0x00FF_FFFF

Definition: Block Mask Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PATRN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PATRN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD MASK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MASK



DS785UM1 8-35
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
MASK: Mask - Read/Write

For a Block Copy function, the value in this field specifies 
the logical mask, if used. If BG = ‘1’, M = ‘00’, and REMAP 
= ‘1’ in the BLOCKCTRL register, the value specifies the 
destination foreground color for source image pixels = ‘1’.

For Block Fill and Line Draw functions, the value in this 
field specifies the pixel color for the destination image.

The mask or color value is located in the least significant 
BPP part of the register for modes less than 24 bpp. Bits 
0-23 are used for 24 bpp mode, bits 0-15 are used for 
16 bpp mode, bits 0-7 are used for 8 bpp mode, and bits 
0-3 are used for 4 bpp mode.

BACKGROUND 

Address: 0x8004_0030 - Read/Write

Default: 0x0000_0000

Mask: 0x00FF_FFFF

Definition: Block Function Background Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

BG: Background - Read/Write

When performing remap operations without transparency 
(REMAP = ‘1’ and BG = ‘1’ in the BLOCKCTRL register), 
the value in this field specifies the destination background 
pixel color for source pixels that have a value of ‘0’. 

Bits that are ‘1’ in this field can be used with Line Draw 
functions to specify a ‘blank space’ in the drawn line. 

The pixel color value is located in the least significant BPP 
part of the field for modes less than 24 bpp.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD BG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BG



8-36 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
LINEINC 

Address: 0x8004_00343 - Read/Write

Default: 0x0000_0000

Mask: 0x0FFF_0FFF

Definition: Line Draw Increment Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

YINC: Y Increment - Read/Write

The value in this field specifies a 12-bit binary fraction of a 
pixel to be accumulated in the vertical (Y) direction during 
a Line Draw function. The maximum value is 4095/4096 
and the minimum value is 1/4096.

XINC: X Increment - Read/Write

The value in this field specifies a 12 bit binary fraction of a 
pixel to be accumulated in the horizontal (X) direction 
during a Line Draw function. The maximum value is 
4095/4096 and the minimum value is 1/4096.

LINEINIT 

Address: 0x8004_0038 - Read/Write

Default: 0x0000_0000

Mask: 0x0FFF_0FFF

Definition: Line Draw Initialization Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD YINC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD XINC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD YINIT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD XINIT



DS785UM1 8-37
Copyright 2007 Cirrus Logic 

Graphics Accelerator
EP93xx User’s Guide

88

8
Bit Descriptions:

RSVD: Reserved - Unknown during read

YINIT: Y Initialization - Read/Write

The value in this field specifies a 12 bit binary fraction of a 
pixel that provides sub-pixel precision to the algorithm. 
The minimum fractional value is 1/4096. This field can also 
be initialized to account for truncation errors in the drawing 
algorithm.

XINIT: X Initialization - Read/Write

The value in this field specifies a 12 bit binary fraction of a 
pixel that provides sub-pixel precision to the algorithm. 
The minimum fractional value is 1/4096. This field can also 
be initialized to account for truncation errors in the drawing 
algorithm.

LINEPATTRN 

Address: 0x8004_003C - Read/Write

Default: 0x000F_FFFF

Mask: 0x000F_FFFF

Definition: Line Pattern Register

Bit Descriptions:

RSVD: Reserved - Unknown during read

CNT: The value in this field specifies the pixel position in the 
PATRN field that defines the end of the pattern. It is used 
as the repeat interval for the pattern counter.

PATRN: The bit values in this field specify an ‘on’ and ‘off’ pattern 
that is to be used during a Line Draw function. The pattern 
will repeat based on the CNT value. 

A ‘1’ causes a pixel fill from the BLOCKMASK register. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD CNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PATRN



8-38 DS785UM1
 Copyright 2007 Cirrus Logic

Graphics Accelerator
EP93xx User’s Guide

88

8
If BG = ‘1’ in the BLOCKCTRL register, a ‘0’ causes a pixel 
fill from the BACKGROUND register. If BG = ‘0’ in the 
BLOCKCTRL register, a ‘0’ is transparent.

When drawing solid lines, write LINEPATTERN = 
0x000F_FFFF.



DS785UM1 9-1
Copyright 2007 Cirrus Logic 

99

9
Chapter 9

91/10/100 Mbps Ethernet LAN Controller

 9.1 Introduction
The Ethernet LAN Controller incorporates all the logic needed to interface directly to the AHB 
and to the Media Independent Interface (MII). It includes local memory and DMA control, and 
supports full duplex operation with flow control support. Figure 9-1 shows a simplified block 
diagram.

This block was designed with a RAM of 544 words, each word containing 33 bits. These 
RAMs are used for packet buffering and controller data storage. One RAM is dedicated to the 
receiver, and one dedicated to the transmitter. These RAMs are mapped into the register 
space and are accessible via the AHB.

 Figure 9-1. 1/10/100 Mbps Ethernet LAN Controller Block Diagram

 9.1.1 Detailed Description

 9.1.1.1 Host Interface and Descriptor Processor
The Host Interface can be functionally decomposed into the AHB Interface Controller and the 
Descriptor Processor. The AHB Interface Controller implements the actual connection to the 
AHB. The controller responds as a AHB bus slave for register programming, and acts as an 
AHB bus master for data transfers. 

1/10/100
Mbit
Phy

1/10/100 MBPS Ethernet LAN Controller

(External)
MAC

TX/RX
Descriptor
Processors

AHB Reconciliation
Sub-layerInterface

MII

AHB



9-2 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
The Descriptor Processor implements the Hardware Adapter Interface Algorithm and 
generates transfer requests to the AHB Interface Controller. The back-end interfaces to the 
MAC controllers and services MAC requests to run accesses to the FIFO and update queue 
status. The Descriptor Processor also generates internal requests for descriptor fetches. A 
priority arbiter arbitrates among the various requests and generates transfer requests to the 
AHB Interface Controller. There are 6 queues that require service in system memory:

• RxData: Write received frame data to host memory.

• RxStatus: Write received frame status to host memory.

• TxData: Read frame data from host memory.

• TxStatus: Write transmitted frame status to host memory.

• RxDescriptor: Read descriptors from host memory.

• TxDescriptor: Read descriptors from host memory.

Each queue generates a hard request (for urgent service) and a soft request (not urgent, but 
queue can run transfers). The priority assigned to the queues varies depending on the state 
of the system, but hard requests are prioritized over soft requests, and AHB write requests 
are prioritized over AHB read requests to allow faster back-to-back transfers.

 9.1.1.2 Reset and Initialization
The Ethernet LAN Controller has three reset sources: the AHB reset, software reset from the 
SelfCtl register, and individual channel resets via the BMCtl register. The PHY is reset with 
the PHYRES function in compliance with the 802.3 specifications and has no effect on the 
MAC layer and up.

AHB reset initializes the entire controller, except for the receive MAC. The receive MAC is 
initialized by a SOFT_RESET. Upon AHB reset the AHB Interface and Descriptor Processor 
is put into a quiescent state.

Software Reset generates a SOFT_RESET which resets the Descriptor Processor, FIFO, 
and MAC. SOFT_RESET occurring in the middle of a frame transmission will result in the 
transmitted frame being truncated on the line. SOFT_RESET occurring in the middle of a 
received frame will result in the reset of the frame being dropped. The configuration registers 
remain intact during a soft reset. A SOFT_RESET should be issued following a power-on to 
ensure the receive MAC is fully initialized.

 9.1.1.3 Power-down Modes
The only power-down option is to stop the TXCLK and RXCLK by disabling the PHY. 

 9.1.1.4 Address Space
The Address space is mapped as:

MACBase + 0x0000 - MACBase + 0x00FF: MAC setup registers.
MACBase + 0x0100 - MACBase + 0x011F: MAC configuration registers, only first 4 words 
used.



DS785UM1 9-3
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
The RAM blocks are interleaved in the AHB address space. AHB address bits 0 and 1 are 
byte selects and must be zero for direct access. AHB address bit 2 selects the left or right 
RAM array, which is the Transmit or Receive array. AHB address bits 3,4, and 5 perform a 1-
of-8 column select. Address bit 6 selects the even or odd row address. Address bits 7, 8, 9, 
and 10 decode the rows. Thus from an AHB addressing perspective, the MAC FIFOs are one 
large RAM array.

Table 9-1 defines the FIFO RAM address map as it appears in the address space. Address 
are in byte units. All data transfers to the FIFO RAM are restricted to words. 

Caution: Accessing the FIFO RAM while the MAC is operating will likely cause a 
malfunction. 

There is no arbitration logic between direct AHB access and MAC Descriptor Processor 
access. 

The MAC configurations registers and FIFO RAMs are only word accessible

 9.1.2 MAC Engine

The MAC engine is compliant with the requirements of ISO/IEC 8802-3 (1993), Sections 3 
and 4.

 9.1.2.1 Data Encapsulation
In transmission, the MAC automatically prepends the preamble, and computes and appends 
the FCS. The data after the SFD and before the FCS is supplied by the host as the 
transmitted data. FCS generation by the MAC may be disabled by setting InhibitCRC bit in 
the Transmit Frame Descriptor. Refer to Figure 9-2. 

Table 9-1. FIFO RAM Address Map

FIFO RAM Address Map  Usage

0x8001_4000 to 0x8001_47FF  Rx Data

0x8001_4800 to 0x8001_4FFF  Tx Data

0x8001_5000 to 0x8001_503F  Rx Status

0x8001_5040 to 0x8001_507F  Tx Status

0x8001_5080 to 0x8001_50BF  Rx Descriptor

0x8001_50C0 to 0x8001_50FF  Tx Descriptor



9-4 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9

 Figure 9-2. Ethernet Frame / Packet Format (Type II only)

In the receiver, the MAC detects the preamble and locks onto the embedded clock. The MAC 
performs destination address filtering (individual, group, broadcast, promiscuous) on the DA. 
The MAC engine computes the correct FCS, and reports if the received FCS is “good” or 
“bad”. The data after the SFD and before the FCS is supplied to the host as the received 
data. The received FCS may also be passed to the host by setting RXCtl.BCRC.

Ethernet F ram e/Packet F orm at  (Type II, on ly )

1 byteup to 7 bytes 6 bytes 6 bytes

optional field

2 bytes

LLC data Pad FCS

N bytes M bytes 4 bytes

p re am ble   fra m e leng th
  m in   64  b ytes
m ax  151 8 bytes

alternating 1s / 0s SFD D A SA

S FD  = S ta rt of F ra m e D e lim ite r
D A  = Des tina tion  A ddress
S A  = S ource  A dd re ss
LLC  =  Logica l L ink C ontro l
FC S  = Fram e C heck  S equence  (som etim e s
           ca lled  C yc lic  R edu nd ancy  C heck , o r C RC )

The optiona l fie ld , wh ich is tw o by tes
long, is either a TY PE  field for E therne t
app lications ,o r is  a  LE NG T H  fie ld  for
IEE E 802.3  applications .

D irection  of Transm ission

The P ad fie ld  w ill be used only  to ge t
the  fram e to  the m inim um  s ize .
S ee paragraph 6 .3 .3.
W hen the C S 8931 adds  pad bytes ,
the  pad is the  last byte of the
LLC  da ta fie ld repeated  M  tim es .

F ram e

Packet



DS785UM1 9-5
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.1.3 Packet Transmission Process

This section explains the complete packet transmission process as seen on the Ethernet line. 
This process includes: carrier deference, back-off, packet transmission, transmission of EOF, 
and SQE test. Refer to Figure 9-3. 

 Figure 9-3. Packet Transmission Process

The Ethernet/ISO/IEC 8802-3 topology is a single shared medium with several stations. Only 
one station can transmit at a time. The access method is called Carrier Sense Multiple 
Access with Collision Detection (CSMA/CD). This method is a “listen before talk” mechanism 
that has an added feature to end transmissions when two, or more, stations start 
transmissions at nearly the same time.

The CSMA portion of this method provides collision avoidance. Each station monitors its 
receiver for carrier activity. When activity is detected, the medium is busy, and the MAC 
defers (waits) until the medium no longer has a carrier.

 9.1.3.1 Carrier Deference
Refer to Figure 9-4. Once sufficient bytes have been written to the transmit FIFO, the MAC 
layer immediately moves to the Carrier Deference State Diagram. The Carrier Deference 
state is independent of entry into the state diagram. The MAC layer may enter the state 
diagram in any of its five states. The MAC layer exits the Carrier Deference only from the IFG 

The Packet Transmission Process

Start of Transmit
Frame in fifo

Carrier Deference is
detailed in the next diagram.

Transmission
Transmission ends with
either completion of the
frame, or a collision.

Transmission
Complete

Transmit EOF

Report Applicable
Transmit
Status

Late
Collision

?

NO

YES

There was
a collision

Max
number of
Collisions

?

NO

YES

Wait for the duration
of the BackOff Timer

Carrier
Deference

Transmit JAM

The maximum number of
collisions is either 16 or 1
depending on the Onecoll bit
in the transmit descriptor.

The backoff time is a computed
random number based on either
the standard algorithm or the
modified back-off algorithm.
See the ModBackoffE bit
in TxCTL.Report Applicable

Transmit
Status

Report Applicable
Transmit
Status



9-6 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Complete state. Thus, the Carrier Deference state may be entered and exited immediately, or 
there may be a delay depending on the state when entered.

 Figure 9-4. Carrier Deference State Diagram

When CRS becomes active, the Line Busy state is entered. This state is held until CRS 
returns to clear which starts the IFG timer. The time-out process after CRS clears is called 
Carrier Deference. In the MAC, Carrier Deference has two options as selected by the bit 2-
part DefDis (TXCtl). If 2-part DefDis is clear, the two part deferral is used which meets the 
requirements of ISO/IEC 8802-3 paragraph 4.2.3.2.1. As shown in the diagram, if CRS 
becomes active during the first 2/3 (6.4 μsec) of the IFG, the MAC restarts the IFG timer. If 
CRS becomes active during the last 1/3 of the IFG, the timer is not restarted to ensure fair 
access to the medium.

If 2-part DefDis is set, the two part deferral is disabled. In this option, the IFG timer is allowed 
to complete even if CRS becomes active after the timer has started.

The 2-part deferral has an advantage for AUI connections to either 10BASE-2 or 10BASE-5. 
If the deferral process simply allowed the IFG timer to complete, then it is possible for a short 
Inter Frame Gap to be generated. The 2-part deferral prevents short IFGs. The disadvantage 
of the 2-part deferral is longer deferrals. In 10BASE-T systems, either deferral method should 
operate about the same.

IFG Complete

CRS is Carrier Sense

When this Carrier Deference state diagram is entered from the Packet
Transmission Process, the entry may be to any state shown.  The Packet
Transmission Process exits this state diagram ONLY from IFG Complete. 

CRS changes
from 0 to 1

Line Busy
[wait for CRS to clear]

1.  In this diagram, FDX (TestCTL) is clear.

Fixed
9.6 usec

IFG Delay

CRS changes
from 1 to 0

No two-part deferral
[2-part DefDis set]

Timer
complete

CRS changes
from 1 to 0

Two-part deferral used
[2-part DefDis clear]

The control bit 2-partDefDis
selects two-part deferral when
clear, and disables two-part
when set.

6.4 usec
Delay

[2/3 IFG] If CRS goes to 1 during
the 6.4 usec timer, go back
to the Line Busy state.

Timer
complete

Fixed
3.2 usec

Delay
[1/3 IFG]

Timer complete
2.  There is logic to maintain the 9.6 usec
IFG spacing between back-to-back
transmitted packets.
That logic is not shown.

NOTES:



DS785UM1 9-7
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.1.4 Transmit Back-Off

Refer to Figure 9-3. Once transmission is started, either the transmission is completed, or 
there is a collision. There are two kinds of collision: normal collision (one that occurs within 
the first 512 bits of the packet) and late collision (one that occurs after the first 512 bits). In 
either collision type, the MAC engine always sends a 32 bit jam sequence, and stops 
transmission.

After a normal collision and the jam, transmission is stopped, or “backed-off”. The MAC 
attempts transmission again according to one of two algorithms. The ISO/IEC standard 
algorithm or a modified back-off algorithm may be used, and the host chooses which 
algorithm through the ModBackoffE control bit (TXCtl). The standard algorithm from ISO/IEC 
paragraph 4.2.3.2.5 is called the “truncated binary exponential backoff” and is shown below:

0 <= r <= 2k

where r is a random integer for the number of slot times the MAC waits before attempting 
another transmission, and a slot time is time of 512 bits (51.2 μsec), k = minimum (n,10), and 
n is the nth retransmission attempt. The modified back-off algorithm uses delays longer than 
the ISO/IEC standard after each of the first three transmit collisions as shown below:

0 <= r <= 2k

where k = minimum (n,10), but not less than 3, and n is the nth retransmission attempt

The advantage of the modified algorithm over the standard algorithm is that the modification 
reduces the possibility of multiple collisions on any transmission attempt. The disadvantage is 
that the modification extends the maximum time needed to acquire access to the medium.

The host may choose to disable the back-off algorithm altogether. This is done through the 
control bit DisableBackoff (TestCtl). When set, the MAC transmitter waits for the Inter Frame 
Gap time before starting transmission. There is no back-off algorithm employed. When clear, 
the MAC uses either the standard or the modified algorithm.

 9.1.4.1 Transmission
After the transmission has passed the time for a normal collision (512 bits), then transmission 
is either completed, or aborted due to a late collision. For a late collision, the transmitter 
sends the 32 bit jam sequence, but does not back-off and try again. When a late collision 
occurs, Out-of-wdw collision (XStatQ) is set. A late collision is not retried, because the first 64 
bytes of the FIFO are freed after the normal collision window, and will likely be refilled by a 
following packet. Driver intervention is needed to reconstruct the FIFO data.

 9.1.4.2 The FCS Field
If InhibitCRC (Transmit Descriptor) is clear, the MAC automatically appends the standard 32 
bit FCS to the end of the frame. The MAC tests the last 32 bits received against the standard 
CRC computation. If received in error, CRCerror (RStatQ) is set. If CRCerroriE (Interrupt 
Enable) is set, there is an interrupt associated with CRCerror. The standard CRC conforms to 
ISO/IEC 8802-3 section 3.2.8. The polynomial for the CRC is:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1



9-8 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
The resultant 32 bit field is transmitted on the line with bit X31 first through X0 last.

 9.1.4.3 Bit Order
In compliance with ISO/IEC 8802-3 section 3.3, each byte is transmitted low order bit first, 
except for the CRC, as noted in Section 9.1.4.2 on page 9--7.

 Figure 9-5. Data Bit Transmission Order 

 9.1.4.4 Destination Address (DA) Filter
There are two forms of destination address filtering performed by the MAC, perfect filtering, 
where the address is checked for an exact match, and hashing, where the address is 
checked for inclusion in a group. In addition there is a mode to accept all destination 
addresses which is enabled via the RXCtl.PA bit.

 9.1.4.5 Perfect Address Filtering
The MAC includes four programmable perfect address filters, as well as the all ones filter for 
broadcast frames. The RXCtl register is used to control whether a particular filter is used. The 
filters themselves share the same address space and the value in the Address Filter Pointer 
register determines which filter is being accessed at any time. The filters are arranged such 
that the first is the normal MAC address for the interface, which is also used in the detection 
of remote wake-up frames, and may be optionally used to detect pause (flow control) frames. 
The primary purpose of the second filter is for the recognition of pause frames. This would 
normally be programmed to correspond to the multicast address used for MAC control 
frames. The third and fourth filters, provide extra optional address match capabilities, which 
can provide the capability of adding extra individual addresses or of providing two multicast 
address filters.

D0 D7 D8 D15 D16 D31

Byte

Half-Word

Word

Direction of transmission



DS785UM1 9-9
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.1.4.6 Hash Filter

The 64 bit Logical Address Filter provides DA filtering hashed by the CRC logic. The Logical 
Address Filter is sometimes referred to as the multicast address filter.

Referring to Figure 9-6, notice that the CRC computation starts at the first bit of the frame, 
which is also the first bit of the DA. (Recall that a “frame” is a “packet” without the preamble.)

The CRC Logic can be viewed as a 32 bit shift register with specific Exclusive-OR feedback 
taps. After the entire DA has been shifted into the CRC Logic, the signal HashLat latches the 
6 most significant bits of the CRC Logic (x26 through x31) into the 6-bit hash register (HR). The 
contents of HR are passed through the 6-bit to 64-bit Decoder. Only one of the 64 Decoder 
outputs is asserted at a time. That asserted output is compared with a corresponding bit in 
the Logical Address Filter. The filter output, Hashed, is used to determine if the received DA 
passed the hash filter. When set, the Hashed event bit shows that the received DA passed 
the hash filter. When clear, Hashed shows the failure of the DA to pass the hash filter.

 Figure 9-6. CRC Logic   

Whenever the hashed filter is passed on good frames, the output of the HR is presented on 
the Hash Table Index (RStatQ). A received good frame is determined to be one without CRC 
error and which is the correct length (64 < length < 1518).

If RXCtl.MA is set, then any received multicast frame passing the hash filter is accepted. A 
multicast frame is one which has RXCtl.IA[0] = 1.

If RXCtl.IAHA[0] is set, then a frame with any individual address frame AND passing the hash 
filter is accepted. An individual address frame is one which has RXCtl.IA[0] = 0. For a frame 
to pass RXCtl.IAHA[0] it must have RXCtl.IA[0] = 0 and pass the hash. 

CRC Logic  (32 bit shift register with XOR taps)

Hash Register (HR)
6 bits

31
X

26
X 6 most significant

bits of the CRC

HashLat

Decoder
6 bit to 64 bit

64

Hash Table
64 bits 

Hashed True = passed filter
Hashed False = failed filter

Hashed

The six HR output lines go to
the Hash Table Index



9-10 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
The relationship of RXCtl.MA and RXCtl.IAHA is shown below.

 

 9.1.4.7 Flow Control
The MAC provides special support for flow control by the transmission and reception of 
pause frames. A pause frame is a specific format of a MAC control frame that defines an 
amount of time for a transmitter to stop sending frames. Sending pause frames thereby 
reduces the amount of data sent by the remote station.

 9.1.4.8 Receive Flow Control
The MAC can detect receive pause frames and automatically stop the transmitter for the 
appropriate period of time. To be interpreted as a pause frame the following conditions must 
be met:

• Destination address accepted by one of the first two individual address filters, with the 
appropriate RXCtl.RxFCE bit set.

• The Type field must match that programmed in the Flow Control Format register.

• The next two bytes of the frame (MAC Control Opcode) must equal 0x0001.

• The frame must be of legal length with a good CRC.

If accepted as a pause frame, the pause time field is transferred to the Flow Control Timer 
register. The pause frame may be optionally passed on to the Host or discarded by the MAC. 
Once the Flow Control Timer is set to a non-zero value, no new transmit frames are started, 
until the count reaches zero. The counter is decremented once every slot time while no frame 
is being transmitted.

 9.1.4.9 Transmit Flow Control
When receive congestion is detected, the driver may want to transmit a pause frame to the 
remote station to create time for the local receiver to free resources. As there may be many 
frames queued in the transmitter, and there is a chance that the local transmitter is itself 
being paused, an alternative method is provided to allow a pause frame to be transmitted. 
Setting the Send Pause bit in the Transmit Control register causes a pause frame to be 
transmitted at the earliest opportunity. This occurs either immediately, or following the 
completion of the current transmit frame. If the local transmitter is paused, the pause frame 
will still be sent, and the pause timer will still be decremented during the frame transmission.

Table 9-2. RXCtl.MA and RXCtl.IAHA[0] Relationships

RXCtl.MA RXCtl.IAHA[0] Hash Filter Acceptance Results

0 0 Hash filter not used in acceptance criteria.

1 0
All multicast frames (first bit of DA = 1) passing the hash are 
accepted.

0 1
All individual address frames (first bit of DA = 0) passing the hash 
are accepted.

1 1 All frames that pass the hash are accepted.



DS785UM1 9-11
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
To comply with the standard, pause frames should only be sent on full duplex links. The MAC 
does not enforce this, it is left to the driver. If a pause frame is sent on a half duplex link, it is 
subject to the normal half duplex collisions rules and retry attempts.

The format of a transmit pause frame is: 

Bytes 1-6 - Destination address - this is the last Individual address (Address Filter Pointer = 
6)

Bytes 7-12 - Source address - this is the first Individual address (Address Filter Pointer = 0)

Bytes 13-14 - Type field - this is defined in the Flow Control Format register

Bytes 15-16 - Opcode - set to 0x0001

Bytes 17-18 - Pause time - this is defined in the Flow Control Format register

Once the Host sets the Send Pause bit in TXCtl, it will remain set until the pause frame starts 
transmission. Then the Send Pause clears and the Pause Busy bit is set and remains set 
until the transmission is complete. No end of frame status is generated for pause frames.

 9.1.4.10 Rx Missed and Tx Collision Counters
There are three counters that help the software in recording events, transmit collisions, 
receive missed frames, and receive runt frames. All three counters operate in similar ways. 
When the appropriate events occur the counters are incremented. They are cleared following 
a read of the count value. If a count is incremented such that the MSB is set, the 
corresponding status bit in the Interrupt Status Register is set. An interrupt is generated at 
this time if the corresponding enable bit is set in the Interrupt Enable Register. Once the 
count is incremented to an all ones condition it will not be incremented further, it will remain in 
this state until reset by a read operation.

 9.1.4.11 Accessing the MII
This section describes the proper method to access the MII. It includes how to read/write 
PHY registers, how to have the PHY perform auto-negotiation, and how to startup the PHY.

The bits MDCDIV in register SelfCtl are used to control the PHY's clock divisor. The default 
value is 0x07, so the MDC clock frequency is HCLK divided by 8. This default value is correct 
for most PHYs. However, to be safe, check the PHY's data sheet to make sure that this clock 
frequency is correct.

The bit PSPRS in register SelfCtl is used to disable/enable Preamble Suppress for data 
passed from the MAC to the PHY through the MDIO. If bit PSPRS is set, the preamble is 
suppressed. In this case, the MAC won't prepend 32 bits of “1” to the data written to the PHY. 
Since the MAC automatically prepends the preamble to data when in transmission mode, bit 
PSPRS must be set while the MAC is transmitting frames. Otherwise, two preambles will be 
prepended and cause a transmission failure. The default value of “1” is appropriate for 
transmitting frames.

The MAC won't automatically prepend a preamble when not in transmission mode. 
Therefore, if the MAC wants to read/write PHY registers, bit PSPRS may be cleared since 



9-12 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
most PHYs require a preamble for access to the PHY's registers. However, to be safe, check 
PHY's data sheet to determine if a preamble is needed to read/write PHY registers.

 9.1.4.11.1 Steps for Reading From the PHY Registers.

1. Read the value from the SelfCtl Register.

2. Since most PHYs need a Preamble for the MAC to read/write the PHY registers, you 
may need to clear the PreambleSuppress bit.

3. Ensure that the PHY is not busy by polling the MIIStatus_Busy Bit in MIIStatus register.

4. Issue the command to read the register within the PHY. 

5. Wait until the read command is completed. Determine this by polling the MIIStatus_Busy 
bit in MIIStatus register.

6. Get the PHY data from the MII Data register.

7. Restore the old value to SelfCtl register.

Note: Steps 1, 2, and 7 are not required if the PHY doesn't need a preamble for access to the 
PHY's registers.

 9.1.4.11.2 Steps for Writing To the PHY Registers.

1. Read the value from SelfCtl register.

2. Since most PHYs need a Preamble for the MAC to read/write the PHY registers, you 
may need to clear the PreambleSuppress bit.

3. Ensure that the PHY is not busy by polling the MIIStatus_Busy bit in MIIStatus register.

4. Put the PHY data into the PHY Data register

5. Issue the write command to write data to the register within the PHY 

6. Wait until the write command is completed. Determine this by polling the MIIStatus_Busy 
Bit in MIIStatus Register.

7. Restore the old value to SelfCtl register.

Note: Steps 1, 2, and 7 are not required if the PHY doesn't need a preamble for access to the 
PHY's registers.

 9.1.4.11.3 Steps for PHY Auto-negotiation

1. Write to the Auto-Negotiation Advertisement register (0x04). Set it in accordance with 
IEEE_802.3 standard, and advertise 100/10M full/half duplex available.

2. Write to Basic Mode Control Register (0x00), to enable and restart Auto-Negotiation.

3. Poll bit Auto_Neg_Complete in the BMSR register in the PHY until the Auto-Negotiation 
is complete.



DS785UM1 9-13
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.1.4.11.4 Steps for PHY Startup

1. Set the MDC ClockDivisor and the PreambleSuppress for the PHY in the SelfCtl 
register. The default value 0x0000_0F10 is appropriate for most PHYs in transmission 
mode.

2. Have the PHY perform auto-negotiation.

3. Read the Auto-Negotiation_Link_Partner_Ability register to check the PHY’s 
configuration.

4. If the link is Full Duplex, then set MAC for Full Duplex. 

 9.2 Descriptor Processor
The MAC operates as a bus master to transfer all receive and transmit, data and status, 
across the AHB bus. The transfers are managed by two sets of queues for each direction, a 
descriptor queue and a status queue. The following section details the operation of these 
queues.

 9.2.1 Receive Descriptor Processor Queues

The Receive Descriptor Processor uses two circular queues in Host memory to manage the 
transfer of receive data frames. The receive descriptor queue is used to pass descriptors of 
free data buffers from the Host to the MAC. The receive status queue is used to pass 
information on the MAC’s use of the data buffers back to the Host. Keeping these queues 
separate enables the use of burst transfers to and from the queues, reducing the overall 
amount of bus traffic and avoiding some potential latency problems.

 9.2.2 Receive Descriptor Queue

The receive descriptors are passed from the Host to the MAC via the receive descriptor 
queue. The receive descriptor queue is a circular queue occupying a contiguous area of 
memory. The location and size of the queue are set at initialization writing to the Receive 
Descriptor Queue Base Address Register, the Receive descriptor current address, and the 
Receive Descriptor Queue Base Length. The base address must point to a word-aligned 
memory location. The Current Address must be set to point to the first descriptor to be used. 
This would normally be the first entry (same value as the base address). The Receive 
Descriptor Queue Base Length is set to the length (in bytes) of the queue. The number of 
descriptors should be an integral power-of-two (2, 4, 8, 16, etc.). Otherwise the Receive 
Descriptor Processor may not work properly and the MAC/Ethernet may stop receiving 
frames.

Each descriptor entry defines one receive data buffer, and consists of two words. The first 
word contains the address of the data buffer, which must be word aligned. The second word 
contains three fields: buffer length, buffer index and a Not Start Of Frame bit. The buffer 
length field specifies the maximum number of bytes to be used in the buffer and should be an 
integral number of words. If the buffer length is set to zero, the descriptor will be ignored, and 
no status will be posted for the buffer. The buffer index can be used by the Host to keep track 



9-14 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
of buffers as they are exchanged with the MAC. When the MAC reads a descriptor, it keeps a 
copy of the index, which it includes in any status entry associated with that buffer. The Not 
Start Of Frame bit may be set by the Host on any buffer in which it does not want a new frame 
to be started. This buffer would then only be used for chaining of frame fragments. This mode 
may be used to align frames on boundaries coarser than descriptors, such as when multiple 
physical address descriptors are used to describe one virtual address buffer.

In normal operation, the Host does not need to access the RXDQBAdd, RXDQBLen, 
RXDCurAdd registers following initialization. Control of the use of the descriptors is handled 
using the Receive Descriptor Enqueue register (RXDEnq). The term enqueue refers to the 
action of adding descriptors to the end of an existing queue. To enqueue receive descriptors, 
the Host writes the number of descriptors to the RXDEnq register. The number is 
automatically added to the existing value. When the MAC consumes descriptors by reading 
them into its on local storage (internal MAC buffer), the number read is subtracted from the 
total. The Host can read the total number of unread valid descriptors left in the queue from 
the RXDEnq. There is a restriction that no more than 255 descriptors may be added to the 
queue in one write operation. To add more than this number requires multiple write 
operations. See Figure 9-7.

 Figure 9-7. Receive Descriptor Format and Data Fragments 

Receive Descriptor
queue Base Address
RxDBA (32)

register sizes are in bits,
and shown in parentheses ().

RxBufAdr 0 (32)

Buffer
Length 0 (16)

RxBufAdr 1 (32)

RxBufAdr 2 (32)

RxBufAdr k (32)

Data Buffer 0 Buffer 0
Length
in bytes

Receive Descriptor Format
and Data Fragments

Buffer 1
Length
in bytes

Receive Descriptor queue
  Base Length (RxDBL) Buffer 2

Length
in bytes

Buffer k
Length
in bytes

Buffer length
0  to 64 Kbytes
in multiples of 4-bytes

Each Data Buffer
begins and ends
on a 4-byte boundary.

Buffer
Indx 0 (15) Data Buffer 1

Data Buffer 2

Data Buffer k

Not
SOF
(1)

Buffer
Length 1 (16)

Buffer
Indx 1 (15)

Not
SOF
(1)

Buffer
Length k (16)

Buffer
Indx k (15)

Not
SOF
(1)

Not
SOF
(1)

Buffer
Indx 2 (15)

Buffer
Length 2 (16)



DS785UM1 9-15
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Receive Descriptor Format - First Word 

Definition:
Receive Descriptor, first word. Contains the base address to the data buffer.

Bit Descriptions:

BA: Buffer Address. This location holds the 32 bit address 
pointer to the data buffer, this must point to a word aligned 
location.

Receive Descriptor Format - Second Word 

Definition:
Receive Descriptor, second word. Contains control, index and length for the 
descriptor.

Bit Descriptions:

NSOF: Not Start of Frame. When the Not Start Of Frame bit is set 
in a descriptor, the associated buffer will only be used for a 
frame being continued from another buffer. If there is not a 
frame to be continued (that is, start of a new frame), the 
buffer will be discarded. When a buffer is discarded in this 
manner, there is no status posted.

BI: Buffer Index. The buffer index is provided for Host 
software purposes. The MAC keeps an internal copy of the 
index and includes it with any status writes associated with 
a receive buffer.

BL: Buffer Length. The Buffer Length contains the number of 
bytes available to be used in the receive buffer. This 
should be an integral number of words. If the length is set 
to zero, the descriptor will be ignored and no status will be 
posted for the buffer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

NSOF BI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BL



9-16 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3 Receive Status Queue

The receive status queue is used to pass receive status from the MAC to the Host. In 
operation, the receive status queue is similar to the receive descriptor queue. It is a circular 
queue in contiguous memory space. The location and size of the queue are set at 
initialization by writing to the Receive Status Queue Base Address and the Receive Status 
Queue Base Length registers. The base address must point to a word aligned memory 
location. The length is set to the actual status queue length (in bytes) and should not exceed 
64 Kbytes total. The number of status entries should be an integral power-of-two (2, 4, 8, 16, 
etc.), or the Receive Descriptor Processor may not work properly, and the MAC/Ethernet may 
stop receiving frames. The Current Address must be set to point to the first status entry to be 
used. This would normally be the first entry (same value as the base address).

When the receive status queue initialization is complete, the Receive Status Enqueue 
register is used by the Host to pass free status locations to the MAC. To simplify this process 
the Host writes the number of additional free status locations available to the enqueue 
register. The MAC adds the additional count to the previously available location to determine 
the total number of available receive status entries. When the MAC writes status to the 
queue, it subtracts the number written from this total. The current value of the total receive 
status entries is available by reading the enqueue register.

No more than 255 status entries may be added in one write. If a number greater than this 
needs to be written, the write should be broken up into more than one operation (that is, to 
add 520 status entries: write 255, then write 255, finally write 10).



DS785UM1 9-17
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9

 Figure 9-8. Receive Status Queue   

Receive status entries are written to the status queue following one of three possible events, 
end of header, end of buffer, or end of frame. The status event is always written after the 
appropriate data transfer has been made. For example the end of frame status is written after 
the last byte of data has been written to the data buffer, not before. The EOF and EOB bits in 
the status entry can be used to determine the cause of a status entry. 

Receive Status
queue Base
Address (32)
(RxSBA) 

Receive Status Queue

bits 31 - 0

Receive Status
Current Address(32)
(RxSCA)

Status (31)

Buffer
Index (15)

R
St

a t
Q

 0
R

S t
a t

Q
 1

R
S

ta
tQ

 cc = current frame

   Frame
Length (16)

R
S

ta
tQ

 c
+ 1

R
S

ta
tQ

 j

Receive Status 
queue Base Length (16)
(RxSBL) 

R

P
F

R

P
F

Status (31)

Buffer
Index (15)

   Frame
Length (16)

R

P
F

R

P
F

Status (31)

Buffer
Index (15)

   Frame
Length (16)

R

P
F

R

P
F

Status (31)

Buffer
Index (15)

   Frame
Length (16)

R

P
F

R

P
F

Status (31)

Buffer
Index (15)

   Frame
Length (16)

R

P
F

R

P
F



9-18 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
If both EOF and EOB bits are zero, the entry was made for a receive header threshold. This 
indicates that there have been at least as many bytes transferred as specified in Receive 
Header Length 1 or 2. These registers may be set to any threshold to provide an early 
indication to the Host that a receive frame is in progress. The status will contain valid data in 
the address match and hash table fields, but as the status is provided before end of frame is 
reached, it will always indicate received without error.

If the EOF bit is zero and the EOB bit is set, the status indicates that the end of a receive 
buffer has been reached before the end of the receive frame. If the receive buffers are much 
smaller than the frame size, there may be many such statuses per frame.

When the EOF and EOB bits are both set, the status indicates the end of frame has been 
transferred. The EOB is always set at this time to indicate that the MAC has finished 
transferring to the buffer. The buffer is not necessarily full.

When a status event causes an interrupt, the interrupt pin will be activated after the status 
has been transferred to the status queue.

 9.2.3.1 Receive Status Format 

Receive Status - First Word 

Definition:
Receive Status, first word. Contains status information for the receiver 
operation.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RFP: Receive Frame Processed. The Receive Frame 
Processed bit is always written as a “1” by the MAC when 
the status is ready and it may be used by the Host to mark 
its progress through the status queue. The Host may 
alternatively use the RXStsQCurAdd to determine how 
much of the status queue to process.

RWE: Received Without Error. The Received Without Error bit 
indicates that the frame was received without any of the 
following error conditions: CRCerror, ExtraData, Runt, or 
Receive Overrun.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RFP RWE EOF EOB RSVD AM RX_Err OE FE Runt EData CRCE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRCI RSVD HTI RSVD



DS785UM1 9-19
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
EOF: End Of Frame. When this bit is set, the associated buffer 

contains the last data associated with this frame. In the 
case of an extra data or overrun error, the buffer may not 
contain the actual end of frame data. For a receive header 
status the EOF and EOB bits will both be clear.

EOB: End Of Buffer. When this bit is set, no more data will be 
transferred to the associated data buffer. This may be due 
to an end of frame transfer or to reaching the actual end of 
the buffer. For a receive header status the EOF and EOB 
bits will both be clear.

AM: Address Match: 
00 - Individual Address match
01 - Global Address match
10 - Hashed Individual Address
11 - Hashed Multicast Address

RX_Err: RX Error. The RX_Err is set for any receive frame for 
which the RX_ERR (MII pin) was activated.

OE: Overrun Error. The receive overrun bit is set on any frame 
which could not be completely transferred to system 
memory. This could be as a result of insufficient buffer 
space, or an excessive bus arbitration time.

FE: Framing Error. This bit is set for any frame not having an 
integral number of bytes, and received with a bad CRC 
value.

Runt: Runt Frame. The Runt bit is set for any receive frame, 
including CRC, that is shorter than 64 bytes.

EData: Extra Data. The ExtraData bit indicates that the length of 
the incoming frame was equal or greater than the value 
programmed in the Max Frame Len register. The receive 
frame will be terminated at this maximum length to 
conserve system buffer space.

CRCE: CRC Error. This indicates the frame was received with a 
bad CRC.

CRCI: CRC Included. This bit is set to one when the CRC has 
been included in the Receive data buffer. Including or 
excluding the CRC is controlled by the BufferCRC bit in 
the RXCtl register.



9-20 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
HTI: Hash Table Index. If the frame was accepted as a result of 

a hash table match, these bits contain the hash table 
index, otherwise they are written as zero. If the frame was 
received as a result of Promiscuous Accept, this field will 
be zero. If the frame was accepted as a result of an 
Individual Address Match then the field indicates which 
address was matched, as follows: 

000001 - Frame matched Individual Address 0
000010 - Frame matched Individual Address 1
000100 - Frame matched Individual Address 2
001000 - Frame matched Individual Address 3

Receive Status - Second Word

Definition:
Receive Status, second word. Contains status information for the receiver 
operation.

Bit Descriptions:

RFP: Receive Frame Processed. The Receive Frame 
Processed bit is always written as a 1 by the MAC when 
the status is ready and it may be used by the Host to mark 
its progress through the status queue.

BI: Buffer Index. This field contains the buffer index field from 
the descriptor table for the data buffer associated with this 
status entry.

FL: Frame Length. The frame length field contains the total 
number of bytes transferred for this frame. For an 
intermediate status (not end of frame) this is the total 
number of bytes transferred up through the current data 
buffer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RFP BI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FL



DS785UM1 9-21
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3.2 Receive Flow

 Figure 9-9. Receive Flow Diagram   

Device Driver

Protocol Stack
RECV Call

11

Receive
Descriptor

Queue

1 Receive Frame
Data

Receive
Status Queue

PCI Bus

Receive
Descriptor
Registers

RxDEQ

Receive
Descriptor
Processor

MAC
Engine

LAN
Medium

2

3

4

7

5

8

9

12

10

M
em

or
y

CS 8950

6

RxSEQ  

AHB

System
Memory



9-22 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Refer to the circled numbers in Figure 9-9. The detailed receive flow is:

1. Driver initializes some number of receive descriptors.

2. Driver writes RXDEnq register with the additional number of receive descriptors.

3. On-chip Descriptor Processor fetches descriptors into internal FIFO decrements 
RXDEnq appropriately.

4. The address of the next receive data buffer is loaded into the Receive Buffer Current 
Address.

5. A frame is received from the LAN medium.

6. The MAC Engine passes the frame data to the Receive Data FIFO.

7. The Receive Descriptor Processor stores the frame data into system memory.

Note:       Steps 5, 6, and 7 can overlap.

8. End of frame status is written to the Receive Status Queue the RXStsEnq value reduced 
by one.

9. Driver interrupted if interrupt conditions met.

10.Received frame passed to the protocol stack.

11.Driver clears the Receive Frame Processed bit in Status Queue.

12.Driver writes number of entries processed in the status queue, freeing them for future 
use by the MAC.

13.After the driver gets the used receive buffers back from the stack, the driver may repeat 
step 2.

Note: Steps 1, 11, and 13 are transparent to the MAC. Steps 2 through 10 and 12 directly involve 
the MAC.

 9.2.3.3 Receive Errors
Receive error conditions are broken into two categories: hard errors and soft errors. A hard 
error is generally considered a reliability problem. This includes AHB bus access problems. A 
soft error indicates that the frame was not successfully received. The error may be expected 
or rare. A soft error needs a graceful recovery by the host driver. Soft errors include: CRC 
errors, receiver over-run, frames too long, or frames too short. Hard errors are parity errors 
(when enabled), system errors, and master or target aborts, these errors will stop receive 
DMA activity, and require host intervention for recovery. Recovery may be achieved by 
performing a RxChRes (Bus Master Control) and reinitializing.



DS785UM1 9-23
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3.4 Receive Descriptor Data/Status Flow

 Figure 9-10. Receive Descriptor Data/Status Flow 

SoftWare HardWare
[CS8950 + LAN]

SoftWare

Reset

Initialize
Rx Descriptor

and Status
Queues

Write RxDEQ
and RxSEQ

 count

Idle

Load
Descriptors

Receive Frame 0

Receive Frame 1

Write RxDEQ
with additional

descriptor count

Random timing between
Write RxDEQ steps

Receive Frame 2

Write
Rx Status

Process Rx Status,
 write RxSEQ

Load
Descriptors

Load
Descriptors

Write
Rx Status

Write
Rx Status

Process Rx Status,
 write RxSEQ

Process Rx Status,
 write RxSEQ

Write RxDEQ
with additional

descriptor count

Processor + LAN



9-24 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3.5 Receive Descriptor Example

 Figure 9-11. Receive Descriptor Example 

Figure 9-11 shows the state of the receive queues following the reception of four frames. The 
first frame uses Data buffer 0 only and there are two status entries associated with it. The first 
status (status 0) is for the reception of a receive header and the second (status 1) is for the 
end of frame/buffer, both status entries point to the beginning of data buffer 0. The second 
frame occupies two buffers (data buffers 1 and 2), and three status entries (2, 3, and 4). 
Status 2 is for the receive header, status 3 for the end of buffer 1 (frame size larger than 
buffer size), and status 4 for end of frame/buffer. The next two frames both occupy one data 
buffer each and one status each. This could be the case for short frames that do not exceed 
the header size or the buffer size. The result of this is that the status queue may be used at a 
different rate to the descriptor queue, based on the type of traffic and the options selected.

R x D escrip to r 0

Rx Descriptor 1

R x D escrip to r 2

R x D escrip to r 5

R x D escrip to r 6

R x D escrip to r 7

Sta tus  0   
Rx  H eader

S ta tus 1
E nd o f fram e &
E nd o f bu ffe r

Sta tus  2
Rx  H eader

Status 3
End of buffer

S ta tus 4
E nd o f fram e &  
E nd o f bu ffe r

R x D escrip to r 4

Rx Descriptor 3

Status 5
End of buffer

S ta tus 6
E nd o f fram e &
E nd o f bu ffe r

S tatus 7
E nd o f fram e &
E nd o f buffe r

Data buffer 0

Data buffer 1

Data buffer 2

Data buffer 3

Data buffer 4

Receive Descrip tor
Q ueue

Receive Status
Q ueue



DS785UM1 9-25
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3.6 Receive Frame Pre-Processing

The MAC pre-processes all incoming receive frames. First the frame is either passed on to 
the next level or discarded according to the destination address filter. The next decision is 
whether to accept the frame. A frame is accepted when the frame data are brought into MAC 
through internal memory. The final step in frame pre-processing is the decision on causing an 
interrupt. These pre-processing steps are detailed in Figure 9-12.

 

 Figure 9-12. Receive Frame Pre-processing 

In c o m in g  F ra m e

D e s t i n a t io n
A d d re s s

F i l te r

P ro m is c u o u s A
IA H a s h A

M u l t ic a s tA
In d i v i d u a lA

B ro a d c a s tA

F i l te r  T a p s :

If  th e  f i l te r  is  n o t  p a s s e d ,
th e  f ra m e  i s  d is c a rd e d .

F i l te r  P a s s e d

A c c e p t  (A )
M a s k

C R C R u n tA
R u n tA

A c c e p t  M a s k s :
A c c e p t  M a s k

N O T  
P A S S E D

A c c e p t  M a s k
P A S S E D

S t a tu s  i n  R x E ve n t
a n d  t h e  F r a m e  B o d y

i s  A c c e p te d  in to  th e  c h ip

iE
M a s k

iE - M a s k  T a p s :

In te r ru p t  i f  M a s k  O K

f ra m e  
d i s c a rd e d

F ra m e  is  p a s s e d
t o  h o s t  m e m o ry  

b y  d e s c r ip to r
p ro c e s s o r

R e c e ive S t Q i E
E n d O fS re a m i E



9-26 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3.7 Transmit Descriptor Processor Queues

The transmit descriptor processor uses two circular queues in Host memory to manage the 
transfer of transmit data frame. The transmit descriptor queue is used to pass descriptors of 
user's data buffers from the Host to the MAC. The transmit status queue is used to pass 
information on the MAC's use of the data buffer back to the Host. Keeping these queues 
separate enables the use of burst transfers to and from the queues, reducing the overall 
amount of bus traffic and avoiding some potential latency problem.

 9.2.3.8 Transmit Descriptor Queue
The Transmit descriptors are passed from the Host to the MAC via the Transmit descriptor 
queue. The Transmit descriptor queue is a circular queue occupying a contiguous area of 
memory. The location and size of the queue are set at initialization by the Host writing to the 
Transmit Descriptor Queue Base Address Register and the Transmit Descriptor Queue Base 
Length. The base address must point to a word aligned memory location. The Transmit 
Descriptor Queue Base Length is set to the length in bytes of the queue. The length should 
be an integral number of descriptors and must not exceed 64 Kbytes total. The Transmit 
descriptor current address must also be set at initialization to point to the first descriptor to be 
used. This would normally be the first entry (same value as the base address).

Following initialization, the MAC will start to use descriptors from the Current Descriptor 
Address, wrapping back to the base pointer whenever the end of the queue is reached. In 
normal operation the Host should not need to access these registers after the initialization. 
The management of the descriptors is handled via the Transmit Descriptor Enqueue register.

Enqueueing descriptors is the process of adding descriptors to an existing queue. This is 
achieved in transmit by writing the number of additional descriptors to the Transmit Descriptor 
Enqueue register. The written value will be added to the previous value to keep a running 
total, as descriptors are read by the MAC, the total is adjusted. The running total is available 
by reading the enqueue register. One frame may be described by more than one descriptor, 
but the final descriptor will contain the EOF bit. Not all the descriptors for a frame need to be 
supplied at once.

No more than 255 descriptors may be added in one write. If a number greater than this needs 
to be written. the write should be broken up into more than one operation (that is, to add 300 
descriptors - first write 255, then write 45).



DS785UM1 9-27
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9

 Figure 9-13. Transmit Descriptor Format and Data Fragments 

TxDesQB (32)

register sizes are in bits,
and shown in parentheses ().

TxBufAdr 0 (32)

Buffer
 Index 0 (15)

Buffer
Length 0 (12)

Data Fragment 0 Fragment 0
Length
in bytes

Transmit Descriptor Format
and Data Fragments

Data Fragment 1

Fragment 1
Length
in bytes

number of bytes set  in
   TxDesQLen

Data Fragment 2
Fragment 2

Length
in bytes

Data Fragment n Fragment n
Length
in bytes

Each Data Fragment
may begin on any byte
boundary, and may
end on any byte
boundary.

E O F
  (1 )

Buffer
 Cmd 0 (4)

TxBufAdr 1 (32)

Buffer
 Index 1 (15)

Buffer
Length 1 (12)

E O F
  (1 )

Buffer
 Cmd 1 (4)

TxBufAdr 2 (32)

Buffer
 Index 2 (15)

Buffer
Length 2 (12)

E O F
  (1 )

Buffer
 Cmd 2 (4)

TxBufAdr n (32)

Buffer
 Index n (15)

Buffer
Length n (12)

E O F
  (1 )

Buffer
 Cmd n (4)



9-28 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9

 Figure 9-14. Multiple Fragments Per Transmit Frame 

In the example shown in Figure 9-14, one frame is transmitted from three fragments. The 
MAC starts the frame by acquiring the medium and transmitting the preamble. Then, the 
fragments 0, 1, 2 are transmitted in order for a total of 446 bytes (39 + 388 + 19). Since the 
CRC bit in the first frame fragment is clear, the HW appends the 4 byte CRC. Thus, 4 more 
bytes are added to the frame for the CRC making the total frame length 450 bytes. Finally, the 
MAC sends the end-of-frame.

The CMD field is 4 bits. Only the AF bit is valid. The other fields are reserved.

 9.2.3.9 Transmit Descriptor Format

Transmit Descriptor Format - First Word 

Definition:
Transmit Descriptor, first word. Contains the base address of the data buffer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TBA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TBA

register sizes are in bits,
and shown in parentheses ().

T x B u fA d r  0  (3 2 )

T x D B u fA d r 1  (3 2 )

T x D B u fA d r 2  (3 2 )

Data Fragment 0 Fragment 0
Length

89 bytes

Example:  Fragments 0, 1, 2 make-up one complete frame.

Data Fragment 1

Fragment 1
Length

388 bytes

Data Fragment 2
Fragment 2

Length
19 bytes

EOF = 0

EOF = 0

EOF = 1

     Buffer 
Length 0 (12)

     Buffer 
Length 0 (12)

     Buffer 
Length 0 (12)

CMD
 (4)

CMD
 (4)

CMD
 (4)

    Buffer 
Index 0 (15)

    Buffer 
Index 0 (15)

    Buffer 
Index 0 (15)

EOF

EOF

EOF



DS785UM1 9-29
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Bit Descriptions:

TBA: Transmit Buffer Address. The transmit buffer address 
contains the 32 bit address pointer to the transmit buffer. 
The base address of the data buffer must be word-aligned 
(32-bit aligned).

Transmit Descriptor Format - Second Word 

Definition:
Transmit Descriptor, second word. Contains control, index and length for the 
descriptor.

Bit Descriptions:

EOF: End of Frame. When this bit is set, the descriptor 
terminates a transmit frame. When clear, the descriptor is 
not the end of frame and a future descriptor will provide 
the EOF.

TBI: Transmit Buffer Index. The transmit buffer index is 
provided to help the Host software keep track of the 
transmit buffers. A copy of the index for the first buffer of a 
frame is kept in the MAC, and is included in any status 
written for the particular frame.

AF: Abort Frame. When the Abort Frame and EOF bits are set 
in a descriptor, the transmit frame will be terminated with a 
bad CRC. A bad CRC is applied even when the 
InhibitCRC bit (TXCtl) is set. The Abort Frame bit is 
ignored in a descriptor which does not have the EOF bit 
set. The abort feature is useful in a forwarding 
environment, where the integrity of the incoming frame is 
not known before the outgoing frame is started. If the 
incoming frame is received with error, the outgoing frame 
can be then invalidated. The AF bit is the only valid bit in 
the CMD field.

RSVD: Reserved. Unknown During Read. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EOF TBI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AF RSVD TBL



9-30 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TBL: Transmit Buffer Length. This field contains the byte count 

of the number of bytes in the transmit buffer. There are no 
restrictions on the actual buffer size. If the length is set to 
zero, the descriptor will be ignored. A frame may not be 
terminated with a zero length buffer.

 9.2.3.10 Transmit Status Queue
The Transmit Status queue is used to pass transmit status from the MAC to the Host. In 
operation the status queue is similar to the transmit descriptor queue, it is a circular queue in 
contiguous memory space. The location and size of the queue are set at initialization by the 
Host writing to the Transmit Status Queue Base Address, and the Transmit Status Queue 
Base Length registers. The base address must point to a word aligned memory location. The 
length is set to the actual status queue length in bytes. This should be an integral number of 
status entries and should not exceed 64 Kbytes total. The Current Address must be set to 
point to the first status entry to be used. This would normally be the first entry in the queue 
(same value as the base address).

The Host needs to ensure that in operation there is always room in the status queue for any 
transmit frame which is enqueued in the transmit descriptor queue.



DS785UM1 9-31
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9

 Figure 9-15. Transmit Status Queue    

Transmit Status
Base Address
(TxSBA) (32)

register sizes are in bits,
and shown in parentheses ().

31 30 Buffer Index (15)

bits 31 - 0

Status 0

Status 1

Status 2

Status m

TxWE = Transmitted Without Error

TxFP = Transmit Frame Processed

Current Frame Status

Next Status PositionTransmit Status Current
 Address (TxSCA)(32)

Frame Status (15)



9-32 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3.11 Transmit Status Format

Only one Transmit Status entry is posted for each transmit frame, regardless of the number of 
transmit descriptors that are used to describe the frame.

Transmit Status 

Definition:
Transmit Status. Contains the status information for the transmitter operation.

Bit Descriptions:

TxFP: Transmit Frame Processed. The Transmit Frame 
Processed bit is always written as a 1 by the MAC when 
the status is ready and it may be used by the Host to mark 
its progress through the status queue.

TxWE: Transmitted Without Error. The transmitted Without Error 
bit is set when a frame is successfully transmitted without 
errors.

FA: Frame Abort. When a frame has been terminated by the 
Host with an Abort Frame command, in the transmit 
descriptor, the Frame Abort status bit is set.

LCRS: Loss of CRS. The Loss of CRS bit is set when a frame is 
transmitted and the MII CRS signal is not asserted at the 
end of preamble.

RSVD: Reserved. Unknown During Read. 

OW: Out of Window. The Out of Window bit indicates that a 
collision was detected after the transmission of more than 
60 bytes (from the start of preamble).

TxU: Transmit Underrun. TxUnderrun is set when a frame fails 
to be transmitted because of an excessive bus latency 
starving the transmitter.

EColl: Excess Collisions. The excessive collision bit is set when 
the frame failed to transmit due to excessive collisions. 
This may either be due to one or sixteen collisions 
dependent on the OneColl bit in the transmit descriptor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TxFP TxWE FA LCRS RSVD OW TxU EColl RSVD NColl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TBI



DS785UM1 9-33
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
NColl: Number of Collisions. This field contains the number of 

collisions that were experienced in transmitting this frame.

TBI: Transmit Buffer Index. The transmit buffer index is a copy 
of the transmit buffer index from the first descriptor of a 
transmit frame. This is provided as an aid to the Host 
software in keeping track of the transmit buffers.



9-34 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3.12 Transmit Flow

 Figure 9-16. Transmit Flow Diagram   

Device Driver

Protocol Stack
XMIT Call1

TX_Complete

Tx Descriptor
Queue

2 Transmit Frame
Data

Tx Status
Queue

PCI Bus

Transmit
Descriptor
Registers

TxDEQ

Transmit
Descriptor
Processor

MAC
Engine

LAN
Medium

3

4

5

6

7

8

9

11

10

M
em

or
y

CS 8950

AHB

System
Memory



DS785UM1 9-35
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Refer to Figure 9-16. The detailed transmit flow is:

1. Protocol stack initiates a transmit frame.

2. Driver parses protocol stack buffer into Transmit Descriptor Queue.

3. Driver writes number of additional entries to the Transmit Enqueue register.

4. On-chip Descriptor Processor fetches descriptor information.

5. On-chip Descriptor Processor initiates data move.

6. Frame data fetched from system memory into the transmit FIFO.

7. Frame transmitted onto LAN medium. Steps 6 and 7 can overlap.

8. End of frame status written to status queue

9. Driver interrupted if interrupt conditions met.

10.Driver processes the transmit status

11.Driver informs the protocol stack that transmit is complete.

Note: Steps 1, 2, 10, and 11 are transparent to the MAC block. Steps 3 through 9, inclusive, 
directly involve the MAC.

 9.2.3.13 Transmit Errors
Transmit error conditions are broken into two categories: hard errors and soft errors. A hard 
error is generally considered a reliability problem. This includes AHB bus access problems. A 
soft error indicates that the frame was not successfully transmitted. The error may be 
expected or rare. A soft error needs a graceful recovery by the host driver. Soft errors include: 
excessive collisions, SQE error (if connected to a MAU). Hard errors are parity errors (if 
enabled), system errors, master and target aborts. These will stop further transmit DMA 
activity and require host intervention for recovery. 

Hard errors cause the Descriptor Processor to halt operation. This allows the Host to 
determine the cause of error and reinitialize and restart the bus master operations.

Most soft errors do not cause the frame processing operations to halt. The Descriptor 
Processor simply flags the error and continues on to the next frame. The exception is on a 
transmit underrun. By halting the transmit frame processing, the Host has the ability to re-
initialize the transmit Descriptor Processor registers to point to the start of the failed frame 
and re-initialize. This will cause the MAC to reattempt the failed frame and allows the order of 
frame transmission to be maintained.



9-36 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.3.14 Transmit Descriptor Data/Status Flow

 Figure 9-17. Transmit Descriptor Data/Status Flow   

SoftWare HardWare
[CS8950 + LAN]

SoftWare

Reset

Initialize
Tx Descriptor
and Status

Queues

Write TxDEQ
with valid

descriptor count

Idle

Read Tx
 Descriptors

Send Frame 0

Send Frame 1

Write TxDEQ
with valid

descriptor count

Write TxDEQ
with valid

descriptor count

Random timing between
Write TxEnq steps

Send Frame 2

Write
Tx Status

Process
Tx Status

Read Tx
 Data

Read Tx
 Descriptors

Read Tx
 Descriptors

Read Tx
 Data

Read Tx
 Data

Read Tx
 Data

Write
Tx Status

Write
Tx Status

Process
Tx Status

Process
Tx Status

Processor + LAN



DS785UM1 9-37
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
 9.2.4 Interrupts

 9.2.4.1 Interrupt Processing
Interrupts can be associated with on chip status or with off-chip status. (Off-chip status is 
status that has been transferred to either the transmit or receive status queue.) The status for 
any outstanding interrupt event is available via two different register addresses: IntStsP 
(Interrupt Status Preserve) and IntStsC (Interrupt Status Clear). 

Reading the IntStsP register has no effect on the bits set in the register. They may be 
explicitly cleared by writing a “1” back to any of the bit positions. This allows the Host to 
process interrupt events across multiple routines, only clearing the bits for which it has 
processed the corresponding events.

The IntStsC register will clear the status for all outstanding events when it is read. This 
provides a quick mechanism for the Host to accept all the outstanding events in one read and 
not incur the additional IO cycles required in specifically clearing the events.

 9.2.5 Initialization

The following is the suggested hardware initialization sequence for a driver:

1. Determine what PHYs are available (poll PHYs via the management interface via 
MICmd, MIIData, and MIISts registers.

2. Enable auto negotiation to determine the mode of operation 10/100 Mbit, FDX/HDX. 
This may be needed to determine the amount of buffering to use.

3. Set RXDQBAdd and RXDCurAdd to point to the start of the receive descriptor queue

4. Set RXDQBLen to the length of the receive descriptor queue.

5. Set RXStsQBAdd and RXStsQCurAdd to point at the start of the receive status queue.

6. Set RXStsQBLen to the length of the status queue.

7. Set BMCtl.RxEn which clears the RXDEnq/RXStsEnq registers and initializes internal 
pointers to the queues. No bus master activity is triggered by the enable, because the 
enqueue registers are zero.

8. Set TXDQBAdd and TXDQCurAdd to point to the start of the transmit descriptor queue.

9. Set TXDQBLen to the length of the transmit descriptor queue.

10.Set TXStsQBAdd and TXStsQCurAdd to point to the start of the transmit status queue.

11.Set TXStsQBLen to the length of the status queue.

12.Set BMCtl.TxEn which clears the TXDEnq and initializes internal pointers to the 
queues. No bus master activity is triggered by the enable because the enqueue register 
is zero.

13.Set required interrupt mask and global interrupt mask (IntEn, GlIntMsk).



9-38 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
14.Wait for RxAct (BMSts) to be set, and then enqueue the receive descriptors and status. 

This will trigger bus master activity for the descriptor reads.

15.Set the required values for Individual Address and Hash Table.

16.Set the required options in RXCtl and TXCtl, enabling SRxON, and STxON.

17.Set any required options in the PHY, and activate.

18.Enqueue transmit descriptors as required.

 9.2.5.1 Interrupt Processing
This is the suggested method for processing an interrupt:

1. Interrupt received from the LAN Controller. This may be determined directly by vectoring 
to the interrupt service routine, or in a shared environment by polling the interrupt status 
register.

2. Read the Interrupt Status Clear register. Based on the result of the low byte, one or more 
of three processes need to run - receive queue processing, transmit queue processing, 
or other processing.

 9.2.5.2 Receive Queue Processing
1. Read the RXStsQCurAdd. This is the point to which the Host needs to process the 

status queue.

2. Read status entries up to the value of RXStsQCurAdd.

3. For each status entry, process the receive data. Set the respective status entry to 0 after 
the data has been processed

4. Write the number of statuses processed to the RXStsEnq.

5. Write the number of descriptors returned to the RXDEnq. Writing once to each enqueue 
register is more economical on bus cycles than writing once for every descriptor or 
status entry. Writing once also avoids any possible delays that may otherwise occur 
when the controller has to process multiple accesses to the same descriptor.

 9.2.5.3 Transmit Queue Processing
1. Read TXStsQCurAdd. This is the point to which the Host needs to process the status 

queue.

2. Read status entries up to the value of the TXStsQCurAdd.

3. For each status entry, free the data buffer.

 9.2.5.4 Other Processing
The upper three bytes of the Interrupt Status register provide the specific information related 
to the “Other” bit in the LSB. There are a number of bits that relate to the descriptor queues.



DS785UM1 9-39
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
1. RxMiss - This bit indicates that the receive frames have been missed which may be the 

result of insufficient bus bandwidth being available, or of a lack of receive descriptors, or 
free receive status locations.

2. RxBuffers - This bit is a warning that the last free receive descriptor has been read by 
the controller, and RXDEnq is now zero.In a system with a dynamic number of receive 
buffers, this may be use as a trigger to allocate more buffers.

3. End of Chain - This bit is set when the last transmit descriptor has been read into the 
controller (TXDEnq equal to zero). The controller may still be transmitting at this time 
due to the local descriptor and data storage. This bit may be used as a signal to add 
more transmit descriptors, if available.

4. TxLenErr - This signifies that the controller has processed a transmit frame that exceeds 
the maximum allowable length. This may be caused by an internal error in the controller, 
a data corruption in the transmit descriptors, or a Host programming error in the 
descriptor queue. The error will cause the Transmit Descriptor Processor to halt. The 
Host should perform the Transmit Restart Process detailed in Section 9.2.5.5.

5. TxUnderrun Halt - When the Halt on Underrun (BMCtl) is set and an underrun occurs, 
the Transmit Descriptor Processor will halt. The underrun may be the result of 
insufficient bus bandwidth available, or the lack of the next transmit descriptor. The Host 
should perform the Transmit Restart Process detailed in Section 9.2.5.5.

 9.2.5.5 Transmit Restart Process
Following a halt of the Transmit Descriptor Processor from a Halt on Underrun, TxLength 
Error, or setting the TxDis (BMCtl), processing may be restarted from the same point in the 
queues or from a different point. To start from the same point, the Host only needs to set 
BMCtl.TxEn. To start from a different point the following steps should be taken:

1. Process any transmit status entries in the transmit status queue (up to TXStsQCurAdd).

2. Set TxChRes in BMCtl and wait for the bit to clear. This ensures that the reset is 
complete.

3. Set the TXDQBAdd to the start of the descriptor queue.

4. Set TXDQBLen to the length of the descriptor queue.

5. Determine the point in the transmit descriptor where the controller should start 
processing, and set the TXDQCurAdd to this address. This point may be from the frame 
which caused the initial problem.

6. Set the TXStsQBAdd to the start of the status queue.

7. Set the TXStsQBLen to the length of the status queue.

8. Determine the point at which the controller should start writing status entries, and set the 
TXStsQCurAdd to this address. This can be the start of the status queue, as all existing 
status entries have been processed.

9. Set TxEn in BMCtl. This will cause the Transmit Descriptor Processor to reinitialize.



9-40 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
10.Wait for TxAct in BMSts to be set and then write the appropriate number of descriptors 

remaining in the queue to TXDEnq.

 9.3 Registers
 

Table 9-3. Ethernet Register List 

Address Name Description

0x8001_0000 RXCtl MAC Receiver Control Register

0x8001_0004 TXCtl MAC Transmitter Control Register

0x8001_0008 TestCtl MAC Test Control Register

0x8001_0010 MIICmd MAC MII Command Register

0x8001_0014 MIIData MAC MII Data Register

0x8001_0018 MIISts MAC MII Status Register

0x8001_0020 SelfCtl MAC Self Control Register

0x8001_0024 IntEn MAC Interrupt Enable Register

0x8001_0028 IntStsP MAC Interrupt Status Preserve Register

0x8001_002C IntStsC MAC Interrupt Status Clear Register

0x8001_0030 - 
0x8001_0034

Reserved

0x8001_0038 DiagAd MAC Diagnostic Address Register

0x8001_003C DiagDa MAC Diagnostic Data Register

0x8001_0040 GT MAC General Timer Register

0x8001_0044 FCT MAC Flow Control Timer Register

0x8001_0048 FCF MAC Flow Control Format Register

0x8001_004C AFP MAC Address Filter Pointer Register

0x8001_0050 - 
0x8001_0055

IndAd
MAC Individual Address Register, (shares address 
space with HashTbl)

0x8001_0050 - 
0x8001_0057

HashTbl
MAC Hash Table Register, (shares address space with 
IndAd)

0x8001_0060 GlIntSts MAC Global Interrupt Status Register

0x8001_0064 GlIntMsk MAC Global Interrupt Mask Register

0x8001_0068 GlIntROSts MAC Global Interrupt Read Only Status Register

0x8001_006C GlIntFrc MAC Global Interrupt Force Register

0x8001_0070 TXCollCnt MAC Transmit Collision Count Register

0x8001_0074 RXMissCnt MAC Receive Miss Count Register

0x8001_0078 RXRuntCnt MAC Receive Runt Count Register

0x8001_0080 BMCtl MAC Bus Master Control Register

0x8001_0084 BMSts MAC Bus Master Status Register

0x8001_0088 RXBCA MAC Receive Buffer Current Address Register

0x8001_0090 RXDQBAdd MAC Receive Descriptor Queue Base Address Register

0x8001_0094 RXDQBLen MAC Receive Descriptor Queue Base Length Register

0x8001_0096
RXDQCurLe

n
MAC Receive Descriptor Queue Current Length 
Register

0x8001_0098 RXDCurAdd MAC Receive Descriptor Current Address Register

0x8001_009C RXDEnq MAC Receive Descriptor Enqueue Register

0x8001_00A0 RXStsQBAdd MAC Receive Status Queue Base Address Register

0x8001_00A4 RXStsQBLen MAC Receive Status Queue Base Length Register

0x8001_00A6
RXStsQCurL

en
MAC Receive Status Queue Current Length Register



DS785UM1 9-41
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9

Control Register Description

RXCtl 

Address:
0x8001_0000 - Read/Write

0x8001_00A8
RXStsQCurA

dd
MAC Receive Status Queue Current Address Register

0x8001_00AC RXStsEnq MAC Receive Status Enqueue Register

0x8001_00B0 TXDQBAdd MAC Transmit Descriptor Queue Base Address Register

0x8001_00B4 TXDQBLen MAC Transmit Descriptor Queue Base Length Register

0x8001_00B6
TXDQCurLe

n
MAC Transmit Descriptor Queue Current Length 
Register

0x8001_00B8
TXDQCurAd

d
MAC Transmit Descriptor Current Address Register

0x8001_00BC TXDEnq MAC Transmit Descriptor Enqueue Register

0x8001_00C0 TXStsQBAdd MAC Transmit Status Queue Base Address Register

0x8001_00C4 TXStsQBLen MAC Transmit Status Queue Base Length Register

0x8001_00C6
TXStsQCurL

en
MAC Transmit Status Queue Current Length Register

0x8001_00C8
TXStsQCurA

dd
MAC Transmit Status Queue Current Address Register

0x8001_00D0
RXBufThrshl

d
MAC Receive Buffer Threshold Register

0x8001_00D4
TXBufThrshl

d
MAC Transmit Buffer Threshold Register

0x8001_00D8
RXStsThrshl

d
MAC Receive Status Threshold Register

0x8001_00DC TXStsThrshld MAC Transmit Status Threshold Register

0x8001_00E0 RXDThrshld MAC Receive Descriptor Threshold Register

0x8001_00E4 TXDThrshld MAC Transmit Descriptor Threshold Register

0x8001_00E8 MaxFrmLen MAC Maximum Frame Length Register

0x8001_00EC RXHdrLen MAC Receive Header Length Register

0x8001_0100 - 
0x8001_010C

Reserved

0x8001_4000 - 
0x8001_FFFF

MACFIFO MAC FIFO RAM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PauseA RxFCE1 RxFCE0 BCRC SRxON

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RCRCA RA PA BA MA IAHA RSVD IA3 IA2 IA1 IA0

Table 9-3. Ethernet Register List  (Continued)

Address Name Description



9-42 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Chip Reset:

0x0000_0x0x

Rx Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Receiver Control Register. The Receive Control register is reset by Rx Reset 
signal generated by holding the TESTSELn pin low. The same signal is also 
used to reset the receive MAC. The purpose of having a separate reset signal 
is to be able to avoid resetting the receive MAC when the AHB bus is in a 
powered down state (RESET active), and wake-up frames need to be 
detected.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.   

Note: The IA field of the table means the same Individual Addresses as RxFCE, that is, IA0 
implies RxFCE0 and IA1 implies RxFCE1

PauseA: Pause Accept. When set, Pause frames are passed on to 
the Host as regular frames. When clear, the frames are 
discarded. The handling of MAC Control frames depends 
on the Pause Accept bit as well as the appropriate 
Individual Accept and RxFlow Control Enable bits, as 
follows.

Table 9-4. Individual Accept, RxFlow Control Enable and Pause Accept Bits

IA[1:0]

Individu
al

Accept

RxFCE[1:
0]

Receive
Flow

Control
Enable

PauseA

Pause
Accept

Action

0 X X Frame discarded (do not pass the address filter)

1 1 0
MAC Control frames are recognized, flow control action taken, 
and frames not passed to host. Non pause MAC Control 
frames are passed on to host.

1 1 1
MAC Control frames are recognized, flow control action taken, 
and all MAC control frames are passed on to host.

1 0 X
MAC Control frames are not distinguished from other frame 
types, all frames passed on to host.



DS785UM1 9-43
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RxFCE1: Rx Flow Control Enable, bit 1. Setting the RxFCE1 bit 

causes all receive frames that pass the Individual Address 
[1] register to be scanned for flow control format and, if 
detected, the Transmit Flow Control Timer register is set 
appropriately.

RxFCE0: Rx Flow Control Enable, bit 0. Setting the RxFCE0 bit 
causes all receive frames that pass the Individual Address 
[0] register to be scanned for flow control format and, if 
detected, the Transmit Flow Control Timer register is set 
appropriately.

BCRC: Buffer CRC. When set, the received CRC is included in 
the received frame buffer, and the received frame length 
includes the four byte CRC. When clear, neither the 
receive buffer nor the receive length includes the CRC.

SRxON: Serial Receive ON. The receiver is enabled when set. 
When clear, no incoming signals are passed through the 
receiver. When a frame is being received, and SerRxON is 
cleared, then that receive frame is completed. No 
subsequent receive frames are allowed until SerRxON is 
set again.

RCRCA: Runt CRC Accept. When set, received frames, which pass 
the destination address filter, but are smaller than 64 
bytes, and have a CRC error are accepted. However, the 
MAC discards any frame of length less than 8 bytes. When 
clear, frames received less that 64 bytes in length with 
CRC errors are discarded.

RA: Runt Accept. When set, received frames, which pass the 
destination address filter, but are smaller than 64 bytes, 
with a good CRC, are accepted. However, the MAC 
discards any frame of length less than 8 bytes. When 
clear, frames received less that 64 bytes in length, with a 
good CRC are discarded.

PA: Promiscuous Accept. All frames are accepted when set.

BA: Broadcast Accept. When set, received frames are 
accepted with all 1s in the DA.

MA: Multicast Accept. When set, received frames are accepted 
if the DA, when hashed, matches one of the hash table 
bits, and the frame is a multicast frame (first bit of 
destination address = 1). See Descriptor Processor 
Transmit Registers.



9-44 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
IAHA: Individual Address Hash Accept. When set, received 

frame are accepted when the DA is an Individual Address 
(first bit of DA = 0), that is accepted by the hash table. See 
Descriptor Processor Transmit Registers.

IA3: Individual Accept 3. When set, received frames are 
accepted which the DA matches the Individual Address 3 
Register.

IA2: Individual Accept 2. When set, received frames are 
accepted which the DA matches the Individual Address 2 
Register.

IA1: Individual Accept 1. When set, received frames are 
accepted which the DA matches the Individual Address 1 
Register.

IA0: Individual Accept 0. When set, received frames are 
accepted which the DA matches the Individual Address 0 
Register.

Note: It may become necessary for the host to change the destination address filter criteria and 
NOT go through a controller reset. This can be done. The host should:

1. Clear SerRxON (RXCtl) to prevent an additional received frame while the filters are 
being changed.

2. Modify the destination filter bits in this register.

3. Modify the Logical Address Filter, if necessary.

4. Modify the Individual Address Filter, if necessary.

5. Set SerRxON to re-enable the receiver.

When the host changes the destination filter, it is possible that a frame will be missed while 
SerRxON is clear.

TXCtl 

Address:
0x8001_0004 - Read/Write

Chip Reset:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DefDis MBE ICRC TxPD OColl SP PB STxON



DS785UM1 9-45
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Soft Reset:

0x0000_0000

Definition:
Transmit Control Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

DefDis: 2-part DefDis. Before a transmission can begin, the MAC 
follows a deferral procedure. With the 2-part DefDis bit 
clear, the deferral is the standard two-part deferral as 
defined in ISO/IEC 8802-3 paragraph 4.2.3.2.1. With the 
2-part DefDis bit set, the two-part deferral is disabled. See 
Transmit Back-Off paragraph.

MBE: ModBackoff Enable. When clear, the ISO/IEC standard 
backoff algorithm is used. When set, the Modified Backoff 
algorithm is used, which delays longer after each of the 
first three Tx collisions.

ICRC: Inhibit CRC. When this bit is set, there will be no CRC 
appended to transmit frames. If the Abort Frame bit is set 
in the transmit descriptor for a frame, the frame will be 
terminated with a bad CRC.

TxPD: Tx Pad Disable. When this bit is set, the MAC will not pad 
the frame to the legal minimum size (64 bytes). If clear, the 
MAC will pad the frame to the minimum legal frame size if 
the supplied length is less than 64 bytes. The padded 
characters will be the last supplied character in the frame, 
repeated.

OColl: One Collision. When this bit is set, no attempt is made to 
resend frames in the event of a collision.

SP: Send Pause. When set by the host, this bit causes a 
pause frame to be transmitted at the earliest opportunity. 
This is at the end of the current frame, if one is already in 
progress. This bit will remain set until the transmission of 
the frame has started. The pause frame is comprised of 
the following elements:

Destination Address Individual Address number 6
Source Address Individual Address number 1
Type Field Type Field defined in the 

 Flow Control Format register0
Opcode 0x0001
Pause Time Pause Field defined in the 

 Flow Control Format register 
Pad fill



9-46 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
PB: Pause Busy: This bit remains set as long as a pause 

frame is being transmitted. Only one pause frame may be 
sent at any time, therefore the Send Pause and Pause 
Busy bits should be zero before a new pause frame is 
defined.

STxON: Serial Transmit ON. The transmitter is enabled when set. 
When clear, no transmissions are allowed. When a frame 
is being transmitted, and STxON is cleared, then that 
transmit frame is completed. No subsequent frames are 
transmitted until STxON is set again.

SelfCtl 

Address:
0x8001_0020 - Read/Write

Chip Reset:
0x0000_0F10

Soft Reset:
0x0000_0000

Definition:
Self Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

MDCDIV: MDC Clock Divisor. HCLK is divided by MDCDIV + 1 to 
create the MDC clock frequency. Default value is 0x07, 
which is divide by 8.

Note: Clause 22.2.2.1 in the IEEE-802-3 specification states that the maximum MDC clock rate 
is 2.5 MHz. Most PHYs support clock rates faster than 2.5 MHz. So, modify the MDCDIV 
value according to the PHYs specification.

PSPRS: Preamble Suppress. Default is 1.
1 = The first MDC qualifies an SFD on MDIO. 
0 = Get 32 ones before SFD. 

Note: The user must check the datasheet of the PHY being used in the design. If the PHY needs 
a preamble for reading/writing to/from PHY registers, the PSPRS must be cleared (set to 
0). 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD MDCDIV PSPRS RWP RSVD GPO0 PUWE PDWE MIIL RSVD RESET



DS785UM1 9-47
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
The following procedure will correctly set the SelfCtl register value:

1. Read the value of SelfCtl 

2. Clear PSPRS bit in SelfCtl Register. 

3. Read/write PHY registers. 

4. Restore the old value to SelfCtl.

RWP: Remote Wake Pin. This bit reflects the current state of the 
REMWAKE pin. Following a system power up, caused by 
a Remote Wake-up frame being detected by the MAC, this 
bit is set.

GPO0: General Purpose Output 0. This bit directly controls the 
GPO[0] pin. A “1” corresponds to a logic high on the pin.

PUWE: Power Up Wake-up Enable. Setting the Power Up Wake-
up enable bit causes the MAC to enter the remote wake-
up mode, during normal operation (AHB bus powered up). 
In this mode all receive frames that pass the destination 
address filter are scanned for the remote wake-up pattern 
(six bytes of 0xFF followed directly by sixteen consecutive 
copies of the Individual address). When this pattern is 
detected, the REMWAKE pin is driven high and Remote 
Wake-up (Interrupt Status is set).

PDWE: Power Down Wake-up Enable. Setting the Power Down 
Wake-up Enable bit causes the MAC to enter the remote 
wake-up mode when the AHB bus is powered down. In 
this mode all receive frames that pass the destination 
address filter are scanned for the remote wake-up pattern 
(six bytes of FFh followed directly by sixteen consecutive 
copies of the Individual address). When this pattern is 
detected, the REMWAKE pin is driven high, and can be 
used to initiate a system power up, the state of the 
REMWAKE pin is visible via the Remote Wake Pin bit of 
this register.

MIIL: MII Loopback. Setting the MII Loopback bit causes 
transmit data to be diverted back into the receive data path 
prior to the MII interface pins, the transmit data does not 
appear on the MII bus and the receive data on the MII bus 
is ignored. The clock for the transmit and receive data is 
derived from the AHB CLK in the loopback mode. It is 
strongly recommended that TXCLK and RXCLK come 
from a single clock source with minimum skew in order to 
ensure the proper operation of the loopback test. For 
reliable operation a software reset should be issued when 
the MII loopback bit is changed.



9-48 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RESET: Soft Reset. This is an act-once bit. When set, a Soft Reset 

is initiated immediately, this will reset the FIFO, mac and 
Descriptor Processor. This bit is cleared as a result of the 
reset. Driver software should wait until the bit is cleared 
before proceeding with MAC initialization.

DiagAd 

Address:
0x8001_0038 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Diagnostic Address Register. The Diagnostic Address Register provides an 
indirect addressing method to point to internal diagnostic locations, which 
provide access to features not required for normal driver operation. To access 
the internal registers, the address of the register is written to the Diagnostic 
Address register, and the Diagnostic Data register is used to access the actual 
data.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

ADDR: Diagnostic Address. The following table identifies the 
address map.
Address Register Name
0x00 Debug Control
0x04 Debug FIFO Control
0x08 Debug FIFO Data
0x98 Receive Data FIFO Pointers
0x9C Transmit Data FIFO Pointers
0xA0 Receive Status FIFO Pointers
0xA4 Transmit Status FIFO Pointers
0xA8 Receive Descriptor FIFO Pointers
0xAC Transmit Descriptor FIFO Pointers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD ADDR



DS785UM1 9-49
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
DiagDa 

Address:
0x8001_003C - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Diagnostic Data Register. The Diagnostic Data Register provides access to 
the internal register pointed to by the value in the Diagnostic Address register. 
For debug only.

Bit Descriptions:

DATA: Internal register data value.

GT 

Address:
0x8001_0040 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
General Timer Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

GTC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GTP



9-50 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Bit Descriptions:

GTC: General Timer Count, read only. The timer count contains 
the running value of the timer function, it cannot be written 
to directly. When the General Timer Period is written and 
the same value is loaded into the General Timer Count, or 
when the count value reaches 0, it is reloaded from the 
General Timer Period. Additionally when the count 
reaches zero, the Timeout Status (Interrupt Status register) 
is set. The timer value is decremented at 1/8th of the 
transmit bit rate.

GTP: General Timer Period, read/write. The Timer Period holds 
the periodic time for the timer. When the period is written, 
the count is preloaded with the same value. Setting a 
value of zero in the Period disables the generation of 
Timeout Status.

FCT 

Address:
0x8001_0044 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Flow Control Timer

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

FCT: Flow Control Timer value. The Flow Control Timer is 
loaded as a result of receiving a flow control frame, with 
the pause value from the received frame. The value in the 
timer is then decremented every 512 bit times, as soon as 
the transmit line is idle. While the timer is non zero, no 
new transmit frames are started. The decrement time 
depends on the speed, but always corresponds to the 
duration of a 64 byte minimum packet.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD FCT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCT



DS785UM1 9-51
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
FCF 

Address:
0x8001_0048 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Flow Control Format Register

Bit Descriptions:

MACCT: MAC Control Type. The MAC Control Type field defines 
the Ethernet type field for receive and transmit MAC 
control frames. This is used in the processing of transmit 
and receive pause frames, which are a special form of 
MAC control frames. For a receive frame to be identified 
as a pause frame, the following conditions must be met:

• The destination address must match one of first two individual addresses, with the 
appropriate RxFlowControlEn bit set.

• The Ethernet type field must match MAC Control Type.

• The first two data bytes of the frame must equal 0x0001.

When a transmit pause command is processed, the MAC Control Type is inserted in the 
transmit frame as the ethernet type field.

TPT: Transmit Pause Time. When a transmit pause command is 
processed, the Transmit Pause Time is inserted as the 
actual time to pause.

 The format of a transmit pause frame is: 

1. Destination address = Individual address[6] (6 bytes)

2. Source address = Individual address[0] (6 bytes)

3.  Type field = MAC Control Type (2bytes)

4. Opcode = 0x0001 (2bytes)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MACCT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TPT



9-52 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
5. Pause time = Transmit Pause Time (FCF) (2bytes)

6. Padding to complete minimum size packet.

7. CRC

AFP   

Address:
0x8001_004C - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Address Filter Pointer Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

AFP: Address Filter Pointer. The Address Filter Pointer controls 
access to a block of storage which is used to hold MAC 
addresses, and the destination address hash table. The 
pointer defines which set of address match functions are 
visible to the Host at offset 0x0050 through 0x005F.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD AFP

Table 9-5. Address Filter Pointer 

AFP Data Accessed at Offset 0050 through 005F

000
This is the primary Individual Address, used in the recognition of Wake-up frames, as the 
source address for transmit pause frames, and may be optionally used to qualify receive pause 
frames.

001 This is a secondary MAC address that may be optionally used to qualify receive pause frames

010
011

These secondary addresses are only used for qualifying the destination addresses of receive 
frames.

100
101

These locations are not implemented

110 This address is used as the destination address of transmit pause frames

111 This block comprises the hash table used for qualifying the destination of receive frames.



DS785UM1 9-53
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
IndAd 

Address:
0x8001_0050 through 0x8001_0055 - 6 Bytes - Read/Write, 
when AFP = 000b, 010b or 001b

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Individual Address Register. There are five different Individual Addresses 
accessible at offset 0x050, the Address Filter Pointer determines which one is 
accessed at any one time. The first four addresses (pointer offset 0x000 
through 0x011), may be used to implement destination address filters for 
receive frames. The first two may also be used to qualify receive frames for 
flow control processing, and the first address is used for wake-up frame 
processing. The fifth address (pointer offset 0x110), is only used as the 
destination address for transmit pause frames.

The least significant byte of the Individual Address corresponds to the first 
byte of the address on the serial interface, with the least significant bit of the 
byte corresponding to the first bit on the serial interface.

Bit Descriptions:

IAD: Individual Address. 

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

IAD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IAD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IAD



9-54 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
HashTbl 

Address:
0x8001_0050 through 0x8001_0057 - 8 Bytes - Read/Write, 
when AFP = 111b

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Hash Table Register. The hash table is used as a way of filtering groups of 
addresses in the receiver. Following the reception of the destination address 
(first 6 bytes of a receive frame), the upper 6 bits of the computed CRC are 
used as an address into the hash table. If the bit accessed by this address is a 
“1”, the frame passes the hash table test, if the bit is a “0”, the frame fails the 
hash table test. 

The hash table may be used for either or both of individual addressed frames 
and group address frames, depending on the IAHA and MA bits in RXCtl. A 
frame has a group address if the first bit of the frame is a one.

If an individual address frame passes the hash test and the IAHA bit is set, the 
frame passes the destination filter. 

If a group address frame passes the hash test and the MA bit set, the frame 
passes the destination filter.

Bit Descriptions:

HTb: Hash Table entries.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

HTb

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

HTb

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

HTb

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HTb



DS785UM1 9-55
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TXCollCnt 

Address:
0x8001_0070 - Read Only

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Transmit Collision Count Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

TXC: Transmit Collision Count. The transmit collision count 
records the total number of collisions experienced on the 
transmit interface, including late collisions. When the most 
significant bit of the count is set, an optional interrupt may 
be generated. The register is cleared automatically 
following a read and writing to the register will have no 
effect.

RXMissCnt 

Address:
0x8001_0074 - Read Only

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TXC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RMC



9-56 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Definition:

Receive Miss Count Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RMC: Receive Miss Count. The Receive Miss Count records the 
number of frames that pass the destination address filter, 
but fail to be received due to lack of bus availability or lack 
of receive storage. Frames that are partially stored and 
marked as overruns are included in the count. When the 
most significant bit of the count is set, an optional interrupt 
may be generated. The register is cleared automatically 
following a read, writing to the register will have no effect.

RXRuntCnt 

Address:
0x8001_0078 - Read Only

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Receive Runt Count Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RRC: Receive Runt Count. The receive runt count records the 
total number of runt frames received, including those with 
bad CRC. When the most significant bit of the count is set, 
an optional interrupt may be generated. The register is 
cleared automatically following a read, writing to the 
register will have no effect.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RRC



DS785UM1 9-57
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TestCtl 

Address:
0x8001_0008 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Test Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

MACF: MAC Fast. When set, internal MAC timers for link pulses 
and collision backoff are scaled in order to speed-up 
controller testing. When clear, normal timing is used.

MFDX: MAC Full Duplex. This bit is used to enable full duplex 
operation, when set, the transmitter ignores carrier sense 
for transmit deferral. For normal loopback testing this bit 
should be set.

DB: Disable backoff. When set, the backoff algorithm is 
disabled. The MAC transmitter looks only for completion of 
the Inter Frame Gap before starting transmission. When 
clear, the backoff algorithm is used as described in       
Section 9.1.4 on page 9--7.

IntEn 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD MACF MFDX DB RSVD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD / RWIE RxMIE RxBIE RxSQIE TxLEIE ECIE TxUHIE RSVD MOIE TxCOIE RxROIE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RSVD MIIIE PHYSIE TIE RSVD SWIE RSVD TSQIE REOFIE REOBIE RHDRIE



9-58 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Address:

0x8001_0024 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Interrupt Enable Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RWIE: Remote Wake-up Interrupt Enable. Setting this bit causes 
an interrupt to be generated when a remote wake-up 
frame is detected and the MAC is in the Remote Wake-up 
mode (RXCtl).

RxMIE: Receiver Miss Interrupt Enable. When set, this bit will 
cause an interrupt whenever a complete receive frame is 
discarded due to lack of storage. This may be as a result 
of long bus latency or insufficient receive descriptors. The 
total number of missed frames is also counted in the 
RxMiss Counter.

RxBIE: Receive Buffer Interrupt Enable. When set, this bit will 
cause an interrupt to be generated when the last available 
receive descriptor has been read into the MAC.

RxSQIE: Receive Status Queue Interrupt Enable. When this bit is 
set, an interrupt will be generated when the last available 
status queue entry has been written (RXStsEnq = 0).

TxLEIE: Transmit Length Error Interrupt Enable. Setting this bit 
causes an interrupt to be generated when a transmit frame 
equals or exceeds the length specified in the Max Frame 
Length register. 

ECIE: End of Chain Interrupt Enable. The end of chain interrupt 
is generated when the last transmit descriptor has been 
loaded into the MAC. There may still be transmit 
descriptors and or transmit data remaining in the MAC at 
this time.

TxUHIE: Transmit Underrun Halt Interrupt Enable. If there is a 
transmission, and the MAC runs out of data before the full 
transmitted length, then there is a transmit underrun. If the 
MAC is programmed to halt in this condition (Bus Master 
Control), setting TxUnderrunHaltiE will cause an interrupt 
to be generated.



DS785UM1 9-59
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
MOIE: Receive Miss Overflow Interrupt Enable. If received 

frames are lost due to slow movement of receive data out 
of the receive buffers, then a receive miss is said to have 
occurred. When this happens, the RxMISS counter is 
incremented. When the MSB of the count is set, the 
MissCnt bit in the Interrupt Status Register is set. If the 
MissCntiE bit is set at this time, an interrupt is generated.

TxCOIE: Transmit Collision Overflow Interrupt Enable. When a 
transmit collision occurs, the transmit collision count is 
incremented. When the MSB of the count is set, the 
TXCollCnt bit in the Interrupt Status Register is set. If the 
TxCollCntiE is set at this time, an interrupt is generated.

RxROIE: Receive Runt Overflow Interrupt Enable. When a runt 
frame is received with a CRC error, the RxRuntCnt register 
is incremented. When the MSB of the count is set the 
RuntOv bit is set in the Interrupt Status Register. If the 
RuntOviE bit is set at this time, an interrupt is generated.

MIIIE: MII Management Interrupt Enable. When set, the MII 
Interrupt enable causes an interrupt to be generated 
whenever a management read or write cycle is completed 
on the MII bus.

PHYSIE: The PHY Status Interrupt Enable bit provides a 
mechanism to generate an interrupt whenever a change of 
status is detected in the PHY.

TIE: Setting the Timer Interrupt Enable bit will cause an 
interrupt to be generated whenever the general timer (GT) 
counter reaches zero.

SWIE: Writing a “1” to this bit causes a software generated 
interrupt to be generated. The SWint bit in the Interrupt 
Status register is set to indicate the cause of the interrupt. 
This bit will always read zero.

TSQIE: Transmit Status Queue Interrupt Enable. Setting this bit 
causes an interrupt to be generated whenever a transmit 
status is posted to the transmit status queue.

REOFIE, REOBIE, RHDRIE: Setting all three bits causes interrupts to be 
generated whenever a receive-end-of-frame 
status, or a receive-end-of-buffer status, or a 
receive-header status is written to the receive 
status queue. 



9-60 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
IntStsP/IntStsC 

Address:
0x8001_0028, for IntStsP - Read/Write
0x8001_002C, for IntStsC - Read Only

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Interrupt Status Preserve and Clear Registers. The interrupt status bits are set 
when the corresponding events occur in the MAC. If the corresponding 
interrupt enable bit is set in the interrupt enable register, an interrupt signal will 
be generated.

Interrupt status is available at two different offsets: Interrupt Status Preserve 
and Interrupt Status Clear. Both offsets are a read of the same storage. 
Reading the Interrupt Status register Preserve has no effect on the status in 
the register, but writing a 1 to a location in this register clears the status bit, 
writing a zero has no effect. Reading the Interrupt Status Clear register clears 
all the bits in the register that are accessed as defined by the AHB HSIZE 
signal. Therefore a routine which will handle all reported status may read via 
the Interrupt Status Clear thereby saving a write operation.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RWI: Remote Wake-up Interrupt. The remote wake status is set 
when a remote wake-up frame is received, and the 
RemoteWakeEn (RXCtl) is set. A remote wake-up frame 
must pass the receive destination address filter and have 
a contiguous sequence of 6 bytes of FFh followed by 8 
repetitions of the Individual Address and be a legal frame 
(legal length and good CRC).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD RWI RxMI RxBI RxSQI TxLEI ECI TxUHI RSVD MOI TxCOI RxROI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD MIII PHYSI TI AHBE SWI RSVD OTHER TxSQ RxSQ RSVD



DS785UM1 9-61
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RxMI: RxMI is set when a receive frame was discarded due to 

the internal FIFO being full. This may be as a result of a 
long latency in acquiring the bus or a lack of receive 
descriptors. RxMiss is not set in response to a frame that 
was partially stored in the FIFO and then discarded due to 
lack of FIFO space. This is marked as an Overrun Error in 
the Status Queue.

RxBI: RxBuffers is set when the last available receive descriptor 
has been read into the MAC (RxDesEnq = 0). Free 
descriptors may still be available in the MAC to 
accommodate receive frames.

RxSQI: The Receive Status Queue bit is set when the last free 
status queue location has been written (RXStsEnq = 0).

TxLEI: The Transmit Length Error status is set when any 
excessively long frame is transferred into the transmit data 
FIFO. When this occurs, the MAC assumes an error has 
occurred in the transmit descriptor queue, and therefore 
stops further transmit DMA transfers. An excessively long 
frame is defined as one equal or longer than the value 
programmed in the Max Frame Length register. The frame 
itself will be terminated with a bad CRC.

ECIE: When set to 1, this bit indicates that the MAC has 
exhausted the transmit descriptor chain.

TxUHI: This bit is set if the MAC runs out of data during a frame 
transmission, and the Underrun Halt bit (BMCtl) is set, at 
this time the Transmit Descriptor Processor will have been 
halted. If the Underrun Halt bit is clear, the MAC will write 
an Underrun Status for the frame and continue to the next 
transmit frame.

MOI: If received frames are lost due to slow movement of 
receive data out of the receive buffers, then a receive miss 
is said to have occurred. When this happens, the RxMISS 
counter is incremented. When the MSB of the count is set, 
the MissCnt bit in the Interrupt Status Register is set. If the 
MissCntiE bit is set, an interrupt will be generated.

TxCOI: When a transmit collision occurs, the transmit collision 
count is incremented. When the MSB of the count is set 
the TxCOI bit in the Interrupt Status Register is set. If the 
TxCOIE bit is set, an interrupt will be generated.



9-62 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RxROI: When a runt frame is received with a CRC error, the 

RxRuntCnt register is incremented, when the MSB of the 
count is set, the RuntOv bit is set in the Interrupt Status 
Register. If the RxROIE bit is set, an interrupt will be 
generated.

MIIII: The MII Status bit is set whenever a management 
operation on the MII bus is completed.

PHYI: The PHY Status bit is set when the MAC detects a change 
of status event in the PHY.

TI: The Timeout bit is set when the general timer (GT) count 
register reaches zero.

AHBE: This bit is set if a MAC generated AHB cycle terminated 
abnormally. The Queue ID bits (Bus Master Status) will 
indicate the DMA Queue which was active when the abort 
occurred. DMA operation is halted on all queues until this 
bit is cleared, and the queues are restarted via the Bus 
Master Control register.

OTHER: This bit is set when a status other than that covered by bits 
10, 3 and 2 is present.

TxSQ: This bit is set when a status affecting the transmit status 
queue has been posted.

RxSQ: This bit is set when a status affecting the receive status 
queue has been posted. This bit can only be set if bit 2 
(REOFIE), bit 1 (REOBIE) and bit 0 (RHDRIE) of the 
Interrupt Enable (IntEn) register are set (enabled).

GlIntSts 

Address:
0x8001_0060 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT RSVD



DS785UM1 9-63
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Definition:

Global Interrupt Status Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

INT: Global interrupt bit. This bit is set whenever the MACint 
signal to the interrupt controller is active. Writing a one to 
this bit location will clear this bit until a new interrupt 
condition occurs.

GlIntMsk   

Address:
0x8001_0064 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Global Interrupt Mask Register. This register is used to mask the GlIntSts bit, 
to allow of block interrupts to the processor.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

INT: Global interrupt mask bit. When set, any interrupt enabled 
by the Interrupt Enable Register will set the Global 
Interrupt Status interrupt bit. When clear, no interrupts will 
reach the processor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT RSVD



9-64 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
GlIntROSts   

Address:
0x8001_0068 - Read Only

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
General Interrupt Read-Only Status register. This is a read-only version of the 
Global Interrupt Status Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

INT: Global interrupt read-only status bit. This bit is set 
whenever the MACint signal to the interrupt controller is 
active.

GlIntFrc 

Address:
0x8001_006C - Write Only

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Global Interrupt Force Register. This register allows software to generate an 
interrupt.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT RSVD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT RSVD



DS785UM1 9-65
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Bit Descriptions:

RSVD: Reserved. Unknown During Read.

INT: Global interrupt force bit, write only, always reads zero. 
Writing a one to this bit will set the Global Interrupt Status 
bit, if it is enabled. Writing a zero has no effect.

MII/PHY Access Register Descriptions

All PHY registers are accessed through the MII Command, Data and Status Registers. Write 
operations are accomplished by writing the required data to the MII Data Register and then 
writing the required Command to the MII Command Register (Opcode = 01, PhyAd = target 
phy, RegAd = target register), which causes the Busy bit (MII Status) to be set. When the 
Busy bit is clear, the write operation has been performed. Read operations are performed by 
writing a read command to the MII Command register (Opcode = 10b, PhyAd = target phy, 
RegAd = source register), which will also cause the Busy bit (MII Status) to be set. When the 
read operation has been completed, the Busy bit is cleared and the read data is available in 
the MII Data register.

MIICmd 

Address:
0x8001_0010 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
MII Command Register. Provides read-write access to the external PHY 
registers using the MII command data port.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

OP: OPcode. This Opcode field defines the type of operation to 
be performed to the appropriate PHY register. 
10 - Read register
01 - Write register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP RSVD PHYAD REGAD



9-66 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
PHYAD: PHY Address. This field defines which external PHY is to 

be accessed.

REGAD: Register Address. This field defines the particular register 
in the PHY to be accessed.

MIIData 

Address:
0x8001_0014 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
MII Data Transfer Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

MIIData: MII Data Register. This register contains the 16 bit data 
word that is either written to or read from the appropriate 
PHY register.

MIISts 

Address:
0x8001_0018 - Read Only

Chip Reset:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MIIData

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BUSY



DS785UM1 9-67
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Soft Reset:

0x0000_0000

Definition:
MII Status Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Busy: MII Busy. The Busy bit is set whenever a command is 
written to the MII Command Register. It is cleared when 
the operation has been completed.

Descriptor Processor Registers

The Descriptor Processor Registers are in three parts: the bus master control, receive 
registers, and transmit registers.

BMCtl 

Address:
0x8001_0080 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Bus Master Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD MT TT UnH TxChR TxDis TxEn RSVD EH2 EH1 EEOB RSVD RxChR RxDis RxEn



9-68 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
MT: Manual Transfer. Writing a one to this bit causes all 

internal FIFOs to be marked pending for transfer, as if they 
had crossed their threshold. This provides a mechanism 
for flushing stale status from the internal FIFOs, when the 
Timed Transfer is not used and non zero thresholds have 
been set. When the Manual Transfer is set, the Transfer 
Pending (BMCtl), is set until all FIFOs have been either 
active for a DMA transfer, or have been determined 
inactive (that is, an empty receive data FIFO). When 
reading the BMCtl register, the Manual Transfer bit will 
always return a zero.

TT: Timed Transfer. Setting the Timed Transfer bit causes the 
internal FIFOs to be marked as pending for transfer 
whenever the timer reaches zero. This provides a 
mechanism for flushing stale status from the internal 
FIFOs when a non zero threshold has been set.

UnH: Underrun Halt. When set, this bit causes the transmit 
descriptor to perform the following operations when a 
transmit underrun is encountered:

1. Halt all transmit DMA operations.

2..Flush the transmit descriptor queue.

3.Set transmit enqueue to zero.

This allows the host to re-initialize the Transmit 
Descriptor Processor, to start at the desired point. 
When clear, the MAC will proceed to the next 
transmit frame in the queue.

TxChR: Transmit Channel Reset. Writing a “1” to Transmit Channel 
Reset causes the Transmit Descriptor Processor and the 
transmit FIFO to be reset. This bit is an act-once-bit and 
will clear automatically when the reset is complete.

TxDis: Transmit Disable. Writing a “1” to Transmit Disable causes 
the transmit DMA transfers to be halted. If a transmit frame 
is currently in progress, transfers are halted when the 
transmit status is written to the status buffer. When 
transfers have been halted, the TxAct bit (Bus Master 
Status) is clear. TxDis is an act-once-bit and will clear 
immediately.



DS785UM1 9-69
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TxEn: Transmit Enable. Writing a one to Transmit Enable causes 

transmit DMA transfers to be enabled. This is reflected in 
TxAct (Bus Master Status) being set. TxEn is an act-once-
bit and will clear automatically when the enable is 
complete. The first time the TxEn bit is set following an 
AHB reset, or a TxChRes, the MAC performs a transmit 
channel initialization. During this initialization the TXDEnq 
is cleared, and the Transmit Descriptor and Status Queues 
are calculated. When the initialization is complete, the 
TxAct (BMSts) is set.

EH2: Enable Header 2. When Enable Header2 is set, a status is 
written to the receive status queue when the number of 
bytes specified in Receive Header Length2 have been 
transferred to the receive data buffer. If the transfer either 
fills a receive buffer or ends a receive frame, only an end 
of buffer or end of frame status is generated. The value in 
Receive Header Length 2 should be greater than the value 
in Receive Header Length 1 in order to generate a status 
event.

EH1: Enable Header 1. When Enable Header1 is set, a status is 
written to the receive status queue when the number of 
bytes specified in Receive Header Length1 have been 
transferred to the receive data buffer. If the transfer either 
fills a receive buffer or ends a receive frame, only an end 
of buffer or end of frame status is generated.

EEOB: Enable EOB. When Enable End Of Buffer bit is set, a 
status is written to the receive status queue whenever an 
end of receive buffer is reached. If reaching the end of the 
receive buffer coincides with the end of frame, only one 
status is written to the queue.

RxChR: Receive Channel Reset. Writing a “1” to Receive Channel 
Reset causes the Receive Descriptor Processor and the 
receive FIFO to be reset. This bit is an act-once-bit and 
will clear automatically when the reset is complete.

RxDis: Receive Disable. Writing a “1” to Receive Disable causes 
receive DMA transfers to be halted. If a receive frame is 
currently in progress, transfers will be halted when the 
receive frame status has been transferred to the status 
buffer. When the transfers are halted, the RxAct bit (Bus 
Master Status) is cleared. This bit is an act-once-bit and 
will clear immediately.



9-70 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RxEn: Receive Enable. Writing a one to Receive Enable causes 

receive DMA transfers to be enabled. This is reflected in 
RxAct (Bus Master Status) being set. This bit is an act-
once-bit and will clear automatically when the enable is 
complete. The first time the RxEn bit is set following a 
AHB reset, or a RxChRes, the MAC performs a receive 
channel initialization. During this initialization the RXDEnq, 
and RXStsEnq registers are cleared and the endpoints of 
the Receive Descriptor and Status Queues are calculated. 
When the initialization is complete, the RxAct (BMSts) is 
set.

BMSts 

Address:
0x8001_0084 - Read Only

Chip Reset:
0x0000_0000

Soft Reset:
0x0000_0000

Definition:
Bus Master Status Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TxAct: Transmit Active. When this bit is set, the channel is active 
and may be in the process of transferring transmit data. 
Following a TxDisable Command (Bus Master Control), 
when transfers have been halted, this bit is cleared.

TP: Transfer Pending. When the Manual Transfer bit (BMCtl) is 
set, the Transfer Pending bit is set, until all internal FIFOs 
have either been active for a DMA transfer, or have been 
determined to be inactive (that is, empty transmit status 
FIFO).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TxAct RSVD TP RxAct QID



DS785UM1 9-71
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RxAct: Receive Active. When this bit is set, the channel is active 

and may be in the process of transferring receive data. 
Following a RxDisable Command (Bus Master Control), 
when transfers have been halted, this bit is cleared.

QID: Queue ID. The queue ID reflects the current or last DMA 
queue active on the AHB bus. When an AHB error halts 
DMA operation, this field may be used to determine the 
queue that caused the error.
ID      Type of transfer 
000 - Receive data
001 - Transmit data
010 - Receive status
011 - Transmit status
100 - Receive descriptor
101 - Transmit descriptor

Descriptor Processor Receive Registers

RXDQBAdd 

Address:
0x8001_0090 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Descriptor Queue Base Address register. The Receive Descriptor 
Queue Base Address defines the system memory address of the receive 
descriptor queue, this address is used by the MAC to reload the Receive 
Current Descriptor Address whenever the end of the descriptor queue is 
reached. The base address should be set at initialization time and must be set 
to a word aligned memory address.

Bit Descriptions:

RDBA: Receive Descriptor Base Address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RDBA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDBA



9-72 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RXDQBLen 

Address:
0x8001_0094 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Descriptor Queue Base Length register. The Receive Descriptor 
Queue Base Length defines the actual number of bytes in the receive 
descriptor queue, which thereby sets the number of receive descriptors that 
can be supplied to the MAC. The length should be set at initialization time and 
must define an integral number of receive descriptors.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RDBL: Receive Descriptor Base Length.

RXDQCurLen 

Address:
0x8001_0096 - Read/Write. Note half word alignment.

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDBL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDCL



DS785UM1 9-73
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Definition:

Receive Descriptor Queue Current Length register. The Receive Descriptor 
Queue Current Length defines the number of bytes between the Receive 
Descriptor Current Address and the end of the receive descriptor queue. This 
value is used internally to wrap the pointer back to the start of the queue. The 
register should not normally be written.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RDCL: Receive Descriptor Current Length.

RXDCurAdd 

Address:
0x8001_0098 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Descriptor Current Address register. The Receive Current Descriptor 
Address contains the pointer to the next entry to be read from the receive 
descriptor queue. This should be set at initialization time to the required 
starting point in the descriptor queue. During operation the MAC will update 
this address following successful descriptor reads. Intermediate values in this 
register will not necessarily align to descriptor boundaries, nor directly effect 
the current descriptor in use because several descriptors may be buffered 
inside the MAC.

Bit Descriptions:

RDCA: Receive Descriptor Current Address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RDCA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDCA



9-74 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RXDEnq 

Address:
0x8001_009C - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Descriptor Enqueue register. The Receive Descriptor Enqueue 
register is used to define the number of valid entries in the descriptor queue. 
The register operates as follows: only the Receive descriptor Increment field is 
writable and any value written to this field is added to the existing Receive 
Descriptor Value. Whenever complete descriptors are read by the MAC, the 
Receive Descriptor Value is decremented by the number read. For example, if 
the Receive Descriptor Value is 0x07 and the Host writes 03 to the Receive 
Descriptor Increment, the new Value will be 0x0A. If the controller then reads 
two descriptors, the Value will be 0x08.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RDV: Receive Descriptor Value.

RDI: Receive Descriptor Increment.

RXBCA   

Address:
0x8001_0088 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RDV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RDI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RBCA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RBCA



DS785UM1 9-75
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Chip Reset:

0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Buffer Current Address register. The Receive buffer current address 
contains the current address being used to transfer receive data. This value 
may be useful in debugging.

Bit Descriptions:

RBCA: Receive Buffer Current Address.

RXStsQBAdd 

Address:
0x8001_00A0 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Status Queue Base Address. The Receive Status Queue Base 
Address defines the system memory address of the receive status queue. 
This address is used by the MAC to reload the Receive Current Status 
Address whenever the end of the status queue is reached. The base address 
should be set at initialization time and must be set to a word aligned memory 
address.

Bit Descriptions:

RSQBA: Receive Status Queue Base Address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSQBA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSQBA



9-76 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RXStsQBLen 

Address:
0x8001_00A4 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Status Queue Base Length. The Receive Status Queue Base Length 
defines the actual number of bytes in the receive status queue. The length 
should be set at initialization time and must define an integral number of 
receive statuses.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RSQBL: Receive Status Queue Base Length.

RXStsQCurLen 

Address:
0x8001_00A6 - Read/Write. Note half word alignment.

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSQBL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSQCL



DS785UM1 9-77
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Definition:

Receive Status Queue Current Length. The Receive Status Queue Current 
Length defines the number of bytes between the Receive Status Current 
Address and the end of the receive status queue. This value is used internally 
to wrap the pointer back to the start of the queue. The register should not 
normally be written to.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RSQCL: Receive Status Queue Current Length.

RXStsQCurAdd 

Address:
0x8001_00A8 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Status Queue Current Address. The Receive Status Queue Base 
Address defines the system memory address of the receive status queue. 
This address is used by the MAC to reload the Receive Status Queue Current 
Status Address whenever the end of the status queue is reached. The base 
address should be set at initialization time and must be set to a word aligned 
memory address.

Bit Descriptions:

RSQCA: Receive Status Queue Current Address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSQCA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSQCA



9-78 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RXStsEnq 

Address:
0x8001_00AC - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Status Enqueue register. The Receive Status Enqueue register is 
used to define the number of free entries available in the status queue. Only 
the Receive Status Increment field is writable and any value written to this field 
will be added to the existing Receive Status Value. Whenever complete 
statuses are written by the MAC, the Receive Status Value is decremented by 
the number read. For example, if the Receive Status Value is 0x07, and the 
Host writes 0x03 to the Receive Status Increment, the new Receive Status 
Value will be 0x0A. If the controller then reads two descriptors, the Value will 
be 0x08.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RSV: Receive Status Value.

RSI: Receive Status Increment.

RXHdrLen 

Address:
0x8001_00EC - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RSI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD RHL2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RHL1



DS785UM1 9-79
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Chip Reset:

0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Header Length register. The Receive Header Length registers are 
used to generate status after receiving a specific portion of a receive frame. 
When the number of bytes specified in either register has been transferred to 
the external data buffer, an appropriate status is generated. The status for a 
receive header will reflect the number of bytes transferred for the current 
frame, the address match field will be valid, and the other status bits will be set 
to zero. A status will only be generated for header length 2 if the length is 
greater than that specified for header length 1.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RHL2: Receive Header Length 2.

RHL1: Receive Header Length 1.

Descriptor Processor Transmit Registers

TXDQBAdd 

Address:
0x8001_00B0 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Descriptor Base Address register. The Transmit Descriptor Queue 
Base Address defines the system memory address of the transmit descriptor 
queue. This address is used by the MAC to reload the Transmit Current 
Descriptor Address whenever the end of the descriptor queue is reached. The 
base address should be set at initialization time and must be set to a word 
aligned memory address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TDBA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDBA



9-80 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Bit Descriptions:

TDBA: Transmit Descriptor Base Address.

TXDQBLen 

Address:
0x8001_00B4 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Descriptor Queue Base Length register. The Transmit Descriptor 
Queue Base Length defines the actual number of bytes in the transmit 
descriptor queue, which thereby sets the maximum number of transmit 
descriptors that can be supplied to the MAC at any one time. The length 
should be set at initialization time and must define an integral number of 
transmit descriptors.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TDBL: Transmit Descriptor Base Length.

TXDQCurLen 

Address:
0x8001_00B6 - Read/Write. Note half word alignment.

Chip Reset:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDBL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDCL



DS785UM1 9-81
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Soft Reset:

Unchanged

Definition:
Transmit Descriptor Queue Current Length register. The Transmit Descriptor 
Queue Current Length defines the number of bytes between the Transmit 
Descriptor Current Address and the end of the transmit descriptor queue. This 
value is used internally to wrap the pointer back to the start of the queue. The 
register should not normally be written.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TDCL: Transmit Descriptor Current Length.

TXDQCurAdd 

Address:
0x8001_00B8 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Descriptor Queue Current Address register. The Transmit Descriptor 
Queue Current Address contains the pointer to the next memory location to be 
read from the transmit descriptor queue. This should be set at initialization 
time to the required starting point in the descriptor queue. During operation, 
the MAC will update this address following successful descriptor reads. 
Intermediate values in this register will not necessarily align to descriptor 
boundaries, nor directly effect the current descriptor in use because several 
descriptors may be buffered inside the MAC.

Bit Descriptions:

TDCA: Transmit Descriptor Current Address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TDCA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TDCA



9-82 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TXDEnq 

Address:
0x8001_00BC - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Descriptor Enqueue register. The Transmit Descriptor Enqueue 
register is used to define the number of valid descriptors available in the 
transmit descriptor queue. Only the Transmit descriptor Increment field is 
writable and any value written to this field will be added to the existing 
Transmit Descriptor Value. When complete descriptors are read by the MAC, 
the Transmit Descriptor Value is decremented by the number read. For 
example if the Transmit Descriptor Value is 0x07, and the Host writes 0x03 to 
the Transmit Descriptor Increment, the new Value will be 0x0A. If the controller 
then reads two descriptors, the Value will be 0x08.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TDV: Transmit Descriptor Value.

TDI: Transmit Descriptor Increment.

TXStsQBAdd 

Address:
0x8001_00C0 - Read/Write

Chip Reset:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TDV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TDI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TSQBA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSQBA



DS785UM1 9-83
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Status Queue Base Address. The Transmit Status Queue Base 
Address defines the system memory address of the transmit status queue. 
This address is used by the MAC to reload the Transmit Current Status 
Address whenever the end of the status queue is reached. The base address 
should be set at initialization time and must be set to a word aligned memory 
address.

Bit Descriptions:

TSQBA: Transmit Status Queue Base Address.

TXStsQBLen 

Address:
0x8001_00C4 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Status Queue Base Length. The Transmit Status Queue Base 
Length defines the actual number of bytes in the transmit status queue. The 
length should be set at initialization time and must define an integral number 
of transmit statuses.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TSQBL: Transmit Status Queue Base Length.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSQBL



9-84 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TXStsQCurLen 

Address:
0x8001_00C6 - Read/Write. Note half word alignment.

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Status Queue Current Length. The Transmit Status Queue Current 
Length defines the number of bytes between the Transmit Status Current 
Address and the end of the transmit status queue. This value is used internally 
to wrap the pointer back to the start of the queue. The register should not 
normally be written.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TSQCL: Transmit Status Queue Current Length.

TXStsQCurAdd    

Address:
0x8001_00C8 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSQCL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSQCA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSQCA



DS785UM1 9-85
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
Definition:

Transmit Status Queue Current Address. The Transmit Status Queue Current 
Address contains the address being used to transfer transmit status to the 
queue. This register is available for debugging.

Bit Descriptions:

TSQCA: Transmit Status Queue Current Address.

RXBufThrshld 

Address:
0x8001_00D0 - Read/Write

Suggested Value:
0x0080_0040

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Buffer Threshold register. The receive buffer thresholds are used to 
set a limit on the amount of receive data which is held in the receive data FIFO 
before a bus request will be scheduled. When the number of words in the 
FIFO exceeds the threshold value, the Descriptor Processor will schedule a 
bus request to transfer data. The actual posting of the bus request may be 
delayed due to lack of resources in the MAC, such as no active receive 
descriptor. 

Note: There are other reasons to schedule bus transfers other than reaching the threshold. One 
of these is when an end of frame is received. The lower 2 bits of each threshold are always 
zero.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

0: Must be written as “0”.

RDHT: Receive Data Hard Threshold. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD RDHT 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RDST 0 0



9-86 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RDST: Receive Data Soft Threshold. The hard and soft threshold 

work in exactly the same manner except one. The soft 
threshold will not cause a bus request to be made if the 
bus is currently in use, but only when it is deemed to be 
idle (no transfers for four AHB clocks). The hard threshold 
takes effect immediately, regardless of the state of the bus. 
This operation allows for more efficient use of the AHB bus 
by allowing smaller transfers to take place when the bus is 
lightly loaded and requesting larger transfers only when 
the bus is more heavily loaded.

TXBufThrshld 

Address:
0x8001_00D4 - Read/Write

Suggested Value:
0020_0010

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Buffer Threshold register. The transmit buffer thresholds are used to 
set a limit on the amount of empty space allowed in the transmit FIFO before a 
bus request will be scheduled. When the number of empty words in the FIFO 
exceeds the threshold value, the Descriptor Processor will schedule a bus 
request to transfer data. The actual posting of the bus request may be delayed 
due to lack of resources in the MAC, such as no active transmit descriptor. 
The lower two bits of the thresholds are always zero.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TDHT: Transmit Data Hard Threshold. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD TDHT 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TDST 0 0



DS785UM1 9-87
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TDST: Transmit Data Soft Threshold. The hard and soft threshold 

work in exactly the same manner except one. The soft 
threshold will not cause a bus request to be made if the 
bus is currently in use, but only when it is deemed to be 
idle (no transfers for four AHB clocks). The hard threshold 
takes effect immediately regardless of the state of the bus. 
This operation allows for more efficient use of the AHB bus 
by allowing smaller transfers to take place when the bus is 
lightly loaded and requesting larger transfers only when 
the bus is more heavily loaded.

RXStsThrshld 

Address:
0x8001_00D8 - Read/Write

Suggested Value:
0x0004_0002

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Status Threshold register. The receive status threshold are used to 
set a limit on the amount of receive status which is held in the receive status 
FIFO before a bus request will be scheduled. When the number of words in 
the FIFO exceeds the threshold value, the Descriptor Processor will schedule 
a bus request to transfer status. The actual posting of the bus request may be 
delayed due to lack of resources in the MAC, such as the RXStsEnq register 
being equal to zero. The lower two bits of the thresholds are always zero.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RSHT: Receive Status Hard Threshold. 

RSST: Receive Status Soft Threshold. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD RSHT 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RSST 0 0



9-88 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
The hard and soft threshold work in exactly the same 
manner except one. The soft threshold will not cause a 
bus request to be made if the bus is currently in use, but 
only when it is deemed to be idle (no transfers for four 
AHB clocks). The hard threshold takes effect immediately 
regardless of the state of the bus. This operation allows for 
more efficient use of the AHB bus by allowing smaller 
transfers to take place when the bus is lightly loaded and 
requesting larger transfers only when the bus is more 
heavily loaded.

TXStsThrshld 

Address:
0x8001_00DC - Read/Write

Suggested Value:
0x0004_0002

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Status Threshold register. The transmit status thresholds are used to 
set a limit on the amount of transmit status which is held in the transmit status 
FIFO before a bus request will be scheduled. When the number of words in 
the FIFO exceeds the threshold value, the Descriptor Processor will schedule 
a bus request to transfer status. The lower two bits of the thresholds are 
always zero.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

0: Must be written as “0”.

TSHT: Transmit Status Hard Threshold. 

TSST: Transmit Status Soft Threshold. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD TSHT 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TSST 0 0



DS785UM1 9-89
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
The hard and soft threshold work in exactly the same 
manner except one. The soft threshold will not cause a 
bus request to be made if the bus is currently in use, but 
only when it is deemed to be idle (no transfers for four 
AHB clocks). The hard threshold takes effect immediately 
regardless of the state of the bus. This operation allows for 
more efficient use of the AHB bus by allowing smaller 
transfers to take place when the bus is lightly loaded and 
requesting larger transfers only when the bus is more 
heavily loaded.

RXDThrshld 

Address:
0x8001_00E0 - Read/Write

Suggested Value:
0x0004_0002

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Receive Descriptor Threshold register. The receive descriptor thresholds are 
used to set a limit on the amount of empty space allowed in the MAC’s receive 
descriptor FIFO before a bus request will be scheduled. When the number of 
empty words in the FIFO exceeds the threshold value, the Descriptor 
Processor will schedule a bus request to transfer descriptors. The actual 
posting of the bus request may be delayed due to lack of resources in the 
MAC, such as a RXDEnq equal to zero. The lower two bits of the thresholds 
are always zero.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

0: Must be written as “0”.

RDHT: Receive Status Hard Threshold. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD RDHT 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RDST 0 0



9-90 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
RDST: Receive Descriptor Soft Threshold. 

The hard and soft threshold work in exactly the same 
manner except one. The soft threshold will not cause a 
bus request to be made if the bus is currently in use, but 
only when it is deemed to be idle (no transfers for four 
AHB clocks). The hard threshold takes effect immediately 
regardless of the state of the bus. This operation allows for 
more efficient use of the AHB bus by allowing smaller 
transfers to take place when the bus is lightly loaded and 
requesting larger transfers only when the bus is more 
heavily loaded.

TXDThrshld 

Address:
0x8001_00E4 - Read/Write

Suggested Value:
0x0004_0002

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Transmit Descriptor Threshold register. The transmit descriptor thresholds are 
used to set a limit on the amount of empty space allowed in the MAC’s 
transmit descriptor FIFO before a bus request will be scheduled. When the 
number of empty words in the FIFO exceeds the threshold value, the 
Descriptor Processor will schedule a bus request to transfer descriptors. The 
actual posting of the bus request may be delayed due to lack of resources in 
the MAC, such as a TXDEnq equal to zero. The lower two bits of the 
thresholds are always zero.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

0: Must be written as “0”.

TDHT: Transmit Descriptor Hard Threshold. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD TDHT 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TDST 0 0



DS785UM1 9-91
Copyright 2007 Cirrus Logic 

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TDST: Transmit Descriptor Soft Threshold. 

The hard and soft threshold work in exactly the same 
manner except one. The soft threshold will not cause a 
bus request to be made if the bus is currently in use, but 
only when it is deemed to be idle (no transfers for four 
AHB clocks). The hard threshold takes effect immediately 
regardless of the state of the bus. This operation allows for 
more efficient use of the AHB bus by allowing smaller 
transfers to take place when the bus is lightly loaded and 
requesting larger transfers only when the bus is more 
heavily loaded.

MaxFrmLen 

Address:
0x8001_00E8 - Read/Write

Chip Reset:
0x0000_0000

Soft Reset:
Unchanged

Definition:
Maximum Frame Length and Transmit Start Threshold register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

MFL: Maximum Frame Length. The maximum frame length is a 
limit for the amount of data permitted to be transferred 
across the AHB bus for a transmit frame, or on the wire for 
a receive frame. When this limit is reached for a transmit 
frame, the Transmit Descriptor Processor is halted and a 
transmit length error is set in the Interrupt Status register. 
When the limit is reached for a receive frame, no further 
data will be transferred to memory for the current frame. 
The status written for the frame will indicate the length 
error, and further frames will continue as normal, (the 
Receive Descriptor Processor will not halt).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD MFL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TST



9-92 DS785UM1
Copyright 2007 Cirrus Logic

1/10/100 Mbps Ethernet LAN Controller
EP93xx User’s Guide

99

9
TST: Transmit Start Threshold. The transmit start threshold 

defines the number of bytes that must be written to the 
transmit data FIFO before a frame will start transmission 
on the serial interface. This value is primarily of concern 
when the transmit frame is spread across multiple 
descriptors and the first descriptors define small amounts 
of data.



DS785UM1 10-1
Copyright 2007 Cirrus Logic 

1010

10

Chapter 10

10DMA Controller

 10.1 Introduction
The DMA Controller can be used to interface streams from 20 internal peripherals to the 
system memory using 10 fully-independent programmable channels that consist of 5 Memory 
to Internal Peripheral (M2P) transmit channels and 5 Peripheral to Memory (P2M) receive 
channels.

The DMA Controller can also be used to interface streams from Memory to Memory (M2M), 
from Memory to Internal Peripheral (M2P), or from Memory to External Peripheral (M2P), 
using 2 dedicated M2M channels. External handshake signals are optionally available to 
support Memory to/from External Peripheral transfers (M2P/P2M). A software trigger is 
available for Memory to Memory transfers, and a hardware trigger is available for Memory to 
Internal Peripheral.

On the EP93xx chip the following peripherals may be allocated to the 10 channels.

• I2S (which contains 3 Tx and 3 Rx DMA Channels)

• AAC (which contains 3 Tx and 3 Rx DMA Channels)

• UART1 (which contains 1 Tx and 1 Rx DMA Channels)

• UART2 (which contains 1 Tx and 1 Rx DMA Channels)

• UART3 (which contains 1 Tx and 1 Rx DMA Channels)

• IrDA (which contains 1 Tx and 1 Rx DMA Channels)

Each peripheral has it’s own bi-directional DMA bus capable of transferring data in both 
directions simultaneously. All memory transfers take place via the main system AHB bus.

SSP and IDE can also use the M2M channels to send or receive data using their memory 
mapping to perform transfers. 

SSPRx, SSPTx, and IDE have access to DMA M2M hardware transfer requests.

 10.1.1 DMA Features List

DMA specific features are:

• Ten fully independent, programmable DMA controller internal M2P/P2M channels (5 Tx 
and 5 Rx).

• Two dedicated channels for Memory-to-Memory (M2M) and Memory-to-External 
Peripheral Transfers (external M2P/P2M).



10-2 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

• Five hardware requests for M2M transfers; 2 for external peripherals that follow the 
handshake protocol, and 3 simple requests from IDE, SSPRx and SSPTx.

• Independent source and destination address registers. Source and destination can be 
programmed to auto-increment or not for Memory-to-Memory channels.

• Two buffer descriptors per M2P/P2M and M2M channel to avoid potential data 
underflow/overflow due to software introduced latency. 

• For the internal M2P/P2M channels, buffer size is independent of the peripheral’s packet 
size. Transfers can automatically switch between buffers.

• Per channel maskable interrupt generation.

• For DMA Data transfer sizes, byte, word and quad-word data transfers are supported 
using a 16-byte data bay. Programmable max data transfer size per M2M channel.

• Per-channel clock gating reduces power in channels which have not been enabled by 
software.

 10.1.2 Managing Data Transfers Using a DMA Channel

A set of control and status registers are available to the system processor for setting up DMA 
operations and monitoring their status, and monitoring system interrupts generated when any 
of the DMA channels wish to inform the processor to update the buffer descriptor. The DMA 
controller can service 10 out of 20 possible peripherals using the 10 internal M2P/P2M DMA 
channels, each with its own peripheral DMA bus capable of transferring data in both 
directions simultaneously.

The UART1/2/3 and IrDA can each use two DMA channels, one for transmit and one for 
receive. The AC’97 interface can use six DMA channels (three transmit and three receive) to 
allow different sample frequency data queues to be handled with low software overhead. The 
I2S interface can also use up to six DMA channels (three transmit and three receive) to allow 
up to six channels of audio out and six channels of audio in.

To perform block moves of data from one memory address space to another with minimum of 
program effort and time the DMA controller includes a memory-to-memory transfer feature. 
An M2M software trigger capability is provided. It can also fill a block of memory with data 
from a single location.

A hardware trigger is also provided for internal peripherals (IDE or SSP) or for external 
peripherals which don’t use a handshaking protocol, to allow data streams between their 
internal memory location (or the SMC) and the system memory. 

For byte or word wide peripherals, the DMA can be programmed to request byte- or word-
wide AHB transfers respectively. 

The transfer is completed when the Byte Count Register of the active buffer descriptor 
reaches zero. Status bits will indicate if the actual byte count is equal to the programmed limit. 
Completion of transfer will cause a DMA interrupt on that channel and rollover to the “other” 
buffer descriptor, if configured.



DS785UM1 10-3
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

The DMA controller memory-to-memory channels can also be used in “Memory to External 
Peripheral” mode with handshaking protocol. A set of external handshake signals DREQ, 
DACK and TC/DEOT are provided for each of 2 M2M channels. 

• DREQ (input) can be programmed edge or level active, and active high or low. The 
peripheral may hold DREQ active for the duration of the block transfers or may 
assert/deassert on each transfer. 

• DACK (output) can be programmed active high or low. DACK will cycle with each read 
or write, the timing is to coincide with the nOE or nWE of the EBI. 

• TC/DEOT is a bidirectional signal, the direction and the active sense is programmable. 
When configured as an output, the DMA will assert TC (Terminal Count) on the final 
transfer to coincide with the DACK, typically when the byte count has expired. When 
configured as an input, the peripheral must assert DEOT concurrent with DREQ for the 
final transfer in the block. 

Transfer is completed either on DEOT being asserted by the external peripheral or the byte 
count expiring. Status bits will indicate if the actual byte count is equal to the programmed 
limit, and also if the count was terminated by peripheral asserting DEOT. Completion of 
transfer will cause a DMA interrupt on that channel and rollover to the “other” buffer 
descriptor if configured.

For byte or word wide peripherals, the DMA will be programmed to request byte or word wide 
AHB transfers respectively. The DMA will not issue an AHB HREQ for a transfer until it has 
sampled DREQ asserted after DACK of the previous transfer has been asserted for the 
duration of the programmed wait states in the SMC (and possibly DREQ is sampled in the 
cycle DACK is deasserted).

 10.1.3 DMA Operations

The operation of the DMA controller can be defined in terms of channel functionality. Two 
types of channels exist: 

• Memory-to-Memory (M2M) channel

• Memory-to/from-Internal-Peripheral (M2P/P2M) channel.

 10.1.3.1 Memory-to-Memory Channels
The two M2M channels support data transfers between:

• Memory locations which may be located in any accessible system memory banks. 

These memory to memory moves can be initiated by software, in which case the
transfer will begin as soon as the channel is configured and enabled for memory to
memory move. For this transfer type, the DMA first fills the internal 16-byte data bay by
initiating read accesses on the source bus. It then empties the data from the data bay to
the destination bus by initiating write accesses.

• Memory locations related to IDE or SSP.



10-4 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

The transaction is initiated by a SSP or IDE request.This request is masked after each
peripheral width transfer, in order to allow latency for the peripheral to deassert its
request line.The transfer terminates when the Byte Count Register equals zero.

• Memory and External Bus. 

These can be memory- or FIFO-based and memory-mapped through the SMC.
Working with peripheral devices may optionally use the external signals DREQ, DACK
and DEOT/TC to control the data transfer using the following rules:

• The peripheral sets a request for data to be read-from/written-to by asserting DREQ.

• The peripheral transfers/samples the data when DACK is asserted.

• To terminate the current transfer, depending on the programmed direction of 
DEOT/TC, the peripheral asserts DEOT coincident with DREQ or the DMA asserts 
TC coincident with DACK.

These data transfer handshaking signals are optional: if the external device doesn’t use 
them, then the transfer will operate like an internal peripheral transfer. To support an external 
DMA peripheral, each request generates one peripheral-width DMA transfer. The M2M 
Channel 0 is dedicated to servicing External device 0 and the M2M Channel 1 is dedicated to 
servicing External device 1.

 10.1.3.2 Memory-to-Peripheral Channels
The 5 M2P and 5 P2M channels support data transfers between Memory and Internal 
Peripherals (which are byte-wide). Five dedicated channels are available to transfer data 
between internal peripheral and memory (receive direction), and five channels are available 
to transfer data between memory and peripheral (transmit direction). Transfers are controlled 
using a REQ/ACK handshake protocol supported by each peripheral. 

 10.1.4 Internal M2P or P2M AHB Master Interface Functional Description

The AHB Master interface is used to transfer data between the system memory and the DMA 
Controller internal M2P/P2M channels in both receive and transmit directions as follows:

• In the receive direction, data is transferred to system memory from a packer unit.

• In the transmit direction, data is transferred from the system memory into the unpacker 
unit.

The AHB bus burst transfer size is a quad-word, that is, if the base memory address 
programmed into the BASEx register is quad-word aligned then a quad-word transfer either 
to memory from the 16-byte receive packer, or from memory to the 16-byte transmit packer is 
carried out.

The internal M2P RxEnd signals are asserted by the peripheral to indicate the end of 
received data or a receiver error. This causes the AHB master interface to write any valid 
data in the receive packer to main memory. If RxEnd signals an error in receive data, and if 
the ICE bit (Ignore Channel Error) is set, then the DMA continues transfers as normal. The 
RxEnd is asserted by the peripheral coincident with the last good data before the overrun 



DS785UM1 10-5
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

occurred. If the ICE bit is not set, then the DMA flushes the last good data out to memory and 
terminates the transfer for the current buffer. Where whole words are present in the packer, 
word transfers are used. For the remaining bytes (up to a maximum of 3), byte transfers are 
used. Thus the maximum number of bus transfers performed to empty the packer is 6, that is, 
3 word transfers and 3 byte transfers.

If the number of bytes transferred from a receive peripheral reaches the MaxTransfer count 
then this has the same effect as the RxEnd signals being asserted by the peripheral. The 
DMA controller asserts RxTC to the peripheral to indicate this condition.

The end of the transfer is signalled by the transfer count being reached, or by the peripheral. 
In the latter case, any data remaining in a packer unit is written to memory. Any data in an un-
packer unit is considered invalid, and therefore discarded, as is data remaining in the transmit 
FIFO. 

When a peripheral receive transfer is complete any data in the packer unit is written to 
memory. The data may not form a complete quad-word. If an incomplete quad-word is 
present, data is transferred to memory in either word or byte accesses. The number of valid 
bytes remaining to be transferred is used to control the type of access. If the number of bytes 
is 16, then a normal quad word write is performed. If the number of bytes is more than 4, then 
word accesses are performed until the number of bytes is less than 4. If the number of bytes 
is less than 4, then byte accesses are performed until the remainder of the data has been 
transferred.

If the peripheral ended the transfer with an error code, an interrupt is generated, and 
operation continues as normal using the next buffer descriptor (if it has been set up) to 
ensure that a minimal amount of data is lost. The point at which the transfer failed can be 
determined by reading the channel current address register for the last buffer. An example of 
an internal peripheral error code is the Transmit FIFO underflow error in the AAC.

 10.1.5 M2M AHB Master Interface Functional Description

The AHB Master interface is also used to transfer data between either the system memory or 
external peripheral and the DMA Controller M2M channels in both receive and transmit 
directions.

 10.1.5.1 Software Trigger Mode
When a M2M channel receives a software trigger and the buffer descriptor has been 
programmed, the AHB master interface begins to read data from memory into the data bay. 
When the DMA_MEM_RD state is exited (that is, data transfer to the data bay has finished) 
this causes the AHB master interface to write the data contained in the data bay to main 
memory. The data may not form a complete quad-word. If an incomplete quad-word is 
present, data is transferred to memory in either word or byte accesses. The number of valid 
bytes remaining to be transferred is used to control the type of access. If the number of bytes 
is 16, then a normal quad word write is performed. If the number of bytes is more than 4, then 
word accesses are performed until the number of bytes is less than 4. If the number of bytes 
is less than 4, then byte accesses are performed until the remainder of the data has been 
transferred.



10-6 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

 10.1.5.2 Hardware Trigger Mode for Internal Peripherals (SSP and IDE) and 
for External Peripherals without Handshaking Signals

When a M2M channel is set up to transfer to/from SSP, IDE or an external peripheral, the 
transfer width used (that is, the AMBA HSIZE signal) is determined by the peripheral width - 
programmed via the CONTROL.PW bits of the channel. This means that the transfers occur 
one at a time, as opposed to burst transfer operation for software triggered M2M. Thus the 
16-byte data bay which is available for software triggered transfers is never fully utilized - at 
most 1 word of it is used (depending on PW bits).

 10.1.5.3 Hardware Trigger Mode for External Peripherals with Handshaking 
Signals

When a M2M channel is set up to transfer to/from an external peripheral, the transfer width 
used (that is, the AMBA HSIZE signal) is determined by the peripheral width - programmed 
via the CONTROL.PW bits of the channel. This means that the transfers occur one at a time, 
as opposed to burst transfer operation for software triggered M2M. Thus the 16-byte data bay 
which is available for software triggered transfers is never fully utilized - at most 1 word of it is 
used (depending on PW bits).

 10.1.6 AHB Slave Interface Limitations

The AHB slave interface is used to access all control and status registers.

The behavior of the AMBA AHB signals complies with the standard described in AMBA 
Specification (Rev 2.0) from ARM Limited. The DMA does not utilize the AHB slave split 
capabilities, so does not receive HMASTER or HMASTERLOCK and does not drive HSPLIT. 
It does not receive HPROT or HRESP and does not drive HLOCK.

 10.1.7 Interrupt Interface

Each of the 12 DMA channels (10 M2P/P2M and 2 M2M) generates a single interrupt signal 
which is a combination of the interrupt sources for that channel. There are 3 interrupt 
sources, which are enabled in the channel control register (for both M2P/P2M and M2M): 
DONE, STALL and NFB.The interrupt signals are ORed before being transmitted to the 
DMA_INT output bus. Status of the interrupt bus is reflected in the DMA Global Interrupt 
Register (DMAGlInt). The status of each interrupt source per channel is found in the 
channel’s interrupt register.

 10.1.8 Internal M2P/P2M Data Unpacker/Packer Functional Description

The DMA controller transfers data to and from the system memory in four word bursts. The 
peripheral DMA bus protocol is used to transfer data to and from the peripherals as single 
bytes. In order to build the quad word bursts from the single bytes received from the 
peripheral, the DMA controller uses the Rx Burst Packers. To decompose the quad word 
bursts into byte transfers to the peripherals the Tx Burst Un-Packers are used.



DS785UM1 10-7
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

The data received on each of the five peripheral receive DMA Rx Data buses is transferred 
into an internal receive packer unit. The packer unit is used to convert the byte-wide data 
received from the peripheral into words to be transferred over the system bus to the memory. 
The packer unit stores 4 words (one quad-word) of data, which is the size of the burst 
transfers to and from memory over the system bus. Provision for the memory access latency 
is provided by FIFOs within the peripheral. The size of the FIFOs can be selected as 
appropriate for the data rate generated by the peripheral.

Transmit data is fetched from system memory by the AHB master interface and placed into 
the transmit un-packer. The transmit un-packer converts the quad-word burst of DMA data 
into byte data for transmission over the transmit peripheral DMA bus. The transmit un-packer 
contains 4 words (one quad-word) of storage. Additional latency is provided by FIFOs within 
the peripheral, the size of which can be selected as appropriate for the peripheral. 

The number of data transfers over the peripheral DMA bus (that is, the number of bytes) are 
counted by packer/un-packer unit. If the number of bytes transferred reaches the 
MaxTransfer count, the appropriate RxTC/TxTC signal is asserted causing the flush to 
memory of data from a packer unit, and the invalidation of any data remaining in an un-
packer unit. 

 10.1.9 Internal M2P/P2M DMA Functional Description

 10.1.9.1 Internal M2P/P2M DMA Buffer Control Finite State Machine
Each DMA internal M2P/P2M channel is controlled by a finite state machine (FSM) which 
determines whether the channel is transferring data, and whether it is currently generating an 
interrupt.

 Figure 10-1. DMA M2P/P2M Finite State Machine

DMA_IDLE

DMA_STALL

DMA_ON

DMA_NEXT

DISABLE ENABLE

DISABLE

Write Base 
Address

Buffer End or

DISABLE

Buffer End or

Write
Base Address

CE.ABORT.ICE

CE.ICE.ABORT
CE.ICE



10-8 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

CE: Channel (Peripheral) Error

ICE: CONTROL[6] - Ignore Channel Error. This bit may be set 
for data streams whereby the end user can tolerate 
occasional bit errors. If it is not set then the DMA will abort 
its transfer in receipt of a peripheral error.

ABORT: CONTROL[5]

 10.1.9.1.1 DMA_IDLE

The DMA Channel FSM always resets to the DMA_IDLE state.

The DMA Channel FSM always enters the DMA_IDLE state when the channel is disabled 
(CONTROL[4]).

 10.1.9.1.2 DMA_STALL

The DMA Channel FSM enters the DMA_STALL state when the channel enabled, no STALL 
interrupt is generated for this condition.

The DMA Channel FSM enters the DMA_STALL state if a memory buffer completes in the 
ON state. A DMA_STALL interrupt is generated for this condition.

The DMA Channel FSM enters the DMA_STALL state and terminates the current memory 
buffer if there is a peripheral error (TxEnd/RxEnd indication) while in the DMA_ON state, and 
ICE is not active.

The DMA Channel FSM enters the DMA_STALL state and terminates the current memory 
buffer if there is a peripheral error (TxEnd/RxEnd indication) while in the DMA_NEXT state, 
and ABORT is active, and ICE inactive. No STALL interrupt is generated for this condition.

No data transfers occur in this state.

 10.1.9.1.3 DMA_ON

The DMA Channel FSM enters this state when a base address is written in the stall state.

Data transfers occur in this state.

The DMA Channel FSM enters this state when the current memory buffer expires, or when a 
peripheral error occurs that does not cause an abort, while in the DMA_NEXT state. The 
transition from DMA_NEXT to DMA_ON state results in a NFB interrupt being generated.

 10.1.9.1.4 DMA_NEXT

The DMA Channel FSM enters this state when a base address register is written in the 
DMA_ON state (that is, for buffer Y). The DMA will continue to transfer using the buffer (that 
is, buffer X) that it began with in the DMA_ON state. When buffer X expires or when a 
peripheral error occurs, then the DMA will automatically switch over to using the next buffer 
(buffer Y). It will generate an interrupt (NFBint) to signal to the processor that it is switching 
over to a new buffer and that the old buffer descriptor (buffer X) is available to be updated.

Data transfers occur in this state.



DS785UM1 10-9
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

 10.1.9.2 Data Transfer Initiation and Termination
The DMA Controller initiates data transfer in the receive direction when:

• A packer unit becomes full

• A packer unit, dependent on the next address access, contains enough data for an 
unaligned byte/word access.

The DMA Controller stops data transfers in the receive direction and moves onto the next 
buffer when:

• RxEnd signal is asserted to indicate end of received data or received error. 

No matter what the alignment up to now, this causes the AHB Master interface to write
any valid data in the receive packer to main memory. If RxEnd signals the end of
received data then all data which is present in the receive packer gets flushed to
memory. If RxEnd signals an error in receive data, and if the ICE bit (Ignore Channel
Error) is not set, then the erroneous byte is not written to memory. Only valid bytes are
written. If ICE bit is set then the erroneous byte is written to memory. The DMA will
update the Channel Status Register, generating a system interrupt which informs the
processor that a new buffer needs to be allocated, and DMA will also indicate
(NEXTBUFFER field) which pair of buffer descriptor registers (MAXCNTx, BASEx)
should be used for the next buffer.

• The number of bytes transferred from a receive peripheral reaches MAXCNTx. 

Note: This refers to bytes entering the data packer and not just data transmitted over the AHB 
bus (that is, has same effect as RxEnd signal generated by the peripheral). The DMA 
Controller asserts RxTC to the peripheral to indicate this condition. The DMA will update 
the Channel Status Register, generating a system interrupt, which informs the processor 
that a new buffer needs to be allocated and DMA will also indicate (NEXTBUFFER field) 
which pair of buffer descriptor registers (MAXCNTx, BASEx) should be used for the next 
buffer.

The DMA Controller initiates data transfers in the transmit direction when an Un-packer unit 
becomes empty.

The DMA Controller stops data transfer in the transmit direction when:

• TxEnd signal is asserted to indicate that the transfer is the last in the transmit data 
stream. Any data remaining in the Un-packer unit is considered invalid and flushed. At 
this point, the Channel Status Register will be updated and next buffer defined.

• TxTC signal asserted by DMA Controller to indicate to the peripheral that the transfer is 
the last as the byte count limit has been reached. At this point, the Channel Status 
Register will be updated and next buffer defined.

• Bursting across buffers cannot be carried out in either transmit or receive directions. The 
reason is that buffer pairs may not be contiguous, as required by HTRANS SEQ transfer 
type (where address = address of previous transfer + size in bytes).



10-10 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

 10.1.10 M2M DMA Functional Description

 10.1.10.1 M2M DMA Control Finite State Machine
Each DMA M2M channel is controlled by 2 finite state machines (FSM) which determine 
whether the channel is transferring data to or from memory, which buffer from the double-
buffer descriptor set it is using, and whether it is currently generating an interrupt.

 Figure 10-2. M2M DMA Control Finite State Machine

 10.1.10.1.1 DMA_IDLE

The DMA M2M Control FSM always resets to the DMA_IDLE state.

The DMA Control M2M FSM always enters the DMA_IDLE state when a channel is disabled 
(CONTROL[3]).

The DMA Control M2M FSM exits the DMA_IDLE state and moves to the DMA_STALL state 
when the ENABLE bit of the CONTROL register is set.

 10.1.10.1.2 DMA_STALL

The DMA M2M Control FSM enters the DMA_STALL state when an M2M channel is enabled. 
No STALL interrupt is generated for this condition.

The DMA M2M Control FSM enters the DMA_STALL state when a memory-to-memory 
transfer has completed successfully. The DONE and STALL interrupts are generated for this 
condition, if enabled.

DMA_IDLE

DMA_STALL

DMA_MEM_RDDMA_MEM_WR

DMA_BWC_WAIT

ENABLE

DISABLE

DISABLE

DISABLE

DISABLE

(START, DREQ,

BCR_EQ_BWC

RX_TFR_END

TX_TFR_END

DONE/DEOT
RX_TFR_END

and BCR_VALID

 IDEREQ, RXREQ, 
or TXREQ)



DS785UM1 10-11
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

No data transfers occur in this state.

 10.1.10.1.3 DMA_MEM_RD

The DMA M2M Control FSM enters the DMA_MEM_RD state when a M2M channel has 
received a software trigger to begin a transfer, that is, the START bit is set (CONTROL[4]) 
and CONTROL.TM = “00”; or when IDE or SSP asserts its request line and CONTROL.TM = 
“01” or “10”; or when an external device asserts its DREQ o/p to the DMA and CONTROL.TM 
= “01” or “10”. At least one of the BCRx registers must contain a valid value, otherwise the 
DMA stays in the DMA_STALL state. For software triggered mode a valid BCR value is any 
non-zero value. For external DMA mode a valid BCR value depends on the peripheral width 
(programmed via the PW bits of the CONTROL register). For word/half-word/byte-wide 
peripherals the BCR value must be greater than or equal to four/two/one respectively. 

The DMA M2M Control FSM enters the DMA_MEM_RD state when a memory write transfer 
has finished and the BCR register is still not equal to zero, that is, more data needs to be 
transferred from memory-to-memory. For external bus and IDE/SSP transfers, BCR not-
equal-to 0 must be qualified with a DREQ before the DMA_MEM_RD state is entered again.

The DMA M2M Control FSM enters the DMA_MEM_RD state on exit from the 
DMA_BWC_WAIT state, if all the data present in the data bay had been transferred to 
memory when DMA_BWC_WAIT state was entered.

The DMA M2M Control FSM stays in this state until the data transfer from memory has 
completed for software trigger mode, that is, the data bay is filled with 16 bytes (or less 
depending on transfer size and BCR value etc.).

The DMA M2M Control FSM enters the DMA_MEM_RD state when the BCR register is equal 
to zero for the current buffer, and the other buffer descriptors BCR register has been 
programmed non-zero. DMA will proceed to do a memory read using the new buffer and the 
NFB interrupt is generated, if enabled.

Data transfers from memory or external bus/device (depending on the CONTROL.TM bits), 
occur in this state.

 10.1.10.1.4 DMA_MEM_WR

The DMA M2M Control FSM enters the DMA_MEM_WR state when a memory read transfer 
has completed.

The DMA M2M Control FSM enters the DMA_MEM_WR state on exit from the 
DMA_BWC_WAIT state, if all the data present in the data bay had not been transferred to 
memory when DMA_BWC_WAIT state was entered.

The DMA M2M Control FSM stays in this state until the data transfer to memory has 
completed, that is, the data bay is emptied.

Data transfers, to memory or external peripheral (depending on the CONTROL.TM bits), 
occur in this state.



10-12 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

 10.1.10.1.5 DMA_BWC_WAIT

The DMA M2M Control FSM enters the DMA_BWC_WAIT state when the byte count is within 
15 bytes of a multiple of the BWC value.

The DMA M2M Control FSM stays in this state for one cycle only.

 10.1.10.2 M2M Buffer Control Finite State Machine
 

 Figure 10-3. M2M DMA Buffer Finite State Machine 

 10.1.10.2.1 DMA_NO_BUF

The DMA M2M Buffer FSM resets to the DMA_NO_BUF state. This state reflects that no 
buffer descriptor has as yet been programmed in the DMA controller.

The DMA M2M Buffer FSM exits this state when one of the BCRx (x = 0 or 1) registers is 
programmed. If BCR0 is written to, then the FSM moves to the DMA_BUF_ON state and 
buffer0 becomes the active buffer available for a transfer. If BCR1 is written to then the FSM 
moves to the DMA_BUF_ON state and buffer1 becomes the active buffer available for a 
transfer.

 10.1.10.2.2 DMA_BUF_ON

The DMA Buffer FSM enters the DMA_BUF_ON state from the DMA_NO_BUF state when 
one of the BCRx registers is written to. 

The DMA Buffer FSM enters the DMA_BUF_ON state from the DMA_BUF_NEXT state when 
the transfer from the active buffer has ended. This end-of-buffer can be due to the BCRx 
register value reaching zero, or receipt of a DEOT input from the external device (when in 
external DMA transfer mode and DEOT is configured as an input signal to the DMA). 

Data transfers to or from memory or external bus can occur in the DMA_BUF_ON state. 
When the DMA Buffer FSM transitions from DMA_BUF_NEXT to DMA_BUF_ON state, the 
NFB (Next Frame Buffer) interrupt is generated. This signals to software that rollover is 
occurring to the other buffer and also that one of the BCRx registers is now free for update 

DMA_NO_BUF

DMA_BUF_ONDMA_BUF_NEXT

BCRx_WRITE (x = 0 or 1)

Buffer End

BCRx_WRITE(x = 1 or 0)

Buffer End



DS785UM1 10-13
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

(which BCRx is free can be determined using the STATUS.Nextbuffer status bit - see 
“STATUS” on page 10-37).

When the DMA Buffer FSM transitions from DMA_BUF_ON to DMA_NO_BUF state due to 
end of buffer, the DONE status bit is asserted and the DONE interrupt is set if enabled. The 
TC (Terminal Count) output is asserted by the DMA to the external device if the BCR register 
has expired for the current buffer (when in external DMA transfer mode and TC is 
programmed as an output signal from the DMA). The end of buffer can also be due to receipt 
of a DEOT input from the external device (when in external DMA transfer mode and DEOT is 
configured as an input signal to the DMA). The TCS and EOTS status bits of the STATUS 
register indicate what caused the end of buffer.

 10.1.10.2.3 DMA_BUF_NEXT

The DMA Buffer FSM enters the DMA_BUF_NEXT state from the DMA_BUF_ON state when 
a write occurs to the second of the BCRx registers (that is, the BCRx register that was not 
written to when in the DMA_NO_BUF state).

The DMA Buffer FSM stays in this state until the transfer using the active buffer has ended, 
either as a result of BCRx reaching zero or due to receipt of a DEOT input from the external 
device (when in external DMA transfer mode and DEOT is configured as an input signal to 
the DMA). The TCS and EOTS status bits of the STATUS register indicate what caused the 
end of buffer.

Data transfers to/from memory or external device can occur in the DMA_BUF_NEXT state.

When the DMA Buffer FSM transitions from DMA_BUF_NEXT to DMA_BUF_ON state as a 
result of the BCR count expiring, the TC (Terminal Count) output is asserted by the DMA to 
the external device to indicate that the BCR register has expired for the current buffer (when 
in external DMA transfer mode and TC is programmed as an output signal from the DMA). 

When the DMA Buffer FSM transitions from DMA_BUF_NEXT to DMA_BUF_ON state, the 
NFB (Next Frame Buffer) interrupt is generated (if enabled). This signals that one of the 
buffer descriptors is now free for update. For example the following sequence of events could 
occur:

• BCR0 is programmed => move to DMA_BUF_ON state.

• BCR1 is programmed => move to DMA_BUF_NEXT state.

• Channel is enabled => transfers begin using Buffer0.

• Buffer0 transfer ends => move to DMA_BUF_ON state and begin transfers with Buffer1.

• NFB interrupt is generated when FSM moves to DMA_BUF_ON state, signalling that 

• Buffer0 is now free for update.

 10.1.10.3 Data Transfer Initiation
Memory-to-memory transfers require a read-from and a write-to memory to complete each 
transfer.



10-14 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

The DMA Controller initiates memory-to-memory transfers in the receive direction (that is, 
from memory/peripheral to DMA) under the following circumstances:

• A channel has been triggered by software, that is, setting the START bit to “1”. Setting 
the START bit causes the channel to begin requesting the bus, and when granted 
ownership it will start transferring data immediately. The DMA controller drives the 
SAR_BASEx value onto the internal AHB address bus. If CONTROL.SCT is not set, the 
SAR_BASEx increments by the appropriate number of bytes upon a successful read 
cycle. The DMA initiates the write portion of the transfer when the appropriate number of 
read cycles is completed, that is, either when the 16-byte data bay has been filled, or 
when it contains the number of bytes (less than 16) that remain to be transferred, or 
when it contains sufficient data for an unaligned byte/word access (dependant on the 
next address access).

• A channel receives a transfer request from SSP or IDE or an external device without 
handshaking signals (that is, CONTROL.NO_HDSK = “1”), and the transfer mode is set 
to be either memory-to-external bus mode or external device-to-memory mode (that is, 
CONTROL.TM = “01”/“10” respectively). The DMA drives the SAR_BASEx value onto 
the address bus and requests a transfer size equal to the programmed peripheral width. 
In the case of CONTROL.TM = “10” where the external device (which is the source for 
the data) is FIFO-based, it is up to software to program the SAH bit correctly (Source 
Address Hold), so that on successive transfers from the peripheral, the 
SAR_CURRENTx value will not increment, thus reflecting the FIFO-nature of the 
peripheral.

• A channel receives a request from an external device and the transfer mode is set to be 
either memory-to-external device mode or external device-to-memory mode (that is, 
CONTROL.TM = “01” or “10” respectively). The DMA drives the SAR_BASEx value onto 
the address bus and requests a transfer size equal to the programmed peripheral width. 
In the case of CONTROL.TM = “10” where the external device (which is the source for 
the data) is FIFO-based, it is up to software to program the SAH bit correctly (Source 
Address Hold), so that on successive transfers from the peripheral, the 
SAR_CURRENTx value will not increment, thus reflecting the FIFO-nature of the 
peripheral.

• When the current transfer terminates the DMA will check if the BCR register for the 
“other” buffer (of the double-buffer set) has been programmed. If BCR is non-zero and 
CONTROL.TM = “00”, that is, software trigger mode, then the DMA will proceed 
immediately to request the AHB bus and begin a transfer from memory to DMA using 
the other buffer descriptor. Software does not need to reprogram the START bit, it is 
enough to have the second buffer descriptor set up while the first buffer transfer is in 
progress. In the case where TM is such that external-device mode is set up, then 
rollover to the other buffer will also occur if the current transfer terminates, but the DMA 
will wait until it receives a DREQ from the external peripheral before initiating a transfer.

The DMA Controller initiates memory-to-memory transfers in the transmit direction (that is, 
from DMA to memory/external bus) under the following circumstances:



DS785UM1 10-15
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

• For a software-triggered M2M transfer, a memory-write is initiated when the 16-byte data 
bay has been filled (in the case where 16 or more bytes remain to be transferred) or 
when it contains the appropriate number of bytes (equal to BCR register value if BCR is 
less than 16). The DMA controller drives the DAR_BASEx onto the address bus. This 
address can be any aligned byte address. The BCR register decrements by the 
appropriate number of bytes. When BCR = 0 then the transfer is complete. If BCR is 
greater than zero, another read/write transfer is initiated.

• For transfers involving external devices or SSP/IDE, the DMA memory-write phase is 
initiated when the data bay contains the byte/half-word/word data, depending on PW 
value, that is, peripheral width. The DMA will then drive the DAR_BASEx onto the 
address bus and will set the AMBA HSIZE signal in accordance with the PW value. 
Once the DMA has received confirmation that the write is done (from HREADY in case 
of an internal memory write, or from the SMC acknowledge signal in case of an external 
device write), a wait state counter is started. During the count, the hardware request line 
is masked, in order to allow the related peripheral to de-assert its request. In the case of 
CONTROL.TM = “01” and the external device (which is the destination for the data) is 
FIFO-based, it is up to software to program the DAH bit correctly (Destination Address 
Hold), so that on successive transfers to the peripheral, the DAR_CURRENTx value will 
not increment, thus reflecting the FIFO-nature of the peripheral.

 10.1.10.4 Data Transfer Termination
The DMA Controller terminates a memory-to-memory channel transfer under the following 
conditions:

• For software-triggered transfers which use a single buffer, the transfer is terminated 
when the BCR register of the active buffer has reached zero. The DONE status bit and 
corresponding interrupt (if enabled) are set. In the case of double/multiple buffer 
transfers, termination occurs when the BCR registers of both buffer descriptors has 
reached zero. The DONE status bit and corresponding interrupt (if enabled) are set. 
When the DONE interrupt is set the processor can then write a one to clear the interrupt 
before reprogramming the DMA to carry out another M2M transfer.

• For hardware-triggered transfers involving SSP or IDE or external devices without 
handshaking signals, the transfer is also terminated when the BCR register of the active 
buffer has reached zero. The DONE status bit and corresponding interrupt (if enabled) 
are set. When the DONE interrupt is set, the processor can then write a one to clear the 
interrupt before reprogramming the DMA to carry out another external DMA transfer. 

• For operations involving external devices using a single buffer, the transfer is terminated 
on the first occurrence of DEOT being asserted by the device or the byte count expiring 
for the active buffer. In the case of the DMA receiving a DEOT from the peripheral (which 
is aligned to DREQ) the DMA knows that this is the final transfer to be performed. The 
DONE status bit and corresponding interrupt (if enabled) are set. In the case of 
double/multiple buffer transfers, termination occurs on either the occurrence of the DMA 
receiving a DEOT from the device while it is transferring to/from the last buffer (that is, 
no other buffer has been set up), or when the BCR registers of both buffer descriptors 
has reached zero. 



10-16 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

When the DONE interrupt is set, the processor can then write a one to clear the interrupt 
before reprogramming the DMA to carry out another external DMA transfer. If the DEOT_TC 
pin is configured as an output pin (TC), the DMA asserts TC when each buffers byte count 
expires. It then rolls over to the other buffer. If the DEOT_TC pin is configured as an input pin 
(DEOT), the DMA terminates transfers from the active buffer when DEOT is asserted and 
rolls over to the other buffer. The DONE interrupt is not asserted when the DMA has another 
buffer available to which it can roll over. However the NFB interrupt is generated when the 
rollover occurs.

 10.1.10.5 Memory Block Transfer
The DMA Controller M2M channels provide a feature whereby block moves of data from one 
memory location can occur. If the CONTROL.SCT register bit is set for a channel, then its 
source address will not increment. In order to use this feature, both the source and 
destination addresses must be word-aligned, thus facilitating the transfer of a word of data 
from 1 location to a block of memory with the number of destination memory addresses 
written to is determined by the byte count register. For example, to copy a word to 10 
consecutive destination addresses, then BCR must be set to 40.

 10.1.10.6 Bandwidth Control
The Bandwidth Control feature makes it possible to force the DMA off the AHB bus during 
M2M transfers, to allow access to another device/peripheral. CONTROL.BWC register bits 
provide 12 levels of block transfer sizes. If the BCR decrements to within 15 bytes of a 
multiple of the decode of BWC, then the DMA bus request is negated until the bus cycle 
terminates, to allow the AHB bus arbiter to switch masters. 

If BWC is equal to zero, then the bus request stays asserted until BCR = zero, that is, the 
transfer is finished. If the initial value of BCR is equal to the BWC decode, the bus request will 
not be negated straight away. Some data must first be transferred.

 10.1.10.7 External DMA Request (DREQ) Mode 
When the external device requires DMA service, it asserts DREQ, which may be configured 
as either edge or level sensitive using bit DREQP[1] of the CONTROL register.

External DMA requests are processed as follows:

• In level-sensitive mode, the external device requests service by asserting DREQ and 
leaving it asserted as long as it needs service. The DMA synchronizes the DREQ input 
using 2 HCLK flip-flops for metastability protection. To prevent another transfer from 
taking place, the external device must deassert the DREQ pin during the DACK (DMA 
Acknowledge) cycle. The number of cycles that DACK is asserted is governed by the 
number of wait states in the Static Memory Controller.

• For external devices that generate a pulsed signal for each transfer, edge-sensitive 
mode should be used. When the DMA detects a rising/falling edge on DREQ (as 
configured by bit DREQP[0] of the CONTROL register), a request becomes pending. 
The DMA synchronizes the latched DREQ input using 2 HCLK flip-flops for metastability 
protection. The DREQS status bit is set to indicate that a request is pending. 



DS785UM1 10-17
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

Subsequent changes on DREQ are ignored until the pending request begins to be 
serviced. When the pending request has begun to be serviced, the DREQS status bit is 
cleared and subsequent edge-triggered requests are again recognized (latched) by the 
DMA. The DREQS status bit can be cleared by a software write to the channel STATUS 
register, thus causing the DMA to ignore the request.

 Figure 10-4. Edge-triggered DREQ Mode

1. A DREQ rising edge (DREQ is active high) is latched onto LATCH_DREQ during cycle 
1. 

2. This signal is synchronized using 2 HCLK flip-flops. The DREQS status bit indicates a 
request is pending at start of cycle 3. 

3. The DMA state machine moves into the DMA_MEM_RD state to begin servicing the first 
request in cycle 4. 

4. The DREQ latch is reset as a result of this state change and 2 cycles later the DREQS 
status bit is cleared. 

5. A second request cannot be recognized until DREQS is cleared. Hence the request 
received during cycle 2 is ignored by the DMA.

6. A rising edge on DREQ during cycle 6 is latched and causes the DREQS status bit to be 
set again, thus indicating that another external peripheral request is pending.

 10.1.11 DMA Data Transfer Size Determination

 10.1.11.1 Software Initiated M2M and M2P/P2M Transfers
Data transfer size flexibility is guaranteed by allowing the start address of a DMA transfer to 
be aligned to any arbitrary byte boundary since this is the case for the 10 internal byte-wide 
M2P/P2M channels and for the 2 M2M channels when used in software initiated mode.

HCLK

EXDREQ

LATCH_DREQ

DREQ_SYNC1

DREQ_SYNC2

DREQ

DMA_STATE DMA_STALL DMA_MEM_RD

1 2 3 4 5 6 7 8



10-18 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

At the start of a receive or transmit data transfer, the AHB Master Interface uses the low order 
4 bits of the current DMA address to decide on the data transfer size to use. If the low-order 4 
bits are zero, the first transfer is a quad word access. If they are not all zero, then if the low-
order two bits are zero, then the first transfer is a word transfer. Word transfers will continue, 
and the current address incremented each time by one word, until the low-order address bits 
indicate that the address is quad-word aligned. If the start address is not word aligned, then 
the first transfer is a byte transfer, and the current address is incremented by one byte each 
time until the current address is word aligned. Transfers will then be performed as word 
transfers until the address is quad-word aligned. (Unless the address becomes quad-word 
aligned immediately, in which case quad word transfers are used). Note that in the case of 
the M2M channels, source address alignment takes precedence over destination address 
alignment. This means that if the source is aligned on a quad-word boundary and the 
destination address is aligned on a byte boundary, the channel will burst data into the data 
bay and then perform byte transfers to the destination. 

The maximum transfer count can be any arbitrary number of bytes.

The DMA Controller transfers data when it owns the AHB bus. Note that with byte/ 
word/quad-word scheme that the DMA Controller employs, it can never burst across a 1KB 
boundary. The reason is that the DMA Controller only bursts when the 4 LSB Address bits are 
0000b. A 1 KB boundary has the LSB 10 Address bits being zero. (ref: ARM AMBA 
Specification).

 10.1.11.2 Hardware-Initiated M2M Transfers
The data transfer size for DMA transfers to/from external devices or SSP/IDE is dictated by 
the peripheral width. For byte, half-word or word wide peripherals, the DMA is programmed, 
using the PW bits of a channels control register, to request byte, half-word or word wide 
transfers respectively. Each external device request generates one peripheral width DMA 
transfer. If the memory involved is narrower than the peripheral then multiple memory 
accesses may be needed, for example, a word wide peripheral transferring to byte wide 
memory requires 4 memory transfers. The memory controller handles the generation of 
multiple memory accesses if necessary (and not the DMA).

 10.1.12 Buffer Descriptors

A “buffer” refers to the area in system memory that is characterized by a buffer descriptor, 
that is, a start address and the length of the buffer in bytes.

Table 10-1. Data Transfer Size

Current DMA Addr Bits [3:0] Transfer Type

0000
Quad-Word access (unless there are less than 4 word 

addresses remaining)

0100,1000,1100 Word access

xx01, xx10, xx11 Byte access



DS785UM1 10-19
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

 10.1.12.1 Internal M2P/P2M Channel Rx Buffer Descriptors
Only one Rx buffer descriptor is allocated per transaction. There are five Rx buffer 
descriptors, one for each of the five receive channels. Each buffer descriptor allows a 
channel double buffering scheme by containing programming for two buffers, that is, two 
system buffer base addresses and two buffer byte counts. This ensures that there is always 
one free buffer available for transfers to avoid potential data over/under-flow due to software-
introduced latency.

 10.1.12.2 Internal M2P/P2M Channel Tx Buffer Descriptors
Only one Tx buffer descriptor is allocated per transaction. There are five Tx buffer 
descriptors, one for each of the five transmit channels Each buffer descriptor allows a 
channel double buffering scheme by containing programming for two buffers, that is, two 
system buffer base addresses and two buffer byte counts. This ensures that there is always 
one free buffer available for transfers to avoid potential data over/under-flow due to software 
introduced latency.

 10.1.12.3 M2M Channel Buffer Descriptors
Only one M2M channel buffer descriptor is allocated per transaction. There are two M2M 
buffer descriptors, one for each of the 2 M2M channels. Each buffer descriptor allows a 
channel double buffering scheme by containing programming for two buffers, that is, two 
source base addresses, two destination base addresses and two buffer byte counts. The 
buffers are limited to 64 kBytes (0xFFF). This ensures that there is always one free buffer 
available for transfers which avoids potential data overflow/underflow due to software 
introduced latency.

 10.1.13 Bus Arbitration

When ready to do a transfer, the DMA Controller arbitrates internally between DMA 
Channels, then requests AHB bus access to the external AHB bus arbiter. Then a default 
setting of M2P having a higher priority than M2M is implemented. The default setting is 
programmable and can be changed if required (DMA Arbitration register bit[0] = CHARB).

The channel arbitration scheme is based on rotating priority, the order is as shown below in 
Table 10-2: 

Table 10-2. M2P DMA Bus Arbitration

 Internal Arbitration Priority

CHARB = 0 CHARB = 1

Highest M2P Ch 0 M2M Ch 0

M2P Ch 1 M2M Ch 1

M2P Ch 2 M2P Ch 0

M2P Ch 3 M2P Ch 1

M2P Ch 4 M2P Ch 2

M2P Ch 5 M2P Ch 3

M2P Ch 6 M2P Ch 4



10-20 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10
During normal operation, using the “fair” rotating priority scheme shown in Table 10-2, the last 
channel to be serviced becomes the lowest priority channel with the others rotating 
accordingly. In addition, any device requesting service is guaranteed to be recognized after 
no more than eleven higher priority services has occurred. This prevents any one channel 
from monopolizing the system. When the bus is idle, the scheme reverts to a fixed priority 
whereby the highest priority request gets in first (as shown in Table 10-2) when the bus 
resumes to normal operation.

In the case where the two M2M channels are requesting a service, the [PW] size of the read 
or  write transfers for the first channel are completed before the read transfer for the second 
channel begins. See subsections under Section 10.1.5 for detailed information about 
handshaking protocols for hardware and software-triggered M2M channel transfers.

 10.2 Registers

 10.2.1 DMA Controller Memory Map

Table 10-3 defines the DMA Controller mapping for each of 10 M2P (memory-to-peripheral) 
channels (5 Tx and 5 Rx), plus the 2 M2M (memory-to-memory) channels.

Before programming a channel, the clock for that channel must be turned on by setting the 
appropriate bit in the PwrCnt register of the Clock and State Controller block.

M2P Ch 7 M2P Ch 5

M2P Ch 8 M2P Ch 6

M2P Ch 9 M2P Ch 7

M2M Ch 0 M2P Ch 8

Lowest M2M Ch 1 M2P Ch 9

Table 10-3. DMA Memory Map

ARM920T Address Description Channel Base Address

0x8000_0000 -> 0x8000_003C M2P Channel 0 Registers (Tx) 0x8000_0000

0x8000_0040 -> 0x8000_007C M2P Channel 1 Registers (Rx) 0x8000_0040

0x8000_0080 -> 0x8000_00BC M2P Channel 2 Registers (Tx) 0x8000_0080

0x8000_00C0 -> 0x8000_00FC M2P Channel 3 Registers (Rx) 0x8000_00C0

0x8000_0100 -> 0x8000_013C M2M Channel 0 Registers 0x8000_0100

0x8000_0140 -> 0x8000_017C M2M Channel 1 Registers 0x8000_0140

0x8000_0180 -> 0x8000_01BC Not Used

0x8000_01C0 -> 0x8000_01FC Not Used

0x8000_0200 -> 0x8000_023C M2P Channel 5 Registers (Rx) 0x8000_0200

0x8000_0240 -> 0x8000_027C M2P Channel 4 Registers (Tx) 0x8000_0240

0x8000_0280 -> 0x8000_02BC M2P Channel 7 Registers (Rx) 0x8000_0280

0x8000_02C0 -> 0x8000_02FC M2P Channel 6 Registers (Tx) 0x8000_02C0

0x8000_0300 -> 0x8000_033C M2P Channel 9 Registers (Rx) 0x8000_0300

Table 10-2. M2P DMA Bus Arbitration (Continued)

 Internal Arbitration Priority

CHARB = 0 CHARB = 1



DS785UM1 10-21
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10 10.2.2 Internal M2P/P2M Channel Register Map

The DMA Memory Map above includes the base address mapping for the channel registers 
for each of the 10 M2P/P2M channels that are shown in the following table, the Internal 
M2P/P2M Channel Register Map. This mapping is common for each channel thus offset 
addresses from the bases in Table 10-3 are shown in Table 10-4.

Note:See Table 10-3 for Channel Base Addresses

Note:* - write this location once to clear the interrupt (see Interrupt register description
for which bits this rule applies to).

0x8000_0340 -> 0x8000_037C M2P Channel 8 Registers (Tx) 0x8000_0340

0x8000_0380 
DMA Channel Arbitration 

register

0x8000_03C0 DMA Global Interrupt register

0x8000_03C4 -> 0x8000_FFFC Not Used 0x8000_03C4

Table 10-4. Internal M2P/P2M Channel Register Map

Offset
Register 

Name
Access Bits Reset Value

Channel Base Address + 0x0000 “CONTROL” R/W 6 0

Channel Base Address + 0x0004 “INTERRUPT” R/W TC * 3 0

Channel Base Address + 0x0008 “PPALLOC” R/W 4
Channel dependant

(see register description)

Channel Base Address + 0x000C “STATUS” RO 8 0

Channel Base Address + 0x0010 Reserved

Channel Base Address + 0x0014 “REMAIN” RO 16 0

Channel Base Address + 0x0018 Reserved

Channel Base Address + 0x001C Reserved

Channel Base Address + 0x0020 “MAXCNTx” R/W 16 0

Channel Base Address + 0x0024 “BASEx” R/W 32 0

Channel Base Address + 0x0028 “CURRENTx” RO 32 0

Channel Base Address + 0x002C Reserved

Channel Base Address + 0x0030 “MAXCNTx” R/W 16 0

Channel Base Address + 0x0034 “BASEx” R/W 32 0

Channel Base Address + 0x0038 “CURRENTx” RO 32 0

Channel Base Address + 0x003C Reserved

Table 10-3. DMA Memory Map

ARM920T Address Description Channel Base Address



10-22 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

Register Descriptions

CONTROL

Address:
Channel Base Address + 0x0000 - Read/Write

Definition:
This is the Channel Control Register, used to configure the DMA Channel.

Important Programming Note: The control register should be read 
immediately after being written. This action will allow hardware state machines 
to transition and prevent a potential problem when the registers are being 
written in back to back clock cycles.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

STALLIntEn: Setting this bit to 1 enables the generation of the STALL 
interrupt in the STALL State of the DMA Channel State 
machine. Setting this bit to zero disables generation of the 
STALL Interrupt.

NFBIntEn: Setting this bit to 1 enables the generation of the NFB 
(next frame buffer) interrupt in the ON State of the DMA 
Channel State machine. Setting this bit to zero disables 
generation of the NFB Interrupt. Normally when the 
channel is enabled, this bit should be 1. However in the 
case where the current buffer is the last, then this bit can 
be cleared to prevent the generation of an interrupt while 
the DMA State machine is in the ON State.

ChErrorIntEn: Setting this bit to 1 enables the ChError Interrupt which 
indicates if the buffer transfer occurred with an error.

ENABLE: Setting this bit to 1 enables the channel, clearing this bit 
disables channel, and causes the remaining 
unpacker/packer data to be discarded. The channel must 
always be enabled before writing the Base address 
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD ICE ABORT ENABLE ChErrorIntEn RSVD NFBIntEn STALLIntEn



DS785UM1 10-23
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

ABORT: This bit determines how the DMA Channel State machine 
behaves while in the NEXT state and in receipt of a 
peripheral error, indicated on RxEnd/TxEnd. This bit is 
ignored when ICE is set.
0 - NEXT -> ON state, effectively ignoring the error.
1 - NEXT -> STALL state, effectively disabling the channel. 
No STALLInt interrupt is set for this condition.

ICE: Ignore Channel Error bit. Setting this bit results in 
suppression of the generation of the ChErrorInt interrupt 
and does not result in buffer termination. This bit may be 
set for data streams whereby the end user is tolerant to 
occasional bit errors.

PPALLOC

Address:
Channel Base Address + 0x0008 - Read/Write

Definition:
This is the Peripheral Port Allocation register used to configure the internal 
M2P channel programmability. It is possible to program a channels use on one 
of a number of different peripherals. 

There can be 20 external peripherals - 10 Tx and 10 Rx - connected to the 20 
“ports” of the DMA. The 10 internal M2P DMA channels can serve 10 of these 
ports at one time. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Note: PPALLOC:Table 10-5, Table 10-6,  and Table 10-7 give the PPALLOC decode for the port 
allocation for both a transmit channel and a receive channel.

Two channels cannot be programmed to serve the same port since, in the case of an 
erroneous software write operation, the lower channel number is given priority. For 
example, if software writes the value 0x01 to Channel 0 Tx PPALLOC[3:0], and also writes 
this same value to Channel 2 Tx PPALLOC[3:0], then the Channel 0 Tx will be configured 
for Port 0 and Channel 2 will not function correctly.

The PPALLOC register must be written to before a channel is enabled. If this is not done, 
then the default allocation of the ports will be used.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PPALLOC



10-24 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

NOTE: The naming convention used for channels and ports is as follows - even numbers 
correspond to transmit channels/ports and odd numbers correspond to receive 
channels/ports.  

Table 10-5. PPALLOC Register Bits Decode for a Transmit Channel 

Ch 0, 2, 4, 6, 8
PPALLOC[3:0]

Port allocated Peripheral Allocated

0000 PORT 0 I2S1 Tx

0001 PORT 2 I2S2 Tx

0010 PORT 4 AAC1 Tx

0011 PORT 6 AAC2 Tx

0100 PORT 8 AAC3 Tx

0101 PORT 10 I2S3 Tx

0110 PORT 12 UART1 Tx

0111 PORT 14 UART2 Tx

1000 PORT 16 UART3 Tx

1001 PORT 18 IrDA Tx

other values not used

Table 10-6. PPALLOC Register Bits Decode for a Receive Channel

Ch 1, 3, 5, 7, 9
PPALLOC[3:0]

Port allocated Peripheral Allocated

0000 PORT 1 I2S1 Rx

0001 PORT 3 I2S2 Rx

0010 PORT 5 AAC1 Rx

0011 PORT 7 AAC2 Rx

0100 PORT 9 AAC3 Rx

0101 PORT 11 I2S3 Rx

0110 PORT 13 UART1 Rx

0111 PORT 15 UART2 Rx

1000 PORT 17 UART3 Rx

1001 PORT 19 IrDA Rx

other values not used

Table 10-7. PPALLOC Register Reset Values

M2P Channel PPALLOC[3:0] Port allocated on reset

0 0000 PORT 0

1 0000 PORT 1

2 0001 PORT 2

3 0001 PORT 3

4 0010 PORT 4

5 0010 PORT 5

6 0011 PORT 6

7 0011 PORT 7

8 0100 PORT 8

9 0100 PORT 9



DS785UM1 10-25
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

INTERRUPT 

Address:
Channel Base Address + 0x0004 - Read/Write

Definition:
This is the interrupt status register. The register is read to obtain interrupt 
status for enabled interrupts. An interrupt is enabled by writing the 
corresponding bits in the CONTROL register.

Write this location once to clear the interrupt. (See Interrupt Register Bit 
Descriptions for the bits where this rule applies.)

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

STALLInt: Indicates channel has stalled. This interrupt is generated 
on a Channel State machine transition from ON to STALL 
state, if STALLIntEn set. This is a critical interrupt as it 
indicates that an over/underflow condition will occur as 
soon as the peripheral’s FIFO is full/empty. The interrupt is 
cleared by either disabling the channel or writing a new 
base address which will move the state machine onto the 
ON state.

NFBInt: Indicates channel requires a new buffer. This interrupt 
generated on a Channel State machine transition from 
NEXT to ON state if NFBIntEn set. The interrupt is cleared 
by either disabling the channel or writing a new base 
address, which will move the state machine onto the next 
state.

ChErrorInt: This interrupt is activated when the peripheral attached to 
the DMA Channel detects an error in the data stream. The 
peripherals signal this error by ending the current transfer 
with a TxEnd/RxEnd error response. The interrupt is 
cleared by writing either a “1” or a “0” to this bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD ChErrorInt 0 NFBInt STALLInt



10-26 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

STATUS 

Address:
Channel Base Address + 0x000C - Read Only

Definition:
This is the channel status register, which is a read-only register, used to 
provide status information with respect to the DMA channel.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Stall: A “1” indicates channel is stalled and cannot currently 
transfer data because a base address has not been 
programmed. When the channel is first enabled, the Stall 
bit is suppressed until the first buffer has been transferred, 
that is, no stall interrupt generated when STALL state 
entered from IDLE state, only when entered from ON 
State. The STALL state can be cleared by writing a base 
address or disabling the DMA channel. The reason for 
channel completion can be ascertained by reading the 
BYTES_REMAINING register, if it is zero, the channel was 
stopped by the DMA Channel; if it is non-zero, the 
peripheral ended transfer with TxEnd/RxEnd. If the 
transfer ended with error, ChError bit/interrupt is set.

NFB: A “1” indicates the Channel FSM has moved from NEXT 
State to ON State. This means that the channel is currently 
transferring data from a DMA buffer but the next base 
address for the next buffer in the transfer has not been 
programmed, and may now be.
0 - Not in ON State, not ready for next buffer update.
1 - In ON State, ready for next buffer BASE/MAXCOUNT 
updates. NFB interrupt generated if not masked.

ChError: Indicates error status of buffer transfer:
0 - The last buffer transfer completed without error.
1 - The last buffer transfer terminated with an error.

BYTES: This is the number of valid DMA data currently stored by 
the channel in the DMA Controller in packer or unpacker. 
Usually used for test/debug.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BYTES NextBuffer Current State ChError RSVD NFB STALL



DS785UM1 10-27
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

Current State: Indicates the state that the Channel FSM is currently in:
00 - IDLE
01 - STALL
10 - ON
11 - NEXT

NextBuffer: Informs the NFB service routine, after a NFB interrupt, 
which pair of BASEx/MAXCOUNTx registers is free for 
update.
0 - Update MAXCNT0/BASE0
1 - Update MAXCNT1/BASE1

The NextBuffer bit gets set to “1” when a write occurs to 
BASE0 and it gets set to “0” when a write occurs to 
BASE1. This bit alone cannot be used to determine which 
of the two buffers is currently being transferred to. For 
example, if BASE0 is written to, then NextBuffer gets set 
to “1” and transfers will occur using buffer0. If, during this 
transfer BASE1 gets written to, then NextBuffer gets set to 
“0”, but the current transfer will continue using buffer0 until 
it terminates. Then the DMA switches over to using 
buffer1, at which time the NFB interrupt is generated and 
software reads the NextBuffer status bit to determine what 
buffer descriptor is now free for update. In this case it is 
buffer0.

The NextBuffer status bit can be used in conjunction with 
the CurrentState status bits to determine the active buffer. 

If CurrentState = DMA_ON and NextBuffer = 1 then 
Buffer0 is the active buffer.

If CurrentState = DMA_ON and NextBuffer = 0 then 
Buffer1 is the active buffer.

If CurrentState = DMA_NEXT and NextBuffer = 0 then 
Buffer0 is the active buffer.

If CurrentState = DMA_NEXT and NextBuffer =1 then 
Buffer1 is the active buffer.



10-28 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

REMAIN

Address:
Channel Base Address + 0x0014 - Read Only

Definition:
The Channel Bytes Remaining Register contains the number of bytes 
remaining in the current DMA transfer. Only the lower 16 bits are valid

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

REMAIN: Loaded from the Channel MAXCNT register when the 
DMA Channel State Machine enters the ON State. 
Although there are 2 Data transfer states, ON and NEXT, 
this register need only be assigned in the ON state, 
because in this state the next buffer to be used is 
determined (there is only one) and this MAXCNT value is 
assigned to REMAIN. The DMA State Machine counts 
down by one byte every time a byte is transferred between 
the DMA Controller and the Peripheral. When this register 
reaches zero, the current buffer transfer is complete and 
the TxTC/RxTC are generated and used to indicate this to 
the peripheral. DMA transfers may also be stopped with 
the TxEnd/RxEnd signals from the peripheral, where the 
REMAIN register is non-zero at the end of transfer, 
allowing software to determine the last valid data in a 
buffer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

REMAIN



DS785UM1 10-29
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

MAXCNTx 

Address:
MAXCNT0: Channel Base Address + 0x0020 - Read/Write
MAXCNT1: Channel Base Address + 0x0030 - Read/Write

Definition:
x = “0” or “1”. Maximum byte count for the buffer. Represents the double buffer 
per channel. Only the low order 16 bits are used. Each MAXCNTx register 
must be programmed before it’s corresponding BASEx register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

MAXCNTx: Maximum byte count for the buffer.

BASEx 

Address:
BASE0: Channel Base Address + 0x0024 - Read/Write
BASE1: Channel Base Address + 0x0034 - Read/Write

Definition:
Base address for the current and next DMA transfer.

Bit Descriptions:

BASEx: x = “0” or “1”. Base address for the current and next DMA 
transfer. Loaded with start address after enabling the DMA 
Channel, the latter event required to take the Channel 
State machine into the STALL state, the former event 
required to enter the ON State.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAXCNTx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BASEx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BASEx



10-30 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

CURRENTx   

Address:
CURRENT0: Channel Base Address + 0x0028 - Read Only
CURRENT1: Channel Base Address + 0x0038 - Read Only

Definition:
This is the Channel Current Address Register. 

Bit Descriptions:

CURRENTx: Returns the current value of the channel address pointer. 
Upon enabling the DMA Channel and writing the BASE 
Address Register the contents of this register is loaded 
into the CURRENTx register and the x buffer becomes 
active. Following completion of a transfer from a buffer, the 
post-incremented address is stored in this register so that 
a software service routine can detect the point in the buffer 
at which transfer was terminated.

M2M Channel Register Map

The DMA Memory Map defines the mapping for the channel registers for each of the 2 M2M 
channels that are shown in Table 10-8, the M2M Channel Register Map. This mapping is 
common for each channel thus offset addresses are shown.

Note that M2M Channel 0 is dedicated to servicing External Device 0, and M2M Channel 1 is 
dedicated to servicing External Device 1 (when in external DMA transfer mode). 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CURRENTx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CURRENTx

Table 10-8. PPALLOC Register Reset Values

Offset Name Access Bits Reset Value

Channel Base Address + 0x0000 CONTROL R/W 32 0

Channel Base Address + 0x0004 INTERRUPT R/W TC* 3 0

Channel Base Address + 0x0008 Reserved

Channel Base Address + 0x000C STATUS R/W TC* 14 0

Channel Base Address + 0x0010 BCR0 R/W 16 0

Channel Base Address + 0x0014 BCR1 R/W 16 0

Channel Base Address + 0x0018 SAR_BASE0 R/W 32 0

Channel Base Address + 0x001C SAR_BASE1 R/W 32 0

Channel Base Address + 0x0020 Reserved

Channel Base Address + 0x0024 SAR_CURRENT0 RO 32 0



DS785UM1 10-31
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10
Note:See Table 10-3 for Channel Base Addresses

Note:* Write this location once to clear the bit (see Interrupt/Status register description
for which bits this rule applies to).

CONTROL

Address:
Channel Base Address + 0x0000 - Read/Write

Definition:
This is the Channel Control Register. Used to configure the DMA M2M 
Channel. All control bits should be programmed before the ENABLE bit is set.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

STALLIntEn: Setting this bit to “1” enables the generation of the STALL 
interrupt in the STALL State of the DMA Channel State 
machine. Setting this bit to “0” disables generation of the 
STALL Interrupt.

SCT: Source Copy Transfer. This bit is used to set up a block 
transfer from 1 memory source location. If SCT = 1, then 
one word is read from the source memory location and 
copied to a block of memory (the number of destination 
locations written to is determined by BCR). If SCT = 0 then 
the source address increments as normal after each 
successful transfer as determined by the transfer size (this 
is the default setting). In order to use this feature the 
SAR_BASEx and DAR_BASEx registers must contain 
word-aligned addresses - the DMA will ignore the 2 LSB’s 

Channel Base Address + 0x0028 SAR_CURRENT1 RO 32 0

Channel Base Address + 0x002C DAR_BASE0 R/W 32 0

Channel Base Address + 0x0030 DAR_BASE1 R/W 32 0

Channel Base Address + 0x0034 DAR_CURRENT0 RO 32 0

Channel Base Address + 0x0038 Reserved

Channel Base Address + 0x003C DAR_CURRENT1 RO 32 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PWSC NO_HDSK RSS NFBintEn DREQP RSVD DACKP ETDP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETDP TM SAH DAH PW BWC START ENABLE DONEIntEn SCT STALLIntEn

Table 10-8. PPALLOC Register Reset Values (Continued)

Offset Name Access Bits Reset Value



10-32 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

of the source and destination addresses to avoid any 
problems in the case where software erroneously 
programs a byte-aligned address. The SCT bit is used 
only when in M2M software-triggered transfer mode.

DoneIntEn: Setting this bit to “1” enables the generation of the DONE 
Interrupt which indicates if the transfer completed 
successfully. 

ENABLE: Setting this bit to 1 enables the channel, clearing this bit 
disables the channel. The channel must always be 
enabled after writing the Source/Destination Base address 
registers and the BCR register. When a channel is 
disabled, the external peripheral signals will be placed in 
their inactive state.

START: Start Transfer. When this bit is set, the DMA begins M2M 
transfer in accordance with the values in the control 
registers. START is cleared automatically after one clock 
cycle and is always read as a logic 0. This bit, in effect, 
provides a “Software-triggered DMA capability”. A channel 
must be configured and enabled before setting the START 
bit. This bit is not used for external DMA transfers, or for 
IDE and SSP transfers. For a double-buffer software 
triggered DMA transfer, the START bit need only be set 
once, that is, at the very beginning of transfer. It is 
sufficient for software to program the ‘other’ buffer 
descriptor only, in order to guarantee rollover to the 
second buffer when the byte count of the first buffer has 
been reached.

BWC: Bandwidth Control. These 4 bits are used to indicate the 
number of bytes in a block transfer. When the BCR 
register value is within 15 bytes of a multiple of the BWC 
value, the DMA releases the bus by negating the AHB bus 
request strobe allowing lower priority masters to be 
granted control of the bus. BWC = 0000 specifies the 
maximum transfer rate: other values specify a transfer rate 
limit.

The BWC bits should only be set for software triggered 
M2M transfers, where HREQ stays asserted throughout 
the transfer. For transfer to/from external devices, HREQ 
is released after every transfer, and so bandwidth control 
is not needed.

The BWC bits are ignored when in external DMA transfer 
mode.



DS785UM1 10-33
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

Example: if BWC = 1010b (indicating 1024 bytes, see 
Table 10-9, below), the DMA relinquishes control of the 
bus on completion of the current burst transfer after BCR 
values which are within 15 bytes of multiples of 1024. 

PW: Peripheral Width. For external DMA transfers, these bits 
are used to program the DMA to request byte/half-
word/word wide AHB transfers, depending on the width of 
the external device. These bits are not used for software 
triggered M2M transfers.

00 - Byte (8 bits)
01 - Half-word (16 bits)
10 - Word (32 bits)
11 - Not used

For word accesses the lower 2 bits of the 
source/destination address are ignored.

For half-word accesses the lower bit of the 
source/destination address is ignored.

Table 10-9. BWC Decode Values

BWC Bytes

0000 Full DMA transfer completes

0001 16

0010 16

0011 16

0100 16

0101 32

0110 64

0111 128

1000 256

1001 512

1010 1024

1011 2048

1100 4096

1101 8192

1110 16384

1111 32768



10-34 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

DAH: Destination Address Hold - This bit is used for external 
M2P transfers where the external memory destination is a 
memory-mapped FIFO-based device (with one address 
location) or for internal peripheral transfers (M2P) to the 
peripheral’s FIFO buffer. 
1 - Hold the destination address throughout the transfer 
(do not increment).
0 - Increment the destination address after each transfer in 
the transaction.

SAH: Source Address Hold - This bit is used for external DMA 
transfers where the external memory source is a memory-
mapped FIFO-based device (with one address location) or 
for internal register locations.
1 - Hold the source address throughout the transfer (do 
not increment).
0 - Increment the source address after each transfer in the 
transaction.

TM: Transfer Mode:
00 - Software initiated DMA transfer.
01 - Hardware initiated external DMA transfer, that is, 
transfer from memory to external device or to IDE or SSP.
10 - Hardware initiated external DMA transfer, that is, 
transfer from external device (or IDE/SSP) to memory.
11 - Not used.

ETDP: End-of-Transfer/Terminal Count pin Direction & Polarity:
00 - The DEOT/TC pin is programmed as an active low 
end-of-transfer input.
01 - The DEOT/TC pin is programmed as an active high 
end-of-transfer input.
10 - The DEOT/TC pin is programmed as an active low 
terminal count output.
11 - The DEOT/TC pin is programmed as an active high 
terminal count output.

DACKP: DMA Acknowledge pin Polarity:
0 - DACK is active low.
1 - DACK is active high.

DREQP: DMA Request pin Polarity. These bits must be set before 
the channels ENABLE bit is set. Otherwise the reset 
value, “00”, will cause the DMA to look for an active low, 
level sensitive DREQ.
00 - DREQ is active low, level sensitive.
01 - DREQ is active high, level sensitive.
10 - DREQ is active low, edge sensitive.
11 - DREQ is active high, edge sensitive.



DS785UM1 10-35
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

NFBIntEn: Setting this bit to “1” enables the generation of the NFB 
interrupt in the DMA_BUF_ON state of the DMA channel 
buffer state machine. Setting this bit to zero disables 
generation of the NFB Interrupt. Normally when the 
channel is enabled, this bit should be 1. However in the 
case where the current buffer is the last, then this bit can 
be cleared to prevent the generation of an interrupt while 
the DMA State machine is in the DMA_BUF_ON state.

RSS: Request Source Selection. 
00 - External DReq.
01 - Internal SSPRx.
10 - Internal SSPTx.
11 - Internal IDE.

NO_HDSK: When set, the peripheral doesn’t require the regular 
handshake protocol. This is optional for external DMAs, 
but this bit needs to be set for SSP and IDE operations. 
Setting this bit will imply the use of a wait state counter 
that will mask hardware requests after each DMA write.

PWSC: Peripheral Wait States Count. Gives the latency (in HCLK 
cycles) needed by the peripheral to de-assert its request 
line once the M2M transfer is finished.During this latency 
period, the DMA channel will not consider any request. 
This wait state count is triggered after each peripheral 
width transfer, right after the DMA write phase.In the case 
of internal DMA, this means that the count will start when 
the DMA has had confirmation from AHB that the write is 
accepted and done. In the case of an external DMA that 
doesn’t use a handshaking protocol, the count will start 
when the DMA has received the acknowledge of the write 
from the SMC.If the acknowledge from the SMC takes too 
long to arrive, the processor can still cancel the counter 
stall by writing the CONTROL register.

INTERRUPT

Address:
Channel Base Address + 0x0004 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD NFBint DONEInt STALLInt



10-36 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

Definition:
This is the interrupt status register. The register is read to obtain interrupt 
status for enabled interrupts. An interrupt is enabled by writing the 
corresponding bits in the CONTROL register.

Write this location once to clear the interrupt. (See the Interrupt Register Bit 
Descriptions for the bits where this applies.)

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

STALLInt: Indicates channel has stalled. This interrupt is generated 
on a Channel State machine transition from MEM_RD 
(memory read) or MEM_WR (memory write) to the STALL 
state, assuming STALLIntEn set. The interrupt is cleared 
by either disabling the channel or by triggering a new 
transfer.

DONEInt: Transaction is done. When enabled, this interrupt is set 
when all DMA controller transactions complete normally, 
as determined by the transfer count/external peripheral 
DEOT signal. When a transfer completes, software must 
clear the DONE bit before reprogramming the DMA, by 
writing either a “0” or “1” to this bit. This must be done 
even if the DMA interrupt is disabled. The DMA will ignore 
any additional DREQs that it receives from the external 
peripheral (if operating in external DMA mode) until the 
software clears the DONE interrupt and reprograms the 
DMA with new BCRx values.

NFBInt: Indicates that a channels buffer descriptor is free for 
update. This interrupt is generated if NFBIntEn is set, 
when a transfer begins using the second buffer of the 
double-buffer set, thus informing software that it can now 
set up the other buffer. The interrupt is cleared by either 
disabling the channel or writing a new BCR value to set up 
a new buffer descriptor. The interrupt is not generated for 
a single-buffer transfer. In software triggered M2M mode, 
servicing of the NFB interrupt is dependent on the system 
level AHB arbitration since the DMA’s HREQ (AHB 
request) may be continuously held high.



DS785UM1 10-37
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

STATUS 

Address:
Channel Base Address + 0x000C - Read/Write

Definition:
This is the channel status register, used to provide status information with 
respect to the DMA channel. All register bits are read-only except for the 
DREQS status bit which can be cleared by a write (either a “0” or a “1”) to this 
register.

Write this location once to clear the interrupt (see Interrupt Register Bit 
Descriptions for which bits this rule applies to).

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Stall: A “1” indicates channel is stalled and cannot currently 
transfer data because the START bit has not been 
programmed or an external device has not asserted 
DREQ. When the channel is first enabled, the Stall bit is 
suppressed until the first buffer has been transferred, that 
is, no stall interrupt generated when STALL state entered 
from IDLE state, only when entered from MEM_WR State. 
The STALL state can be cleared by:

•Setting the START bit

•An external peripheral requesting service (depending on 
transfer mode)

•Disabling the DMA channel

•A request from SSP or IDE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DREQS NB NFB EOTS TCS DONE CurrentState STALL



10-38 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

CurrentState: Indicates the states that the M2M Channel Control FSM 
and M2M Buffer FSM are currently in:

CurrentState[2:0] - These indicate the state of M2M 
Channel Control FSM:
000 - DMA_IDLE
001 - DMA_STALL
010 - DMA_MEM_RD
011 - DMA_MEM_WR
100 - DMA_BWC_WAIT

CurrentState[4:3] - These indicate the state of M2M Buffer 
FSM:
00 - DMA_NO_BUF
01 - DMA_BUF_ON
10 - DMA_BUF_NEXT

DONE: Transfer completed successfully. The transfer is 
terminated on the occurrence of DEOT being asserted by 
the peripheral or the byte count expiring, whichever 
happens sooner. When a transfer completes, software 
must clear the Interrupt.DONEInt bit before 
reprogramming the DMA, by writing either “0” or “1” to this 
bit. The DMA will ignore any more DREQs that it receives 
from the external device (if operating in external peripheral 
mode) until such time that software clears the DONE 
interrupt and reprograms the DMA with new BCRx values, 
and this even if the DMA interrupt is disabled.

TCS: Terminal Count status. This status bit reflects whether or 
not the actual byte count has reached the programmed 
limit for buffer descriptor “0” or “1” respectively:
00 - Terminal Count has not been reached for either buffer 
descriptor 1 or 0.
01 - Terminal Count has not been reached for buffer 1 and 
has been reached for buffer descriptor 0.
10 - Terminal Count has been reached for buffer 1 and has 
not been reached for buffer descriptor 0.
11 - Terminal Count has been reached for both buffer 
descriptors.

The TCS status bit for a buffer descriptor is cleared when 
the BCR register of that buffer descriptor has been 
programmed with a new value.



DS785UM1 10-39
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

EOTS: End-Of-Transfer status (valid only if the DEOT/TC pin has 
been programmed for the DEOT function, that is, the 
control reg bit ETDP[1] = 0) for buffer descriptor 1 or 0 
respectively.

00 - End of transfer has not been requested by external 
device for either buffer descriptor.
01 - End of transfer has been requested by external device 
for buffer descriptor 0 only.
10 - End of transfer has been requested by external device 
for buffer descriptor 1 only.
11 - End of transfer has been requested by external 
peripheral for both buffer descriptors.

NFB: A “1” indicates that the channel is currently transferring 
data from a DMA buffer but the next byte count register for 
the next buffer in the transfer has not been programmed, 
and may now be programmed. This interrupt is generated 
when the DMA buffer state machine moves from the 
DMA_BUF_NEXT state to the DMA_BUF_ON state, that 
is, when transfer begins using the second buffer of the 
double buffer pair. Thus for a double-buffer transfer both 
BCR registers must be programmed once before the NFB 
status bit can be used to determine when the next BCR 
register should be programmed.
0 - Not ready for next buffer update.
1 - Ready for next buffer updates. NFB interrupt generated 
if not masked.

NB: NextBuffer status bit - Informs the NFB service routine, 
after a NFB interrupt, which pair of 
SAR_BASEx/DAR_BASEx/BCRx registers is free for 
update.
0 - Update SAR_BASE0/DAR_BASE0/BCR0
1 - Update SAR_BASE1/DAR_BASE1/BCR1

The NextBuffer bit gets set to “1” when a write occurs to 
BCR0 and it gets set to “0” when a write occurs to BCR1. 
This bit alone cannot be used to determine which of the 
two buffers is currently being transferred to - for example if 
BCR0 is written, then NextBuffer gets set to “1” and 
transfers will occur using buffer0. If, during this transfer 
BCR1 gets written, then NextBuffer gets set to “0”, but the 
current transfer will continue using buffer0 until it 
terminates. Then the DMA switches over to using buffer1 
at which time the NFB interrupt is generated and software 
reads the NextBuffer status bit to determine what buffer 
descriptor is now free for update - in this case it is buffer0.



10-40 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

The NextBuffer status bit can be used in conjunction with 
the CurrentState status bits to determine the active buffer 
according to the following rules: 

If CurrentState[4:3] = DMA_BUF_ON and NextBuffer = 1 
then Buffer0 is the active buffer.

If CurrentState[4:3] = DMA_BUF_ON and NextBuffer = 0 
then Buffer1 is the active buffer.

If CurrentState[4:3] = DMA_BUF_NEXT and NextBuffer = 
0 then Buffer0 is the active buffer.

If CurrentState[4:3] = DMA_BUF_NEXT and NextBuffer =1 
then Buffer1 is the active buffer.

DREQS: DREQ Status - This bit reflects the status of the 
synchronized external DMA Request signal or IDE/SSP 
requests:
0 - No external DMA request is pending or, in the case of a 
transfer without handshaking, the request is not validated 
yet, the wait state counter is running.
1 - An external DMA request or a validated IDE/SSP or 
external peripheral without handshaking request is 
pending.

DREQS can be polled by software at any time. It can, for 
example, be used to determine whether or not the DMA 
needs to be set up for a transfer when the DMA is in the 
STALL state and is receiving DREQs, but the BCRx 
registers have not been programmed. It is important to 
notice that, in the case of a transfer without handshaking 
(external DMA or IDE or SSP), DREQS might be clear if a 
request is pending but is not validated as a result of a wait 
state counter still running.

When the channel STATUS register is written with any 32-
bit value, this will cause the DREQS bit of the STATUS 
register to be cleared. A write to the STATUS register only 
affects the DREQS bit. If an edge is detected on DREQ 
when no previous request is still pending in the DMA (that 
is, DREQS clear), then the DREQS bit is set by the DMA 



DS785UM1 10-41
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

to indicate that the external device has requested service. 
The STATUS register is written by software to clear the 
DREQS status bit, thus causing the DMA to ignore the 
request. 

For level-sensitive DREQ mode, do not attempt to clear 
the DREQS status bit, as the request will keep coming 
from the external device. The hardware ensures that a 
write to the STATUS register has no effect when in level-
sensitive mode. 

BCRx 

Address:
BCR0: Channel Base Address + 0x0010 - Read/Write
BCR1: Channel Base Address + 0x0014 - Read/Write

Definition:
The Channel Bytes Count Register contains the number of bytes yet to be 
transferred for a given block of data in a M2M transfer. Only the lower 16 bits 
are valid.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

BCRx: x = “0” or “1” representing the double buffer per channel. 
The BCR register must be loaded with the number of byte 
transfers to occur. It decrements on the successful 
completion of the address transfer during the write-to-
memory state of the M2M transfer. At least 1 of the BCRx 
registers must be programmed to a non-zero value before 
the ENABLE bit and the START bit (in the case of 
software-trigger M2M mode) are set in the Control register. 
Writing to a BCRx register causes a next buffer update, 
that is, only the BCR of the buffer descriptor has to be 
written to in order to use that buffer since the SAR_BASEx 
and DAR_BASEx registers do not have to be continuously 
updated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BCRx



10-42 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

For a double/multiple buffer transfer, the second buffer 
descriptor can be programmed while the transfer using the 
first buffer is being carried out (thus reducing software 
latency impact). The NFB interrupt is generated when 
transfer begins using the second buffer. The NFB interrupt 
service routine can then be used to update the free buffer 
descriptor (in the case where a third buffer is required).

If BCRx = 0 when the transfer is triggered, then NO 
transfers will occur, that is, the DMA will stay in the STALL 
state.

SAR_BASEx 

Address:
SAR_BASE0: Channel Base Address + 0x0018 - Read/Write
SAR_BASE1: Channel Base Address + 0x001C - Read/Write

Definition:
This register contains the base memory address from which the DMA 
controller requests data. 

Bit Descriptions:

SAR_BASEx: x = “0” or “1” representing the double buffer per channel. 
This register contains the base memory address from 
which the DMA controller requests data. At least 1 of the 
SAR_BASEx registers must be programmed before the 
ENABLE bit and the START bit (in the case of software-
trigger M2M mode) are set in the Control register, and also 
before the corresponding BCRx register is programmed. 
The second buffer descriptor can be programmed while 
the transfer using the “other” buffer is being carried out 
(thus reducing software latency impact). When transferring 
from external device to memory, the SAR_BASEx will 
contain the base address of the memory mapped device.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SAR_BASEx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SAR_BASEx



DS785UM1 10-43
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

DAR_BASEx 

Address:
DAR_BASE0: Channel Base Address + 0x002C- Read/Write
DAR_BASE1: Channel Base Address + 0x0030 - Read/Write

Definition:
This register contains the base memory address to which the DMA controller 
transfers data. 

Bit Descriptions:

DAR_BASEx: x = 0 or 1 representing the double buffer per channel. This 
register contains the base memory address to which the 
DMA controller sends data. At least 1 of the DAR_BASEx 
registers must be programmed before the ENABLE bit and 
the START bit (in the case of software trigger M2M mode) 
are set in the Control register, and also before the 
corresponding BCRx register is programmed. The second 
buffer descriptor can be programmed while the transfer 
using the ‘other’ buffer is being carried out (thus reducing 
software latency impact). When transferring from memory 
to external peripheral, the DAR_BASEx will contain the 
base address of the memory mapped device.

SAR_CURRENTx 

Address:
SAR_CURRENT0: Channel Base Address + 0x0024 - Read Only
SAR_CURRENT1: Channel Base Address + 0x0028 - Read Only

Definition:
This is the Channel Current Source Address Register. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DAR_BASEx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DAR_BASEx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SAR_CURRENTx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SAR_CURRENTx



10-44 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

Bit Descriptions:

SAR_CURRENTx: Returns the current value of the channel source address 
pointer. Upon writing the BCRx register, the contents of the 
SAR_BASEx register is loaded into the SAR_CURRENTx 
register and the x buffer becomes active. Following 
completion of a transfer from a buffer, the post-
incremented address is stored in this register so that a 
software service routine can detect the point in the buffer 
at which transfer was terminated.

DAR_CURRENTx 

Address:
DAR_CURRENT0: Channel Base Address + 0x0044 - Read Only
DAR_CURRENT1: Channel Base Address + 0x003C - Read Only

Definition:
This is the Channel Current Destination Address Register.

Bit Descriptions:

DAR_CURRENTx: Returns the current value of the channel destination 
address pointer. Upon writing the BCRx register the 
contents of the DAR_BASEx register is loaded into the 
DAR_CURRENTx register and the x buffer becomes 
active. Following completion of a transfer from a buffer, the 
post-incremented address is stored in this register so that 
a software service routine can detect the point in the buffer 
at which transfer was terminated.

DMAGlInt 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DAR_CURRENTx

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DAR_CURRENTx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0



DS785UM1 10-45
Copyright 2007 Cirrus Logic 

DMA Controller
EP93xx User’s Guide

1010

10

Address:
0x8000_03C0 - Read/Write

Definition:
DMA Global Interrupt Register. This register indicates which channels have an 
active interrupt. It is a read only register. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

D0 - D1: These interrupts are per channel interrupts, as shown in 
Table 10-10. Each bit is a logical OR of the INTERRUPT 
register per channel. There are no dedicated storage of 
these channel interrupts. Once each Channel’s Interrupts’ 
are clear, the associated channel interrupt is clear.

Note: The order of the internal M2P channel interrupts is 
for compatibility reasons with previous versions of 
software.

DMAChArb 

Address:
0x8000_0380 - Read/Write

Table 10-10. DMA Global Interrupt (DMAGlInt) Register

Bit No. Description

D[31:12] RSVD

D11 M2M Channel 1 Interrupt

D10 M2M Channel 0 Interrupt

D9 M2P Channel 8 Interrupt

D8 M2P Channel 9 Interrupt

D7 M2P Channel 6 Interrupt

D6 M2P Channel 7 Interrupt

D5 M2P Channel 4 Interrupt

D4 M2P Channel 5 Interrupt

D3 M2P Channel 2 Interrupt

D2 M2P Channel 3 Interrupt

D1 M2P Channel 0 Interrupt

D0 M2P Channel 1 Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD CHARB



10-46 DS785UM1
Copyright 2007 Cirrus Logic

DMA Controller
EP93xx User’s Guide

1010

10

Definition:
DMA Channel Arbitration Register. This bit controls the DMA channel 
arbitration. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

CHARB: This bit controls DMA channel arbitration. It is reset to “0”, 
thus giving a default setting of internal Memory-to-
Peripheral channels having a higher priority than Memory-
to-Memory channels. This bit can be set to “1” to reverse 
the default order, that is, giving M2M transfers a higher 
priority than internal M2P.



DS785UM1 11-1
Copyright 2007 Cirrus Logic 

1111

11

Chapter 11

11Universal Serial Bus Host Controller

 11.1 Introduction

Note: The EP9301 and EP9302 processors each have 2 USB 2.0 Host ports. 

Note: The EP9307, EP9312, and EP9315 processors each have 3 USB 2.0 Host ports.

The Universal Serial Bus (USB) Host Controller enables communication to USB 2.0 low-
speed (1.2 Mbps) and full-speed (12 Mbps) devices. The controller supports three root hub 
ports and complies with the Open Host Controller Interface (OpenHCI) specification, version 
1.0a. (For additional information, see Section P.3 in Chapter P,  "Preface".)

 11.1.1 Features

The features of the USB Host Controller are: 

• Open Host Controller Interface Specification (OpenHCI) Rev 1.0 compliant.

• Universal Serial Bus Specification Rev. 2.0 compliant.

• Support for both low speed and full speed USB devices.

• Root Hub has three downstream ports

• Master and Slave AHB interfaces

• DMA functionality

The USB Host Controller is partitioned into the key sub blocks as indicated in Figure 11-6.

 11.2 Overview
Figure 11-1 shows four main focus areas of a USB system. These areas are:

• Client Software/USB Driver

• Host Controller Driver (HCD)

• Host Controller (HC)

• USB Device. 



11-2 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

The Client Software/USB Device and Host Controller Driver are implemented in software. 
The Host Controller and USB Device are implemented in hardware. OpenHCI specifies the 
interface between the Host Controller Driver and the Host Controller and describes the 
fundamental operation of each.

 Figure 11-1. USB Focus Areas

The Host Controller Driver and Host Controller work in tandem to transfer data between client 
software and a USB device. Data is translated from shared-memory data structures at the 
client software end to USB signal protocols at the USB device end, and vice-versa.

 11.2.1 Data Transfer Types

There are four data transfer types defined in USB. Each type is optimized to match the 
service requirements between the client software and the USB device. The four types are:

• Interrupt Transfers - Small data transfers used to communicate information from the 
USB device to the client software. The Host Controller Driver polls the USB device by 
issuing tokens to the device at a periodic interval sufficient for the requirements of the 
device.

• Isochronous Transfers - Periodic data transfers with a constant data rate. Data transfers 
are correlated in time between the sender and receiver.

• Control Transfers - Nonperiodic data transfers used to communicate 
configuration/command/status type information between client software and the USB 
device.

• Bulk Transfers - Nonperiodic data transfers used to communicate large amounts of 
information between client software and the USB device.

In OpenHCI the data transfer types are classified into two categories: periodic and 
nonperiodic. Periodic transfers are interrupt and isochronous since they are scheduled to run 
at periodic intervals. Nonperiodic transfers are control and bulk since they are not scheduled 
to run at any specific time, but rather on a time-available basis.

Client Software
USB Driver

Host Controller Driver

Software

Hardware

Host Controller

USB Device

Scope of
OpenHCI



DS785UM1 11-3
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

 11.2.2 Host Controller Interface

 11.2.2.1 Communication Channels
There are two communication channels between the Host Controller and the Host Controller 
Driver. The first channel uses a set of operational registers located on the HC. The Host 
Controller is the target for all communication on this channel. The operational registers 
contain control, status, and list pointer registers. Within the operational register set is a 
pointer to a location in shared memory named the Host Controller Communications Area 
(HCCA). The HCCA is the second communication channel. The Host Controller is the master 
for all communication on this channel. The HCCA contains the head pointers to the interrupt 
Endpoint Descriptor lists, the head pointer to the done queue, and status information 
associated with start-of-frame processing. Figure 11-2 shows the communication channels.

 Figure 11-2. Communication Channels 

Device Enumeration

OpenHCL

Interrupt 0

Interrupt 1

Interrupt 2

...

Interrupt 31

...

...

Done

Mode

HCCA

Status

Event

Frame Int

Ratio

Control

Bulk

Operational

Registers

Device Register
in memory space

Host Controller
Communications Area

Shared RAM



11-4 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

 11.2.2.2 Data Structures
The basic building blocks for communication across the interface are the Endpoint Descriptor 
(ED) and Transfer Descriptor (TD).

The Host Controller Driver assigns an Endpoint Descriptor to each endpoint in the system. 
The Endpoint Descriptor contains the information necessary for the Host Controller to 
communicate with the endpoint. The fields include the maximum packet size, the endpoint 
address, the speed of the endpoint, and the direction of data flow. Endpoint Descriptors are 
linked in a list.

A queue of Transfer Descriptors is linked to the Endpoint Descriptor for the specific endpoint. 
The Transfer Descriptor contains the information necessary to describe the data packets to 
be transferred. The fields include data toggle information, shared memory buffer location, and 
completion status codes. Each Transfer Descriptor contains information that describes one or 
more data packets. The data buffer for each Transfer Descriptor ranges in size from 0 to 8192 
bytes with a maximum of one physical page crossing. Transfer Descriptors are linked in a 
queue: the first one queued is the first one processed.

Each data transfer type has its own linked list of Endpoint Descriptors to be processed. 
Figure 11-3, Typical List Structure, is a representation of the data structure relationships.

 

 Figure 11-3. Typical List Structure

The head pointers to the bulk and control Endpoint Descriptor lists are maintained within the 
operational registers in the HC. The Host Controller Driver initializes these pointers prior to 
the Host Controller gaining access to them. Should these pointers need to be updated, the 
Host Controller Driver may need to halt the Host Controller from processing the specific list, 
update the pointer, then re-enable the HC.

The head pointers to the interrupt Endpoint Descriptor lists are maintained within the HCCA. 
There is no separate head pointer for isochronous transfers. The first isochronous Endpoint 
Descriptor simply links to the last interrupt Endpoint Descriptor. There are 32 interrupt head 
pointers. The head pointer used for a particular frame is determined by using the last 5 bits of 
the Frame Counter as an offset into the interrupt array within the HCCA.

The interrupt Endpoint Descriptors are organized into a tree structure with the head pointers 
being the leaf nodes. The desired polling rate of an Interrupt Endpoint is achieved by 

Head Ptr ED EDEDED

TDTDTDTD

TD TD

TD



DS785UM1 11-5
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

scheduling the Endpoint Descriptor at the appropriate depth in the tree. The higher the polling 
rate, the closer to the root of the tree the Endpoint Descriptor will be placed since multiple 
lists will converge on it. Figure 11-4 illustrates the structure for Interrupt Endpoints. The 
Interrupt Endpoint Descriptor Placeholder indicates where zero or more Endpoint Descriptors 
may be enqueued. The numbers on the left are the index into the HCCA interrupt head 
pointer array.

 Figure 11-4. Interrupt Endpoint Descriptor Structure 

Figure 11-5 is a sample Interrupt Endpoint schedule. The schedule shows one Endpoint 
Descriptors at a 1 ms poll interval, two Endpoint Descriptors at a 2 ms poll interval, one 
Endpoint at a 4 ms poll interval, two Endpoint Descriptors at an 8 ms poll interval, two 
Endpoint Descriptors at a 16 ms poll interval, and two Endpoint Descriptors at a 32 ms poll 
interval. Note that in this example unused Interrupt Endpoint Placeholders are bypassed and 
the link is connected to the next available Endpoint in the hierarchy.

0
16
8

24
4

20
12
28
2

18
10
26
6

22
14
30
1

17
9

25
5

21
13
29
3

19
11
27
7

23
15
31

Interrupt
Head
Pointers

32 16 8 4 2 1

Interrupt Endpoint Descriptor Placeholders

Endpoint Poll Interval (ms)



11-6 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

 Figure 11-5. Sample Interrupt Endpoint Schedule 

 11.2.3 Host Controller Driver Responsibilities

This section summarizes the Host Controller Driver (HCD) responsibilities.

 11.2.3.1 Host Controller Management
The Host Controller Driver manages the operation of the Host Controller (HC). It does so by 
communicating directly to the operational registers in the Host Controller and establishing the 
interrupt Endpoint Descriptor list head pointers in the HCCA.

The Host Controller Driver maintains the state of the HC, list processing pointers, list 
processing enables, and interrupt enables.

 11.2.3.2 Bandwidth Allocation
All access to the USB is scheduled by the Host Controller Driver. The Host Controller Driver 
allocates a portion of the available bandwidth to each periodic endpoint. If sufficient 
bandwidth is not available, a newly-connected periodic endpoint will be denied access to the 
bus.

0
16

8
24

4
20
12
28

2
18
10
26

6
22
14
30

1
17

9
25

5
21
13
29

3
19
11
27

7
23
15
31

Interrupt
Head
Pointers

32 16 8 4 2 1

Interrupt Endpoint Descriptors

Endpoint Poll Interval (ms)



DS785UM1 11-7
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

A portion of the bandwidth is reserved for nonperiodic transfers. This ensures that some 
amount of bulk and control transfers will occur in each frame period. The frame period is 
defined for USB to be 1.0 ms.

The bandwidth allocation policy for OpenHCI is shown in Table 11-1. Each frame begins with 
the Host Controller sending the Start of Frame (SOF) synchronization packet to the USB bus. 
This is followed by the Host Controller servicing nonperiodic transfers until the frame interval 
counter reaches the value set by the Host Controller Driver, indicating that the Host Controller 
should begin servicing periodic transfers. After the periodic transfers complete, any 
remaining time in the frame is consumed by servicing nonperiodic transfers once more.

 11.2.3.3 List Management
The transport mechanism for USB data packets is via Transfer Descriptor queues linked to 
Endpoint Descriptor lists. The Host Controller Driver creates these data structures then 
passes control to the Host Controller for processing.

The Host Controller Driver is responsible for enqueuing and dequeuing Endpoint Descriptors. 
Enqueuing is done by adding the Endpoint Descriptor to the tail of the appropriate list. This 
may occur simultaneously with the Host Controller processing the list without requiring any 
lock mechanism. Before dequeuing an Endpoint Descriptor, the Host Controller Driver may 
disable the Host Controller from processing the entire Endpoint Descriptor list of the data type 
being removed to ensure that the Host Controller is not accessing the Endpoint Descriptor. 

The Host Controller Driver is also responsible for enqueuing Transfer Descriptors to the 
appropriate Endpoint Descriptor. Enqueuing is done by adding the Transfer Descriptor to the 
tail of the appropriate queue. This may occur simultaneously to the Host Controller 
processing the queue without requiring any lock mechanism. Under normal operation, the 
Host Controller dequeues the Transfer Descriptor. However, the Host Controller Driver 
dequeues the Transfer Descriptor when the Transfer Descriptor is being canceled due to a 
request from the client software or certain error conditions. In this instance, the Endpoint 
Descriptor is disabled prior to the Transfer Descriptor being dequeued.

 11.2.3.4 Root Hub
The Root Hub is integrated into the HC. The internal registers of the Root Hub are exposed to 
the Host Controller Driver which is responsible for providing the proper hub-class protocol 
with the USB Driver and proper control of the Root Hub.

Table 11-1. Frame Bandwidth Allocation

1 msec.

SOF NP Periodic NP

Time



11-8 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

 11.2.4 Host Controller Responsibilities

This section summarizes the Host Controller (HC) responsibilities.

 11.2.4.1 USB States
There are four USB states defined in OpenHCI: UsbOperational, UsbReset, UsbSuspend, 
and UsbResume. The Host Controller puts the USB bus in the proper operating mode for 
each state. 

 11.2.4.2 Frame Management
The Host Controller keeps track of the current frame counter and the frame period. At the 
beginning of each frame, the Host Controller generates the Start of Frame (SOF) packet on 
the USB bus and updates the frame count value in system memory. The Host Controller also 
determines if enough time remains in the frame to send the next data packet.

 11.2.4.3 List Processing
The Host Controller operates on the Endpoint Descriptors and Transfer Descriptors 
enqueued by the Host Controller Driver.

For interrupt and isochronous transfers, the Host Controller begins at the Interrupt Endpoint 
Descriptor head pointer for the current frame. The list is traversed sequentially until one 
packet transfer from the first Transfer Descriptor of all interrupt and isochronous Endpoint 
Descriptors scheduled in the current frame is attempted.

For bulk and control transfers, the Host Controller begins in the respective list where it last left 
off. When the Host Controller reaches the end of a list, it loads the value from the head 
pointer and continues processing. The Host Controller processes n control transfers to 1 bulk 
transfer where the value of n is set by the Host Controller Driver.

When a Transfer Descriptor completes, either successfully or due to an error condition, the 
Host Controller moves it to the Done Queue. Enqueuing on the Done Queue occurs by 
placing the most recently completed Transfer Descriptor at the head of the queue. The Done 
Queue is transferred periodically from the Host Controller to the Host Controller Driver via the 
HCCA.



DS785UM1 11-9
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

 Figure 11-6. USB Host Controller Block Diagram

 11.2.5 USB Host Controller Blocks

 11.2.5.1 AHB Slave
This block allows access to the OHCI operational registers from/to the AHB via the HCI Bus.

 11.2.5.2 AHB Master
This block enables the USB Host Controller to be an AHB Master peripheral and interfaces 
with the HCI Master block via the HCI Bus.

The AHB Master includes a Data FIFO which will use a 44x37 bit Data FIFO. 32-bit data, 4-bit 
HCI_MBeN[3:0] (byte lane enables) and HCI_MWBstOnN (burst on) make up the width of the 
Data FIFO.

 11.2.5.3 HCI Slave Block 
This block contains the OHCI operational registers, which are programmed by the Host 
Controller Driver (HCD).

A
H
B

H
C
I 

B
U
S

AHB 
Slave

AHB 
Master

HCI 
Slave

HCI 
Master

USB State 
Control

Data FIFO 
64x8

List Processor 
(including End 
Descriptor and 

Transfer 
Descriptor 
registers)

Root 
Hub & 

Host SIE

P
L
L

XVR

XVR

 1

 3

USB

USB

Control Control

Control

Control

ControlCntrl

Cntrl

Addr

Data

Data

Addr/
Data

Data

ED/TD 
Data

ED/TD
 Status

Data

Status

XVR USB

USB 
Host
Test
Reg

2



11-10 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

 11.2.5.4 HCI Master Block 
The HCI Master Block handles read/write requests to system memory that are initiated by the 
List Processor while the Host Controller (HC) is in the operational state and is processing the 
lists queued in by HCD. It generates the addresses for all the memory accesses, which is the 
DMA functionality. The major tasks handled by this block are: 

• Fetching Endpoint Descriptors (ED) and Transfer Descriptors (TD) 

• Read/Write endpoint data from/to system memory

• Accessing HC Communication Area (HCCA)

• Write Status and Retire TDs

 11.2.5.5 USB State Control 
This block implements:

• The USB operational states of the Host Controller, as defined in the OHCI Specification. 

• It generates SOF tokens every 1 ms

• It triggers the List Processor while HC is in the operational states. 

 11.2.5.6 Data FIFO 
This block contains a 64x8 FIFO to store the data returned by endpoints on IN tokens, and 
the data to be sent to the endpoints on OUT Tokens. The FIFO is used as a buffer in case the 
HC does not get timely access to the host bus. 

 11.2.5.7 List Processor 
The List Processor processes the lists scheduled by HCD according to the priority set in the 
operational registers. 

 11.2.5.8 Root Hub and Host SIE 
The Root Hub propagates Reset and Resume to downstream ports and handles port connect 
and disconnect. The Host Serial Interface Engine (HSIE) converts parallel to serial, serial to 
parallel, Non-Return to Zero Interface (NRZI) encoding/decoding and manages USB serial 
protocol.



DS785UM1 11-11
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

 11.3 Registers
The Host Controller (HC) contains a set of on-chip operational registers that are used by the 
Host Controller Driver (HCD). According to the function of these registers, they are divided 
into four partitions, specifically for Control and Status, Memory Pointer, Frame Counter and 
Root Hub. All of the registers should be read and written as Dwords. The memory map is 
shown in Table 11-2.

Note: In Table 11-2,  “*”  marks registers in address space 0x8002_0080 - 0x8002_0084 that 
are not OHCI implementation-specific. This address space is reserved for test software 
use.

Note: Important - Before setting up any of the Host controller registers it is necessary to set the 
USH_EN bit (bit 28 of the PwrCnt register).

Table 11-2. OpenHCI Register Addresses

Address Register Name

0x8002_0000 HcRevision 

0x8002_0004 HcControl 

0x8002_0008 HcCommandStatus 

0x8002_000C HcInterruptStatus 

0x8002_0010 HcInterruptEnable 

0x8002_0014 HcInterruptDisable 

0x8002_0018 HcHCCA 

0x8002_001C HcPeriodCurrentED 

0x8002_0020 HcControlHeadED 

0x8002_0024 HcControlCurrentED 

0x8002_0028 HcBulkHeadED 

0x8002_002C HcBulkCurrentED 

0x8002_0030 HcDoneHead 

0x8002_0034 HcFmInterval 

0x8002_0038 HcFmRemaining 

0x8002_003C HcFmNumber 

0x8002_0040 HcPeriodicStart 

0x8002_0044 HcLSThreshold 

0x8002_0048 HcRhDescriptorA 

0x8002_004C HcRhDescriptorB

0x8002_0050 HcRhStatus 

0x8002_0054 HcRhPortStatus[1]

0x8002_0058 HcRhPortStatus[2]

0x8002_005C HcRhPortStatus[3]

0x8002_0080 USBCfgCtrl *

0x8002_0084 USBHCISts *



11-12 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

OpenHCI Implementation Specific Registers

The Root Hub partition contains registers that have power-on reset values that are 
implementation specific. The values for the processor are indicated in the Default field for 
each register, below.

HcRevision 

Address:
0x8002_0000

Default:
0x0000_0010

Definition:
Defines the revision of the OHCI specification with which this implementation 
is compatible.

Bit Description:

RSVD: Reserved. Unknown During Read. 

REV: This read-only field contains the BCD representation of the 
version of the HCI specification that is implemented by this 
HC. 
0x10 = Compatible with OHCI 1.0.

HcControl 

Address:
0x8002_0004

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD REV

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RWE RWC IR HCFS BLE CLE IE PLE CBSR



DS785UM1 11-13
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

Definition:
Controls the host controller’s operating modes.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

CBSR: ControlBulkServiceRatio: 
This specifies the service ratio between Control and Bulk 
EDs. Before processing any of the nonperiodic lists, HC 
must compare the ratio specified with its internal count on 
how many nonempty Control EDs have been processed, 
in determining whether to continue serving another Control 
ED or switching to Bulk EDs. The internal count will be 
retained when crossing the frame boundary. In case of 
reset, HCD is responsible for restoring this value.
0 0 = 1:1
0 1 = 2:1
1 0 = 3:1
1 1 = 4:1

PLE: PeriodicListEnable:
This bit is set to enable the processing of the periodic list 
in the next Frame. If cleared by HCD, processing of the 
periodic list does not occur after the next SOF. HC must 
check this bit before it starts processing the list.

IE: IsochronousEnable: 
This bit is used by HCD to enable/disable processing of 
isochronous EDs. While processing the periodic list in a 
Frame, HC checks the status of this bit when it finds an 
Isochronous ED (F=1). If set (enabled), HC continues 
processing the EDs. If cleared (disabled), HC halts 
processing of the periodic list (which now contains only 
isochronous EDs) and begins processing the Bulk/Control 
lists. Setting this bit is guaranteed to take effect in the next 
Frame (not the current Frame).

CLE: ControlListEnable: 
This bit is set to enable the processing of the Control list in 
the next Frame. If cleared by HCD, processing of the 
Control list does not occur after the next SOF. HC must 
check this bit whenever it determines to process the list. 
When disabled, HCD may modify the list. If 
HcControlCurrentED is pointing to an ED to be removed, 
HCD must advance the pointer by updating 
HcControlCurrentED before re-enabling processing of the 
list.



11-14 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

BLE: BulkListEnable: 
This bit is set to enable the processing of the Bulk list in 
the next Frame. If cleared by HCD, processing of the Bulk 
list does not occur after the next SOF. HC checks this bit 
whenever it determines to process the list. When disabled, 
HCD may modify the list. If HcBulkCurrentED is pointing to 
an ED to be removed, HCD must advance the pointer by 
updating HcBulkCurrentED before re-enabling processing 
of the list.

HCFS: HostControllerFunctionalState: 
A transition to USBOPERATIONAL from another state 
causes SOF generation to begin 1 ms later. HCD may 
determine whether HC has begun sending SOFs by 
reading the StartofFrame field of HcInterruptStatus. This 
field may be changed by HC only when in the 
USBSUSPEND state. HC may move from the 
USBSUSPEND state to the USBRESUME state after 
detecting the resume signaling from a downstream port. 
HC enters USBSUSPEND after a software reset, whereas 
it enters USBRESET after a hardware reset. The latter 
also resets the Root Hub and asserts subsequent reset 
signaling to downstream ports.
0 0 = USBRESET
0 1 = USBRESUME
1 0 = USBOPERATIONAL
1 1 = USBSUSPEND

IR: InterruptRouting: 
This bit determines the routing of interrupts generated by 
events registered in HcInterruptStatus. If clear, all 
interrupts are routed to the normal host bus interrupt 
mechanism. If set, interrupts are routed to the System 
Management Interrupt. HCD clears this bit upon a 
hardware reset, but it does not alter this bit upon a 
software reset. HCD uses this bit as a tag to indicate the 
ownership of HC.

RWC: RemoteWakeupConnected: 
This bit indicates whether HC supports remote wakeup 
signaling. If remote wakeup is supported and used by the 
system it is the responsibility of system firmware to set this 
bit during POST. HC clears the bit upon a hardware reset 
but does not alter it upon a software reset. Remote 
wakeup signaling of the host system is host-bus-specific 
and is not described in this specification.



DS785UM1 11-15
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

RWE: RemoteWakeupEnable: 
This bit is used by HCD to enable or disable the remote 
wakeup feature upon the detection of upstream resume 
signaling. When this bit is set and the ResumeDetected bit 
in HcInterruptStatus is set, a remote wakeup is signaled to 
the host system. Setting this bit has no impact on the 
generation of hardware interrupt.

HcCommandStatus 

Address:
0x8002_0008

Default:
0x0000_0000

Definition:
Provides current controller status and accepts controller commands.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

HCR: HostControllerReset: 
This bit is set by HCD to initiate a software reset of HC. 
Regardless of the functional state of HC, it moves to the 
USBSUSPEND state in which most of the operational 
registers are reset except those stated otherwise; e.g., the 
InterruptRouting field of HcControl, and no Host bus 
accesses are allowed. This bit is cleared by HC upon the 
completion of the reset operation. The reset operation 
must be completed within 10 ms. This bit, when set, 
should not cause a reset to the Root Hub and no 
subsequent reset signaling should be asserted to its 
downstream ports.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD SOC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD OCR BLF CLF HCR



11-16 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

CLF: ControlListFilled: 
This bit is used to indicate whether there are any TDs on 
the Control list. It is set by HCD whenever it adds a TD to 
an ED in the Control list. When HC begins to process the 
head of the Control list, it checks CLF. As long as 
ControlListFilled is 0, HC will not start processing the 
Control list. If CF is 1, HC will start processing the Control 
list and will set ControlListFilled to 0. If HC finds a TD on 
the list, then HC will set ControlListFilled to 1 causing the 
Control list processing to continue. If no TD is found on the 
Control list, and if the HCD does not set ControlListFilled, 
then ControlListFilled will still be 0 when HC completes 
processing the Control list and Control list processing will 
stop.

BLF: BulkListFilled: 
This bit is used to indicate whether there are any TDs on 
the Bulk list. It is set by HCD whenever it adds a TD to an 
ED in the Bulk list. When HC begins to process the head 
of the Bulk list, it checks BF. As long as BulkListFilled is 0, 
HC will not start processing the Bulk list. If BulkListFilled is 
1, HC will start processing the Bulk list and will set BF to 0. 
If HC finds a TD on the list, then HC will set BulkListFilled 
to 1 causing the Bulk list processing to continue. If no TD 
is found on the Bulk list, and if HCD does not set 
BulkListFilled, then BulkListFilled will still be 0 when HC 
completes processing the Bulk list and Bulk list processing 
will stop.

OCR: OwnershipChangeRequest: 
This bit is set by an OS HCD to request a change of 
control of the HC. When set HC will set the 
OwnershipChange field in HcInterruptStatus. After the 
changeover, this bit is cleared and remains so until the 
next request from OS HCD.

SOC: SchedulingOverrunCount: 
These bits are incremented on each scheduling overrun 
error. It is initialized to 00b and wraps around at 11b. This 
will be incremented when a scheduling overrun is detected 
even if SchedulingOverrun in HcInterruptStatus has 
already been set. This is used by HCD to monitor any 
persistent scheduling problems.



DS785UM1 11-17
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

HcInterruptStatus 

Address:
0x8002_000C

Default:
0x0000_0000

Definition:
Provides interrupt status information.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

SO: SchedulingOverrun. This bit is set when the USB schedule 
for the current Frame overruns and after the update of 
HccaFrameNumber. A scheduling overrun will also cause 
the SchedulingOverrunCount of HcCommandStatus to be 
incremented.

WDH: WritebackDoneHead. This bit is set immediately after HC 
has written HcDoneHead to HccaDoneHead. Further 
updates of the HccaDoneHead will not occur until this bit 
has been cleared. HCD should only clear this bit after it 
has saved the content of HccaDoneHead.

SF: StartofFrame. This bit is set by HC at each start of a frame 
and after the update of HccaFrameNumber. HC also 
generates a SOF token at the same time.

RD: ResumeDetected. This bit is set when HC detects that a 
device on the USB is asserting resume signaling. It is the 
transition from no resume signaling to resume signaling 
causing this bit to be set. This bit is not set when HCD sets 
the USBRESUME state.

UE: UnrecoverableError. This bit is set when HC detects a 
system error not related to USB. HC should not proceed 
with any processing nor signaling before the system error 
has been corrected. HCD clears this bit after HC has been 
reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD OC RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RHSC FNO UE RD SF WDH SO



11-18 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

FNO: FrameNumberOverflow. This bit is set when the MSB of 
HcFmNumber (bit 15) changes value, from 0 to 1 or from 1 
to 0, and after HccaFrameNumber has been updated.

RHSC: RootHubStatusChange. This bit is set when the content of 
HcRhStatus or the content of any of 
HcRhPortStatus[NumberofDownstreamPort] has changed.

OC: OwnershipChange. This bit is set by HC when HCD sets 
the OwnershipChangeRequest field in 
HcCommandStatus. This event, when unmasked, will 
always generate a System Management Interrupt (SMI) 
immediately. This bit is tied to 0b when the SMI pin is not 
implemented.

HcInterruptEnable 

Address:
0x8002_0010

Default:
0x0000_0000

Definition:
Enables interrupt sources.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

SO: SchedulingOverrun. Enable interrupt generation due to 
Scheduling Overrun.

WDH: WritebackDoneHead. Enable interrupt generation due to 
HcDoneHead Writeback.

SF: StartofFrame. Enable interrupt generation due to Start of 
Frame.

RD: ResumeDetected. Enable interrupt generation due to 
Resume Detect.

UE: UnrecoverableError. Enable interrupt generation due to 
Unrecoverable Error.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MIE OC RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RHSC FNO UE RD SF WDH SO



DS785UM1 11-19
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

FNO: FrameNumberOverflow. Enable interrupt generation due 
to Frame Number Overflow.

RHSC: RootHubStatusChange. Enable interrupt generation due to 
Root Hub Status Change.

OC: OwnershipChange. Enable interrupt generation due to 
Ownership Change.

MIE: Master Interrupt Enable. A zero written to this field is 
ignored by HC. A one written to this field enables interrupt 
generation due to events specified in the other bits of this 
register. This is used by HCD as a Master Interrupt 
Enable.

HcInterruptDisable 

Address:
0x8002_0014

Default:
0x0000_0000

Definition:
Disables interrupt sources.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

SO: SchedulingOverrun: Disable interrupt generation due to 
Scheduling Overrun.

WDH: WritebackDoneHead: Disable interrupt generation due to 
HcDoneHead Writeback.

SF: StartofFrame: Disable interrupt generation due to Start of 
Frame.

RD: ResumeDetected: Disable interrupt generation due to 
Resume Detect.

UE: UnrecoverableError: Disable interrupt generation due to 
Unrecoverable Error.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MIE OC RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RHSC FNO UE RD SF WDH SO



11-20 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

FNO: FrameNumberOverflow: Disable interrupt generation due 
to Frame Number Overflow.

RHSC: RootHubStatusChange: Disable interrupt generation due 
to Ownership Change.

OC: OwnershipChange. Enable interrupt generation due to 
Ownership Change.

MIE: Master Interrupt Enable: A zero written to this field is 
ignored by HC. A one written to this field disables interrupt 
generation due to events specified in the other bits of this 
register. This field is set after a hardware or software reset.

HcHCCA 

Address:
0x8002_0018

Default:
0x0000_0000

Definition:
Base physical address of the Host Controller Communication Area.

Bit Description:

RSVD: Reserved. Unknown During Read. 

AD: HCCA. Base physical address of the Host Controller 
Communication Area.

HcPeriodCurrentED

Address:
0x8002_001C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD RSVD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD RSVD



DS785UM1 11-21
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

Default:
0x0000_0000

Definition:
Physical address of the current isochronous or interrupt endpoint descriptor.

Bit Description:

RSVD: Reserved. Unknown During Read. 

AD: PeriodCurrentED. This is used by HC to point to the head 
of one of the Periodic lists which will be processed in the 
current Frame. The content of this register is updated by 
HC after a periodic ED has been processed. HCD may 
read the content in determining which ED is currently 
being processed at the time of reading.

HcControlHeadED

Address:
0x8002_0020

Default:
0x0000_0000

Definition:
Physical address of the first endpoint descriptor of the control list.

Bit Description:

RSVD: Reserved. Unknown During Read. 

AD: ControlHeadED. HC traverses the Control list starting with 
the HcControlHeadED pointer. The content is loaded from 
HCCA during the initialization of HC.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD RSVD



11-22 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

HcControlCurrentED

Address:
0x8002_0024

Default:
0x0000_0000

Definition:
Physical address of the current endpoint descriptor of the control list.

Bit Description:

RSVD: Reserved. Unknown During Read. 

AD: ControlCurrentED. This pointer is advanced to the next ED 
after serving the present one. HC will continue processing 
the list from where it left off in the last Frame. When it 
reaches the end of the Control list, HC checks the 
ControlListFilled of HcCommandStatus. If set, it copies the 
content of HcControlHeadED to HcControlCurrentEDand 
clears the bit. If not set, it does nothing. HCD is allowed to 
modify this register only when the ControlListEnable of 
HcControl is cleared. When set, HCD only reads the 
instantaneous value of this register. Initially, this is set to 
zero to indicate the end of the Control list.

HcBulkHeadED

Address:
0x8002_0028

Default:
0x0000_0000

Definition:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD RSVD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD RSVD



DS785UM1 11-23
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

Physical address of the first endpoint descriptor of the bulk list.

Bit Description:

RSVD: Reserved. Unknown During Read. 

AD: BulkHeadED. HC traverses the Bulk list starting with the 
HcBulkHeadED pointer. The content is loaded from HCCA 
during the initialization of HC.

HcBulkCurrentED

Address:
0x8002_002C

Default:
0x0000_0000

Definition:
Physical address of the current endpoint descriptor of the bulk list.

Bit Description:

RSVD: Reserved. Unknown During Read. 

AD: BulkCurrentED. This is advanced to the next ED after the 
HC has served the present one. HC continues processing 
the list from where it left off in the last Frame. When it 
reaches the end of the Bulk list, HC checks the 
ControlListFilled of HcControl. If set, it copies the content 
of HcBulkHeadED to HcBulkCurrentED and clears the bit. 
If it is not set, it does nothing. HCD is only allowed to 
modify this register when the BulkListEnable of HcControl 
is cleared. When set, the HCD only reads the 
instantaneous value of this register. This is initially set to 
zero to indicate the end of the Bulk list.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD RSVD



11-24 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

HcDoneHead

Address:
0x8002_0030

Default:
0x0000_0000

Definition:
Physical address of the last completed transfer descriptor that was added to 
the done list.

Bit Description:

RSVD: Reserved. Unknown During Read. 

AD: DoneHead. When a TD is completed, HC writes the 
content of HcDoneHead to the NextTD field of the TD. HC 
then overwrites the content of HcDoneHead with the 
address of this TD. This is set to zero whenever HC writes 
the content of this register to HCCA. It also sets the 
WritebackDoneHead of HcInterruptStatus.

HcFmInterval 

Address:
0x8002_0034

Default:
0x0000_2EDF

Definition:
Describes the bit time interval in a frame and the full speed maximum packet 
size.

Bit Descriptions:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD RSVD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIT FSMPS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD FI



DS785UM1 11-25
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

RSVD: Reserved. Unknown During Read. 

FI: FrameInterval. This specifies the interval between two 
consecutive SOFs in bit times. The nominal value is set to 
be 11,999. HCD should store the current value of this field 
before resetting HC. By setting the HostControllerReset 
field of HcCommandStatus as this will cause the HC to 
reset this field to its nominal value. HCD may choose to 
restore the stored value upon the completion of the Reset 
sequence.

FSMPS: FSLargestDataPacket. This field specifies a value which is 
loaded into the Largest Data Packet Counter at the 
beginning of each frame. The counter value represents the 
largest amount of data in bits which can be sent or 
received by the HC in a single transaction at any given 
time without causing scheduling overrun. The field value is 
calculated by the HCD.

FIT: FrameIntervalToggle. HCD toggles this bit whenever it 
loads a new value to FrameInterval.

HcFmRemaining 

Address:
0x8002_0038

Default:
0x0000_0000

Definition:
Contains the time remaining in the current frame.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

FR: FrameRemaining. This counter is decremented at each bit 
time. When it reaches zero, it is reset by loading the 
FrameInterval value specified in HcFmInterval at the next 
bit time boundary. When entering the USBOPERATIONAL 
state, HC re-loads the content with the FrameInterval of 
HcFmInterval and uses the updated value from the next 
SOF.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FRT RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD FR



11-26 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

FRT: FrameRemainingToggle. This bit is loaded from the 
FrameIntervalToggle field of HcFmInterval whenever 
FrameRemaining reaches 0. This bit is used by HCD for 
the synchronization between FrameInterval and 
FrameRemaining.

HcFmNumber 

Address:
0x8002_003C

Default:
0x0000_0000

Definition:
Contains a 16-bit counter used as a timing reference between the host 
controller and its driver.

Bit Description:

RSVD: Reserved. Unknown During Read. 

FN: FrameNumber. This is incremented when 
HcFmRemaining is re-loaded. It will be rolled over to 0x0 
after 0xFFFF. When entering the USBOPERATIONAL 
state, this will be incremented automatically. The content 
will be written to HCCA after HC has incremented the 
FrameNumber at each frame boundary and sent a SOF 
but before HC reads the first ED in that Frame. After 
writing to HCCA, HC will set the StartofFrame in 
HcInterruptStatus.

HcPeriodicStart

Address:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PS



DS785UM1 11-27
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

0x8002_0040

Default:
0x0000_0000

Definition:
Defines the earliest time the host controller should start processing the 
periodic list.

Bit Description:

RSVD: Reserved. Unknown During Read. 

PS: PeriodicStart. After a hardware reset, this field is cleared. 
This is then set by HCD during the HC initialization. The 
value is calculated roughly as 10% off from HcFmInterval. 
A typical value will be 0x03E67. When HcFmRemaining 
reaches the value specified, processing of the periodic 
lists will have priority over Control/Bulk processing. HC will 
therefore start processing the Interrupt list after completing 
the current Control or Bulk transaction that is in progress.

HcLSThreshold 

Address:
0x8002_0044

Default:
0x0000_0628

Definition:
Contains a value used by the host controller to determine whether to commit 
to the transfer of a maximum 8-byte LS packet before EOF.

Bit Description:

RSVD: Reserved. Unknown During Read. 

LST: LSThreshold. This field contains a value which is 
compared to the FrameRemaining field prior to initiating a 
Low Speed transaction. The transaction is started only if 
FrameRemaining >= this field. The value is calculated by 
HCD with the consideration of transmission and setup 
overhead.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LST



11-28 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

HcRhDescriptorA 

Address:
0x8002_0048

Default:
0x0200_1203

Definition:
Describes the root hub.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

NDP: NumberDownstreamPorts. These bits specify the number 
of downstream ports supported by the Root Hub. It is 
implementation-specific. The minimum number of ports is 
1. The maximum number of ports supported by OpenHCI 
is 15.
0x03 = 3 downstream ports.

PSM: PowerSwitchingMode. This bit is used to specify how the 
power switching of the Root Hub ports is controlled. It is 
implementation-specific. This field is only valid if the 
NoPowerSwitching field is cleared. 
0: All ports are powered at the same time. 
1: Each port is powered individually. 

This mode allows port power to be controlled by either the 
global switch or per-port switching. If the 
PortPowerControlMask bit is set, the port responds only to 
port power commands (Set/ClearPortPower). If the port 
mask is cleared, the port is controlled only by the global 
power switch (Set/ClearGlobalPower).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

P RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD NOCP OCPM DT NPS PSM NDP



DS785UM1 11-29
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

NPS: NoPowerSwitching. These bits are used to specify 
whether power switching is supported or port are always 
powered. It is implementation-specific. When this bit is 
cleared, the PowerSwitchingMode specifies global or per-
port switching. 
0: Ports are power switched 
1: Ports are always powered on when the HC is powered 
on.

DT: DeviceType. This bit specifies that the Root Hub is not a 
compound device. The Root Hub is not permitted to be a 
compound device. This field should always read/write 0.

OCPM: OverCurrentProtectionMode. This bit describes how the 
overcurrent status for the Root Hub ports are reported. At 
reset, this fields should reflect the same mode as 
PowerSwitchingMode. This field is valid only if the 
NoOverCurrentProtection field is cleared. 
0: Over-current status is reported collectively for all 
downstream ports 
1: Over-current status is reported on a per-port basis.

NOCP: NoOverCurrentProtection. This bit describes how the 
overcurrent status for the Root Hub ports are reported. 
When this bit is cleared, the OverCurrentProtectionMode 
field specifies global or per-port reporting. 
0: Over-current status is reported collectively for all 
downstream ports 
1: No overcurrent protection supported

P: PowerOnToPowerGoodTime. This byte specifies the 
duration HCD has to wait before accessing a powered-on 
port of the Root Hub. It is implementation-specific. The unit 
of time is 2 ms. The duration is calculated as P[7:0] * 2 ms.
0x05 = 10 ms

HcRhDescriptorB 

Address:
0x8002_004C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PPCM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DR



11-30 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

Default:
0x0000_0000

Definition:
Describes the root hub.

Bit Descriptions

RSVD: Reserved. Unknown During Read. 

DR: DeviceRemovable. Each bit is dedicated to a port of the 
Root Hub. When cleared, the attached device is 
removable. When set, the attached device is not 
removable.
bit 0: Reserved
bit 1: Device attached to Port #1
bit 2: Device attached to Port #2
bit 3: Device attached to Port #3

PPCM: PortPowerControlMask: Each bit indicates if a port is 
affected by a global power control command when 
PowerSwitchingMode is set. When set, the port’s power 
state is only affected by per-port power control 
(Set/ClearPortPower). When cleared, the port is controlled 
by the global power switch (Set/ClearGlobalPower). If the 
device is configured to global switching mode 
(PowerSwitchingMode=0), this field is not valid.
bit 0: Reserved
bit 1: Ganged-power mask on Port #1
bit 2: Ganged-power mask on Port #2
bit 3: Ganged-power mask on Port #3

HcRhStatus 

Address:
0x8002_0050

Default:
0x0000_0000

Definition:
Root hub status.

Bit Descriptions:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CRWE RSVD CCIC LPSC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DRWE RSVD OCI LPS



DS785UM1 11-31
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

RSVD: Reserved. Unknown During Read. 

LPS: (READ) LocalPowerStatus. The Root Hub does not 
support the local power status feature; thus, this bit is 
always read as “0”.

(WRITE) ClearGlobalPower: In global power mode 
(PowerSwitchingMode=0), this bit is written to “1” to turn 
off power to all ports (clear PortPowerStatus). In per-port 
power mode, it clears PortPowerStatus only on ports 
whose PortPowerControlMask bit is not set. Writing a “0” 
has no effect.

OCI: OverCurrentIndicator. This bit reports overcurrent 
conditions when the global reporting is implemented. 
When set, an overcurrent condition exists. When cleared, 
all power operations are normal. If per-port overcurrent 
protection is implemented this bit is always “0”

DRWE: (READ) DeviceRemoteWakeupEnable. This bit enables a 
ConnectStatusChange bit as a resume event, causing a 
USBSUSPEND to USBRESUME state transition and 
setting the ResumeDetected interrupt.
0 = ConnectStatusChange is not a remote wakeup event.
1 = ConnectStatusChange is a remote wakeup event.

(WRITE) SetRemoteWakeupEnable: Writing a '1' sets 
DeviceRemoveWakeupEnable. Writing a '0' has no effect.

LPSC: (READ) LocalPowerStatusChange. The Root Hub does 
not support the local power status feature; thus, this bit is 
always read as “0”.

(WRITE) SetGlobalPower. In global power mode 
(PowerSwitchingMode=0), This bit is written to “1” to turn 
on power to all ports (clear PortPowerStatus). In per-port 
power mode, it sets PortPowerStatus only on ports whose 
PortPowerControlMask bit is not set. Writing a “0” has no 
effect.

CCIC: OverCurrentIndicatorChange. This bit is set by hardware 
when a change has occurred to the OCI field of this 
register. The HCD clears this bit by writing a “1”. Writing a 
“0” has no effect.

CRWE: (WRITE) ClearRemoteWakeupEnable. Writing a '1' clears 
DeviceRemoveWakeupEnable. Writing a '0' has no effect.



11-32 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

HcRhPortStatusx 

Address:
HcRhPortStatus1 - 0x8002_0054, 
HcRhPortStatus2 - 0x8002_0058, 
HcRhPortStatus3 - 0x8002_005C

Default:
0x0000_0100

Definition:
Control/status for root hub port 1, 2, and 3 respectively

Bit Descriptions:

CCS: (READ) CurrentConnectStatus: This bit reflects the current 
state of the downstream port.
0 = no device connected
1 = device connected

(WRITE) ClearPortEnable: The HCD writes a “1” to this bit 
to clear the PortEnableStatus bit. Writing a “0” has no 
effect. The CurrentConnectStatus is not affected by any 
write.

Note: This bit is always read “1” when the attached device is nonremovable 
(DeviceRemoveable.NDP).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PRSC OCIC PSSC PESC CSC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LSDA PPS RSVD PRS POCI PSS PES CCS



DS785UM1 11-33
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

PES: (READ) PortEnableStatus. This bit indicates whether the 
port is enabled or disabled. The Root Hub may clear this 
bit when an overcurrent condition, disconnect event, 
switched-off power, or operational bus error such as 
babble is detected. This change also causes 
PortEnabledStatusChange to be set. HCD sets this bit by 
writing SetPortEnable and clears it by writing 
ClearPortEnable. This bit cannot be set when 
CurrentConnectStatus is cleared. This bit is also set, if not 
already, at the completion of a port reset when 
ResetStatusChange is set or port suspend when 
SuspendStatusChange is set.
0 = port is disabled
1 = port is enabled

(WRITE) SetPortEnable. The HCD sets PortEnableStatus 
by writing a “1”. Writing a “0” has no effect. If 
CurrentConnectStatus is cleared, this write does not set 
PortEnableStatus, but instead sets ConnectStatusChange. 
This informs the driver that it attempted to enable a 
disconnected port.

PSS: (READ) PortSuspendStatus. This bit indicates the port is 
suspended or in the resume sequence. It is set by a 
SetSuspendState write and cleared when 
PortSuspendStatusChange is set at the end of the resume 
interval. This bit cannot be set if CurrentConnectStatus is 
cleared. This bit is also cleared when 
PortResetStatusChange is set at the end of the port reset 
or when the HC is placed in the USBRESUME state. If an 
upstream resume is in progress, it should propagate to the 
HC.
0 = port is not suspended
1 = port is suspended

(WRITE) SetPortSuspend. The HCD sets the 
PortSuspendStatus bit by writing a “1” to this bit. Writing a 
“0” has no effect. If CurrentConnectStatus is cleared, this 
write does not set PortSuspendStatus; instead it sets 
ConnectStatusChange. This informs the driver that it 
attempted to suspend a disconnected port.



11-34 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

POCI: (READ) PortOverCurrentIndicator. This bit is only valid 
when the Root Hub is configured in such a way that 
overcurrent conditions are reported on a per-port basis. If 
per-port overcurrent reporting is not supported, this bit is 
set to 0. If cleared, all power operations are normal for this 
port. If set, an overcurrent condition exists on this port. 
This bit always reflects the overcurrent input signal
0 = no overcurrent condition.
1 = overcurrent condition detected.

(WRITE) ClearSuspendStatus. The HCD writes a “1” to 
initiate a resume. Writing a “0” has no effect. A resume is 
initiated only if PortSuspendStatus is set.

PRS: (READ) PortResetStatus. When this bit is set by a write to 
SetPortReset, port reset signaling is asserted. When reset 
is completed, this bit is cleared when 
PortResetStatusChange is set. This bit cannot be set if 
CurrentConnectStatus is cleared.
0 = port reset signal is not active
1 = port reset signal is active

(WRITE) SetPortReset. The HCD sets the port reset 
signaling by writing a “1” to this bit. Writing a “0” has no 
effect. If CurrentConnectStatus is cleared, this write does 
not set PortResetStatus, but instead sets 
ConnectStatusChange. This informs the driver that it 
attempted to reset a disconnected port.

PPS: (READ) PortPowerStatus. This bit reflects the port’s power 
status, regardless of the type of power switching 
implemented. This bit is cleared if an overcurrent condition 
is detected. HCD sets this bit by writing SetPortPower or 
SetGlobalPower. HCD clears this bit by writing 
ClearPortPower or ClearGlobalPower. Which power 
control switches are enabled is determined by 
PowerSwitchingMode and PortPortControlMask[NDP]. 

In global switching mode (PowerSwitchingMode=0), only 
Set/ClearGlobalPower controls this bit. In per-port power 
switching (PowerSwitchingMode=1), if the 
PortPowerControlMask[NDP] bit for the port is set, only 
Set/ClearPortPower commands are enabled. If the mask 
is not set, only Set/ClearGlobalPower commands are 
enabled. When port power is disabled, 
CurrentConnectStatus, PortEnableStatus, 
PortSuspendStatus, and PortResetStatus should be reset.
0 = port power is off
1 = port power is on



DS785UM1 11-35
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

(WRITE) SetPortPower: The HCD writes a “1” to set the 
PortPowerStatus bit. Writing a “0” has no effect.

Note: This bit is always reads “1” if power switching is not supported.

LSDA: (READ) LowSpeedDeviceAttached. This bit indicates the 
speed of the device attached to this port. When set, a Low 
Speed device is attached to this port. When clear, a Full 
Speed device is attached to this port. This field is valid 
only when the CurrentConnectStatus is set.
0 = full speed device attached
1 = low speed device attached

(WRITE) ClearPortPower. The HCD clears the 
PortPowerStatus bit by writing a “1” to this bit. Writing a “0” 
has no effect.

CSC: ConnectStatusChange. This bit is set whenever a connect 
or disconnect event occurs. The HCD writes a “1” to clear 
this bit. Writing a “0” has no effect. If 
CurrentConnectStatus is cleared when a SetPortReset, 
SetPortEnable, or SetPortSuspend write occurs, this bit is 
set to force the driver to re-evaluate the connection status 
since these writes should not occur if the port is 
disconnected.
0 = no change in CurrentConnectStatus
1 = change in CurrentConnectStatus

Note: If the DeviceRemovable.NDP bit is set, this bit is set only after a Root Hub reset to inform 
the system that the device is attached.

PESC: PortEnableStatusChange. This bit is set when hardware 
events cause the PortEnableStatus bit to be cleared. 
Changes from HCD writes do not set this bit. The HCD 
writes a “1” to clear this bit. Writing a “0” has no effect.
0 = no change in PortEnableStatus
1 = change in PortEnableStatus

PSSC: PortSuspendStatusChange. This bit is set when the full 
resume sequence has been completed. This sequence 
includes the 20 ms resume pulse, LS EOP, and 3 ms 
re-synchronization delay. The HCD writes a “1” to clear 
this bit. Writing a “0” has no effect. This bit is also cleared 
when ResetStatusChange is set.
0 = resume is not completed
1 = resume completed



11-36 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

OCIC: PortOverCurrentIndicatorChange. This bit is valid only if 
overcurrent conditions are reported on a per-port basis. 
This bit is set when Root Hub changes the 
PortOverCurrentIndicator bit. The HCD writes a “1” to 
clear this bit. Writing a “0” has no effect.
0 = no change in PortOverCurrentIndicator
1 = PortOverCurrentIndicator has changed

PRSC: PortResetStatusChange. This bit is set at the end of the 
10 ms port reset signal. The HCD writes a “1” to clear this 
bit. Writing a “0” has no effect.
0 = port reset is not complete
1 = port reset is complete

USBCfgCtrl 

Address:
0x8002_0080 - Read/Write

Default:
0x0000_0000

Definition:
Used to implement some input signals to USB host controller for configuration 
through software.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TPOC: When asserted by software, the corresponding port will 
enter DISCONNECT state. These bits must be cleared 
before the ports can be reused.

TRCS: Inverted internally and sent out as APP_CntSelN signal to 
uhostc_top. Internally known as TicRegCntSel. 
APP_CntSelN is used for selecting the counter value for 
either simulation or real-time for the 1 ms frame duration 
used internally. It should be usually set to “0”. Setting it to 
“1” will cause the internal counter count to be a partial full 
count. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TRCS TPOC RSVD



DS785UM1 11-37
Copyright 2007 Cirrus Logic 

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11

USBHCISts   

Address:
0x8002_0084 - Read/Write

Default:
0x0000_0000

Definition:
Host Controller Interface. Some status bits reporting from USB host controller 
to software.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

MBA: Host controller buffer access indication. When asserted, it 
indicates that currently host controller is accessing data 
buffer. It is a status bit reporting to software and software 
does not need to take any action.

MSN: Host controller new frame. Software does not need to take 
any action because it is a status about a new frame that is 
generated.

RWU: Host controller remote wakeup. Software action when this 
bit is asserted is implementation specific. It is a status bit 
reporting a transition of internal state.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RWU MSN MBA



11-38 DS785UM1
 Copyright 2007 Cirrus Logic

Universal Serial Bus Host Controller
EP93xx User’s Guide

1111

11



DS785UM1 12-1
Copyright 2007 Cirrus Logic 

1212

12

Chapter 12

12Static Memory Controller

 12.1 Introduction

Note: In the EP9301 and 9302 processors, the common address/data bus is 16-bits wide 
and the Static Memory Controller (SMC) supports 8-bit and 16-bit devices. 

Note: In the EP9307, EP9312, and EP9315 processors, the common address/data bus is 
programmable to either 16-bits or 32-bits wide, and the SMC supports 8-bit, 16-bit, 
and 32-bit devices.

Note:  PCMCIA (PC Card) is supported in the EP9315 processor only.

The Static Memory Controller (SMC) operates in little endian mode, and it supports up to six 
independently configurable memory spaces or banks. Supported memory types are:

• SRAM

• ROM

• NOR FLASH

• External Peripheral that has an SRAM-type interface

Each memory bank can be configured to support:

• Memory devices that have either 8-, 16-, or 32-bit data paths. For example:

• Two 16-bit devices can be used in parallel to make a 32-bit data path

• Two 8-bit devices can be used in parallel to make a 16-bit data path

• One 16-bit device can be used standalone to make an 16-bit data path

• One 8-bit device can be used standalone to make an 8-bit data path

• One external peripheral that uses the external DMA handshake signals, DREQ0/1, 
DACK0/1, and optionally DEOT0/1. These signals are multiplexed with EPGIO[12:7] 
pins. 

Note: There are only two external DMA interfaces total on the EP93xx device to control data flow

• Non-burst read and write accesses

• Page Mode (burst-of-four) read and write accesses

• PCMCIA interfacing (EP9315 processor only)



12-2 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12

The SMC has five main functions: 

1. Memory bank selecting 

2. Access timing 

3. Wait State generation 

4. Byte lane write enabling

5. External bus interfacing

 12.2 Static Memory Controller Operation
The SMC provides access to static memory devices that are attached to the external bus. 
The SMC can work with a wide variety of external device types, including SRAM, ROM, NOR 
FLASH, and peripherals that respond to SRAM-type signaling.

Six chip-select output signals, CSn7, CSn6, CSn3, CSn2, CSn1, and CSn0 can be used to 
access six different memory spaces. However, only one of the six memory banks can be 
accessed at a given time. The SMC has six independent control registers that configure the 
six respective chip-select signals. Each control register, "SMCBCR[7:0]" specifies the timing 
characteristics that are needed to access the memory device(s) in its respective memory 
space.

As shown in Figure 12-1 and Figure 12-3, the SMC captures read data on the HCLK edge 
that occurs just prior to the HCLK edge that de-asserts the chip-select output signal on the 
CSnX pin. The output signal on the CSnX pin and the address outputs on the AD[x] pins are 
de-asserted on the next HCLK edge.

The SMC can insert wait cycles into its access timing. Wait cycles can be specified by: 

• A programmable value, N, where N has the range 1<N<32. When N is used, the SMC 
holds its bus state for N HCLK cycles. The value for N must be written to the WST2 
and/or WST1 fields of the "SMCBCR[7:0]" register(s).

• An asserted wait input signal on the WAITn pin. As shown in Figure 12-3 and Figure 12-
4, the WAITn pin can be asserted as needed by an external device to extend access 
time. When WAITn is asserted, the SMC holds its bus state until WAITn is sampled as 
being de-asserted. For internal synchronization to occur, WAITn must remain asserted 
for a minimum of two HCLK cycles.

• When both N and WAITn are used, the SMC holds its bus state for N HCLK cycles or 
until WAITn is sampled as being de-asserted, whichever occurs last.



DS785UM1 12-3
Copyright 2007 Cirrus Logic 

Static Memory Controller
EP93xx User’s Guide

1212

12

 Figure 12-1. 32-bit Read, 32-bit Memory, 0 Wait Cycles, RBLE = 1, WAITn Inactive

 Figure 12-2. 32-bit Write, 32-bit Memory, 0 Wait Cycles, RBLE = 1, WAITn Inactive

AD[x]

DA[x]

RDn/OEn

nCSx

HCLK

Data Read

AD[x]

DA[x]

WRn and nDMQ[3:0]

nCSx

HCLK

Data Write



12-4 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12

 Figure 12-3. 16-bit Read, 16-bit Memory, RBLE = 1, WAITn Active

 Figure 12-4. 16-bit Write, 16-bit Memory, RBLE = 1, WAITn Active

Address

Data

RDn/OEn

nCSx

HCLK

Data Read

WAITn

Delay due to WAITn synchronization

AD[x]

DA[x]

WRn and nDMQ[1:0]

nCSx

HCLK

Data Write

WAITn

Delay due to WAITn synchronization



DS785UM1 12-5
Copyright 2007 Cirrus Logic 

Static Memory Controller
EP93xx User’s Guide

1212

12

If the bit-width of an internal device that generates a read or write request is larger than the 
bit-width of the memory device in the target memory space, the SMC will perform multiple 
successive read or write accesses to the external device. For example, if an internal device 
generates a 16-bit read request to an 8-bit external memory device, the SMC will perform two 
successive read accesses to the 8-bit external device. The 8-bit data from the 1st read is 
stored within the SMC until the 8-bit data from the 2nd read arrives. The SMC then combines 
the data from the 1st and 2nd 8-bit read to form the requested 16-bit read data. The bus that 
connects the internal device to the SMC cannot be used for any other purpose until after the 
requested 16-bit read data is latched into the internal device.

During a write cycle, four byte lane output signals on the DQMn[3:0] pins notify the external 
memory device of which byte lanes it should accept data from. See Figure 12-2. For 
example, when the SBC performs an upper half-word (16-bit) write to a 32-bit-wide external 
memory (32-bit bus), the SMC would output DQMn[3:0] = ‘0011’ to notify the external 
memory that it should accept write data only from the upper two bytes on the 32-bit bus, and 
not accept data from the lower two bytes on the 32-bit bus. In other words, the upper two 
bytes in the 32-bit-wide memory would be written and the lower two bytes would remain as 
they are (unwritten).

Each memory bank can be specified to operate with either single read and write accesses or 
with burst-of-four (page mode) read and write accesses. During burst-of-four accesses, the 
A[3] and A[4] address bits are internally incremented, ‘00’ –> ‘01’ –> ‘10’ –> ‘11’, to access 
four sequential words. When using burst-of-four accesses, the address of the first access 
must be on a quad-word address boundary. Burst-of-four or non-burst accesses are specified 
by the value written to the PME bit in a bank control (SMCBCRx) register. 

Note: The external device must support burst-of-four accesses.

 12.3 PCMCIA Interface (EP9315 Processor Only)
With external logic, the PCMCIA Interface supports a PC Card in Slot 0 at 0x4000_0000.  
Table 12-1 shows the memory address ranges. Address, data, and control signals for 
interfacing to a PC Card are shown in Table 12-2.

Table 12-1. PCMCIA Address Memory Ranges

Memory Space Bit [27:26] Address Range

IO 00  0x4000_0000 - 0x43FF_FFFF

Undefined 01  0x4400_0000 - 0x47FF_FFFF

Attribute 10  0x4800_0000 - 0x4BFF_FFFF

Memory 11 0x4C00_0000 - 0x4FFF_FFFF

Table 12-2. PCMCIA Pin Usage

Pin Name
Alternate Use If 

No Card
PCMCIA Signal Name Note:

MCRDn nPOE 1

MCWRn nPWE 1

IORDn nPIORD 1



12-6 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12

1.  These signals go directly to the inserted PC card.

2. These signals require external logic to interface to the PC card.

3. The PCMCIA signal, nIOIS16, is not supported. The IO width can be determined by reading the card
attribute memory, and programming the IO space registers accordingly.

External logic, as shown in Figure 12-5, is required to connect some PCMCIA card signals to 
the processor. Other PCMCIA card signals, also shown in Figure 12-5, connect directly to the 
processor.

IOWRn nPIOWR 1

MCREGn nPREG 1

MCELn nPC_CE1 1

MCEHn nPC_CE2 1

MCRESETn RESET_1 1

MCWAIT nWAIT 1

AD[10:8] PC_A[10:8] 1

AD[7:0] PC_A[7:0] 2

DA[15:0] PC_D[15:0] 2

MCDIR PC_DIR 2

MCDAENn - 2

MCADENn - 2

VS2 GPIO.F[7] VS2 2

READY GPIO.F[6] PC_RDY 2

VS1 GPIO.F[5] VS1 2

MCBVD2 GPIO.F[4] MCBVD2 2

MCBVD1 GPIO.F[3] MCBVD1 2

MCD2 GPIO.F[2] MCD2 2

MCD1 GPIO.F[1] MCD1 2

WP GPIO.F[0] WP 2

Not Implemented Not Implemented nIOIS16 3

Table 12-2. PCMCIA Pin Usage (Continued)

Pin Name
Alternate Use If 

No Card
PCMCIA Signal Name Note:



DS785UM1 12-7
Copyright 2007 Cirrus Logic 

Static Memory Controller
EP93xx User’s Guide

1212

12

 

 Figure 12-5. Single PC Card Interface

RUN

         nCF_MCBVD [2:1]

             nCF_VS [2:1]

       NCE_MCD [2:1]

PCMCIA
ConnectorPC_D[15..0]

DA[15:0]

MCDAENn

MCDIR

Address
Buffer

AD[7:0]

MCWRn

MCRDn

MCWAIT

MCELn

MCREGn

MCRESETn

READY

PC_A[7..0]

NCE_WP, NCE_READY

Status
Buffer

GPIO PORT F[7:0]

Processor
     Pins

     Data
Transceiver

PC_A[25:8]

MCEHn

nPC_CE1

nPC_CE2

nWAIT

nPOE

nPWE

nPIORDIORDn

nPIOWRIOWRn

nPREG

PC_RDY

RESET_1

MCADENn

AD[25:8]



12-8 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12

 12.4 PC Card Memory-Mode Enable Signals
PC Card memory-mode enable signals, nPC_CE1 and nPC_CE2, are output on pin MCELn 
and pin MCEHn, respectively. Along with the address signal output on pin AD[0] and the data 
signals input or output on pins DA[15:8] and DA[7:0], the nPC_CE1 and nPC_CE2 signals 
specify the type of access that is being made to the particular segment of memory in the PC 
Card, as shown in Table 12-3 and Table 12-4.

Note: Prior to version 8.0 of the PCMCIA specification, two valid types of odd-byte accesses to a 
16-bit PC Card were defined as shown in Table 12-5. The SMC does not support Type 1 
odd-byte access to 16-bit PC Cards. 

 12.5 PC Card Memory Mapping
The address mapping for access to an 8- or 16-bit PC Card is shown in Table 12-6 and 
Table 12-7, respectively. 

Note: It is up to the programmer to provide an even address for all attribute memory access 
operations (see PCMCIA Spec. 2.1), because the PCMCIA controller will generate the 
physical address as shown in Table 12-6 and Table 12-7, regardless of whether the least 
significant address bit is 0b1 or 0b0.

Note: In Table 12-6 and Table 12-7, bit 1 and bit 0 of the address each show a value of 
0b1, 0b0, or 0bx. [25:2] refers to bit positions of the address, not address values.

Table 12-3. Supported 8-Bit Accesses

Access nPC_CE2 nPC_CE1 A0 D15-D8 D7-D0

Stand by (no access) 1 1 X Z Z

Even Byte Access 0 0 0 Z Even Byte

Odd Byte Access 1 0 1 Z Odd Byte

Table 12-4. Supported 16-Bit Accesses

Access nPC_CE2 nPC_CE1 A0 D15-D8 D7-D0

Stand by (no access) 1 1 X Z Z

Even Byte Access 1 0 0 Z Even Byte

Odd Byte Access 1 0 1 Z Odd Byte

Both Byte Access 0 0 Z Odd Byte Even Byte

Table 12-5. PCMCIA Legacy Usage

Access nPC_CE2 nPC_CE1 A0 D15-D8 D7-D0

Type 1 - Odd-Byte Access 0 1 1 Odd-Byte Z

Type 2 - Odd-Byte Access 1 0 1 Z Odd-Byte



DS785UM1 12-9
Copyright 2007 Cirrus Logic 

Static Memory Controller
EP93xx User’s Guide

1212

12

Table 12-6. Accesses to 8-Bit Attribute / Common / IO Memory

Common / IO
Memory Access

Attribute
Memory Access

Access
Byte # 

In Word
 PC_A[25:0] nPC_CE2 nPC_CE1 D15-D8 D7-D0 D15-D8 D7-D0

Word
(4 transfers
 required)

0 [25:2],x,0 0 0 - [7:0] - [7:0]

1 [25:2],x,1 1 0 - [15:8] - Invalid

2 [25:2],x,0 0 0 - [23:16] - [23:16]

3 [25:2],x,1 1 0 - [31:24] - Invalid

Lower 
Half-Word
(2 transfers
 required)

0
[25:2],x,0

0 0 - [7:0] - [7:0]

1 [25:2],x,1 1 0 - [15:8] - Invalid

Upper 
Half-Word
(2 transfers
 required)

2 [25:2],x,0
0 0 - [23:16] - [23:16]

3 [25:2],1,1 1 0 - [31:24] - Invalid

Byte 0 [25:2],x,0 0 0 - [7:0] - [7:0]

Byte 1 [25:2],x,1 1 0 - [15:8] - Invalid

Byte 2 [25:2],x,0 0 0 - [23:16] - [23:16]

Byte 3 [25:2],x,1 1 0 - [31:24] - Invalid

Table 12-7. Accesses to 16-Bit Attribute / Common / IO Memory

Common / IO 
Memory Access

Attribute
Memory Access

Access
Half-Word 
# IN Word

Processor 
Address Bus 

AD[25:0]

nPC_CE
2

nPC_CE
1

D15-D8 D7-D0 D15-D8 D7-D0

Word
(2 

transfers
required)

0
AD[25:2],x,x

0 0 [15:8] [7:0] Invalid [7:0]

1 AD[25:2],x,x
0 0 [31:24] [23:16] Invalid [23:16]

Lower   
Half-Word

0 AD[25:2],x,x 0 0 [15:8] [7:0] Invalid [7:0]

Upper   
Half-Word

1 AD[25:2],x,x 0 0 [31:24] [23:16] Invalid [23:16]

Byte 0 0 AD[25:2],x,0 1 0 - [7:0] - [7:0]

Byte 1 0 AD[25:2],0,1 1 0 [15:8] - Invalid -

Byte 2 1 AD[25:2],x,0 1 0 - [23:16] - [23:16]

Byte 3 1 AD[25:2],x,1 1 0 [31:24] - Invalid -



12-10 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12

 12.6 Registers

 12.6.1 Bank Configuration Registers

SMCBCR[7:0] 

Address: SMCBCR0: 0x8008_0000 - Read/Write
SMCBCR1: 0x8008_0004 - Read/Write
SMCBCR2: 0x8008_0008 - Read/Write
SMCBCR3: 0x8008_000C - Read/Write
SMCBCR6: 0x8008_0018 - Read/Write
SMCBCR7: 0x8008_001C - Read/Write

Default: 0x2000_FBE0

Definition: SMC Bank Configuration registers
These registers are used to specify the characteristics and timing for each of 
the memory banks, respectively.

Table 12-8. Static Memory Controller (SMC) Register Map

Address  Name Description 

"SMCBCR[7:0]" 
 (See individual bank configuration 

registers below)

0x8008_0000 "SMCBCR[7:0]" Bank Configuration Register 0

0x8008_0004 "SMCBCR[7:0]" Bank Configuration Register 1

0x8008_0008 "SMCBCR[7:0]" Bank Configuration Register 2

0x8008_000C "SMCBCR[7:0]" Bank Configuration Register 3

0x8008_0010 Reserved Reserved

0x8008_0014 Reserved Reserved

0x8008_0018 "SMCBCR[7:0]" Bank Configuration Register 6

0x8008_001C "SMCBCR[7:0]" Bank Configuration Register 7

0x8008_0020 "PCAttribute" Attribute Space Register

0x8008_0024 "PCCommon" Common Space Register

0x8008_0028 "PCIO" I/O Space Register

0x8008_002C Reserved Reserved

0x8008_0030 Reserved Reserved

0x8008_0034 Reserved Reserved

0x8008_0038 Reserved Reserved

0x8008_003C Reserved Reserved

0x8008_0040 "PCMCIACtrl"  Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD EBIBRK
DIS

MW PME WP WPERR RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WST2 BLE WST1 RSVD IDCY



DS785UM1 12-11
Copyright 2007 Cirrus Logic 

Static Memory Controller
EP93xx User’s Guide

1212

12

Bit Descriptions:

RSVD: Reserved - Unknown During Read 

IDCY: Idle Cycle - Read/Write

The value written to this field specifies the memory data 
bus turnaround time between a Read access and a Write 
access. The turnaround time is specified by (IDCY + 1) 
HCLKs. For example, if IDCY = 0xA, the turnaround time 
is 10 + 1 = 11 cycles of HCLK.

WST1: Wait States1 - Read/Write

The value written to this field specifies the ‘number of 
HCLK cycles, minus 1’ that are inserted as wait cycles into 
the timing for:

• A single Read or Write access, or

• The first Read or Write access of a burst-of-four 
accesses. 

The number of wait cycles is specified by (WST1 + 1) 
HCLKs. For example, if WST1 = 0x3, 3 + 1 = 4 cycles of 
HCLK are inserted into the access timing.

On reset, this field defaults to 0x1F (slowest access) to 
enable booting from ROM or FLASH memory device 
types.

RBLE: Read Byte Lane Enable - Read/Write

The value written to this bit specifies the output values on 
the DQMn[3:0] pins during a Read access:

0 - DQMn[3:0] pins are all driven HIGH during memory   
Reads (default at reset for bank 1-3,6,7)
1 - DQMn[3:0] pins are all driven LOW during memory 
Reads (default at reset for bank 0)

For memory Writes, this bit must written to ‘1’.

WST2: Wait States2 - Read/Write

The value in this field specifies the ‘number of HCLK 
cycles, minus 1’ that are inserted as wait cycles into the 
timing for each of the 2nd, 3rd, and 4th accesses of Read 
or Write burst-of-four accesses.



12-12 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12

The number of wait cycles for each of the 2nd, 3rd, and 
4th accesses is specified by (WST2 + 1) HCLKs. For 
example, if WST2 = 0x4, 4 + 1 = 5 cycles of HCLK are 
inserted into the timing for each of the 2nd, 3rd, and 4th 
accesses. 

On reset, this field defaults to 0x1F (slowest access) to 
enable booting from ROM or FLASH memory device 
types.

WPERR: Write Protect Error status flag - Read/Write

0 - No Error
1 - Write Protect Error

Writing a ‘1’ to this bit will clear the Write Protect status 
error.

WP: Write Protect - Read/Write

The value written to this bit specifies that either Writes to 
the memory device are allowed to occur, or not occur:

0 - Yes (SRAM, FLASH)
1 - No (ROM, SRAM, FLASH)

PME: Page Mode (Burst-of-4) Enable - Read/Write

0 -  Page Mode is disabled, non-burst accesses occur

1 - Page Mode is enabled. Page Mode provides fast burst-
of-four accesses where the A[3] and A[4] address bits are 
internally incremented, ‘00’ –> ‘01’ –> ‘10’ –> ‘11’, to 
access four sequential words.

This bit is reset to ‘0’ 

MW: Memory Width - Read/Write

The value written to this field specifies the bus-width of the 
memory:

00 - 8-bit 
01 - 16-bit
10 - 32-bit
11 - 32-bit

To support various bus-width memory devices for booting, 
the MW field of the "SMCBCR[7:0]" register can be 
automatically configured with the input values on the nCS7 
and nCS6 pins, respectively. This takes place following a 
power-on reset, but only if the input values on these pins 
are: ASDO = ‘0’, Boot[1:0] = ‘00’, EEDAT = ‘1’. and EECLK 
= ‘0’. 



DS785UM1 12-13
Copyright 2007 Cirrus Logic 

Static Memory Controller
EP93xx User’s Guide

1212

12

EBIBRKDIS: EBI Break Disable - Read/Write

The value written to this bit specifies the circumstances for 
when the SMC will release the external memory bus:

0 - The SMC releases the external memory bus at the end 
of each access to this memory bank
1 - The SMC releases the external memory bus after it has 
completed all pending accesses to this memory bank

 12.6.2 PCMCIA Configuration Registers (EP9315 Processor Only)

The SMC has additional functionality to support a PC-card in Memory Bank 4. Memory Bank 
4 has three registers to control wait-states and device width for attribute, common memory 
and IO address spaces; and a single PCMCIA control register to provide global control for the 
card.

PCAttribute 

Address: 0x8008_0020 - Read/Write

Default: 0x0000_0000

Definition: PC Card Attribute register

Bit Descriptions:

RSVD: Reserved - Unknown During Read

WA: Attribute Space Width - Read/Write

The value written to this bit specifies the bus-width of the 
Attribute space:

0 - 8-bit wide Attribute space
1 - 16-bit wide Attribute space

AA: Attribute Space Access time - Read/Write 

The value written to this field specifies the minimum 
‘number of HCLK cycles, minus 1’ that the data strobe, 
MCDAENn, is asserted during a Read or Write access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WA RSVD AA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD HA PA



12-14 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12

The data strobe assertion time is specified by (AA+1) 
HCLK cycles. For example, if AA = 0x10, the data strobe 
assertion time is 16 + 1 = 17 cycles of HCLK

HA: Attribute space Hold time - Read/Write

The value written to this field specifies the minimum 
‘number of HCLK cycles, minus 1’ between de-asserting 
the data strobe, MCDAENn, and de-asserting the address 
strobe, MCADENn. 

The Hold time is specified by (HA +1) HCLK cycles. For 
example, if HA = 0xC, the Hold time is 12 + 1 = 13 cycles 
of HCLK.

PA: Attribute space setup time - Read/Write

The value written to this field specifies the ‘number of 
HCLK cycles, minus 1’ that the address strobe, 
MCADENn, is set up before assertion of the data strobe, 
MCDAENn. 

The Setup time is specified by (PA+1) HCLK cycles. For 
example, if PA = 0x25, the Setup time is 37 + 1 = 38 cycles 
of HCLK.

PCCommon 

Address: 0x8008_0024 - Read/Write

Default: 0x0000_0000

Definition: PC Card Common register

Bit Descriptions:

RSVD: Reserved - Unknown During Read 

WC: Common Space Width - Read/Write

The value written to this bit specifies the bus-width of the 
Common space:

0 - 8-bit wide Common space
1 - 16-bit wide Common space

AC: Common Space Access time - Read/Write 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WC RSVD AC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD HC PC



DS785UM1 12-15
Copyright 2007 Cirrus Logic 

Static Memory Controller
EP93xx User’s Guide

1212

12

The value written to this field specifies the minimum 
‘number of HCLK cycles, minus 1’ that the data strobe, 
MCDAENn, is asserted during a Read or Write access.

The data strobe assertion time is specified by (AC+1) 
HCLK cycles. For example, if AC = 0x10, the data strobe 
assertion time is 16 + 1 = 17 cycles of HCLK

HC: Common space Hold time - Read/Write

The value written to this field specifies the minimum 
‘number of HCLK cycles, minus 1’ between de-asserting 
the data strobe, MCDAENn, and de-asserting the address 
strobe, MCADENn. 

The Hold time is specified by (HC +1) HCLK cycles. For 
example, if HC = 0xC, the Hold time is 12 + 1 = 13 cycles 
of HCLK.

PC: Common space setup time - Read/Write

The value written to this field specifies the ‘number of 
HCLK cycles, minus 1’ that the address strobe, 
MCADENn, is set up before assertion of the data strobe, 
MCDAENn. 

The Setup time is specified by (PC+1) HCLK cycles. For 
example, if PC = 0x25, the Setup time is 37 + 1 = 38 
cycles of HCLK.

PCIO 

Address: 0x8008_0028 - Read/Write

Default: 0x0000_0000

Definition: PC Card IO register

Bit Descriptions:

RSVD: Reserved - Unknown During Read 

WI: IO Space Width - Read/Write

The value written to this bit specifies the bus-width of the 
IO space:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WI RSVD AI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD HI PI



12-16 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12

0 - 8-bit wide Common space
1 - 16-bit wide Common space

AI: IO Space Access time - Read/Write 

The value written to this field specifies the minimum 
‘number of HCLK cycles, minus 1’ that the data strobe, 
MCDAENn, is asserted during a Read or Write access.

The data strobe assertion time is specified by (AI+1) 
HCLK cycles. For example, if AI = 0x10, the data strobe 
assertion time is 16 + 1 = 17 cycles of HCLK

HI: IO space Hold time - Read/Write

The value written to this field specifies the minimum 
‘number of HCLK cycles, minus 1’ between de-asserting 
the data strobe, MCDAENn, and de-asserting the address 
strobe, MCADENn. 

The Hold time is specified by (HI +1) HCLK cycles. For 
example, if HI = 0xC, the Hold time is 12 + 1 = 13 cycles of 
HCLK.

PI: IO space setup time - Read/Write

The value written to this field specifies the ‘number of 
HCLK cycles, minus 1’ that the address strobe, 
MCADENn, is set up before assertion of the data strobe, 
MCDAENn. 

The Setup time is specified by (PI+1) HCLK cycles. For 
example, if PI = 0x25, the Setup time is 37 + 1 = 38 cycles 
of HCLK.

PCMCIACtrl 

Address: 0x8008_0040 - Read/Write

Default: 0x0000_0000

Definition: PC Card Control register

Bit Descriptions:

RSVD: Reserved - Unknown During Read 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WEN RSVD PCRST RSVD PCEN



DS785UM1 12-17
Copyright 2007 Cirrus Logic 

Static Memory Controller
EP93xx User’s Guide

1212

12

PCEN: PC Card Enable - Read/Write

Writing a “1” to this bit enables the PC Card interface.

PCRST: PC Card Reset - Read/Write

Writing a ‘1’ to this bit clears the Configuration Option 
register in the card. This places the card into an 
unconfigured (memory only interface) state.

Writing a ‘0’ to this bit allows normal PC Card operation.

WEN: External Wait Enable - Read/Write

Writing a ‘1’ to this bit enables the MCWAIT input pin to be 
asserted by the card to insert wait cycles into the access 
timing.

 Writing a ‘0’ to this bit disables the MCWAIT input pin from 
being asserted by the card. 



12-18 DS785UM1
 Copyright 2007 Cirrus Logic

Static Memory Controller
EP93xx User’s Guide

1212

12



DS785UM1 13-1
Copyright 2007 Cirrus Logic 

1313

13

Chapter 13

13SDRAM, SyncROM, and SyncFLASH Controller

 13.1 Introduction

Note: In the EP9301 and 9302 processors, the common address/data bus is 16-bits wide 
and the SDRAM, SyncROM, and SyncFLASH synchronous memory controller 
supports 16-bit and 8-bit devices.

Note: In the EP9307, EP9312, and EP9315 processors, the common address/data bus is 
programmable to be either 16-bits or 32-bits wide and the SDRAM, SyncROM, and 
SyncFLASH synchronous memory controller supports 32-bit , 16-bit, and 8-bit 
devices.

The SDRAM controller provides a high speed memory interface to single-data-rate SDRAMs, 
Synchronous FLASH, and Synchronous ROMs.

The key features of the SDRAM controller are:

• Raster DMA input port for high-bandwidth display refreshing.

• Up to four synchronous memory banks that can be independently configured

• Special configuration bits for Synchronous ROM operation

• Ability to program Synchronous FLASH devices using write and erase commands

• Data is transferred between the controller and the synchronous memory device in quad-
word bursts. 

• Programmable for 16 or 32-bit data bus: EP9307, EP9312, and EP9315 processors only

• SDRAM contents are preserved when a “soft” reset is asserted

• Power saving synchronous memory clock enable

 13.2 Booting from SyncROM or SyncFLASH 
During power-on reset, if the values on the processor pins shown in Table CAUTION: select 
either a Synchronous ROM device or Synchronous FLASH device to be used for booting up 
the processor, a short configuration sequence is activated and completed before the 
processor is released from power-on reset. By default, Synchronous Memory Bank 3, 
controlled by device configuration register SDRAMDevCfg[3:0], is used for booting.

For a Synchronous ROM device, the configuration sequence writes RAS = 0x2 and CAS = 
0x5 to the SDRAMDevCfg[3:0] register and writes RAS = 0x2, CAS = 0x5, and either Burst 



13-2 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

Length = 0x4 (32-bit wide memory bus) or Burst Length = 0x8 (16-bit wide memory bus) to 
the Mode register that is inside the SyncROM device.

For a Synchronous FLASH device, the configuration sequence writes RAS = 0x2 and CAS = 
0x5 to the SDRAMDevCfg[3:0] register and writes WBM = 0x0, CAS = 0x3, and either Burst 
Length = 0x4 (32-bit wide memory bus) or Burst Length = 0x8 (16-bit wide memory bus) to 
the Configuration register that is inside the SyncFLASH device.

CAUTION: Do not attempt to configure the registers of other synchronous memory
banks while booting from Synchronous Memory Bank 3. Attempting to do so may
cause the system to lock-up. Rather, it is advised that the boot code copy the
configuration code for other synchronous memory banks to some non-synchronous
memory space, and then later configure the registers of the other synchronous
memory banks from that space.

The power-up sequence that is executed when the power-on reset becomes asserted is:

1. The SDCLKEN and DQM[3:0] pins are each externally pulled high so that they rise with 
the VDD and VDDQ power supplies.

2. Following power-up, the ARM Core is held in the reset state with HCLK running. The 
CKE bit in the Global configuration register, GlConfig, is written to ‘1’ to enable HCLK to 
be output on the SDCLK pin. Initialize = ‘1’, MRS = ‘1’, and LCR = ‘0’, shown in Table , 
are written to the GlConfig register to cause a NOP access to be issued. Continuous 
NOP accesses are issued for 200 μs.

3. Initialize = ‘0’, MRS = ‘1’, and LCR = ‘0’ are written to the GlConfig register to enable 
access to the Mode register that is inside the synchronous memory device. Default 
settings are then written to the Mode register by reading the appropriate address, where 
the value of the address itself is the value of the default setting. For a Synchronous 
ROM device, the default settings are RAS = 0x2, CAS = 0x5, and either Burst Length = 
0x4 (32-bit wide memory bus) or Burst Length = 0x8 (16-bit wide memory bus). For a 
Synchronous FLASH device, the default settings are WBM = 0x0, CAS = 0x3, and either 
Burst Length = 0x4 (32-bit wide memory bus) or Burst Length = 0x8 (16-bit wide 
memory bus).

4. Three SDCLK cycles after the Mode register is written with the appropriate default value, 
the memory portion of the synchronous memory device is ready for power-up with all of 

Table 13-1. Boot Device Selection

Boot modes CSn7 CSn6 ASDO EECLK

8-bit ROM 0 0 0 0

16-bit ROM 0 1 0 0

32-bit ROM 1 0 0 0

32-bit ROM 1 1 0 0

16-bit SFLASH (Initializes Command Register) 0 0 1 0

16-bit SROM (Initializes Mode Register) 0 1 1 0

32-bit SFLASH (Initializes Command Register 1 0 1 0

32-bit SROM (Initializes Mode Register) 1 1 1 0



DS785UM1 13-3
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

it’s data outputs in the high impedance state. If power-on reset has become de-
asserted, the ARM Core is released from the reset state.

 13.3 Address Pin Usage
Each of the four synchronous memory domains can be fitted with a variety of device types, 
provided the total capacitance on any address/control/data line does not exceed the specified 
operating limit. Four pins, SDCSn[3:0], are used to as chip-selects (domain selects) for the 
four synchronous memory domains, where the configurations of the domains are specified by 
registers SDRAMDevCfg[3:0], SDRAMDevCfg[3:0], SDRAMDevCfg[3:0], and 
SDRAMDevCfg[3:0], respectively. For example, SDCSn[2] selects the 3rd of four 
synchronous memory domains and SDRAMDevCfg[3:0] specifies the configuration of that 
domain. 

Address bits 31:28 are internally decoded to specify an address domain. Table 13-2 shows 
he values of address bits 31:28 that specify a synchronous memory domain.

Because of the row/column/bank architecture of synchronous memory devices, the mapping 
of these memories into the processor’s memory space is not always obvious, typically 
because the memory inside a synchronous device does not appear to the processor to be 
continuous. For example, a 32-Mbyte SDRAM device may be visible as four 4-Mbyte banks. 
Table 13-3 shows address pin usage. In Table 13-3, external pins are identified as AD[15:0], 
internal address signals are identified as A[27:1]. The 2nd row of the table shows the address 
pins, AD[15:0], that may be connected to the synchronous memory device, depending on its 
address depth. The remaining rows show how the device’s linear address space is mapped 
onto the address pins, AD[15:0]. For each memory device configuration, that is, 16- or 32-bit 
wide SDRAM or SROM or SFLASH, there is a Row and Bank, and Column, entry in the table 
that shows the internal linear address bits, A[27:1], that are presented on the external 
AD[15:0] pins for Row and Bank, and Column, accesses. The shallower the depth of the 
synchronous memory device, the fewer the number of most-significant address bits that are 
used for Row and Bank, and Column, addressing. By observing the number of rows and 
columns in a specific synchronous memory device (see the device’s data sheet), the actual 
number of address bits used for addressing the device can be determined. Because some 
address bits are not used, the address map of the synchronous memory appears to be non-
continuous. The SROMLL should be used when possible to reduce the number of “holes” in 

Table 13-2. Address Decoding for Synchronous Memory Domains

Value of Address 
Bits 31:28

SDCSn[3:0] Synchronous Memory Domain

0xF 3 4

0xE 2 3

0xD 1 2

0xC 0 1

0xB through 0x1 None Used for other domains

0x0 3
Used during boot from SyncROM or 
SyncFLASH



13-4 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

the synchronous memory map. Refer to Table 13-11 to compare the memory space with 
SROMLL=1 and SROMLL=0. bit can be used to reduce the number of memory segments 
and it is 

1. “AP” means Auto Precharge -- see SDRAM device’s data sheet

 13.4 SDRAM Initialization
Following power on, each SDRAM device must be initialized before it can be used. Table 13-
4 shows a general initialization sequence (refer to the SDRAM device’s data sheet to ensure 
compatibility).

Table 13-3. Synchronous Memory Address Decoding 

Sync 
Device

Address 
Pins 

Muxing

Bank 
Address 

Pins
Address Pins

AD 
15

AD
14

AD
13

AD
12

AD
11

AD
10

AD
9

AD
8

AD
7

AD
6

AD
5

AD
4

AD
3

AD
2

AD
1

AD
0

SDRAM 
16 bit 
data

Row and
Bank

A27 A26 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9

Column A27 A26 - - - AP1 A25 A24 A8 A7 A6 A5 A4 A3 A2 A1

SDRAM 
32 bit 
data

Row and
Bank

A27 A26 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10

Column A27 A26 - - - AP1 A25 A24 A9 A8 A7 A6 A5 A4 A3 A2

SFLASH
2K Page 
Mode, 
32 bit 
data

Row and
Bank

A27 A26 A24 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11

Column A27 A26 - - - AP1 A25 A10 A9 A8 A7 A6 A5 A4 A3 A2

SROM 
512, 32 
bit data

Row and
Bank

A27 A26 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9

Column A27 A26 - - - - A25 A24 A23 A8 A7 A6 A5 A4 A3 A2

SROM 
look 

alike, 16 
bit data

Row and
Bank

A22 A21 A27 A26 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9

Column A22 A21 - - - AP1 A25 A24 A8 A7 A6 A5 A4 A3 A2 A1

SROM 
look 

alike, 32 
bit data

Row and
Bank

A23 A22 A27 A26 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10

Column A23 A22 - - - AP1 A25 A24 A9 A8 A7 A6 A5 A4 A3 A2

Table 13-4. General SDRAM Initialization Sequence

Step Action Reason

1 Wait 100 μs
To allow SDRAM power and clocks to 
stabilize



DS785UM1 13-5
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

2
Write a ‘1’ or ‘0’ to the External Bus Width bit in the 
appropriate "SDRAMDevCfg[3:0]" register

‘1’ specifies 16-bit memory bus width
‘0’ specifies 32-bit memory bus width 

3
Write Initialize = ‘0’, MRS = ‘1’, and LCR = ‘0’ to the 
"GlConfig" register

To allow the Mode register inside the 
external SDRAM device to be accessed

4
Read from the external SDRAM’s Mode register 
with Row and Bank address = 0x2 or 0x3 (see 
SDRAM data sheet)

0x2 -- Burst Length = 4 (32-bit wide 
memory bus)
0x3 -- Burst Length = 8 (16-bit wide 
memory bus)

5
Write Initialize = ‘1’, MRS = ‘1’, and LCR = ‘0’ to the 
"GlConfig" register

To issue continuous NOP accesses

6 Wait 200 μs SDRAM requirement

7
Write Initialize = ‘1’, MRS = ‘0’, and LCR = ‘0’ to the 
"GlConfig" register

To issue a Pre-Charge All accesses

8 Write Refcnt = 0xB into the "RefrshTimr" register
To provide a refresh every 10 SDCLK 
cycles

9 Wait for at least 80 SDCLK cycles
To provide 8 refresh cycles to all 
SDRAMs in "SDRAMDevCfg[3:0]" 
space

10
Write the normal operating value to the Refcnt field 
in the "RefrshTimr" register

To establish normal refresh operation

11
Write Initialize = ‘0’, MRS = ‘1’, and LCR = ‘0’ to the 
"GlConfig" register

To allow the Mode register inside the 
SDRAM device to be accessed

12

Perform a read from each SDRAM in the 
"SDRAMDevCfg[3:0]" space. The value of the 
address that is read defines the value that is 
written into the Mode register (see SDRAM device 
datasheet). The address value is dependent on the 
configuration of the memory system since the 
actual SDRAM address pins are mapped 
differently onto the processor’s address pins for 
16- and 32-bit wide memory systems. (This is the 
reason for step 2). 

To set up the Mode register inside each 
SDRAM device

13

Write parameters corresponding to those 
programmed into the SDRAM devices Mode 
register into the corresponding fields of the 
"SDRAMDevCfg[3:0]" register. Write other fields in 
the "SDRAMDevCfg[3:0]"register as appropriate 
for the given SDRAM usage.

To initialize the SDRAM controller timing

14
Write Initialize = ‘0’, MRS = ‘0’, and LCR = ‘0’ to the 
"GlConfig" register.

To start normal operation

Table 13-4. General SDRAM Initialization Sequence

Step Action Reason



13-6 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

 13.5 Programming Mode Register: SDRAM Or SyncROM Device
When setting up the Mode register that is inside an SDRAM or SyncROM device, or the 
Configuration register that is inside a SyncFLASH device, the command word that is placed 
on the address pins shown in Table 13-5 depends on whether a SROM, SDRAM, or 
SyncFlash is attached. Once Initialize = ‘0’, MRS = ‘1’, and LCR = ‘0’ are written to the 
GlConfig register to enable access to the Mode register, the address of a subsequent Read 
operation is output on AD[12:0]. The internal address, A[23:0], is mapped to external address 
pins AD[12:0] as shown in Table 13-5.

In Table 13-5, AD[2:0] represents the Burst Length (BL). The Burst Length for 32-bit 
configurations must be set to four. The Burst Length for 16-bit configurations must be set to 
eight. See Table 13-8 for Burst Length values.

AD[3] specifies Burst Type (BT). A value of zero specifies Sequential, a value of one specifies 
Interleaved.

AD[6:4] specifies CAS Latency (CASL). Only values of two or three are supported. See 
Table 13-6 for CAS Latency values.

AD[8:7] specify Operation Mode (OM). This value must be zero for normal operation. 

AD[9] specifies the Write Burst Mode (WBM). This value should be programmed to zero for 
devices that support burst, such as SDRAM. It should be set to zero for devices that do not 
support burst mode, such as SyncFlash or SyncROM.

AD[12:10] are reserved, but must be zero for normal operation.

Note: If using an external bus that is 16 bits wide then the address mapping must be shifted as 
indicated by Table 13-3 on page 13-4.

Note: For SDRAM, AD[2:0] specify burst length. For SROM, AD[1:0] specify burst length.

Table 13-5. Mode Register Command Decoding for 32-bit Wide Memory Bus

Address AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0

Mapped addr for 
default 32-bit 
wide

A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10

SDRAM or 
SFLASH

RFU
Write
Burst
Mode

Operating
Mode

CAS Latency
Burst
Type

0 1 0

Example: 
SDRAM with 
WBM = 0, 
OM= 0, 
CASL = 3, 
BT =  Sequential, 
BL = 4

0 0 0 0 0 0 0 1 1 0 0 1 0

SROM RFU RFU RAS CAS
Burst
Type

0 1

Example: SROM 
RAS =2, CAS=2, 
Sequential, BL=4

0 0 0 0 0 0 1 1 0 0 0 0 1



DS785UM1 13-7
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

Note: “RFU” means Reserved for Future Use. 

Table 13-6, Table 13-7, and Table 13-8 show the bit field values for CASL, RAS, and Burst 
Length, respectively.

When using a 32-bit wide external memory bus, the following Read addresses must be used 
to set up the specified parameters, where H can be 0x0, 0xC, 0xD, 0xE or 0xF as shown in 
Table 13-2:

• SDRAM default READ Address: 0xH000_C800 — sets WBM=0, TM=0, CAS=3, 
Sequential, BL=4

• SFLASH default READ Address: 0xH008_C800 — sets WBM=1, TM=0, CAS=3, 
Sequential, BL=4 

• SROM default READ Address: 0xH001_8400 — sets RAS=2, CAS=5, Sequential, BL=4

Table 13-6. Sync Memory CAS

CAS Value SDRAM SFLASH SROM

000 Reserved Reserved Reserved

001 Reserved 1 2

010 2 2 3

011 3 3 4

100 Reserved Reserved 5

101 Reserved Reserved 6

110 Reserved Reserved 7

111 Reserved Reserved 8

Table 13-7. Sync Memory RAS, Burst Type, and Write Burst Length

Value SDRAM SFLASH SROM

RAS = 0 Not applicable Not applicable 1 clk

RAS = 1 Not applicable Not applicable 2 clk

BT = 0 Sequential Sequential Sequential

BT = 1 Interleaved Interleaved Interleaved

WBM = 0 Use BL value Use BL value Use BL value

WBM = 1 Write Burst = 1 Write Burst = 1 Not applicable

Table 13-8. Burst Length

Burst Length SDRAM SFLASH SROM

000 Reserved 1 Reserved

001 Reserved 2 4

010 4 4 8

011 8 8 Reserved

100 Reserved Reserved ---

101 Reserved Reserved ---

110 Reserved Reserved ---

111 Reserved Reserved



13-8 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

When using a 16-bit wide external memory bus, the following Read addresses must be used 
to set up the specified parameters, where H can be 0, C, D, E or F as shown in Table 13-2:

• SDRAM default READ Address: 0xH000_6600 — sets WBM=0, TM=0, CAS=3, 
Sequential, BL=8

• SFLASH default READ Address: 0xH004_6600 — sets WBM=1, TM=0, CAS=3, 
Sequential, BL=8 

• SROM default READ Address: 0xH000_C400 — sets RAS=2, CAS=5, Sequential, BL=8

 13.6 SDRAM Self Refresh

 13.6.1 Entering Self Refresh Mode

When entering the Standby mode, the following actions are carried out by the Synchronous 
Memory controller before the processor is stopped:

1. Issue Precharge accesses to all active banks

2. Issue NOP commands

3. SDCLKEN output driven low

4. Issue AUTO REFRESH command

5. Enter SELF REFRESH Mode

 13.6.2 Exiting Self Refresh Mode

When coming out of the Standby mode, the following actions are carried out by the 
synchronous memory controller before the processor is started:

1. Allow clock stabilization

2. SDCLKEN output driven high

3. Issue ten NOP accesses

4. Issue AUTO REFRESH accesses

5. Exit SELF REFRESH Mode

 13.7 Programming Registers: SyncFLASH Device
The programmable registers that are inside a SyncFLASH memory device, can be 
programmed in a manner that is similar to programming the Mode register that is inside of an 
SDRAM or SyncROM memory device.

The process of programming the SyncFLASH registers begins by writing WBM = ‘1’ to the 
appropriate SDRAMDevCfg register to specify that burst-of-four reads and burst-of-one 
writes will be used to access the device. Then, write LCR = ‘1’ to the GlConfig register. Doing 
so causes the value of a subsequent read address to be used as the data value that is written 



DS785UM1 13-9
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

to the SyncFLASH register and the associated value on the data pins specifies which 
SyncFLASH register is written. Actually, the value on the data pins specifies a command to 
the SyncFLASH device such as Write Configuration Register, Lock Block, Block Erase; and 
the associated value on the address pins specifies either a value that is written to a register 
or a address location inside the SyncFLASH device.

Synchronous FLASH devices:

• Use the same combination of the CS, RAS, CAS, and WE signals which would normally 
place an SDRAM device into Auto-Refresh mode

• Cannot be written in bursts, but only one word at a time. Hence the requirement to write 
WBM = ‘1’ to the appropriate SDRAMDevCfg register. When WBM = ‘1’, no Auto 
Refresh cycle will occur in the associated synchronous memory domain because the 
synchronous memory controller will assume that a Synchronous FLASH device is 
attached.

• Require 100 μs of initialization time after a low-to-high transition occurs on its write 
protect input pin

• Can be set up by either programming the Synchronous FLASH Configuration register 
before releasing the processor from reset or by using the contents of it’s 
NonVolatileMODE register (which must have been previously programmed).

 13.8 External Synchronous Memory System
The synchronous memory system is decoded from the ARM Core’s physical memory map 
into four independent address domains, each having an address range of 256 Mbytes (64 
Mwords). All of the memory devices that are attached to a given domain must be of the same 
type, but the other domains may use different memory device types and associated timing 
characteristics.

Since all memory devices, synchronous or static, share a common external memory bus, the 
total number of devices is limited by the maximum allowable bus capacitance.

 13.8.1 Chip Select SDCSN[3:0] Decoding

Each of the four address domains within synchronous memory space have an associated 
chip select signal that is output on one of the SDCSn[3:0] pins as shown in Table 13-9. These 
signals are decoded from address bits A31:A28. 

The latched value of ASDO determines how SDCSn3 is mapped into synchronous memory 
space. If the latched value of ASDO=1 then SDCSn3 is mapped to 0x0000_0000 otherwise it 
is mapped to 0xF000_0000.

Table 13-9. Chip Select Decoding

Boot Option 
(ASDO)

A31 A30 A29 A28 Chip select

1 0 0 0 0 nSDCS3



13-10 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13  13.8.2 Address/Data/Control Required by Memory System

An independent device configuration register, "SDRAMDevCfg[3:0]", "SDRAMDevCfg[3:0]", 
"SDRAMDevCfg[3:0]", and "SDRAMDevCfg[3:0]", is provided for each of the four 
synchronous memory domains. Each domain can be configured for either an SDRAM, 
SyncROM, or SyncFLASH device type. Only one device type can be configured per domain. 
However, different domains can be configured for different device types. 

Each of the four synchronous memory domains can be configured to be either 16- or 32-bits 
wide and each will support 32-bit (word), 16-bit (half-word), and 8-bit (byte) accesses to or 
from the synchronous memory device. If the external memory bus is 16-bits wide, two 
external bus accesses are automatically made to Read or Write a 32-bit word. This is why a 
burst-of-eight accesses is used to Read or Write devices that are attached to a 16-bit bus 
while only a burst-of-four accesses is used to Read or Write devices that are attached to a 
32-bit bus.

When writing to external memory, byte lane enable signals are output on the nDQM[3:0] pins, 
where the DQMn0 pin controls the least-significant byte lane, the DQMn1 pin controls the 
next to least-significant byte lane, the DQMn2 pin controls the next to most- significant byte 
lane, and the DQMn3 pin controls the most-significant byte lane. The memory device uses 
the byte lane enable signals on the DQMn pins to determine which byte lane data it should 
accept during a Write operation. For example, if a 32-bit word is to be written to a memory 
device on a 32-bit memory bus, DQMn[3:0] = ‘0000’ is output to alert the memory device that 
it should accept Write data from all four byte lanes. However, if an 8-bit byte is to be written to 
the next to least-significant byte of a memory device on a 32-bit bus, DQMn[3:0] = ‘1101’ is 
output to alert the memory device that it should accept Write data from only the next to least-
significant byte lane and reject Write data from the other byte lanes. As another example, if a 
32-bit word is to be written to a memory device on a 16-bit data bus, two 16-bit writes are 
automatically performed to the memory device. For each 16-bit Write, DQM[1:0] = ‘00’ and 
DQM[3:2] are not used.

 Table 13-10 shows a memory addressing example for a 256 Mbit synchronous memory 
device with 13-row x 9-column x 2-bank addressing attached to a 16-bit memory bus. Note 

0 1 1 1 1 nSDCS3

X 1 1 1 0 nSDCS2

X 1 1 0 1 nSDCS1

X 1 1 0 0 nSDCS0

Table 13-9. Chip Select Decoding

Boot Option 
(ASDO)

A31 A30 A29 A28 Chip select



DS785UM1 13-11
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

that AD23 is not used (needed) in either the row or column address, and this demonstrates 
why the memory map for synchronous memory devices may be non-continuous.

Table 13-11 shows the continuous address ranges used by a variety of different synchronous 
memory configurations. Note that in the “Continuous Address Range Per Segment” column, 
the value N can be 0x0, 0xC, 0xD, 0xE or 0xF as shown in Table 13-12.

Table 13-10. Memory Addressing Example

Muxing 
Scheme

B1 B0
AD
13

AD
12

AD
11

AD
10

AD
9

AD
8

AD
7

AD
6

AD
5

AD
4

AD
3

AD
2

AD
1

AD
0

16-Bits 
Data

ROW /
BANK

A27 A26 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9

COLUMN - - - - - AP A25 A24 A8 A7 A6 A5 A4 A3 A2 A1



 D
S

785U
M

1
13-12

C
o

p
yrig

h
t 2007 C

irru
s L

o
g

ic 

S
D

R
A

M
, S

yn
cR

O
M

, an
d

 S
yn

cF
L

A
S

H
 C

o
n

tro
ller

E
P

93xx U
ser’s G

u
id

e

131313

Table 13-11. EP93xx SDRAM Address Ranges (16-Bit Wide Data Systems)

Organization 

Device 
Size, 
Type 

System 

Address 
Matrix 

Total 
Bank 
Size 

SROMLL = 0 SROMLL = 1 

Continuous Address 
Range (see Note) 

Size of 
Segment 

Continuous Address 
Range (see Note) 

Size of 
Segment 

16-Bit Wide 
Data Systems

0xN000_0000 - 0xN01F_FFFF 

64 Mbit (16-bit 
wide device) 

12 x 8 x 4 
banks 

8 
Mbytes 

0xN400_0000 - 0xN41F_FFFF 
0xN800_0000 - 0xN81F_FFFF 

2 Mbytes 0xN000_0000 - 0xN07F_FFFF 8 Mbytes 

0xNC00_0000 - 0xNC1F_FFFF 

0xN000_0000 - 0xN01F_FFFF 

0xN100_0000 - 0xN11F_FFFF 

0xN400_0000 - 0xN41F_FFFF 

128 Mbit (16-
bit wide 
device) 

12 x 9 x 4 
banks 

16 
Mbytes 

0xN500_0000 - 0xN51F_FFFF 
0xN800_0000 - 0xN81F_FFFF 
0xN900_0000 - 0xN91F_FFFF 

2 Mbytes 
0xN000_0000 - 0xN07F_FFFF 
0xN100_0000 - 0xN17F_FFFF 

8 Mbytes 

0xNC00_0000 - 0xNC1F_FFFF 

0xND00_0000 - 0xND1F_FFFF 

0xN000_0000 - 0xN03F_FFFF 

0xN100_0000 - 0xN13F_FFFF 

0xN400_0000 - 0xN43F_FFFF 0xN000_0000 - 0xN07F_FFFF 

256 Mbit (16-
bit wide 
device) 

13 x 9 x 4 
banks 

32 
Mbytes 

0xN500_0000 - 0xN53F_FFFF 
0xN800_0000 - 0xN83F_FFFF 
0xN900_0000 - 0xN93F_FFFF 

4 Mbytes 
0xN100_0000 - 0xN17F_FFFF 
0xN400_0000 - 0xN47F_FFFF 
0xN500_0000 - 0xN57F_FFFF 

8 Mbytes 

0xNC00_0000 - 0xNC3F_FFFF 

0xND00_0000 - 0xND3F_FFFF 

0xN000_0000 - 0xN03F_FFFF 

0xN100_0000 - 0xN13F_FFFF

0xN200_0000 - 0xN23F_FFFF 



 D
S

785U
M

1
13-13

C
o

p
yrig

h
t 2007 C

irru
s L

o
g

ic 

S
D

R
A

M
, S

yn
cR

O
M

, an
d

 S
yn

cF
L

A
S

H
 C

o
n

tro
ller

E
P

93xx U
ser’s G

u
id

e

131313
16-Bit Wide 

Data Systems
(Continued)

0xN300_0000 - 0xN33F_FFFF 

0xN400_0000 - 0xN43F_FFFF 0xN000_0000 - 0xN07F_FFFF 

0xN500_0000 - 0xN53F_FFFF 0xN100_0000 - 0xN17F_FFFF 

0xN600_0000 - 0xN63F_FFFF 0xN200_0000 - 0xN27F_FFFF 

512 Mbit (16-
bit wide 
device) 

13 x 10 x 
4 banks 

64 
Mbytes 

0xN700_0000 - 0xN73F_FFFF 
0xN800_0000 - 0xN83F_FFFF 
0xN900_0000 - 0xN93F_FFFF 

4 Mbytes 
0xN300_0000 - 0xN37F_FFFF 
0xN400_0000 - 0xN47F_FFFF 
0xN500_0000 - 0xN57F_FFFF 

8 Mbytes 

0xNA00_0000 - 0xNA3F_FFFF 0xN600_0000 - 0xN67F_FFFF 

0xNB00_0000 - 0xNB3F_FFFF 0xN700_0000 - 0xN77F_FFFF 

0xNC00_0000 - 0xNC3F_FFFF 

0xND00_0000 - 0xND3F_FFFF 

0xNE00_0000 - 0xNE3F_FFFF 

0xNF00_0000 - 0xNF3F_FFFF 

Table 13-11. EP93xx SDRAM Address Ranges (16-Bit Wide Data Systems) (Continued)

Organization 

Device 
Size, 
Type 

System 

Address 
Matrix 

Total 
Bank 
Size 

SROMLL = 0 SROMLL = 1 

Continuous Address 
Range (see Note) 

Size of 
Segment 

Continuous Address 
Range (see Note) 

Size of 
Segment 



 D
S

785U
M

1
13-14

C
o

p
yrig

h
t 2007 C

irru
s L

o
g

ic 

S
D

R
A

M
, S

yn
cR

O
M

, an
d

 S
yn

cF
L

A
S

H
 C

o
n

tro
ller

E
P

93xx U
ser’s G

u
id

e

131313
32-Bit Wide 

Data Systems

64 Mbit (32-bit 
wide device) 

12 x 8 x 2 
banks 

8 
Mbytes 

0xN000_0000 - 0xN03F_FFFF 
0xN400_0000 - 0xN43F_FFFF 

4 Mbytes 0xN000_0000 - 0xN07F_FFFF 8 Mbytes 

0xN000_0000 - 0xN01F_FFFF 0xN000_0000 - 0xN01F_FFFF 

64 Mbit (32-bit 
wide device) 

11 x 8 x 4 
banks 

8 
Mbytes 

0xN400_0000 - 0xN41F_FFFF 
0xN800_0000 - 0xN81F_FFFF 

2 Mbytes 
0xN040_0000 - 0xN05F_FFFF 
0xN080_0000 - 0xN09F_FFFF 

2 Mbytes 

0xNC00_0000 - 0xNC1F_FFFF 0xN0C0_0000 - 0xN0DF_FFFF 

0xN000_0000 - 0xN03F_FFFF 

64 Mbit (2 x 
16-bit wide 

device) 

12 x 8 x 4 
banks 

16 
Mbytes 

0xN400_0000 - 0xN43F_FFFF 
0xN800_0000 - 0xN83F_FFFF 

4 Mbytes 0xN000_0000 - 0xN0FF_FFFF 16 Mbytes 

0xNC00_0000 - 0xNC3F_FFFF 

0xN000_0000 - 0xN03F_FFFF 

128 Mbit (32-
bit wide 
device) 

12 x 8 x 4 
banks 

16 
Mbytes 

0xN400_0000 - 0xN43F_FFFF 
0xN800_0000 - 0xN83F_FFFF 

4 Mbytes 0xN000_0000 - 0xN0FF_FFFF 16 Mbytes 

0xNC00_0000 - 0xNC3F_FFFF 

0xN000_0000 - 0xN03F_FFFF 

0xN100_0000 - 0xN13F_FFFF 

0xN400_0000 - 0xN43F_FFFF 

128 Mbit (2 x 
16-bit wide 

device) 

12 x 9 x 4 
banks 

32 
Mbytes 

0xN500_0000 - 0xN53F_FFFF 
0xN800_0000 - 0xN83F_FFFF 
0xN900_0000 - 0xN93F_FFFF 

4 Mbytes 0xN000_0000 - 0xN1FF_FFFF 32 Mbytes 

0xNC00_0000 - 0xNC3F_FFFF 

0xND00_0000 - 0xND3F_FFFF 

0xN000_0000 - 0xN07F_FFFF 

Table 13-11. EP93xx SDRAM Address Ranges (16-Bit Wide Data Systems) (Continued)

Organization 

Device 
Size, 
Type 

System 

Address 
Matrix 

Total 
Bank 
Size 

SROMLL = 0 SROMLL = 1 

Continuous Address 
Range (see Note) 

Size of 
Segment 

Continuous Address 
Range (see Note) 

Size of 
Segment 



 D
S

785U
M

1
13-15

C
o

p
yrig

h
t 2007 C

irru
s L

o
g

ic 

S
D

R
A

M
, S

yn
cR

O
M

, an
d

 S
yn

cF
L

A
S

H
 C

o
n

tro
ller

E
P

93xx U
ser’s G

u
id

e

131313

256 Mbit (32-
bit wide 
device) 

13 x 8 x 4 
banks 

32 
Mbytes 

0xN400_0000 - 0xN47F_FFFF 
0xN800_0000 - 0xN87F_FFFF 

8 Mbytes 
0xN000_0000 - 0xN0FF_FFFF 
0xN400_0000 - 0xN4FF_FFFF 

16 Mbytes 

0xNC00_0000 - 0xNC7F_FFFF 

0xN000_0000 - 0xN07F_FFFF 

0xN100_0000 - 0xN17F_FFFF 

0xN400_0000 - 0xN47F_FFFF

32-Bit Wide 
Data Systems

(Continued)

256 Mbit (2 x 
16-bit wide 

device) 

13 x 9 x 4 
banks 

64 
Mbytes 

0xN500_0000 - 0xN57F_FFFF 
0xN800_0000 - 0xN87F_FFFF 
0xN900_0000 - 0xN97F_FFFF 

8 Mbytes 
0xN000_0000 - 0xN1FF_FFFF 
0xN400_0000 - 0xN5FF_FFFF 

32 Mbytes 

0xNC00_0000 - 0xNC7F_FFFF 

0xND00_0000 - 0xND7F_FFFF 

0xN000_0000 - 0xN07F_FFFF 

0xN100_0000 - 0xN17F_FFFF 

0xN200_0000 - 0xN27F_FFFF 

Table 13-11. EP93xx SDRAM Address Ranges (16-Bit Wide Data Systems) (Continued)

Organization 

Device 
Size, 
Type 

System 

Address 
Matrix 

Total 
Bank 
Size 

SROMLL = 0 SROMLL = 1 

Continuous Address 
Range (see Note) 

Size of 
Segment 

Continuous Address 
Range (see Note) 

Size of 
Segment 



 D
S

785U
M

1
13-16

C
o

p
yrig

h
t 2007 C

irru
s L

o
g

ic 

S
D

R
A

M
, S

yn
cR

O
M

, an
d

 S
yn

cF
L

A
S

H
 C

o
n

tro
ller

E
P

93xx U
ser’s G

u
id

e

131313

Note: , the letter "N" represents four additional address bits used for chip select. See Table 13-12. 

32-Bit Wide 
Data Systems
(Continued)

0xN300_0000 - 0xN37F_FFFF 

0xN400_0000 - 0xN47F_FFFF 

0xN500_0000 - 0xN57F_FFFF 

0xN600_0000 - 0xN67F_FFFF 

512 Mbit (2 x 
16-bit wide 

device) 

13 x 10 x 
4 banks 

128 
Mbytes 

0xN700_0000 - 0xN77F_FFFF 
0xN800_0000 - 0xN87F_FFFF 
0xN900_0000 - 0xN97F_FFFF 

8 Mbytes 0xN000_0000 - 0xN7FF_FFFF 
128 

Mbytes 

0xNA00_0000 - 0xNA7F_FFFF 

0xNB00_0000 - 0xNB7F_FFFF 

0xNC00_0000 - 0xNC7F_FFFF 

0xND00_0000 - 0xND7F_FFFF 

0xNE00_0000 - 0xNE7F_FFFF 

0xNF00_0000 - 0xNF7F_FFFF 

Table 13-11. EP93xx SDRAM Address Ranges (16-Bit Wide Data Systems) (Continued)

Organization 

Device 
Size, 
Type 

System 

Address 
Matrix 

Total 
Bank 
Size 

SROMLL = 0 SROMLL = 1 

Continuous Address 
Range (see Note) 

Size of 
Segment 

Continuous Address 
Range (see Note) 

Size of 
Segment 



DS785UM1 13-17
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

 13.9 Registers
The Synchronous Memory controller has seven registers as shown in Table 13-13. The 
Configuration registers allow software to specify the operating parameters of the 
Synchronous Memory controller according to the memory device types being used. The 
Refresh Timer register allows software to specify the time period between successive 
synchronous memory refresh commands. The Boot Status allows software to determine the 
state of the boot configuration pins.

Table 13-12. Address Bits Used for Chip Select

Boot Option 
(ASDO) 

A31 A30 A29 A28 Chip select 

1 0 0 0 0 nSDCS3 

0 1 1 1 1 nSDCS3 

X 1 1 1 0 nSDCS2 

X 1 1 0 1 nSDCS1 

X 1 1 0 0 nSDCS0 

Table 13-13. Synchronous Memory Controller Registers

Address Name Description

0x8006_0000 Reserved

0x8006_0004 "GlConfig" Global Configuration

0x8006_0008 "RefrshTimr" Refresh Timer

0x8006_000C "BootSts" Boot Configuration Pins Status

"SDRAMDevCfg[3:0]" 
(See Below)

0x8006_0010 SDRAMDevCfg[3:0] Synchronous Device Configuration 0

0x8006_0014 SDRAMDevCfg[3:0] Synchronous Device Configuration 1

0x8006_0018 SDRAMDevCfg[3:0] Synchronous Device Configuration 2

0x8006_001C SDRAMDevCfg[3:0] Synchronous Device Configuration 3



13-18 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

Register Descriptions

GlConfig 

Address: 0x8006_0004 - Read/Write

Default: 0x0000_0000

Definition:
The Global configuration register contains general control and status bits. The 
least-significant two bits, MRS and Initialize, are used in combination as 
shown in Table  to allow access to otherwise unavailable synchronous 
memory commands that are required during memory initialization. The 
Synchronous Memory Busy Status bit, SMEMBust, provides the state of the 
Synchronous Memory controller, and it can be monitored to determine when a 
change of device configuration has taken effect.

Bit Descriptions:

RSVD: Reserved - Unknown During Read 

CKE: Synchronous memory Clock Enable - Read/Write

Writing a value to this bit specifies if the enable signal that 
is output on the SDCLKEN is asserted, or not:

0 - SDCLKEN is de-asserted to save power only when 
there is no current access to any synchronous memory 
device
1 - SDCLKEN is continuously asserted (especially useful 
when booting from SyncROM or SyncFLASH device 
types)

ClkShutdown: Synchronous memory Clock Shutdown - Read/Write

Writing a value to this bit specifies if the HCLK output on 
the SDCLK pin is free-running or gated off:

0 - SDCLK is free-running
1 - SDCLK is gated off only when there is no current 
access to any synchronous memory device 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CKE Clk
Shutdown

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD ReArb
En

LCR SMEM
Bust

RSVD MRS Initialize



DS785UM1 13-19
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

The CKE bit must be written to ‘0’ before the ClkShutdown 
bit is written to ‘1’. 

ReArbEn: Re-arbitration controller Enable - Read/Write

 Writing a ‘1’ to this bit allows the SDRAM Arbiter to stop 
the current burst accesses to the external synchronous 
memory, allow burst accesses from another requester to 
begin, and later resume the stopped burst accesses. This 
can suspend burst accesses from the Raster engine long 
enough to deprive the display from being adequately 
refreshed, and thereby cause undesired affects to appear 
on the display. So, by default, this bit is ‘0’.

Writing a ‘0’ to this bit specifies that the SDRAM Arbiter 
must wait for current burst accesses to complete before it 
allows burst accesses from another requester to begin.

LCR: Load FLASH Command Register - Read/Write

When Initialize = ‘0’ and MRS = ‘1’, writing a ‘1’ to this bit 
allows commands to be issued to the Synchronous 
FLASH device as described in “Programming Registers: 
SyncFLASH Device” on page 13-8:

0 - See Table 13-10
1 - See Table 13-10

SMEMBust: Synchronous Memory Busy Status - Read/Write

This status bit shows that the Synchronous Memory 
controller is either busy or idle:

0 - Idle
1 - Busy

When this bit is a ‘1’, writing a ‘1’ to it will clear it to ‘0’.

MRS: Synchronous Memory Mode Register - Read/Write

When Initialize = ‘0’ and LCR = ‘0’, writing a ‘1’ to this bit 
allows setup commands to be written to the Mode register 
that is inside a synchronous memory device. When this bit 
is written to a ‘1’, subsequent Read accesses to the 
synchronous device cause commands on the AD[13:0] 
pins to be written to the Mode register.

0 - See Table 13-14
1 - See Table 13-14

Initialize: Initialize bit - Read/Write



13-20 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

Writing a ‘1’ to this bit, in combination with the values of 
the MRS and LCR bits, cause the Synchronous Memory 
controller to issue either NOP or PreALL accesses to 
SDRAM devices as shown in Table 13-4. 

0 - See Table 13-14
1 - See Table 13-14

RefrshTimr

Address: 0x8006_0008 - Read/Write

Default: 0x0000_0080

Table 13-14. Synchronous Memory Command Encoding

Initialize MRS LCR Synchronous Memory Command

1 1 0 Issue NOP to Synchronous Memory

1 0 0 Issue PreALL (Pre-charge All) to SDRAM

0 1 0 Enable access to Synchronous Memory device mode register

0 1 1 Issue command to Synchronous FLASH Memory devices 

0 0 1 UNDEFINED. Do not use.

1 0 1 UNDEFINED. Do not use.

1 1 1 UNDEFINED. Do not use.

0 0 0 Normal operation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Refcnt



DS785UM1 13-21
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

Definition:
The Refresh Timer register is used to specify the period between refresh
cycles. 

Bit Descriptions:

RSVD: Reserved. - Unknown During Read 

Refcnt: Refresh Count - Read/Write

The value written to this field specifies, in multiples of the 
period of HCLK, the time period between refresh cycles. 
For example, if the period of HCLK is 20 ns, this field 
should be written to 0x320 (decimal 800) to generate a 
16 ms refresh period. On reset, this field defaults to 
0x0080 (decimal 128) to generate a 2.56 ms refresh 
period, but it must be written during the SDRAM 
initialization routine to the appropriate value for the 
SDRAM devices. If this field is written to 0x0000, no 
refresh cycles are issued.

BootSts 

Address: 0x8006_000C - Read Only

Default: 0x0000_0000

Definition:
When power on reset is asserted, the values of the boot mode option pins
shown in Table 13-1 are latched. The Boot Status register reflects those
latched values. This register can be read to determine which memory
configuration was used during the boot process. 

Bit Descriptions:

RSVD: Reserved - Unknown During Read 

ASDO: Latched ASDO pin value - Read Only

Boot Media:

1 - SyncROM or SyncFLASH
0 - Asynchronous ROM

Width: Boot memory bus Width - Read Only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD Latched 
ASDO

Width



13-22 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

Latched nCS[7:6] pins values:

Asynchronous (ASDO = ‘0’)

11 - 32-bit
10 - 32-bit
01 - 16-bit
00 - 8-bit

Synchronous  (ASDO = ‘1’)

11 - 32-bit SROM (RAS=2, CAS=5, BL=4)
10 - 32-bit SFLASH (WBM=1, CAS=3, BL=4)
01 - 16-bit SROM (RAS=2, CAS=5, BL=8)
00 - 16-bit SFLASH (WBM=1, CAS=3, BL=4)

Note: 8-bit wide bus is not supported for SyncROM or SyncFLASH.

If booting from Asynchronous ROM, asynchronous memory bank zero (nCS0) is mapped to 
address 0x0000_0000. If booting from SyncROM or SyncFLASH, Synchronous Memory 
Domain 3 (nSDCS3) is re-mapped to address 0x0000_0000. This re-mapping of nSDCS3 
does not change until after the boot process is completed and the processor is reset (not 
power-on reset). At that time, nSDCS3 is mapped back to address 0xF000_0000, the 
beginning address of Synchronous Memory Domain 3.

SDRAMDevCfg[3:0]

Address: SDRAMDevCfg0: 0x8006_0010 - Read/Write
SDRAMDevCfg1: 0x8006_0014 - Read/Write
SDRAMDevCfg2: 0x8006_0018 - Read/Write
SDRAMDevCfg3: 0x8006_001C - Read/Write

Default: 0x0122_0008

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD Auto
Precharge

RSVD RasToCas WBM CasLat

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SFConfig
Addr

2K
PAGE

SROMLL SROM512 Bank
Count

External 
Bus 

Width

RSVD



DS785UM1 13-23
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

Definition:
The four device configuration registers, SDRAMDevCfg[3:0], specify the 
characteristics of the external synchronous memory device types that are 
attached to each of the four Synchronous Memory Domains. Only one device 
type, SDRAM, SyncROM, or SyncFLASH, can be attached to a given domain, 
but the other domains can have different device types attached.

For correct operation, the values written to these configuration registers must 
correspond with the values that are programmed into the Mode register that is 
inside an SDRAM or SyncROM device.

Changes written to these configuration registers are applied only when the
Synchronous Memory controller is idle or when it becomes idle. This assures
that the Synchronous Memory controller remains synchronized to the state of
the respective synchronous memory device. To assure correct programming
results, these registers should only be written when interrupts, and DMA
operations, are disabled.

Bit Descriptions:

RSVD: Reserved - Unknown During Read 

AutoPrecharge: SDRAM Automatic Precharge - Read/Write

During SDRAM initialization, the value written to this bit 
specifies if the Synchronous Memory controller should 
issue an automatic precharge access to the SDRAM 
device, or not:

0 - No automatic precharge access
1 - Issue automatic precharge access

RasToCas: Synchronous memory RAS-to-CAS latency - Read/Write

The value written to this field specifies the RAS-to-CAS 
latency that the Synchronous Memory controller uses for 
Read or Write accesses to SDRAM or SyncROM devices:

00 - Reserved
01 - Reserved
10 - RAS Latency = 2 (also default value used when 
booting from a SyncROM device)
11 - RAS Latency = 3

When performing a Write access, the Synchronous 
Memory controller automatically adds one SDCLK cycle to 
the RasToCas value. When performing a Read access, 
the Synchronous Memory controller uses the RasToCas 
value as it is.

WBM: Write Burst Mode - Read/Write



13-24 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

When writing to a SyncFLASH device, only single writes 
(burst-of-one) are allowed. The value that is written to this 
bit specifies that a burst length of either one or four will be 
used for Write accesses:

0 - Burst-of-four accesses for both Reads and Writes
1 - Burst-of-one accesses for Writes (SyncFLASH support) 
and burst-of-four accesses for Reads 

When WBM = ‘1’, the Synchronous Memory controller will 
not issue refresh cycles to this domain. 

A single word write occurs when the ARM assembly 
instruction, ‘str’, is executed. Writing WBM = ‘1’ will not 
prevent burst-of-four writes from occurring when the ARM 
assembly instruction, ‘stm’, is executed. So, only use 
ARM assembly “str” instructions for Write accesses 
to SyncFLASH devices.

 CasLat: Synchronous memory CAS Latency - Read/Write

The value written to this field specifies the CAS latency 
that the Synchronous Memory controller uses for Read or 
Write accesses to SDRAM or SyncROM devices:

000 - Reserved
001 - CAS Latency = 2
010 - CAS Latency = 3 (also normal default)
011 - CAS Latency =4
100 - CAS Latency =5 (also default when booting from a 
SyncROM device)
101 - CAS Latency =6
110 - CAS Latency = 7
111 - CAS Latency =8

SFConfigAddr: SyncFLASH Configuration register read - Read/Write

The value written to this bit specifies either normal 
operation or that the Synchronous Memory controller is 
caused to perform a Read access to the Configuration 
register that is inside a SyncFLASH device:

0 - Normal operation
1 - Read SyncFLASH Configuration register 

The AutoPrecharge bit must be ‘0’ before the 
SFConfigAddr bit is written to ‘1’.

2KPAGE: Synchronous memory 2K byte Page - Read/Write 



DS785UM1 13-25
Copyright 2007 Cirrus Logic 

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

The value written to this bit specifies a synchronous 
memory page size of 2 KBytes, or not:

0 - Page size is not 2 KByte
1 - Page size is 2 KByte

Only one of the SROM512, SROMLL, and 2KPAGE bits 
can be ‘1’ at any time. With the exception of SROMLL, 
these bits always operate in 32-bit memory bus width 
mode regardless of the setting of External Bus Width bit.

SROMLL: SROM Look-a-Like - Read/Write

The value written to this bit specifies if a SyncFLASH 
device is operated in a manner that mimics a SycnROM 
device, or not:

0 - SyncFLASH device does not mimic SycnROM device
1 - SyncFLASH device mimics SycnROM device (16-bit 
wide memory bus only as specified by External Bus Width 
= ‘0’)

If this bit is written to ‘1’, the signals on the BA0 and BA1 
pins are exchanged with the signals on the AD12 and 
AD13 pins, respectively.

Only one of the SROM512, SROMLL, and 2KPAGE bits 
can be ‘1’ at any time. With the exception of SROMLL, 
these bits always operate in 32-bit memory bus width 
mode regardless of the setting of External Bus Width bit.

SROM512: Synchronous ROM 512 byte page - Read/Write

The value written to this bit specifies if a SyncROM device 
has a page size of 512 bytes, or not:

0 - Page size is not 512 bytes
1 - Page size is 512 bytes

Only one of the SROM512, SROMLL, and 2KPAGE bits 
can be ‘1’ at any time. With the exception of SROMLL, 
these bits always operate in 32-bit memory bus width 
mode regardless of the setting of External Bus Width bit.

BankCount: Bank Count - Read/Write 

The value written to this bit specifies the number of banks 
that are inside an SDRAM device:

1 - Four banks 
0 - Two banks

External Bus Width:External Bus Width - Read/Write



13-26 DS785UM1
 Copyright 2007 Cirrus Logic

SDRAM, SyncROM, and SyncFLASH Controller
EP93xx User’s Guide

1313

13

 The value written to this bit specifies the width of the 
memory bus: 

0 - Width is 32-bits
1 - Width is 16-bits 



DS785UM1 14-1
Copyright 2007 Cirrus Logic 

1414

14

Chapter 14

14UART1 With HDLC and Modem Control Signals

 14.1 Introduction
UART1 is the collection of a UART block along with a block to support a 9 pin modem 
interface and a block to support synchronous and asynchronous HDLC protocol support for 
full duplex transmit and receive. The following sections address each of these blocks.

 14.2 UART Overview
Transmit and Receive data transfers through UART1 can either be managed by the DMA, 
interrupt driven, or CPU polled operations. A loopback control bit is available to enable 
system testing by routing the transmit data stream into the receiver.

The UART performs:

• Serial-to-parallel conversion on data received from a peripheral device.

• Parallel-to-serial conversion on data transmitted to the peripheral device.

The CPU reads and writes data and control/status information via the AMBA APB interface. 
The transmit and receive paths are buffered with internal FIFO memories allowing up to 
16 bytes to be stored independently in both transmit and receive modes.

The UART:

• Includes a programmable baud rate generator which generates a common transmit and 
receive internal clock from the UART internal reference clock input, UARTCLK.

• Offers similar functionality to the industry-standard 16C550 UART device.

• Supports baud rates of up to 115.2 Kbps and beyond, subject to UARTCLK reference 
clock frequency.

The UART operation and baud rate values are controlled by the line control register 
(UART1LinCtrl).

The UART can generate:

• Four individually-maskable interrupts from the receive, transmit and modem status logic 
blocks.

• A single combined interrupt so that the output is asserted if any of the individual 
interrupts are asserted and unmasked.

If a framing, parity or break error occurs during reception, the appropriate error bit is set, and 
is stored in the FIFO. If an overrun condition occurs, the overrun register bit is set 
immediately and FIFO data is prevented from being overwritten. 



14-2 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

The FIFOs can be programmed to be 1 byte deep providing a conventional double-buffered 
UART interface.

The modem status input signals Clear To Send (CTS), Data Carrier Detect (DCD) and Data 
Set Ready (DSR) are supported. The additional modem status input Ring Indicator (RI) is not 
supported. Output modem control lines, such as Request To Send (RTS) and Data Terminal 
Ready (DTR), are not explicitly supported. Note that the separate modem block described 
later in this chapter does provide support for RI, RTS, and DTR. 

 14.2.1 UART Functional Description

A block diagram of the UART is shown in Figure 14-1.

 14.2.1.1 AMBA APB Interface
The AMBA APB interface generates read and write decodes for accesses to status and 
control registers and transmit and receive FIFO memories.

The AMBA APB is a local secondary bus which provides a low-power extension to the higher 
bandwidth Advanced High-performance Bus (AHB) within the AMBA system hierarchy. The 
AMBA APB groups narrow-bus peripherals to avoid loading the system bus and provides an 
interface using memory-mapped registers which are accessed under program control.

 14.2.1.2 DMA Block
The DMA interface passes data between the UART FIFOs and an external DMA engine as 
an alternative to AMBA APB accesses. (See Chapter 10,, “DMA Controller” on page 10-1 for 
additional details.) It may be configured to automatically move characters from the DMA 
engine to the transmit FIFO and from the receive FIFO to the DMA engine. The DMA engine 
may also indicate certain error conditions in the receive data to the DMA engine. Note that 
the DMA interface only supports 8-bit accesses to the FIFOs; status information in the 
receive FIFO is not passed to the DMA engine.

The UART1DMACtrl register controls the private interface between the DMA engine and the 
UART. Setting bit TXDMAE enables the transmit channel, while setting bit RXDMAE enables 
the receive channel. Setting bit DMAERR allows the UART to communicate certain error 
conditions to the DMA engine via RxEnd on the DMA channel. These conditions include 
receiving a break, a parity error, or a framing error. Note that configuration of the DMA 
channels in the DMA engine is also required for DMA operation with the UART. 

 14.2.1.3 Register Block
The register block stores data written or to be read across the AMBA APB interface.



DS785UM1 14-3
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

 Figure 14-1. UART Block Diagram

AMBA

AMBA
APB

Interface
and

Register
Block
and
DMA

Interface
UARTRXD

UARTTXD



14-4 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

 14.2.1.4 Baud Rate Generator
The baud rate generator contains free-running counters which generate the internal x16 
clocks and the Baud16 signal. Baud16 provides timing information for UART transmit and 
receive control. Baud16 is a stream of pulses with a width of one UARTCLK clock period and 
a frequency of sixteen times the baud rate. 

 14.2.1.5 Transmit FIFO
The transmit FIFO is an 8-bit wide, 16-entry deep, first-in, first-out memory buffer. CPU data 
written across the APB interface and data written across the DMA interface is stored in the 
FIFO until read out by the transmit logic. The transmit FIFO can be disabled to act as a one-
byte holding register.

 14.2.1.6 Receive FIFO
The receive FIFO is an 11 bit wide, 16-entry deep, FIFO memory buffer. Received data, and 
corresponding error bits, are stored in the receive FIFO by the receive logic until read out by 
the CPU across the APB interface or across the DMA interface. The FIFO can be disabled to 
act as a one-byte holding register.

 14.2.1.7 Transmit Logic
The transmit logic performs parallel-to-serial conversion on the data read from the transmit 
FIFO. Control logic outputs the serial bit stream beginning with a start bit, data bits, least 
significant bit (LSB) first, followed by parity bit, and then stop bits according to the 
programmed configuration in control registers.

 14.2.1.8 Receive Logic
The receive logic performs serial-to-parallel conversion on the received bit stream after a 
valid start pulse has been detected. Parity, frame error checking and line break detection are 
also performed, and the data with associated parity, framing and break error bits is written to 
the receive FIFO.

 14.2.1.9 Interrupt Generation Logic
Four individual maskable active HIGH interrupts are generated by the UART, and a combined 
interrupt output is also generated as an OR function of the individual interrupt requests.

The single combined UART interrupt (UARTINTR) is routed to the system interrupt controller. 
In addition, a separate receive FIFO interrupt UARTRXINTR and a transmit FIFO interrupt 
UARTTXINTR are routed to the system interrupt controller. (See Chapter 6,, “Vectored 
Interrupt Controller” on page 6-1 for additional details.) Separate receive and transmit FIFO 
status signals indicate to the DMA interface when there is room in the transmit FIFO for more 
data and when there is data in the receive FIFO.



DS785UM1 14-5
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

 14.2.1.10 Synchronizing Registers and Logic
The UART supports both asynchronous and synchronous operation of the clocks, PCLK and 
UARTCLK. Synchronization registers and handshaking logic have been implemented, and 
are active at all times. This has a minimal impact on performance or area. Synchronization of 
control signals is performed on both directions of data flow, that is, from the PCLK to the 
UARTCLK domain and from the UARTCLK domain to the PCLK.

 14.2.2 UART Operation

Control data is written to the UART line control register, UARTLCR. This register is 23 bits 
wide internally, but is externally accessed through the AMBA APB bus by three 8-bit wide 
register locations, UARTLCR_H, UARTLCR_M and UARTLCR.L.

UARTLCR defines the baud rate divisor and transmission parameters, word length, buffer 
mode, number of transmitted stop bits, parity mode and break generation.

The baud rate divisor is a 16-bit number used by the baud rate generator to determine the bit 
period. The baud rate generator contains a 16-bit down counter, clocked by the UART 
reference clock. When the value of the baud rate divisor has decremented to zero, the value 
of the baud rate divisor is reloaded into the down counter, and an internal clock enable signal, 
Baud16, is generated. This signal is then divided by 16 to give the transmit clock. A low 
number in the baud rate divisor gives a short bit period and vice versa.

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an 
extra three bits per character for status information.

For transmission, data is written into the transmit FIFO. This causes a data frame to start 
transmitting with the parameters indicated in UARTLCR. Data continues to be transmitted 
until there is no data left in the transmit FIFO. The BUSY signal goes HIGH as soon as data 
is written to the transmit FIFO (that is, the FIFO is non-empty) and remains asserted HIGH 
while data is being transmitted. BUSY is negated only when the transmit FIFO is empty, and 
the last character has been transmitted from the shift register, including the stop bits. BUSY 
can be asserted HIGH even though the UART may no longer be enabled.

When the receiver is idle (UARTRXD continuously 1, in the marking state) and a LOW is 
detected on the data input (a start bit has been received), the receive counter, with the clock 
enabled by Baud16, begins running and data is sampled on the eighth cycle of that counter 
(half way through a bit period).

The start bit is valid if UARTRXD is still LOW on the eighth cycle of Baud16, otherwise a false 
start bit is detected and it is ignored.

If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that 
is, one bit period later) according to the programmed length of the data characters. The parity 
bit is then checked if parity mode was enabled.

Lastly, a valid stop bit is confirmed if UARTRXD is HIGH, otherwise a framing error has 
occurred. When a full word has been received, the data is stored in the receive FIFO, with 
any error bits associated with that word (see Table 14-1).



14-6 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

 14.2.2.1 Error Bits
Three error bits are stored in bits [10:8] of the receive FIFO, and are associated with a 
particular character. See Table 14-1. There is an additional error which indicates an overrun 
error but it is not associated with a particular character in the receive FIFO. The overrun error 
is set when the FIFO is full and the next character has been completely received in the shift 
register. The data in the shift register is overwritten but it is not written into the FIFO.

 14.2.2.2 Disabling the FIFOs
Additionally, it is possible to disable the FIFOs. In this case, the transmit and receive sides of 
the UART have 1-byte holding registers (the bottom entry of the FIFOs). The overrun bit is set 
when a word has been received and the previous one was not yet read. In this 
implementation, the FIFOs are not physically disabled, but the flags are manipulated to give 
the illusion of a 1-byte register.

 14.2.2.3 System/diagnostic Loopback Testing
It is possible to perform loopback testing for UART data by setting the Loop Back Enable 
(LBE) bit to 1 in the control register UARTxCtrl (bit 7).

Data transmitted on UARTTXD output will be received on the UARTRXD input.

 14.2.2.4 UART Character Frame
The UART character frame is shown in Figure 14-2:

 Figure 14-2. UART Character Frame 

 Figure 14-3. UART Character Frame

Table 14-1. Receive FIFO Bit Functions

FIFO bit Function

10 Break error

9 Parity error

8 Framing error

7:0 Received data



DS785UM1 14-7
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

 14.2.3 Interrupts 

There are five interrupts generated by the UART. Four of these are individual maskable active 
HIGH interrupts:

• UARTMSINTR

• UARTRXINTR

• UARTRTINTR

• UARTTXINTR

The interrupts are also output as a combined single interrupt UARTINTR.

Each of the four individual maskable interrupts is enabled or disabled by changing the mask 
bits in UARTCR. Setting the appropriate mask bit HIGH enables the interrupt.

The transmit and receive dataflow interrupts UARTRXINTR and UARTTXINTR have been 
separated from the status interrupts. This allows UARTRXINTR and UARTTXINTR to be 
used in a DMA controller, so that data can be read or written in response to just the FIFO 
trigger levels. The status of the individual interrupt sources can be read from UARTIIR.

 14.2.3.1 UARTMSINTR
The modem status interrupt is asserted if any of the modem status lines (nUARTCTS, 
nUARTDCD and nUARTDSR) change. It is cleared by writing to the UART1IntIDIntClr 
register.

This interrupt is not independently connected to the system interrupt controller.

 14.2.3.2 UARTRXINTR
The receive interrupt changes state when one of the following events occurs:

If the FIFOs are enabled and the receive FIFO is half or more full (it contains eight or more 
words), then the receive interrupt is asserted HIGH. The receive interrupt is cleared by 
reading data from the receive FIFO until it becomes less than half full.

If the FIFOs are disabled (have a depth of one location) and data is received thereby filling 
the location, the receive interrupt is asserted HIGH. The receive interrupt is cleared by 
performing a single read of the receive FIFO.

This interrupt is connected to the system interrupt controller.

 14.2.3.3 UARTTXINTR
The transmit interrupt changes state when one of the following events occurs:

• If the FIFOs are enabled and the transmit FIFO is at least half empty (it has space for 
eight or more words), then the transmit interrupt is asserted HIGH. It is cleared by filling 
the transmit FIFO to more than half full.



14-8 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

• If the FIFOs are disabled (have a depth of one location) and there is no data present in 
the transmitters single location, the transmit FIFO is asserted HIGH. It is cleared by 
performing a single write to the transmitter FIFO.

The transmit interrupt UARTTXINTR is not qualified with the UART Enable signal, which 
allows operation in one of two ways. Data can be written to the transmit FIFO prior to 
enabling the UART and the interrupts. Alternatively, the UART and interrupts can be enabled 
so that data can be written to the transmit FIFO by an interrupt service routine.

This interrupt is connected to the system interrupt controller.

 14.2.3.4 UARTRTINTR
The receive timeout interrupt is asserted when the receive FIFO is not empty and no further 
data is received over a 32-bit period. The receive timeout interrupt is cleared when the FIFO 
becomes empty through reading all the data (or by reading the holding register). 

This interrupt is not independently connected to the system interrupt controller.

 14.2.3.5 UARTINTR
The interrupts are also combined into a single output which is an OR function of the individual 
masked sources. This output is connected to the system interrupt controller to provide 
another level of masking on a individual peripheral basis. The combined UART interrupt is 
asserted if any of the four individual interrupts above are asserted and enabled.

 14.3 Modem
The modem hardware adds modem control signals RTSn, DTRn, and RI. Two modem 
support registers provide a 16550 compatible modem control interface. 

 14.4 HDLC
The HDLC receiver handles framing, address matching, CRC checking, control-octet 
transparency or bit-stuffing, and optionally passes the CRC to the CPU at the end of the 
packet. The HDLC transmitter handles framing, CRC generation, and control-octet 
transparency or bit-stuffing. The CPU must assemble the frame in memory before 
transmission. The HDLC receiver and transmitter use the UART FIFOs to buffer the data 
streams.

When entering HDLC mode, always enable HDLC transmit and/or receive first by setting the 
TXE and/or RXE bit in the UART1HDLCCtrl, and then enable the UART. When leaving HDLC 
mode, disable the UART first, and then disable HDLC transmit and/or receive by clearing the 
TXE and/or RXE bit. This insures that no bytes are sent by the UART transmitter without 
proper HDLC framing, and that no bytes are received via the UART receiver without proper 
HDLC decoding. In HDLC mode, the UART should be configured to use 8-bit characters and 
no parity bit.



DS785UM1 14-9
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

 14.4.1 Overview of HDLC Modes

HDLC may operate in one of two basic modes, synchronous or asynchronous. Most 
configuration options affect both modes identically. Setting the UART1HDLCCtrl.SYNC bit 
selects synchronous mode and clearing it selects asynchronous mode. In asynchronous 
mode, each byte is transmitted using standard UART protocol framing (that is, start bit, data, 
parity, stop bit(s)). In synchronous mode, UART framing is bypassed.

The synchronous HDLC bit stream may be either a NRZ or Manchester encoded. In NRZ 
mode, both the transmitter and receiver may be synchronized to either an external or internal 
clock running at one cycle per bit period. The transmitter and receiver may operate 
independently in any of the four modes:

• Simple NRZ mode

• Manchester encoded

• NRZ mode with an internal clock

• NRZ mode with an external clock

In the first NRZ mode, the data stream does not contain an explicit or implicit clock, so 
synchronization between an HDLC transmitter and receiver cannot be guaranteed. A data bit 
value of “1” is encoded as a one in the bit stream, and a value of “0” as a zero.

The second mode, Manchester encoding, combines the HDLC data and clock into a single bit 
stream. In Manchester encoding, a transition always occurs in the middle of a transmitted bit 
and the value after this transition is the actual value of the bit. That is, a “0” bit is represented 
by a transition from high to low, and a “1” bit by a transition from low to high. Because a 
transition always occurs in the middle of a bit, the receiver can always extract the proper data 
after a suitable period of synchronization, provided the signal quality is good.

The third and fourth modes utilize NRZ encoding of the data accompanied by a separate 
clock signal. The period of the clock signal is one bit period. When using an internal clock, the 
HDLC transmitter generates a clock such that the data is stable at the clock’s rising edge. 
Hence, an external receiver may sample each data bit at the rising edge of the clock. The 
internal receiver will also use the same clock to sample input data if programmed to do so. 

The internal transmitter and/or receiver may also synchronize to an external, rather than 
internal, clock. The internal receiver gets this clock along with the incoming HDLC data, 
allowing it to always sample bits at the right time. In addition, the internal transmitter will 
synchronize the data it transmits to this clock if programmed to do so. The transmitter will 
insure that its data is valid before the rising edge of the clock, and the receiver expects the 
same of the incoming bit stream.

 14.4.2 Selecting HDLC Modes

By default, HDLC is NRZ-encoded. Set bit UART1HDLCCtrl.TXENC to force Manchester 
encoding in the transmitter, and set bit UART1HDLCCtrl.RXENC to make the receiver expect 
Manchester encoding. 



14-10 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

The receiver utilizes a digital PLL to synchronize to the incoming encoded bit stream. The 
digital PLL should always successfully lock on to an incoming data stream within two bytes 
provided that the first two bits of the first byte are either “01” or “10”. Hence, at a minimum, 
two bytes must precede the final opening flag to insure that the HDLC receiver sees the 
packet. To meet this requirement, the simplest approach is to insure that at least three 
opening flags are received if the packet is Manchester encoded. (Note that to meet this 
requirement when transmitting, field HDLC1Ctrl.FLAG should be set to 0010b.)

Three bits in various combination determine how an external or internal clock may be used 
along with NRZ data. The clock will have a period equal to the bit period of the data stream, 
and it is expected that the internal or external receiver will sample the bit at or near the rising 
edge of this clock. 

To generate an internal clock suitable for sending along with the transmitted data, set 
UART1HDLCCtrl.TXCM and UART1HDLCCtrl.CMAS. To make the receiver use the same 
internal clock, set UART1HDLCCtrl.RXCM. To make the receiver use an externally generated 
clock, clear UART1HDLCCtrl.CMAS, but set UART1HDLCCtrl.RXCM. 

To force the transmitter to use the same external clock, also set UART1HDLCCtrl.TXCM. The 
clock is either internal or external, that is, the receiver cannot use an external clock while the 
transmitter generates and sends an internal one. Refer to the documentation for the 
DeviceCfg register in Syscon for the use and routing of HDLC clocks to or from external pins 
on the device.

The internal clock is generated by the transmitter only while it is sending data or flags; the 
clock is not generated while the transmitter is idle. For this reason, another transmitter which 
expects to use this clock to at any time send its own packets cannot reliably do so. To insure 
that a clock is continuously generated, the IDLE bit in the UART1HDLCCtrl register may be 
set, which causes this transmitter to continuously send flags between packets instead of 
going idle.

Table 14-2 summarizes the legal HDLC mode configurations. 

Table 14-2. Legal HDLC Mode Configurations

UART1HDLCCtrl Bits Set
Transmit Mode Receive Mode

CMAS TXCM RXCM TXENC RXENC SYNC

- - - - - - Asynchronous NRZ Asynchronous NRZ

- - - - - 1 Synchronous NRZ Synchronous NRZ

- - - - 1 1 Synchronous NRZ Manchester

- - - 1 - 1 Manchester Synchronous NRZ

- - - 1 1 1 Manchester Manchester

- - 1 - - 1 Synchronous NRZ External clock

- - 1 1 - 1 Manchester External clock

- 1 - - - 1 External clock Synchronous NRZ

- 1 - - 1 1 External clock Manchester

1 1 - - - 1 Internal clock Synchronous NRZ



DS785UM1 14-11
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14
 14.4.3 HDLC Transmit

In normal operation, the HDLC transmitter either continuously sends flags or holds the 
transmit pin in a marking state, depending on the setting of the UART1HDLCCtrl.IDLE bit. 
When data appears in the transmit FIFO, it begins sending a packet. If in the marking state, it 
sends from 1 to 16 opening flags, as specified by the UART1HDLCCtrl.FLAG field. If already 
sending flags, it ensures that at least the specified number have been sent. It then begins 
sending the bytes in the FIFO, inserting and modifying the data depending on the HDLC 
mode. 

In asynchronous HDLC, the transmitter enforces control-octet transparency. Whenever a flag 
byte (01111110b) or an escape byte (01111101b) appears in the data, the transmitter inverts 
the fifth bit and precedes it with an escape byte. 

In synchronous HDLC, the transmitter performs bit-stuffing (except for flags). Whenever five 
consecutive “1” bits appear in the transmitted bit stream, a “0” bit is inserted, preventing six 
ones from appearing consecutively.

When the transmit FIFO under-runs, the HDLC transmitter does one of two things (depending 
on the setting of the UART1HDLCCtrl.TUS bit). If the TUS bit is zero, the transmitter first 
sends the CRC (if CRC is enabled) and then sends from 1 to 16 closing flags, as specified in 
the UART1HDLCCtrl.FLAG field, terminating the packet. 

If TUS is one, the transmitter aborts the packet. In synchronous HDLC, it sends a byte of all 
ones (since seven consecutive ones signifies an abort), following by at least one closing flag. 
In asynchronous HDLC, it sends an escape and then at least one closing flag. The number of 
closing flags is from 1 to 16, as specified in the UART1HDLCCtrl.FLAG field. 

When a packet ends, the UART1HDLCSts.TFC bit is set, and if UART1HDLCCtrl.TFCEN is 
set, an interrupt is generated. When a packet is aborted, the UART1HDLCCtrl.TAB bit is set, 
also generating an interrupt if UART1HDLCCtrl.TABEN is set. 

 14.4.4 HDLC Receive

The HDLC receiver continuously reads bytes from the UART receiver until it finds a flag 
followed by a byte other than a flag. Then, if in asynchronous mode, it processes the 
incoming bytes (including the first after the flag), reversing control-octet transparency, or, if in 
synchronous mode, it reverses bit-stuffing. Processed bytes are placed in the receive FIFO. 
When programmed to receive a Manchester encoded bit stream, UART1HDLCSts.PLLCS 
indicates whether the DPLL in the receiver has locked on to the carrier.

1 1 - - 1 1 Internal clock Manchester

- 1 1 - - 1 External clock External clock

1 1 1 - - 1 Internal clock Internal clock

Table 14-2. Legal HDLC Mode Configurations (Continued)

UART1HDLCCtrl Bits Set
Transmit Mode Receive Mode

CMAS TXCM RXCM TXENC RXENC SYNC



14-12 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

When the last byte of data for a packet is read from the receive FIFO, the HDLC logic sets a 
number of bits in the UART1HDLCSts depending on the state of the system and the way the 
packet was terminated. In all cases, the RFC bit and EOF bit are set. If the receive FIFO 
overflowed while the packet was being received, the ROR bit is also set. If CRC is enabled 
and the received CRC does not match the calculated one, the CRE bit is set. The RFC bit is 
set and, if UART1HDLCCtrl.RFCEN is set, an interrupt is generated. If the packet was 
aborted, the RAB bit is set, and an interrupt generated if the UART1HDLCCtrl.RABEN bit is 
set. If using Manchester encoding and the packet was aborted due to losing synchronization 
with the encoded clock, the UART1HDLCCtrl.PLLE bit is set.

Besides setting bits in the UART1HDLCSts and possibly causing interrupts, reading the last 
byte of a packet also loads the UART1HDLCRXInfoBuf register with data describing the 
packet. BRAB, BCRE, BROR, and BPLLE are copied from RAB, CRE, ROR, and PLLE in the 
UART1HDLCSts. BFRE is copied from the FE bit in the UART1RXSts. BC is set to the 
number of bytes in the packet that were read from the FIFO. Whenever this register is written 
by the receiver and has not been read since previously it was previously written, the 
UART1HDLCSts.RIL bit is set, and, if UART1HDLCSts.RILEN is set, an interrupt is 
generated.

If a new packet is received and the first byte of that packet cannot be written into the receive 
FIFO because it has overflowed, the UART1HDLCSts.RFL bit is set and the packet is 
discarded. An interrupt is generated if the UART1HDLCCtrl.RFLEN bit is also set.

 14.4.5 CRCs

Several bits in the UART1HDLCCtrl determine how CRCs are generated by the transmitter 
and processed by the receiver. By setting the CRCE bit, the HDLC transmitter will calculate 
and append a CRC to each packet. The CRC may be either 16-bit or 32-bit, depending on the 
CRCS bit. Furthermore, it will be inverted prior to transmission if the CRCN bit is set. If CRCs 
are enabled, the receiver will expect the same type of CRC that the transmitter sends. It will 
automatically calculate the CRC for the received packet in the fly, and if the calculated CRC 
does not match the received one, the UART1RXSts.CRE bit will be set when the last byte of 
the received packet is read from the UART1Data. The receiver does not pass the CRC to the 
CPU unless the CRCApd bit is set.

 14.4.6 Address Matching

When address matching is enabled, the HDLC receiver will ignore any packet whose address 
does not match the programmed configuration. Address matching is enabled and address 
size specified by the UART1HDLCCtrl.AME bits. The UART1HDLCAddMtchVal specifies the 
addresses that are compared while the UART1HDLCAddMask controls which bits in each 
address are compared If one-byte addressing is used, each byte in UART1HDLCAddMtchVal 
specifies an address to match, while the corresponding byte in UART1HDLCAddMask 
specifies which bits of each address must match. If two-byte addressing is used, each half-
word in UART1HDLCAddMtchVal specifies an address to match and the corresponding half-
word in UART1HDLCAddMask specifies which bits of each address to match. Hence, up to 
four different one-byte addresses and two different two-byte addresses may be specified. An 



DS785UM1 14-13
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

incoming address consisting entirely of “1”s, that is, 0xFF or 0xFFFF, will always match, as it 
is expected to be the broadcast address. For packets whose addresses do not match, the 
HDLC receiver will generate no interrupts, modify no status bits, and place no data in the 
receive FIFO.

 14.4.7 Aborts

If a packet is aborted or is too short, or if using Manchester encoding and the receiver DPLL 
loses the carrier signal, the CPU will see at least some part of the packet in the receive FIFO. 
In all cases, reading the last byte of the packet from the receive FIFO will set the EOF and 
RAB bits in the UART1HDLCSts (and possibly generate an interrupt). In the case of an abort 
indicated by an HDLC transmitter, that is, an escape-closing flag sequence in asynchronous 
mode or an all “1”s byte in synchronous mode, all bytes received in the frame will appear in 
the receive FIFO. 

In asynchronous mode, if the abort is caused by a framing error (a missing stop bit), all bytes 
up to and including the misframed byte will appear in the receive FIFO. Reading the last byte 
will also set the UART1HDLCSts.FRE bit. 

In synchronous mode, if the abort is caused by a misaligned flag or a series of seven 
consecutive “1”s, all bytes except the one containing the bit after the sixth “1” will appear in 
the receive FIFO. If the abort is caused by the receiver DPLL losing synchronization with a 
Manchester encoded bit stream, the UART1HDLCSts.DPLLE bit is set. 

Finally, if the packet is too short, that is, there are not enough received bytes to hold the 
specified number of address and CRC bytes, the entire packet will appear in the receive 
FIFO. In all cases, the packet is illegal and will be ignored by the CPU.

Table 14-3. HDLC Receive Address Matching Modes

AME
Match

Function
Address Match Test

00 No matching

01 One byte address

NOT((AMV[31:24] XOR ADDR) AND AMSK[31:24]) OR
NOT((AMV[23:16] XOR ADDR) AND AMSK[23:16]) OR
NOT((AMV[15:8] XOR ADDR) AND AMSK[15:8]) OR
NOT((AMV[7:0] XOR ADDR) AND AMSK[7:0]) OR
ADDR = 0xFF

10 Two byte address
NOT((AMV[31:16] XOR ADDR) AND AMSK[31:16]) OR
NOT((AMV[15:0] XOR ADDR) AND AMSK[15:0]) OR
ADDR = 0xFFFF

11 Undefined



14-14 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

 14.4.8 DMA 

The DMA engine may be used with the UART when transmitting and receiving HDLC 
packets. The transmit and receive channels may operate completely independently. 

When receiving data in HDLC mode, the DMA channel reads the packet data byte by byte 
from the RX FIFO. When it reads the final byte, the HDLC RFC interrupt will occur if enabled. 
However, the DMA channel, which buffers the data, may not write all of the data to memory. 
To insure that the DMA channel dumps the data, the interrupt handling routine must do the 
following: 

1. Note the values in the MAXCNTx and REMAIN registers for the DMA channel. The 
difference is the number of bytes read from the UART, which is the size of the HDLC 
packet. Call this difference N. Note that the BC field of the UART1HDLCRXInfoBuf 
register should also be N. 

2. Temporarily disable the UART DMA RX interface by clearing the RXDMAE bit in the 
UART1DMACtrl register. 

3. Wait until the difference between the CURRENTx and BASEx registers in the DMA 
channel is equal to N + 1. 

An extra byte will be read from the UART by the DMA channel. It should be ignored. 

Note that if the DMAERR bit in the UART1DMACtrl register is set and the HDLC receiver is in 
asynchronous mode, if the receiver sees a break, parity, or framing error, it will indicate an 
error condition via RxEnd on the DMA channel. 

 14.4.9 Writing Configuration Registers

It is assumed that various configuration registers for the UART/HDLC are not written more 
than once in quick succession, in order to insure proper synchronization of configuration 
information across the implementation. Such registers include UART1Ctrl and 
UART1LinCtrlHigh as well as UART1HDLCCtrl, UART1HDLCAddMtchVal, 
UART1HDLCAddMask. These registers should not change often in typical use.

The simplest way to fulfill this requirement with respect to writing the UART1Ctrl and 
UART1HDLCCtrl registers is to insure that the HDLC transmitter is enabled before the UART 
transmit logic. This will ensure that the UART does not transmit incorrect characters or 
unexpectedly transmit characters with UART framing, 

First the UART1HDLCCtrl register should be written, setting the TXE bit. Then the UART1Ctrl 
register should be written, setting the UARTE bit. In between the two writes, at least two 
UARTCLK periods must occur. Under worst case conditions, at least 55 HCLK periods must 
separate the two writes. The simplest way to due this is separate the two writes by 55 NOPs.

 14.5 UART1 Package Dependency
UART1 uses package pins RXD0, TXD0, CTSn, DSRn, DTRn, RTSn, EGPIO[3], and 
EGPIO[0], which are described in Table 14-4.



DS785UM1 14-15
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

The use of EGPIO[3] is determined by several bits in Syscon register DeviceCfg. See 
Table 14-5.

 14.5.1 Clocking Requirements

There are two clocks, PCLK and UARTCLK.

UARTCLK frequency must accommodate the desired range of baud rates:

The frequency of UARTCLK must also be within the required error limits for all baud rates to 
be used.

To allow sufficient time to write the received data to the receive FIFO, UARTCLK must be less 
than or equal to four times the frequency of PCLK:

Table 14-4. UART1 Pin Functionality 

PIN Description

RXD0 UART1 input pin

TXD0 UART1 output pin

CTSn Modem input: Clear To Send

DSRn Modem input: Data Set Ready (also used for DCDn Data Carrier Detect)

EGPIO[0]
Modem input RIn: Ring Indicator if Syscon register DeviceCfg[25] MODonGPIO is set. 
Otherwise, RIn is driven low.

DTRn Modem output Data Terminal Ready if Syscon register TESTCR[27] RTConGPIO is clear. 

RTSn Modem output: Ready To Send

EGPIO[3] HDLC clock

Table 14-5. DeviceCfg Register Bit Functions

bit 14
HC3EN

bit 13
HC1IN

bit 12
HC1EN

Function

x 0 x External HDLC clock input is driven low.

0 1 1 External HDLC clock input is driven by EGPIO[3].

0 0 1 Internal HDLC clock output drives EGPIO[3].

FUARTCLKMIN
32 baudrateMAX×≥

FUARTCLKMAX
32 65536 b× audrateMIN×≤

FUARTCLK 4 FPCLK×≤



14-16 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

 14.5.2 Bus Bandwidth Requirements

There are two basic ways of moving data to and from the UART FIFOs:

• Direct DMA interface - This permits byte-wide access to the UART without using the 
APB. The DMA block will pack or unpack individual bytes so that it reads or writes full 
32-bit words rather than individual bytes.

• Accessing the UART via the APB - This requires APB/AHB bus bandwidth. Then, both a 
read and write are required for each 8-bit data byte.

Bandwidth requirements also depend on the selected baud rate, character size, parity 
selection, number of stop bits, and spacing between characters (if receiving).

For example, assume transmission protocols of 115,200 baud, 8-bit characters, even parity, 
one stop bit, no space between characters. There are 11 bits per character, so 
115,200 / 11 = 10,473 characters per second. If both transmitting and receiving, 20,945 
characters per second pass through the UART. Accessing the UART through the DMA 
interface requires one access per 32-bits, implying only 20,945 / 4 = 5,236 AHB accesses per 
second. Accessing the UART through the APB requires two accesses per byte, implying 
20,945 APB bus accesses.

As another example, assume 230,400 baud (the maximum with a UARTCLK equal to 
7.3728 Mhz), 5-bit characters, no parity, one stop bit, and no space between characters. 
There are 7 bits per character, so 230,400 / 7 = 32,914 characters per second. Simultaneous 
transmitting and receiving implies 65,829 characters per second. Using the DMA interface 
would result in 16,457 AHB accesses per second, while using the APB to access the UART 
leads to 65,829 bus accesses per second. 



DS785UM1 14-17
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

14.1 Registers

UART Register Descriptions

UART1Data 

Address:
0x808C_0000 - Read/Write

Default:
0x0000_0000

Definition:
UART Data Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DATA: UART Data: read for receive data, write for transmit data

For words to be transmitted:

• • if the FIFOs are enabled, data written to this location is pushed onto the transmit 
FIFO
• if the FIFOs are not enabled, data is stored in the transmitter holding register (the 
bottom word of the transmit FIFO). The write operation initiates transmission from 
the UART. The data is prefixed with a start bit, appended with the appropriate parity 
bit (if parity is enabled), and a stop bit. The resultant word is then transmitted.

For received words:
• if the FIFOs are enabled, the data byte is extracted, and a 3-bit status (break, frame 
and parity) is pushed onto the 11-bit wide receive FIFO
• if the FIFOs are not enabled, the data byte and status are stored in the receiving 
holding register (the bottom word of the receive FIFO).

The received data byte is read by performing reads from the UART1Data register 
while the corresponding status information can be read by a successive read of the 
UART1RXSts register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DATA



14-18 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

UART1RXSts 

Address:
0x808C_0004 - Read/Write

Default:
0x0000_0000

Definition:
UART1 Receive Status Register/Error Clear Register. Provides receive status 
of the data value last read from the UART1Data. A write to this register clears 
the framing, parity, break and overrun errors. The data value is not important.
Note that BE, PE and FE are not used for synchronous HDLC.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

OE: Overrun Error. This bit is set to “1” if data is received and 
the FIFO is already full. This bit is cleared to “0” by a write 
to UART1RXSts. The FIFO contents remain valid since no 
further data is written when the FIFO is full. Only the 
contents of the shift register are overwritten. The data 
must be read in order to empty the FIFO.

BE: Break Error. This bit is set to 1 if a break condition was 
detected, indicating that the received data input was held 
LOW for longer than a full-word transmission time (defined 
as start, data, parity and stop bits). This bit is cleared to 0 
after a write to UART1RXSts. In FIFO mode, this error is 
associated with the character at the top of the FIFO. When 
a break occurs, only one 0 character is loaded into the 
FIFO. The next character is only enabled after the receive 
data input goes to a 1 (marking state) and the next valid 
start bit is received.

PE: Parity Error. When this bit is set to 1, it indicates that the 
parity of the received data character does not match the 
parity selected in UART1LinCtrlHigh (bit 2). This bit is 
cleared to 0 by a write to UART1RXSts. In FIFO mode, 
this error is associated with the character at the top of the 
FIFO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD OE BE PE FE



DS785UM1 14-19
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

FE: Framing Error. When this bit is set to 1, it indicates that the 
received character did not have a valid stop bit (a valid 
stop bit is “1”). This bit is cleared to 0 by a write to 
UART1RXSts. In FIFO mode, this error is associated with 
the character at the top of the FIFO.

UART1LinCtrlHigh 

Address:
0x808C_0008 - Read/Write

Default:
0x0000_0000

Definition:

UART1 Line Control Register High. UART1LinCtrlHigh, UART1LinCtrlMid and 
UART1LinCtrlLow form a single 23-bit wide register (UART1LinCtrl) which is updated on a 
single write strobe generated by an UART1LinCtrlHigh write. In order to internally update the 
contents of UART1LinCtrlMid or UART1LinCtrlLow, a UART1LinCtrlHigh write must always 
be performed at the end. 

To update the three registers there are two possible sequences:

• UART1LinCtrlLow write, UART1LinCtrlMid write and UART1LinCtrlHigh write

• UART1LinCtrlMid write, UART1LinCtrlLow write and UART1LinCtrlHigh write.

To update UART1LinCtrlLow or UART1LinCtrlMid only:

• UART1LinCtrlLow write (or UART1LinCtrlMid write) and UART1LinCtrlHigh write.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

WLEN: Number of bits per frame: 
11 = 8 bits
10 = 7 bits 
01 = 6 bits
00 = 5 bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WLEN FEN STP2 EPS PEN BRK



14-20 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

FEN: FIFO Enable.
1 - Transmit and receive FIFO buffers are enabled (FIFO 
mode). 
0 - The FIFOs are disabled (character mode) that is, the 
FIFOs become 1-byte-deep holding registers.

STP2: Two Stop Bits Select.
1 - Two stop bits are transmitted at the end of the frame. 
0 - One stop bit is transmitted at the end of the frame. 
The receive logic does not check for two stop bits being 
received.

EPS: Even Parity Select.
1 - Even parity generation and checking is performed 
during transmission and reception, which checks for an 
even number of “1”s in data and parity bits. 
0 - Odd parity checking is performed, which checks for an 
odd number of “1”s. 
This bit has no effect when parity is disabled by Parity 
Enable (bit 1) being cleared to 0.

PEN: Parity Enable.
1 - Parity checking and generation is enabled, 
0 - Parity checking and generation is disabled and no 
parity bit is added to the data frame.

BRK: Send Break. 
1 - A low level is continually output on the UARTTXD 
output, after completing transmission of the current 
character. This bit must be asserted for at least one 
complete frame transmission time in order to generate a 
break condition. The transmit FIFO contents remain 
unaffected during a break condition. 
0 - For normal use, this bit must be cleared.

UART1LinCtrlMid

Address:
0x808C_000C - Read/Write

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BR



DS785UM1 14-21
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

Definition:
UART Line Control Register Middle.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

BR: Baud Rate Divisor bits [15:8]. Most significant byte of baud 
rate divisor. These bits are cleared to 0 on reset.

UART1LinCtrlLow 

Address:
0x808C_0010 - Read/Write

Default:
0x0000_0000

Definition:
UART Line Control Register Low.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

BR: Baud Rate Divisor bits [7:0]. Least significant byte of baud 
rate divisor. These bits are cleared to 0 on reset. The baud 
rate divisor is calculated as follows:

Baud rate divisor 
BAUDDIV = (FUARTCLK / 16 * Baud rate)) – 1

where FUARTCLK is the UART reference clock frequency. A 
baud rate divisor of zero is not allowed and will result in no 
data transfer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BR



14-22 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

UART1Ctrl 

Address:
0x808C_0014 - Read/Write

Default:
0x0000_0000

Definition:
UART1 Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

LBE: Loopback Enable. If this bit is set to 1, data sent to TXD is 
received on RXD. This bit is cleared to 0 on reset, which 
disables the loopback mode.

RTIE: Receive Timeout Enable. If this bit is set to 1, the receive 
timeout interrupt is enabled.

TIE: Transmit Interrupt Enable. If this bit is set to 1, the transmit 
interrupt is enabled.

RIE: Receive Interrupt Enable. If this bit is set to 1, the receive 
interrupt is enabled.

MSIE: Modem Status Interrupt Enable. If this bit is set to 1, the 
modem status interrupt is enabled.

UARTE: UART Enable. If this bit is set to 1, the UART is enabled. 
Data transmission and reception occurs for UART signals. 

UART1Flag 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LBE RTIE TIE RIE MSIE RSVD UARTE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TXFE RXFF TXFF RXFE BUSY DCD DSR CTS



DS785UM1 14-23
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

Address:
0x808C_0018 - Read Only

Default:
0x0000_0000

Definition:
UART Flag Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

TXFE: Transmit FIFO Empty. The meaning of this bit depends on 
the state of the FEN bit in the UART1LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the transmit 
holding register is empty. If the FIFO is enabled, the TXFE 
bit is set when the transmit FIFO is empty.

RXFF: Receive FIFO Full. The meaning of this bit depends on the 
state of the FEN bit in the UART1LinCtrlHigh register. If 
the FIFO is disabled, this bit is set when the receive 
holding register is full. If the FIFO is enabled, the RXFF bit 
is set when the receive FIFO is full.

TXFF: Transmit FIFO Full. The meaning of this bit depends on 
the state of the FEN bit in the UART1LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the transmit 
holding register is full. If the FIFO is enabled, the TXFF bit 
is set when the transmit FIFO is full.

RXFE: Receive FIFO Empty. The meaning of this bit depends on 
the state of the FEN bit in the UART1LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the receive 
holding register is empty. If the FIFO is enabled, the RXFE 
bit is set when the receive FIFO is empty.

BUSY: UART Busy. If this bit is set to 1, the UART is busy 
transmitting data. This bit remains set until the complete 
byte, including all the stop bits, has been sent from the 
shift register. This bit is set as soon as the transmit FIFO 
becomes non-empty (regardless of whether the UART is 
enabled or not).

DCD: Data Carrier Detect status. This bit is the complement of 
the UART data carrier detect (nUARTDCD) modem status 
input. That is, the bit is 1 when the modem status input is 
0.

DSR: Data Set Ready status. This bit is the complement of the 
UART data set ready (nUARTDSR) modem status input. 
That is, the bit is 1 when the modem status input is 0.



14-24 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

CTS: Clear To Send status. This bit is the complement of the 
UART clear to send (nUARTCTS) modem status input. 
That is, the bit is 1 when the modem status input is 0.

UART1IntIDIntClr 

Address:
0x808C_001C - Read/Write

Default:
0x0000_0000

Definition:
UART Interrupt Identification and Interrupt Clear Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RTIS: Receive Timeout Interrupt Status. This bit is set to 1 if the 
UARTRTINTR receive timeout interrupt is asserted. This 
bit is cleared when the receive FIFO is empty or the 
receive line goes active.

TIS: Transmit Interrupt Status.
1 - The UARTTXINTR transmit interrupt is asserted, which 
occurs when the transmit FIFO is not full.
0 - The transmit FIFO is full.

RIS: Receive Interrupt Status.
1 - The UARTRXINTR receive interrupt is asserted, which 
occurs when the receive FIFO is not empty.
0 - The receive FIFO is empty.

MIS: Modem Interrupt Status. This bit is set to 1 if the 
UARTMSINTR modem status interrupt is asserted. This 
bit is cleared by writing any value to this register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RTIS TIS RIS MIS



DS785UM1 14-25
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

UART1DMACtrl 

Address:
0x808C_0028 - Read/Write

Default:
0x0000_0000

Definition:
UART DMA Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DMAERR: RX DMA error handing enable. If 0, the RX DMA interface 
ignores error conditions in the UART receive section. If 1, 
the DMA interface stops and notifies the DMA block when 
an error occurs. Errors include break errors, parity errors, 
and framing errors.

TXDMAE: TX DMA interface enable. Setting to 1 enables the private 
DMA interface to the transmit FIFO.

RXDMAE: RX DMA interface enable. Setting to 1 enables the private 
DMA interface to the receive FIFO.

Modem Register Descriptions

UART1ModemCtrl 

Address:
0x808C_0100 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DMAERR TXDMAE RXDMAE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD 0 0 0 LOOP OUT2 OUT1 RTS DTR



14-26 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

Default:
0x0000_0000

Definition:
Modem Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

0: Must be written as “0”.

LOOP: Activate internal modem control loopback function. This 
internal loopback only affects the hardware handshake 
signals. Use the UART1Ctrl LBE bit to loopback the serial 
data.
When high, modem control outputs RTSn and DTRn are 
forced high (inactive), and modem control inputs are 
driven by outputs:
DSR = DTR
CTS = RTS
RI2 = OUT1
DCD = OUT2

OUT2: OUT2 function. Used for internal loopback.

OUT1: OUT1 function. Used for internal loopback.

RTS: RTS output signal: 
1 - RTSn pin low 
0 - RTSn pin high

DTR: DTR output signal: 
1 - DTRn pin low 
0 - DTRn pin high

UART1ModemSts 

Address:
0x808C_0104 - Read Only

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DCD RI DSR CTS DDCD TERI DDSR DCTS



DS785UM1 14-27
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

Definition:
Modem Status Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DCD: Inverse of DCDn input pin. Note that this is identical to the 
DSR device pin.

RI: Inverse of RI input pin.

DSR: Inverse of the DSRn pin. Note that this is identical to the 
DCD device pin

CTS: Inverse CTSn input pin.

DDCD: Delta DCD - DCDn pin changed state since last read.

TERI: Trailing Edge Ring Indicator. RI input pin has changed 
from low to high.

DDSR: Delta DSR - DSRn pin has changed state since last read.

DCTS: Delta CTS - CTSn pin has changed state since last read.

HDLC Register Descriptions

UART1HDLCCtrl 

Address:
0x808C_020C - Read/Write

Default:
0x0000_0000

Definition:
HDLC Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD CMAS TXCM RXCM TXENC RXENC SYNC TFCEN TABEN RFCEN RILEN RFLEN RTOEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLAG CRCN CRCApd IDLE AME IDLSpc CRCZ RXE TXE TUS CRCE CRCS



14-28 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

CMAS: Clock Master: 
1 - Transmitter and/or receiver use 1x clock generated by 
the internal transmitter. 
0 - Transmitter and/or receiver use 1x clock generated 
externally.

TXCM: Transmit Clock Mode. 
1 - Generate 1x clock when in synchronous HDLC mode 
using NRZ encoding. 
0 - Do not generate clock. 
This bit has no effect unless TXENC is clear and 
synchronous HDLC is enabled.

RXCM: Receive Clock Mode. 
1 - Use external 1x clock when in synchronous HDLC 
mode using NRZ encoding. 
0 - Do not use external clock. 
This bit has no effect unless RXENC is clear and 
synchronous HDLC is enabled.

TXENC: Transmit Encoding method. 
1 - Use Manchester bit encoding. 
0 - Use NRZ bit encoding. 
This bit has no effect unless synchronous HDLC is 
enabled

RXENC: Receive Encoding method. 
1 - Use Manchester bit encoding. 
0 - Use NRZ bit encoding. 
This bit has no effect unless synchronous HDLC is 
enabled.

SYNC: Synchronous / Asynchronous HDLC Enable.
0 - Select asynchronous HDLC for TX and RX.
1 - Select synchronous HDLC for TX and RX.

TFCEN: Transmit Frame Complete Interrupt Enable.
0 - TFC interrupt will not occur.
1 - TFC interrupt will occur whenever TFC bit is set.

TABEN: Transmit Frame Abort Interrupt Enable.
0 - TAB interrupt will not occur.
1 - TAB interrupt will occur whenever TAB bit is set.

RFCEN: Receive Frame Complete Interrupt Enable.
0 - RFC interrupt will not occur.
1 - RFC interrupt will occur whenever RAB bit or EOF bit is 
set.



DS785UM1 14-29
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

RILEN: Receive Information Lost Interrupt Enable.
0 - RIL interrupt will not occur.
1 - RIL interrupt will occur whenever RIL bit is set.

RFLEN: Receive Frame Lost Interrupt Enable.
0 - RFL interrupt will not occur.
1 - RFL interrupt will occur whenever RFL bit is set.

RTOEN: Receiver Time Out Interrupt Enable.
0 - RTO interrupt will not occur.
1 - RTO interrupt will occur whenever RTO bit is set.

FLAG: Minimum number of opening and closing flags for HDLC 
TX. The minimum number of flags between packets is this 
4-bit value plus one. Hence, 0000b forces at least one 
opening flag and one closing flag for each packet, and 
1111b forces at least 16 opening and closing flags. The 
closing flags of one packet may also be the opening flags 
of the next one if the transmit line does not go idle in 
between. Note that HDLC RX does not count flags; only 
one is necessary (or three in Manchester mode).

CRCN: CRC polarity control.
0 - CRC transmitted not inverted.
1 - CRC transmitted inverted.

CRCApd: CRC pass through.
0 - Do not pass received CRC to CPU.
1 - Pass received CRC to CPU.

IDLE: Idle mode.
0 - Idle-in Mark mode - When HDLC is idle (not 
transmitting starting/stop flags or packets), hold the 
transmit data pin high.
1 - Idle-in Flag mode - When HDLC is idle, transmit 
continuous flags.

AME: Address Match Enable. Activates address matching on 
received frames.
00 - No address matching
01 - 4 x 1 byte matching
10 - 2 x 2 byte matching
11 - Undefined, no matching

IDLSpc: Idle in space
0 - TX idle in mark (normal)
1 - TX idle in space
RX will receive Manchester encoded data whether it idles 
in mark or space.



14-30 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

CRCZ: CRC zero seed
0 - Seed CRC calculations with all ones; that is, 0xFFFF 
for 16 bit words and 0xFFFF_FFFF for 32 bit words.
1 - Seed CRC calculations with all zeros.
Applies to both RX and TX.

RXE: HDLC Receive Enable.
0 - Disable HDLC RX. If UART is still enabled, UART may 
still receive normally.
1 - Enable HDLC RX.

TXE: HDLC Transmit Enable.
0 - Disable HDLC TX. If UART is still enabled, UART may 
still transmit normally.
1 - Enable HDLC TX.

TUS: Transmit FIFO Underrun Select
0 - TX FIFO underrun causes CRC (if enabled) and stop 
flag to be transmitted.
1 - TX FIFO underrun causes abort (escape-flag) to be 
transmitted.

CRCE: CRC enable.
0 - No CRC is generated by TX or expected by RX.
1 - HDLC TX automatically generates and sends a CRC at 
the end of a packet, and HDLC RX expects a CRC at the 
end of a packet.

CRCS: CRC size.

0 - CRC-CCITT (16 bits): x16 + x12 + x5 + 1

1 - CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + 

x8 + x7 + x5 + x4 + x2 + x + 1
If inverted (see CRCN bit) the CRC-16 check value is 
0x1D0F and the CRC-32 check value is 0xC704_DD7B. 
Otherwise the check value is zero.

UART1HDLCAddMtchVal

Address:
0x808C_0210 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AMV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMV



DS785UM1 14-31
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

Default:
0x0000_0000

Definition:
HDLC Address Match Value

Bit Descriptions:

AMV: Address match value. Supports 8-bit and 16-bit address 
matching. If UART1HDLCCtrl.AME[1:0] is 00b or 11b, this 
register is not used.

UART1HDLCAddMask 

Address:
0x808C_0214 - Read/Write

Default:
0x0000_0000

Definition:
HDLC Address Mask

Bit Descriptions:

AMSK: Address mask value. Supports 8-bit and 16-bit address 
masking. If UART1HDLCCtrl.AME[1:0] is 00b or 11b, this 
register is not used.

UART1HDLCRXInfoBuf 

Address:
0x808C_0218 - Read Only

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AMSK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMSK

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD BPLLE RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BC BFRE BROR BCRE BRAB



14-32 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

Definition:
HDLC Receive Information Buffer Register. This register is loaded when the 
last data byte in a received frame is read from the receive FIFO. The CPU has 
until the end of the next frame to read this register, or the RIL bit in the HDLC 
Status Register is set.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

BPLLE: Buffered Digital PLL Error. 
1 - Receiver aborted last frame because DPLL lost the 
carrier. 
0 - Receiver did not abort because DPLL lost the carrier. 
This bit is only valid when receiving Manchester-encoded 
synchronous HDLC.

BC: Received frame Byte Count.
The total number of valid bytes read from the RX FIFO 
during the last HDLC frame.

BFRE: Buffered Framing Error.
0 - No framing errors were encountered in the last frame.
1 - A framing error occurred during the last frame, causing 
the remainder of the frame to be discarded.

BROR: Buffered Receiver Over Run.
0 - The RX buffer did not overrun during the last frame.
1 - The receive FIFO did overrun during the last frame. 
The remainder of the frame was discarded.

BCRE: Buffered CRC Error.
0 - No CRC check errors occurred in the last frame.
1 - The CRC calculated on the incoming data did not 
match the CRC value contained in the last frame.

BRAB: Buffered Receiver Abort.
0 - No abort occurred in the last frame.
1 - The last frame was aborted.

UART1HDLCSts 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD PLLE PLLCC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LNKIDL CRE ROR TBY RIF RSVD RAB RTO EOF RFL RIL RFC RFS TAB TFC TFS



DS785UM1 14-33
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

Address:
0x808C_021C - Read/Write

Default:
0x0000_0000

Definition:
HDLC Status Register. The TFS and RFS bits in this register are replicas of 
bits in the UART status register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PLLE: Digital PLL Error. (Read Only)
1 - A frame receive was aborted because the DPLL lost 
synchronization with the carrier. 
0 - DPLL has not lost carrier during frame reception. 
This bit is only valid when set up to receive Manchester-
encoded synchronous HDLC.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.

PLLCC: Digital PLL Carrier Sense. (Read Only) 
1 - DPLL tacked onto a carrier. 
0 - DPLL does not sense a carrier.

LNKIDL: Link Idle. (Read Only)
0 - RX data signal has changed within two bit periods
1 - RX data signal has not changed within two bit periods. 
This bit is only valid when set up to receive Manchester-
encoded synchronous HDLC.

CRE: CRC Error. (Read Only)
0 - No CRC check errors encountered in incoming frame.
1 - CRC calculated on the incoming data does not match 
CRC value contained within the received frame. This bit is 
set with the last data in the incoming frame along with 
EOF.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.

ROR: Receive FIFO Overrun. (Read Only)
0 - RX FIFO has not overrun.
1 - RX logic attempted to place data in the RX FIFO while 
it was full. The most recently read data is the last valid 
data before the overrun. The rest of the incoming frame is 
dropped. EOF is also set.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.



14-34 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

TBY: Transmitter Busy. (Read Only)
0 - TX is idle, disabled, or transmitting an abort.
1 - TX is currently sending a frame (address, control, data, 
CRC or start/stop flag).

RIF: Receiver In Frame. (Read Only)
0 - RX is idle, disabled, or receiving start flags.
1 - RX is receiving a frame.

RAB: Receiver Abort. (Read Only)
0 - No abort has been detected for the incoming frame.
1 - Abort detected during receipt of incoming frame. The 
most recently read data is the last valid data before the 
abort. EOF is also set.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.

RTO: Receiver Time Out.
Set to “1” whenever the HDLC RX has received four 
consecutive flags, or four character times of idle or space. 
Cleared by writing a “1” to this bit.

EOF: End of Frame (read only).
0 - Current frame has not been received completely.
1 - The data most recently read from the RX FIFO is the 
last byte of data within the frame.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.

RFL: Receive Frame Lost. (Read/Write)
Set to “1” when an ROR occurred at the start of a new 
frame, before any data for the frame could be put into the 
RX FIFO. Cleared by writing a “1” to this bit.

RIL: Receive Information buffer Lost. (Read/Write)
Set to “1” when the last data for a frame is read from the 
RX FIFO and the UART1HDLCRXInfoBuf has not been 
read since the last data of the previous frame was read. 
That is, the information loaded into the 
UART1HDLCRXInfoBuf about the previous frame was 
never read and has been overwritten. Cleared by writing a 
“1” to this bit.

RFC: Received Frame Complete. (Read/Write)
Set to “1” when the last data byte for the frame is read 
from the RX FIFO (this also triggers an update of the 
UART1HDLCRXInfoBuf). Cleared by writing to a “1” to this 
bit.



DS785UM1 14-35
Copyright 2007 Cirrus Logic 

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14

RFS: Receive FIFO Service request. (Read Only)
This bit is a copy of the RIS bit in the UART interrupt 
identification register.
0 - RX FIFO is empty or RX is disabled.
1 - RX FIFO not empty and RX enabled. 
May generate an interrupt and signal a DMA service 
request.

TAB: Transmitted Frame Aborted. (Read/Write)
Set “1” when a transmitted frame is terminated with an 
abort. Cleared by writing to a “1” to this bit.

TFC: Transmit Frame Complete. (Read/Write)
Set to “1” whenever a transmitted frame completes, 
whether terminated normally or aborted. Cleared by 
writing to a “1” to this bit.

TFS: Transmit FIFO Service request. (Read Only)
This bit is a copy of the TIS bit in the UART interrupt 
identification register.
0 - TX FIFO is full or TX disabled.
1 - TX FIFO not full and TX enabled. May generate an 
interrupt and signal a DMA service request.



14-36 DS785UM1
Copyright 2007 Cirrus Logic

UART1 With HDLC and Modem Control Signals
EP93xx User’s Guide

1414

14



DS785UM1 15-1
Copyright 2007 Cirrus Logic 

1515

15

Chapter 15

15UART2

 15.1 Introduction
UART2 implements a UART interface identical to that of UART1. UART2 does not implement 
a modem or HDLC interface. For additional details about UART1, refer to Chapter 14, 
“UART1 With HDLC and Modem Control Signals” on page 14-1.

UART2 and the IrDA blocks cooperatively implement a Slow Infrared (SIR) interface. The 
register interface for each block is separate. The UART2 control registers are at base 
address 0x808D_0000 and the IrDA controller registers are at base address 0x808B_0000. 
For additional details about IrDA, refer to Chapter 17, “IrDA” on page 17-1. The UART SIR 
interface is described below.

 15.2 IrDA SIR Block
The IrDA SIR block contains an IrDA SIR protocol Encoder/decoder. The SIR protocol 
Encoder/decoder can be enabled for serial communication via signals nSIROUT and SIRIN 
to an infrared transducer instead of using the UART signals UARTTXD and UARTRXD.

If the SIR protocol Encoder/decoder is enabled, the UARTTXD line is held in the passive 
state (HIGH) and transitions of the modem status or the UARTRXD line will have no effect. 
The SIR protocol Encoder/decoder can both receive and transmit, but it is half-duplex only, so 
it cannot receive while transmitting, or vice versa.

The IrDA SIR physical layer specifies a minimum 10 ms delay between transmission and 
reception.

 15.2.1 IrDA SIR Encoder/decoder Functional Description

The IrDA SIR Encoder/decoder comprises:

• IrDA SIR transmit encoder

• IrDA SIR receive decoder

This is shown in Figure 15-1:



15-2 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

 Figure 15-1. IrDA SIR Encoder/decoder Block Diagram 

 15.2.1.1 IrDA SIR Transmit Encoder
The SIR transmit encoder modulates the Non Return-to-Zero (NRZ) transmit bit stream 
output from the UART. The IrDA SIR physical layer specifies use of a Return To Zero, 
Inverted (RZI) modulation scheme which represents logic 0 as an infrared light pulse. The 
modulated output pulse stream is transmitted to an external output driver and infrared Light 
Emitting Diode (LED).

In normal mode, the transmitted pulse width is specified as three times the period of the 
internal x16 clock (Baud16), that is, 3/16 of a bit period.

In low-power mode, the transmit pulse width is specified as 3/16 of a 115.2 Kbps bit period. 
This is implemented as three times the period of a nominal 1.8432 MHz clock (IrLPBaud16) 
derived by dividing down the UARTCLK clock. The frequency of IrLPBaud16 is set up by 
writing the appropriate divisor value to UARTILPR. The active low encoder output is normally 
LOW for the marking state (no light pulse). The encoder outputs a high pulse to generate a 
infrared light pulse representing a logic “0” or spacing state.

 15.2.1.2 IrDA SIR Receive Decoder
The SIR receive decoder demodulates the return-to-zero bit stream from the infrared detector 
and outputs the received NRZ serial bit stream to the UART received data input. The decoder 
input is normally HIGH (marking state) in the idle state (the transmit encoder output has the 
opposite polarity to the decoder input).



DS785UM1 15-3
Copyright 2007 Cirrus Logic 

UART2
EP93xx User’s Guide

1515

15

A start bit is detected when the decoder input is LOW.

Regardless of being in normal or low-power mode, a start bit is deemed valid if the decoder is 
still LOW, one period of IrLPBaud16 after the LOW was first detected. This allows a normal-
mode UART to receive data from a low-power mode UART, which may transmit pulses as 
small as 1.41 μsec.

 15.2.2 IrDA SIR Operation

The IrDA SIR Encoder/decoder provides functionality which converts between an 
asynchronous UART data stream and half-duplex serial SIR interface. No analog processing 
is performed on-chip. The role of the SIR encoder/decoder is only to provide a digital 
encoded output and decoded input to the UART. There are two modes of operation:

• In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of 
the selected baud rate bit period on the nSIROUT signal, while logic one levels are 
transmitted as a static LOW signal. These levels control the driver of an infrared 
transmitter, sending a pulse of light for each zero. On the reception side, the incoming 
light pulses energize the photo transistor base of the receiver, pulling its output LOW. 
This then drives the SIRIN signal LOW.

• In low-power IrDA mode, the width of the transmitted infrared pulse is set to 3 times the 
period of the internally generated IrLPBaud16 signal (1.63 ns assuming a nominal 
1.8432MHz frequency) by changing the appropriate bit in UARTCR.

In both normal and low-power IrDA modes, during transmission, the UART data bit is used as 
the base for encoding, while during reception the decoded bits are transferred to the UART 
receive logic.

The IrDA SIR physical layer specifies a half duplex communication link with a minimum 10ms 
delay between transmission and reception. This delay must be generated by software since it 
is not supported by the UART. The delay is required since the Infrared receiver electronics 
may become biased or even saturated from the optical power coupled from the adjacent 
transmitter LED. This delay is known as latency or receiver setup time. Shorter delays may 
be able to be used when the link first starts up.

The IrLPBaud16 signal is generated by dividing down the UARTCLK signal according to the 
low-power divisor value written to UARTILPR.

The low-power divisor value is calculated as:

Low-power divisor = (FUARTCLK / FirLPBaud16) -1

where FirLPBaud16 is nominally 1.8432 MHz.

The divisor must be chosen so that 1.42 MHz < IrLPBaud16 < 2.12 MHz.



15-4 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

 15.2.2.1 System/diagnostic Loopback Testing
It is possible to perform loopback testing for SIR data by setting the Loop Back Enable (LBE) 
bit to 1 in the control register UARTCR (bit 7), and setting the SIRTEST bit to 1 in the test 
register UARTTMR (bit 1).

Data transmitted on nSIROUT will be received on the SIRIN input.

Note: UART2TMR is the only occasion that a test register needs to be accessed during normal 
operation.

 15.2.3 IrDA Data Modulation

The effect of IrDA 3/16 data modulation can be seen in Figure 15-2.

 Figure 15-2. IrDA Data Modulation (3/16)



DS785UM1 15-5
Copyright 2007 Cirrus Logic 

UART2
EP93xx User’s Guide

1515

15

 15.2.4 Enabling Infrared (Ir) Modes

 15.3 UART2 Package Dependency
UART2 uses package pins RXD1 and TXD1. Pin RXD1 drives both the UART2 UART input 
and the UART2 SIR input.

However, Syscon register DeviceCfg[28] (IonU2) controls what drives pin TXD1. See 
Table 15-2.

Therefore, to use any IrDA mode, FIR, MIR or SIR, set IonU2. To use UART2 as a UART, 
clear IonU2.

 15.3.1 Clocking Requirements

There are two clocks, PCLK and UARTCLK.

UARTCLK frequency must accommodate the desired range of baud rates:

Fuartclk(min) >= 32 x baud_rate(max)

Fuartclk(max) <= 32 x 65,536 x baud_rate(min)

The frequency of UARTCLK must also be within the required error limits for all baud rates to 
be used.

To allow sufficient time to write the received data to the receive FIFO, UARTCLK must be less 
than or equal to four times the frequency of PCLK:

Table 15-1. UART2 / IrDA Modes

Mode
DeviceCfg Register UART2Ctrl Register IrEnable Register

U2EN IonU2 SirEn UARTE EN[1] EN[0]

Disabled 0 x 0 0 0 0

UART2 1 0 0 1 0 0

SIR 1 1 1 1 0 1

MIR x 1 0 0 1 0

FIR x 1 0 0 1 1

Table 15-2. IonU2 Pin Function

IonU2 Pin TXD1 Function

0 UART2 UART is the output signal

1 Logical OR of IrDA output signal and UART2 SIR output signal



15-6 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

Fuartclk <= 4 x Fpclk

If the IrDA SIR functionality is required, UARTCLK must have a frequency between 2.7 MHz 
and 542.7 MHz to ensure that the low-power mode transmit pulse duration complies with the 
IrDA SIR specification.

 15.3.2 Bus Bandwidth Requirements

There are two basic ways of moving data to and from the UART FIFOs:

• Direct DMA interface - this permits byte-wide access to the UART without using the 
APB. The DMA block will pack/unpack individual bytes so that it reads or writes full 32-
bit words rather than individual bytes.

• Accessing the UART via the APB - this requires APB/AHB bus bandwidth. Then, both a 
read and write are required for each 8-bit data byte.

Bandwidth requirements also depend on the selected baud rate, character size, parity 
selection, number of stop bits, and spacing between characters (if receiving).

For example, assume 115,200 baud, 8-bit characters, even parity, one stop bit, no space 
between characters. There are 11 bits per character, so 115,200 / 11 = 10473 characters per 
second. If both transmitting and receiving, 20,945 characters per second pass through the 
UART. Accessing the UART through the DMA interface requires one access per 32 bits, 
implying only 20,945 / 4 = 5,236 AHB accesses per second. Accessing the UART through the 
APB requires two accesses per byte, implying 20,945 APB bus accesses.

As another example, assume 230,400 baud (the maximum with a UARTCLK equal to 
7.3728 Mhz), 5-bit characters, no parity, one stop bit, and no space between characters. 
There are 7 bits per character, so 230400 / 7 = 32,914 characters per second. Simultaneous 
transmitting and receiving implies 65829 APB characters per second. Using the DMA 
interface would result in 16457 AHB accesses per second, while using the APB to access the 
UART leads to 65829 bus accesses per second. 



DS785UM1 15-7
Copyright 2007 Cirrus Logic 

UART2
EP93xx User’s Guide

1515

15

 15.4 Registers

Register Descriptions

UART2Data 

Address:
0x808D_0000 - Read/Write

Default:
0x0000_0000

Definition:
UART Data Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DATA: UART Data, read for receive data, write for transmit data
For words to be transmitted:
• if the FIFOs are enabled, data written to this location is 
pushed onto the transmit FIFO
• if the FIFOs are not enabled, data is stored in the 
transmitter holding register (the bottom word of the 
transmit FIFO). The write operation initiates transmission 
from the UART. The data is prefixed with a start bit, 
appended with the appropriate parity bit (if parity is 
enabled), and a stop bit. The resultant word is then 
transmitted. 
For received words:
• if the FIFOs are enabled, the data byte is extracted, and 
a 3-bit status (break, frame and parity) is pushed onto the 
11-bit wide receive FIFO
• if the FIFOs are not enabled, the data byte and status are 
stored in the receiving holding register (the bottom word of 
the receive FIFO).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DATA



15-8 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

UART2RXSts 

Address:
0x808D_0004 - Read/Write

Default:
0x0000_0000

Definition:
UART Receive Status Register and Error Clear Register. Provides receive 
status of the data value last read from the UART2Data. A write to this register 
clears the framing, parity, break and overrun errors. The data value is not 
important.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

OE: Overrun Error. This bit is set to “1” if data is received and 
the FIFO is already full. This bit is cleared to 0 by a write to 
UART2RXSts. The FIFO contents remain valid since no 
further data is written when the FIFO is full, only the 
contents of the shift register are overwritten. The CPU 
must now read the data in order to empty the FIFO.

BE: Break Error. This bit is set to “1” if a break condition was 
detected, indicating that the received data input was held 
LOW for longer than a full-word transmission time (defined 
as start, data, parity and stop bits). This bit is cleared to 0 
after a write to UART2RXSts. In FIFO mode, this error is 
associated with the character at the top of the FIFO. When 
a break occurs, only one 0 character is loaded into the 
FIFO. The next character is only enabled after the receive 
data input goes to a “1” (marking state) and the next valid 
start bit is received.

PE: Parity Error. When this bit is set to “1”, it indicates that the 
parity of the received data character does not match the 
parity selected in UART2LinCtrlHigh (bit 2). This bit is 
cleared to 0 by a write to UART2RXSts. In FIFO mode, 
this error is associated with the character at the top of the 
FIFO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD OE BE PE FE



DS785UM1 15-9
Copyright 2007 Cirrus Logic 

UART2
EP93xx User’s Guide

1515

15

FE: Framing Error. When this bit is set to “1”, it indicates that 
the received character did not have a valid stop bit (a valid 
stop bit is “1”). This bit is cleared to 0 by a write to 
UART2RXSts. In FIFO mode, this error is associated with 
the character at the top of the FIFO.

UART2LinCtrlHigh 

Address:
0x808D_0008 - Read/Write

Default:
0x0000_0000

Definition:
UART - High. UART2LinCtrlHigh, UART2LinCtrlMid and UART2LinCtrlLow 
form a single 23-bit wide register (UART2LinCtrl) which is updated on a single 
write strobe generated by an UART2LinCtrlHigh write. So, in order to internally 
update the contents of UART2LinCtrlMid or UART2LinCtrlLow, a 
UART2LinCtrlHigh write must always be performed at the end. 

To update the three registers there are two possible sequences:
• UART2LinCtrlLow write, UART2LinCtrlMid write and UART2LinCtrlHigh write
• UART2LinCtrlMid write, UART2LinCtrlLow write and UART2LinCtrlHigh 
write.

To update UART2LinCtrlLow or UART2LinCtrlMid only:
• UART2LinCtrlLow write (or UART2LinCtrlMid write) and UART2LinCtrlHigh 
write.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

WLEN: Number of bits per frame: 
11 = 8 bits
10 = 7 bits 
01 = 6 bits
00 = 5 bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WLEN FEN STP2 EPS PEN BRK



15-10 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

FEN: FIFO Enable. 
1 - Transmit and receive FIFO buffers are enabled (FIFO 
mode). 
0 - The FIFOs are disabled (character mode). (That is, the 
FIFOs become 1-byte-deep holding registers.)

STP2: Two Stop Bits Select.
1 - Two stop bits are transmitted at the end of the frame. 
0 - One stop bit is transmitted at the end of the frame. 
The receive logic does not check for two stop bits being 
received.

EPS: Even Parity Select.
1 - Even parity generation and checking is performed 
during transmission and reception (this checks for an even 
number of “1”s in data and parity bits).
0 - Odd parity is performed (this checks for an odd number 
of “1”s). 
This bit has no effect when parity is disabled by Parity 
Enable (bit 1) being cleared to 0.

PEN: Parity Enable. 
1 - Parity checking and generation is enabled, 
0 - Parity checking is disabled and no parity bit added to 
the data frame.

BRK: Send Break. 
1 - A low level is continually output on the UARTTXD 
output, after completing transmission of the current 
character. This bit must be asserted for at least one 
complete frame transmission time in order to generate a 
break condition. The transmit FIFO contents remain 
unaffected during a break condition. 
0 - For normal use, this bit must be cleared.

UART2LinCtrlMid 

Address:
0x808D_000C - Read/Write

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BR



DS785UM1 15-11
Copyright 2007 Cirrus Logic 

UART2
EP93xx User’s Guide

1515

15

Definition:
UART Line Control Register Middle.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

BR: Baud Rate Divisor bits [15:8]. Most significant byte of baud 
rate divisor. These bits are cleared to 0 on reset.

UART2LinCtrlLow 

Address:
0x808D_0010 - Read/Write

Default:
0x0000_0000

Definition:
UART Line Control Register Low.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

BR: Baud Rate Divisor bits [7:0]. Least significant byte of baud 
rate divisor. These bits are cleared to 0 on reset. The baud 
rate divisor is calculated as follows:

Baud rate divisor BAUDDIV = (FUARTCLK / (16 * Baud 
rate)) –1

where FUARTCLK is the UART reference clock frequency. A 
baud rate divisor of zero is not allowed and will result in no 
data transfer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BR



15-12 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

UART2Ctrl 

Address:
0x808D_0014 - Read/Write

Default:
0x0000_0000

Definition:
UART Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

LBE: Loopback Enable, for SIR and UART only. 
1 - If the SIR Enable bit is also set to “1”, and register 
UART2TMR bit 1 (SIRTEST) is set to “1”, the SIR output 
path is inverted and fed through to the SIR input path. The 
SIRTEST bit in the test register must be set to “1” to 
override the normal half-duplex SIR operation. This should 
be the requirement for accessing the test registers during 
normal operation, and SIRTEST must be cleared to “0” 
when loopback testing is finished. This feature reduces the 
amount of external coupling required during system test. 
0 - This bit is cleared to “0” on reset, which disables the 
loopback mode.

RTIE: Receive Timeout Enable. If this bit is set to “1”, the receive 
timeout interrupt is enabled.

TIE: Transmit Interrupt Enable. If this bit is set to “1”, the 
transmit interrupt is enabled.

RIE: Receive Interrupt Enable. If this bit is set to “1”, the receive 
interrupt is enabled.

MSIE: Modem Status Interrupt Enable. If this bit is set to “1”, the 
modem status interrupt is enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LBE RTIE TIE RIE MSIE SIRLP SIREN UARTE



DS785UM1 15-13
Copyright 2007 Cirrus Logic 

UART2
EP93xx User’s Guide

1515

15

SIRLP: SIR Low Power Mode. This bit selects the IrDA encoding 
mode. If this bit is cleared to 0, low level bits are 

transmitted as an active high pulse with a width of 3/16th of 
the bit period. If this bit is set to “1”, low level bits are 
transmitted with a pulse width which is 3 times the period 
of the IrLPBaud16 input signal, regardless of the selected 
bit rate. Setting this bit uses less power, but may reduce 
transmission distances.

SIREN: SIR Enable. If this bit is set to “1”, the IrDA SIR 
encoder/decoder is enabled. This bit has no effect if the 
UART is not enabled by bit 0 being set to “1”. When the 
IrDA SIR encoder/decoder is enabled, data is transmitted 
and received on nSIROUT and SIRIN. UARTTXD remains 
in the marking state (set to “1”). Signal transitions on 
UARTRXD or modem status inputs will have no effect. 
When the IrDA SIR encoder/decoder is disabled, 
nSIROUT remains cleared to 0 (no light pulse generated), 
and signal transitions on SIRIN will have no effect.

UARTE: UART Enable. If this bit is set to “1”, the UART is enabled. 
Data transmission and reception occurs for UART signals.

UART2Flag 

Address:
0x808D_0018 - Read/Write

Default:
0x0000_0000

Definition:
UART Flag Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

TXFE: Transmit FIFO Empty. The meaning of this bit depends on 
the state of the FEN bit in the UART2LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the transmit 
holding register is empty. If the FIFO is enabled, the TXFE 
bit is set when the transmit FIFO is empty.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TXFE RXFF TXFF RXFE BUSY DCD DSR CTS



15-14 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

RXFF: Receive FIFO Full. The meaning of this bit depends on the 
state of the FEN bit in the UART2LinCtrlHigh register. If 
the FIFO is disabled, this bit is set when the receive 
holding register is full. If the FIFO is enabled, the RXFF bit 
is set when the receive FIFO is full.

TXFF: Transmit FIFO Full. The meaning of this bit depends on 
the state of the FEN bit in the UART2LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the transmit 
holding register is full. If the FIFO is enabled, the TXFF bit 
is set when the transmit FIFO is full.

RXFE: Receive FIFO Empty. The meaning of this bit depends on 
the state of the FEN bit in the UART2LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the receive 
holding register is empty. If the FIFO is enabled, the RXFE 
bit is set when the receive FIFO is empty.

BUSY: UART Busy. If this bit is set to “1”, the UART is busy 
transmitting data. This bit remains set until the complete 
byte, including all the stop bits, has been sent from the 
shift register. This bit is set as soon as the transmit FIFO 
becomes non-empty (regardless of whether the UART is 
enabled or not).

DCD: Data Carrier Detect status. This bit is the complement of 
the UART data carrier detect (nUARTDCD) modem status 
input. That is, the bit is “1” when the modem status input is 
0.

DSR: Data Set Ready status. This bit is the complement of the 
UART data set ready (nUARTDSR) modem status input. 
That is, the bit is “1” when the modem status input is 0.

CTS: Clear To Send status. This bit is the complement of the 
UART clear to send (nUARTCTS) modem status input. 
That is, the bit is “1” when the modem status input is 0.

UART2IntIDIntClr 

Address:
0x808D_001C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RTIS TIS RIS MIS



DS785UM1 15-15
Copyright 2007 Cirrus Logic 

UART2
EP93xx User’s Guide

1515

15

Default:
0x0000_0000

Definition:
UART Interrupt Identification and Interrupt Clear Register. Interrupt status is 
read from UART2IntIDIntClr. A write to UART2IntIDIntClr clears the modem 
status interrupt. All the bits are cleared to 0 when reset.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RTIS: Receive Timeout Interrupt Status. This bit is set to “1” if the 
receive timeout interrupt is asserted.

TIS: Transmit Interrupt Status. This bit is set to “1” if the 
transmit interrupt is asserted.

RIS: Receive Interrupt Status. This bit is set to “1” if the receive 
interrupt is asserted.

MIS: Modem Interrupt Status. This bit is set to “1” if the modem 
status interrupt is asserted.

UART2IrLowPwrCntr 

Address:
0x808D_0020 - Read/Write

Default:
0x0000_0000

Definition:
UART IrDA Low Power Divisor Register. This is an 8-bit read/write register 
that stores the low-power counter divisor value used to generate the 
IrLPBaud16 signal by dividing down of UARTCLK. All the bits are cleared to 0 
when reset. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD ILPDV



15-16 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

ILPDV: IrDA Low Power Divisor bits [7:0]. 8-bit low-power divisor 
value. These bits are cleared to 0 at reset. The divisor 
must be chosen so that the relationship 
1.42 MHz < IrLPBaud16 < 2.12 MHz is maintained, which 
results in a low power pulse duration of 1.41–2.11 μs 
(three times the period of IrLPBaud16). The minimum 
frequency of IrLPBaud16 ensures that pulses less than 
one period of IrLPBaud16 are rejected, but that pulses 
greater than 1.4 μs are accepted as valid pulses. Zero is 
an illegal value. Programming a zero value will result 
in no IrLPBaud16 pulses being generated.

UART2DMACtrl 

Address:
0x808D_0028 - Read/Write

Default:
0x0000_0000

Definition:
UART DMA Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DMAERR: RX DMA error handing enable. If 0, the RX DMA interface 
ignores error conditions in the UART receive section. If “1”, 
the DMA interface stops and notifies the DMA block when 
an error occurs. Errors include break errors, parity errors, 
and framing errors.

TXDMAE: TX DMA interface enable. Setting to “1” enables the 
private DMA interface to the transmit FIFO.

RXDMAE: RX DMA interface enable. Setting to “1” enables the 
private DMA interface to the receive FIFO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DMAERR TXDMAE RXDMAE



DS785UM1 15-17
Copyright 2007 Cirrus Logic 

UART2
EP93xx User’s Guide

1515

15

UART2TMR 

Address:
0x808D_0084 - Read/Write

Default:
0x0000_0000

Definition:
UART SIR Loopback Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

0: Must be written as “0”. Unknown During Read.

SIRTEST: SIR test enable. Setting this bit to “1” enables the receive data 
path during IrDA transmission (testing requires SIR to be 
configured in full-duplex mode). This bit must be set to “1” to 
enable SIR system loopback testing, when the normal mode 
control register UART2Ctrl bit 7, Loop Back Enable (LBE), has 
been set to “1”. Clearing this bit to 0 disabled the receive 
logic when the SIR is transmitting (normal operation). This 
bit defaults to 0 for normal (half-duplex) operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD 0 SIRTEST 0



15-18 DS785UM1
Copyright 2007 Cirrus Logic

UART2
EP93xx User’s Guide

1515

15

.



DS785UM1 16-1
Copyright 2007 Cirrus Logic 

1616

16

Chapter 16

16UART3 With HDLC Encoder

 16.1 Introduction

Note: This chapter applies only to the EP9307, EP9312, and EP9315 processors.

UART3 implements both a UART and an HDLC interface identical to that of UART1; it does 
not implement the modem interface. An additional output signal, TENn, is provided to support 
RS-485 operation by providing direction control of external data transceivers. The OUT1 and 
OUT2 signals in the MCR register define the TENn operating mode. TENn can be configured 
to assert whenever the UART transmit buffer has data to send, or to operate under software 
control.

For additional details about UART1, refer to Chapter 14, “UART1 With HDLC and Modem 
Control Signals” on page 14-1.

 16.2 Implementation Details

 16.2.1 UART3 Package Dependency

UART3 uses package pins RXD2, TXD2 and EGPIO[3]. See Table 16-1 for details.

The use of EGPIO[3] is determined by several bits in Syscon register DeviceCfg. See 
Table 16-2 for details.

Table 16-1. UART3 Pin Functionality

PIN Description

RXD2 UART2 input pin

TXD2 UART2 output pin

EGPIO[3] HDLC clock or TENn



16-2 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16
 16.2.2 Clocking Requirements

There are two clocks, PCLK and UARTCLK.

UARTCLK frequency must accommodate the desired range of baud rates:

FUARTCLK(min) >= 32 x baud_rate(max)

FUARTCLK(max) <= 32 x 65536 x baud_rate(min)

The frequency of UARTCLK must also be within the required error limits for all baud rates to 
be used.

To allow sufficient time to write the received data to the receive FIFO, UARTCLK must be less 
than or equal to four times the frequency of PCLK:

FUARTCLK <= 4 x Fpclk

 16.2.3 Bus Bandwidth Requirements

There are two basic ways of moving data to and from the UART FIFOs:

• Direct DMA interface - this permits byte-wide access to the UART without using the 
APB. The DMA block will pack or unpack individual bytes so that it reads or writes full 
32-bit words rather than individual bytes.

• Accessing the UART via the APB - this requires APB/AHB bus bandwidth. Then, both a 
read and write are required for each 8-bit data byte.

Bandwidth requirements also depend on the selected baud rate, character size, parity 
selection, number of stop bits, and spacing between characters (if receiving).

For example, assume 115,200 baud, 8-bit characters, even parity, one stop bit, no space 
between characters. There are 11 bits per character, so 115,200 / 11 = 10,473 characters per 
second. If both transmitting and receiving, 20,945 characters per second pass through the 
UART. Accessing the UART through the DMA interface requires one access per 32-bits, 
implying only 20,945 / 4 = 5,236 AHB accesses per second. Accessing the UART through the 
APB requires two accesses per byte, implying 20,945 APB buss accesses.

Table 16-2. DeviceCfg Register Bit Functions 

bit 26
TonG

bit 15
HC3IN

bit 14
HC3EN

bit 12
HC1EN

Function

x x 0 x External HDLC clock input is driven low.

x 0 1 0 External HDLC clock input is driven by EGPIO[3].

x 1 1 0 Internal HDLC clock output drives EGPIO[3].

1 0 0 0 TENn output drives EGPIO[3].



DS785UM1 16-3
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

As another example, assume 230,400 baud (the maximum with a UARTCLK equal to 
7.3728 Mhz), 5-bit characters, no parity, one stop bit, and no space between characters. 
There are 7 bits per character, so 230,400 / 7 = 32,914 characters per second. Simultaneous 
transmitting and receiving implies 65,829 APB characters per second. Using the DMA 
interface would result in 16,457 AHB accesses per second, while using the APB to access 
the UART leads to 65,829 bus accesses per second. 

 16.3 Registers

Register Descriptions

UART3Data 

Address:
0x808E_0000 - Read/Write

Default:
0x0000_0000

Definition:
UART3 Data Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DATA: UART Data, read for receive data, write for transmit data

For words to be transmitted:
• if the FIFOs are enabled, data written to this location is 
pushed onto the transmit FIFO
• if the FIFOs are not enabled, data is stored in the 
transmitter holding register (the bottom word of the 
transmit FIFO). The write operation initiates transmission 
from the UART. The data is prefixed with a start bit, 
appended with the appropriate parity bit (if parity is 
enabled), and a stop bit. The resultant word is then 
transmitted.

For received words:
• if the FIFOs are enabled, the data byte is extracted, and 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DATA



16-4 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

a 3-bit status (break, frame and parity) is pushed onto the 
11-bit wide receive FIFO
• if the FIFOs are not enabled, the data byte and status are 
stored in the receiving holding register (the bottom word of 
the receive FIFO).

The received data byte is read by performing reads from 
the UART3Data register, while the corresponding status 
information can be read by a successive read of the 
UART3RXSts register.

UART3RXSts 

Address:
0x808E_0004 - Read/Write

Default:
0x0000_0000

Definition:
UART3 Receive Status Register and Error Clear Register. Provides receive 
status of the data value last read from the UART3Data. A write to this register 
clears the framing, parity, break and overrun errors. The data value is not 
important.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

OE: Overrun Error. 
1 - when data is received and the FIFO is already full. 
0 - Cleared by a write to UART3RXSts. 
The FIFO contents remain valid since no further data is 
written when the FIFO is full. Only the contents of the shift 
register are overwritten. The data must be read in order to 
empty the FIFO.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD OE BE PE FE



DS785UM1 16-5
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

BE: Break Error. This bit is set to 1 if a break condition was 
detected, indicating that the received data input was held 
LOW for longer than a full-word transmission time (defined 
as start, data, parity and stop bits). This bit is cleared to 0 
after a write to UART3RXSts. In FIFO mode, this error is 
associated with the character at the top of the FIFO. When 
a break occurs, only one 0 character is loaded into the 
FIFO. The next character is only enabled after the receive 
data input goes to a 1 (marking state) and the next valid 
start bit is received.

PE: Parity Error. When this bit is set to 1, it indicates that the 
parity of the received data character does not match the 
parity selected in UART3LinCtrlHigh (bit 2). This bit is 
cleared to 0 by a write to UART3RXSts. In FIFO mode, 
this error is associated with the character at the top of the 
FIFO.

FE: Framing Error. When this bit is set to 1, it indicates that the 
received character did not have a valid stop bit (a valid 
stop bit is 1). This bit is cleared to 0 by a write to 
UART3RXSts. In FIFO mode, this error is associated with 
the character at the top of the FIFO.

UART3LinCtrlHigh 

Address:
0x808E_0008 - Read/Write

Default:
0x0000_0000

Definition:
UART3 Line Control Register High. UART3LinCtrlHigh, UART3LinCtrlMid and 
UART3LinCtrlLow form a single 23-bit wide register (UART3LinCtrl) which is 
updated on a single write strobe generated by an UART3LinCtrlHigh write. So, 
in order to internally update the contents of UART3LinCtrlMid or 
UARTBLCR_L, a UART3LinCtrlHigh write must always be performed at the 
end. 

To update the three registers there are two possible sequences:
• UART3LinCtrlLow write, UART3LinCtrlMid write and UART3LinCtrlHigh write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WLEN FEN STP2 EPS PEN BRK



16-6 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

• UART3LinCtrlMid write, UART3LinCtrlLow write and UART3LinCtrlHigh write.

To update UART3LinCtrlLow or UART3LinCtrlMid only:

• UART3LinCtrlLow write (or UART3LinCtrlMid write) and UART3LinCtrlHigh write.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

WLEN: Number of bits per frame: 
11 = 8 bits
10 = 7 bits 
01 = 6 bits
00 = 5 bits

FEN: FIFO Enable.
1 - Transmit and receive FIFO buffers are enabled (FIFO 
mode). 
0 - The FIFOs are disabled (character mode). (That is, the 
FIFOs become 1-byte-deep holding registers.)

STP2: Two Stop Bits Select. 
1 - Two stop bits are transmitted at the end of the frame. 
0 - One stop bit is transmitted at the end of the frame. 
The receive logic does not check for two stop bits being 
received.

EPS: Even Parity Select. 
1 - Even parity generation and checking is performed 
during transmission and reception, which checks for an 
even number of 1s in data and parity bits. 
0 - Odd parity generation and checking is performed 
during transmission and reception, which checks for an 
odd number of 1s. 
This bit has no effect when parity is disabled by Parity 
Enable (bit 1) being cleared to 0.

PEN: Parity Enable. 
1 - Parity checking and generation is enabled
0 - Parity checking is disabled and no parity bit is added to 
the data frame.

BRK: Send Break. 
1 - A low level is continually output on the UARTTXD 
output, after completing transmission of the current 
character. This bit must be asserted for at least one 
complete frame transmission time in order to generate a 
break condition. The transmit FIFO contents remain 
unaffected during a break condition. 
0 - For normal use, this bit must be cleared.



DS785UM1 16-7
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

UART3LinCtrlMid 

Address:
0x808E_000C - Read/Write

Default:
0x0000_0000

Definition:
UART3 Line Control Register Middle

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

BR: Baud Rate Divisor bits [15:8]. Most significant byte of baud 
rate divisor. These bits are cleared to 0 on reset.

UART3LinCtrlLow 

Address:
0x808E_0010 - Read/Write

Default:
0x0000_0000

Definition:
UART3 Line Control Register Low.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BR



16-8 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

BR: Baud Rate Divisor bits [7:0]. Least significant byte of baud 
rate divisor. These bits are cleared to 0 on reset. The baud 
rate divisor is calculated as follows:

Baud rate divisor BAUDDIV = (FUARTCLK / (16 * Baud 
rate)) –1

where FUARTCLK is the UART reference clock frequency. A 
baud rate divisor of zero is not allowed and will result in no 
data transfer.

UART3Ctrl 

Address:
0x808E_0014 - Read/Write

Default:
0x0000_0000

Definition:
UART3 Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

LBE: Loopback Enable. If this bit is set to 1, data sent to TXD is 
received on RXD. This bit is cleared to 0 on reset, which 
disables the loopback mode.

RTIE: Receive Timeout Enable. If this bit is set to 1, the receive 
timeout interrupt is enabled.

TIE: Transmit Interrupt Enable. If this bit is set to 1, the transmit 
interrupt is enabled.

RIE: Receive Interrupt Enable. If this bit is set to 1, the receive 
interrupt is enabled.

MSIE: Modem Status Interrupt Enable. If this bit is set to 1, the 
modem status interrupt is enabled.

UARTE: UART Enable. If this bit is set to 1, the UART is enabled. 
Data transmission and reception occurs for UART signals.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD LBE RTIE TIE RIE MSIE RSVD UARTE



DS785UM1 16-9
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

UART3Flag 

Address:
0x808E_0018 - Read/Write

Default:
0x0000_0000

Definition:
UART3 Flag Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

TXFE: Transmit FIFO Empty. The meaning of this bit depends on 
the state of the FEN bit in the UART3LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the transmit 
holding register is empty. If the FIFO is enabled, the TXFE 
bit is set when the transmit FIFO is empty.

RXFF: Receive FIFO Full. The meaning of this bit depends on the 
state of the FEN bit in the UART3LinCtrlHigh register. If 
the FIFO is disabled, this bit is set when the receive 
holding register is full. If the FIFO is enabled, the RXFF bit 
is set when the receive FIFO is full.

TXFF: Transmit FIFO Full. The meaning of this bit depends on 
the state of the FEN bit in the UART3LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the transmit 
holding register is full. If the FIFO is enabled, the TXFF bit 
is set when the transmit FIFO is full.

RXFE: Receive FIFO Empty. The meaning of this bit depends on 
the state of the FEN bit in the UART3LinCtrlHigh register. 
If the FIFO is disabled, this bit is set when the receive 
holding register is empty. If the FIFO is enabled, the RXFE 
bit is set when the receive FIFO is empty.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TXFE RXFF TXFF RXFE BUSY DCD DSR CTS



16-10 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

BUSY: UART Busy. If this bit is set to 1, the UART is busy 
transmitting data. This bit remains set until the complete 
byte, including all the stop bits, has been sent from the 
shift register. This bit is set as soon as the transmit FIFO 
becomes non-empty, regardless of whether the UART is 
enabled or not.

DCD: Data Carrier Detect status. This bit is the complement of 
the UART data carrier detect (nUARTDCD) modem status 
input. That is, the bit is 1 when the modem status input is 
0.

DSR: Data Set Ready status. This bit is the complement of the 
UART data set ready (nUARTDSR) modem status input. 
That is, the bit is 1 when the modem status input is 0.

CTS: Clear To Send status. This bit is the complement of the 
UART clear to send (nUARTCTS) modem status input. 
That is, the bit is 1 when the modem status input is 0.

UART3IntIDIntClr

Address:
0x808E_001C - Read/Write

Default:
0x0000_0000

Definition:
UART3 Interrupt Identification and Interrupt Clear Register. Interrupt status is 
read from UART3IntIDIntClr. A write to UART3IntIDIntClr clears the modem 
status interrupt. All the bits are cleared to “0” when reset.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RTIS: Receive Timeout Interrupt Status. This bit is set to 1 if the 
receive timeout interrupt is asserted. This bit is cleared 
when the receive FIFO is empty or the receive line goes 
active.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RTIS TIS RIS MIS



DS785UM1 16-11
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

TIS: Transmit Interrupt Status. This bit is set to 1 if the 
UARTTXINTR transmit interrupt is asserted, which occurs 
when the transmit FIFO is not full. It is set to 0 when the 
transmit FIFO is full.

RIS: Receive Interrupt Status. This bit is set to 1 if the 
UARTRXINTR receive interrupt is asserted, which occurs 
when the receive FIFO is not empty. It is set to 0 when the 
receive FIFIO is empty.

MIS: Modem Interrupt Status. This bit is set to 1 if the 
UARTMSINTR modem status interrupt is asserted. This 
bit is cleared by writing any value to this register.

UART3LowPwrCntr 

Address:
0x808E_0020 - Read/Write

Default:
0x0000_0000

Definition:
UART3 IrDA Low Power Divisor Register. This register is present in UART3 
but is not supported.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

UART3DMACtrl 

Address:
0x808E_0028 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DMAERR TXDMAE RXDMAE



16-12 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

Default:
0x0000_0000

Definition:
UART3 DMA Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DMAERR: RX DMA error handing enable. If 0, the RX DMA interface 
ignores error conditions in the UART receive section. If 1, 
the DMA interface stops and notifies the DMA block when 
an error occurs. Errors include break errors, parity errors, 
and framing errors.

TXDMAE: TX DMA interface enable. Setting to 1 enables the private 
DMA interface to the transmit FIFO.

RXDMAE: RX DMA interface enable. Setting to 1 enables the private 
DMA interface to the receive FIFO.

UART3ModemCtrl 

Address:
0x808E_0100 - Read/Write

Default:
0x0000_0000

Definition:
Modem Control Register. Only the OUT1 and OUT2 bits have functionality in 
UART3. The RTS and DTR bits exist but have no function.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

OUT2: OUT2 function. Controls the TENn output behavior:
1 = TENn is driven by the UART3Flag.BUSY status bit; 
that is, TENn is low whenever the UART has transmit data 
to send.
0 = TENn is controlled by the OUT1 bit.

OUT1: OUT1 function. When OUT2 = “0”, then TENn = OUT1. 
Otherwise OUT1 is ignored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD 0 RSVD OUT2 OUT1 RSVD



DS785UM1 16-13
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

0: Must be written as “0”.

UART3HDLCCtrl 

Address:
0x808E_020C - Read/Write

Default:
0x0000_0000

Definition:
HDLC Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

CMAS: Clock Master: 
1 - Transmitter and/or receiver use 1x clock generated by 
the internal transmitter. 
0 - Transmitter and/or receiver use 1x clock generated 
externally.

TXCM: Transmit Clock Mode. 
1 - Generate 1x clock when in synchronous HDLC mode 
using NRZ encoding. 
0 - Do not generate clock. 
This bit has no effect unless TXENC is clear and 
synchronous HDLC is enabled.

RXCM: Receive Clock Mode. 
1 - Use external 1x clock when in synchronous HDLC 
mode using NRZ encoding. 
0 - Do not use external clock. 
This bit has no effect unless RXENC is clear and 
synchronous HDLC is enabled.

TXENC: Transmit Encoding method. 
1 - Use Manchester bit encoding. 
0 - Use NRZ bit encoding. 
This bit has no effect unless synchronous HDLC is 
enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD CMAS TXCM RXCM TXENC RXENC SYNC TFCEN TABEN RFCEN RILEN RFLEN RTOEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLAG CRCN CRCApd IDLE AME RSVD RXE TXE TUS CRCE CRCS



16-14 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

RXENC: Receive Encoding method. 
1 - Use Manchester bit encoding. 
0 - Use NRZ bit encoding. 
This bit has no effect unless synchronous HDLC is 
enabled.

SYNC: Synchronous / Asynchronous HDLC Enable.
0 - Select asynchronous HDLC for TX and RX.
1 - Select synchronous HDLC for TX and RX.

TFCEN: Transmit Frame Complete Interrupt Enable.
0 - TFC interrupt will not occur.
1 - TFC interrupt will occur whenever TFC bit is set.

TABEN: Transmit Frame Abort Interrupt Enable.
0 - TAB interrupt will not occur.
1 - TAB interrupt will occur whenever TAB bit is set.

RFCEN: Receive Frame Complete Interrupt Enable.
0 - RFC interrupt will not occur.
1 - RFC interrupt will occur whenever RAB bit or EOF bit is 
set.

RILEN: Receive Information Lost Interrupt Enable.
0 - RIL interrupt will not occur.
1 - RIL interrupt will occur whenever RIL bit is set.

RFLEN: Receive Frame Lost Interrupt Enable.
0 - RFL interrupt will not occur.
1 - RFL interrupt will occur whenever RFL bit is set.

RTOEN: Receiver Time Out Interrupt Enable.
0 - RTO interrupt will not occur.
1 - RTO interrupt will occur whenever RTO bit is set.

FLAG: Minimum number of opening and closing flags for HDLC 
TX. The minimum number of flags between packets is this 
4-bit value plus one. Hence, 0000b forces at least one 
opening flag and one closing flag for each packet, and 
1111b forces at least 16 opening and closing flags. The 
closing flags of one packet may also be the opening flags 
of the next one if the transmit line does not go idle in 
between. Note that HDLC RX does not count flags; only 
one is necessary (or three in Manchester mode).

CRCN: CRC polarity control.
0 - CRC transmitted not-inverted.
1 - CRC transmitted inverted.



DS785UM1 16-15
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

CRCApd: CRC pass through.
0 - Do not pass received CRC to CPU.
1 - Pass received CRC to CPU.

IDLE: Idle mode.
0 - Idle-in Mark mode - When HDLC is idle (not 
transmitting start or stop flags or packets), hold the 
transmit data pin high.
1 - Idle-in Flag mode - When HDLC is idle, transmit 
continuous flags.

AME: Address Match Enable. Activates address matching on 
received frames.
00 - No address matching
01 - 4 x 1 byte matching
10 - 2 x 2 byte matching
11 - Undefined, no matching

RXE: HDLC Receive Enable.
0 - Disable HDLC RX. If UART is still enabled, UART may 
still receive normally.
1 - Enable HDLC RX.

TXE: HDLC Transmit Enable.
0 - Disable HDLC TX. If UART is still enabled, UART may 
still transmit normally.
1 - Enable HDLC TX.

TUS: Transmit FIFO Underrun Select
0 - TX FIFO underrun causes CRC (if enabled) and stop 
flag to be transmitted.
1 - TX FIFO underrun causes abort (escape-flag) to be 
transmitted.

CRCE: CRC enable.
0 - No CRC generated by HDLC TX or expected by HDLC 
RX.
1 - HDLC TX automatically generates and sends a CRC at 
the end of a packet, and HDLC RX expects a CRC at the 
end of a packet.

CRCS: CRC size.

0 - CRC-16: x16 + x12 + x5 + 1

1 - CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + 

x8 + x7 + x5 + x4 + x2 + x + 1



16-16 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

UART3HDLCAddMtchVal 

Address:
0x808E_0210 - Read/Write

Default:
0x0000_0000

Definition:
HDLC Address Match Value.

Bit Descriptions:

AMV: Address match value. Supports 8-bit and 16-bit address 
matching. If UART3HDLCCtrl.AME is “00” or “11”, this 
register is not used.

UART3HDLCAddMask 

Address:
0x808E_0214 - Read/Write

Default:
0x0000_0000

Definition:
HDLC Address Mask.

Bit Descriptions:

AMSK: Address mask value. Supports 8-bit and 16-bit address 
masking. If UART3HDLCCtrl.AME is “00” or “11”, this 
register is not used.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AMV

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMV

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AMSK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AMSK



DS785UM1 16-17
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

UART3HDLCRXInfoBuf 

Address:
0x808E_0218 - Read/Write

Default:
0x0000_0000

Definition:
HDLC Receive Information Buffer Register. This register is loaded when the 
last data byte in a received frame is read from the receive FIFO. The CPU has 
until the end of the next frame to read this register, or the RIL bit in the HDLC 
Status Register will be set.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

BC: Received frame Byte Count.
The total number of valid bytes read from the RX FIFO 
during the last HDLC frame.

BFRE: Buffered Framing Error.
0 - No framing errors were encountered in the last frame.
1 - A framing error occurred during the last frame, causing 
the remainder of the frame to be discarded.

BROR: Buffered Receiver Over Run.
0 - The RX buffer did not overrun during the last frame.
1 - The receive FIFO did overrun during the last frame. 
The remainder of the frame was discarded.

BCRE: Buffered CRC Error.
0 - No CRC check errors occurred in the last frame.
1 - The CRC calculated on the incoming data did not 
match the CRC value contained in the last frame.

BRAB: Buffered Receiver Abort.
0 - No abort occurred in the last frame.
1 - The last frame was aborted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BC BFRE BROR BCRE BRAB



16-18 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

UART3HDLCSts 

Address:
0x808E_021C - Read/Write

Default:
0x0000_0000

Definition:
HDLC Status Register. The TFS and RFS bits in this register are replicas of 
bits in the UART3 status register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

CRE: CRC Error. (Read Only)
0 - No CRC check errors encountered in incoming frame.
1 - CRC calculated on the incoming data does not match 
CRC value contained within the received frame. This bit is 
set with the last data in the incoming frame along with 
EOF.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.

ROR: Receive FIFO Overrun. (Read Only)
0 - RX FIFO has not overrun.
1 - RX logic attempted to place data in the RX FIFO while 
it was full. The most recently read data is the last valid 
data before the overrun. The rest of the incoming frame is 
dropped. EOF is also set.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.

TBY: Transmitter Busy. (Read Only)
0 - TX is idle, disabled, or transmitting an abort.
1 - TX is currently sending a frame (address, control, data, 
CRC or start/stop flag).

RIF: Receiver In Frame. (Read Only)
0 - RX is idle, disabled or receiving start flags
1 - RX is receiving a frame.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD CRE ROR TBY RIF RSVD RAB RTO EOF RFL RIL RFC RFS TAB TFC TFS



DS785UM1 16-19
Copyright 2007 Cirrus Logic 

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

RAB: Receiver Abort. (Read Only)
0 - No abort has been detected for the incoming frame.
1 - Abort detected during receipt of incoming frame. The 
most recently read data is the last valid data before the 
abort. EOF is also set.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.

RTO: Receiver Time Out.
Set to “1” whenever the HDLC RX has received four 
consecutive flags, or four character times of idle or space. 
Cleared by writing a “1” to this bit.

EOF: End of Frame (read only).
0 - Current frame has not been received completely.
1 - The data most recently read from the RX FIFO is the 
last byte of data within the frame.

Note: This bit reflects the status associated with the last character read from the RX FIFO. It 
changes with reads from the RX FIFO.

RFL: Receive Frame Lost. (Read/Write)
Set to “1” when an ROR occurred at the start of a new 
frame, before any data for the frame could be put into the 
RX FIFO. Cleared by writing a “1” to this bit.

RIL: Receive Information buffer Lost. (Read/Write)
Set to “1” when the last data for a frame is read from the 
RX FIFO and the UART1HDLCRXInfoBuf has not been 
read since the last data of the previous frame was read. 
That is, the information loaded into the 
UART1HDLCRXInfoBuf about the previous frame was 
never read and has been overwritten. Cleared by writing a 
“1” to this bit.

RFC: Received Frame Complete. (Read/Write)
Set to “1” when the last data byte for the frame is read 
from the RX FIFO (this also triggers an update of the 
UART1HDLCRXInfoBuf). Cleared by writing to a “1” to this 
bit.

RFS: Receive FIFO Service request. (Read Only)
This bit is a copy of the RIS bit in the UART interrupt 
identification register.
0 - RX FIFO is empty or RX is disabled.
1 - RX FIFO not empty and RX enabled. 
May generate an interrupt and signal a DMA service 
request.



16-20 DS785UM1
Copyright 2007 Cirrus Logic

UART3 With HDLC Encoder
EP93xx User’s Guide

1616

16

TAB: Transmitted Frame Aborted. (Read/Write)
Set “1” when a transmitted frame is terminated with an 
abort. Cleared by writing to a “1” to this bit.

TFC: Transmit Frame Complete. (Read/Write)
Set to “1” whenever a transmitted frame completes, 
whether terminated normally or aborted. Cleared by 
writing to a “1” to this bit.

TFS: Transmit FIFO Service request. (Read Only)
This bit is a copy of the TIS bit in the UART interrupt 
identification register.
0 - TX FIFO is full or TX disabled.
1 - TX FIFO not full and TX enabled. May generate an 
interrupt and signal a DMA service request.



DS785UM1 17-1
Copyright 2007 Cirrus Logic 

1717

17

Chapter 17

17IrDA

 17.1 Introduction
This module implements the physical layer of an infrared serial port that is compliant with 
Version 1.1 of the Infrared Data Association (IrDA) standard. It supports communication 
speeds of up to 4 MBit/s. When combined with analog transducer components, it provides a 
complete interface between infrared media and an AMBA compliant peripheral bus (APB).

Three different encoder/decoder units implement the supported modulation schemes and 
data encoding systems defined by the IrDA standard:

• Slow Infrared (SIR) - This interface attaches to the output of UART2. The UART2 
registers handle the data and control for this interface, though the IrDA interface enable 
register selects the SIR function.

• Medium Infrared (MIR) - Transmission/reception rates can be 0.576 or 1.152 Mb/s.

• Fast Infrared (FIR) - Transmission/reception rate is 4 Mb/s.

 17.2 IrDA Interfaces
The Infrared Interface Module implements in hardware the physical layer of an infrared serial 
port, compliant with version 1.1 of the IrDA standard. Communication speeds of up to 
4 Mbit/sec are supported. When combined with analog transducer components, it provides a 
complete interface between infrared media and an AMBA compliant peripheral bus (APB). 

The Module comprises three separate encoder/decoder units for implementing three different 
combinations of modulation scheme and data encoding system defined by the IrDA standard. 
These are:

• Slow Infrared - SIR - This interface attaches to the output of a UART. All data and control 
for this interface is done through the UART registers. The SIR encoder function is 
selected using the IrDA interface enable register.

• Medium Infrared - MIR - This interface is independent of a UART. 
Transmission/reception rates can be 0.576 or 1.152 Mbit/sec.

• Fast Infrared - FIR - This interface is independent of a UART. Transmission/reception 
rates can be 4 Mbit/sec.



17-2 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

 17.3 Shared IrDA Interface Feature
This section describes features common to the MIR and FIR interfaces (the SIR interface has 
been designed to share the enable register and device pins but is otherwise a separate 
interface assumed to be controlled by UART2).

 17.3.1 Overview

The Slow Infrared (SIR) Encoder/Decoder is used to modulate and demodulate serial data 
using the Hewlett-Packard® Serial Infrared standard (HP-SIR) for bit encoding. Serial 
transmit data from UART2 is modulated using return-to-zero (RTZ) encoding to produce an 
output to drive the Ir transmitter LED, while data received from the Ir detector is converted 
into a serial bit stream to drive a UART's serial input. The SIR supports data rates up to 
115.2 kbit/s.

The Medium Speed Infrared (MIR) Encoder/Decoder encodes/decodes peripheral bus data 
according to a modified HDLC standard, using flag characters, bit stuffing and a 16 bit CRC 
checker. MIR uses the same RTZ modulation and demodulation scheme used by the SIR. 
Two signal bit rates are supported: 0.576 Mbit/s and 1.152 Mbit/s.

The Fast Infrared Encoder/Decoder (FIR) operates at a fixed bit rate of 4 Mbit/s. 
Modulation/demodulation is by a phase shift key scheme called pulse position modulation 
(4 PPM). One of four signalling symbols represent each possible pair of data bits. Data 
encoding uses a packet format that prefixes bit and symbol synchronization flags to data and 
appends a 32-bit CRC and stop flag to the end of each packet. The start and stop flags use 
signalling symbols that are not used to encode data, hence bit stuffing of data is not required 
in this mode.

Only one of the Encoder/Decoder modules can be enabled to transmit and receive data from 
the IrDA transducers at one time Selection of an Ir sub-module is by means of the IrEnable 
register. The MIR and FIR sub-modules can be regarded by programmers as independent 
entities which are operated using common control and data registers, but which report status 
data via separate read registers.

Detailed descriptions of the MIR and FIR are given in the following sections. The SIR, 
however, has no data or control registers. It interfaces directly to a UART's serial stream. 
With the exception of the IrEnable register, it has no presence on the memory map and has 
no interface to the APB via the Infrared interface.

 17.3.2 Functional Description

This section gives a programmer's guide to operating the IrDA interface. It includes detail on 
the general configuration and the transmit and receive processes.



DS785UM1 17-3
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

 17.3.2.1 General Configuration

 17.3.2.1.1 Select Ir Mode

The IrEnable register selects which of the three Ir sub-modules is used to operate the IrDA 
interface. Only one of the three may be active at any one time. The reset value for this 
register is zero, which disables all three encoder/decoder modules. The bottom two bits of 
this register select the encoder/decoder module according to the tabulated values:

SIR does not use the data transfer mechanism described in this section. After selecting SIR 
mode, all data transfer operations are made through a UART, as if connection is through a 
serial cable without handshake lines. The features described below are implemented for the 
MIR and FIR modes.

 17.3.2.1.2 Select Data Rate 

The data rates for MIR and FIR are as follows:

• MIR - Clear BRD bit in IrControl (IrCon) for 0.576 Mbit/sec,
Set BRD bit in IrCon for 1.152 Mbit/sec.

• FIR - Fixed at 4 Mbit/sec.

 17.3.2.2 Transmitting Data

 17.3.2.2.1 Initialization

The principal method of data transfer from memory to the active IrDA encoder (MIR or FIR) is 
by DMA. Typically DMA can be used to transfer data of any length into the transmit FIFO 
when requested by the infrared peripheral. When polling or interrupts are used to perform the 
data transfer, a mechanism exists for transmitting data packets that are not a multiple of 4 
bytes in length. This uses a register called IrDataTail and its use is described in the next 
section.

The DMA route is usually provided to overcome any large interrupt response times that may 
exist in the SoC where the Infrared module is going to be used. These large interrupt 
response times can make programmed I/O an impractical method for transferring large Ir 
data packets.

Table 17-1. Bit Values to Select Ir Module

IrEnable
EN1

IrEnable
EN0

Encoder
Selected

0 0 None

0 1 SIR

1 0 MIR

1 1 FIR



17-4 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

 17.3.2.2.2 The Transmit Process

This section describes the transmission process in detail.

1. Is last transmission complete? - Ensure that the Infrared peripheral is not currently 
receiving or transmitting data by reading the RSY (for half-duplex communications) and 
TBY bits in the IrFlag register. If either is set, postpone the start of transmission.

2. Disable IrDA - If you are changing Ir mode, first disable Ir. To disable IrDA, first clear 
IrCtrl.RXE and IrCtrl.TXE. Secondly, clear the IrEnable.EN field to be “00”.

3. Disabling UART2 for MIR and FIR - For MIR and FIR, disable UART2 by writing “0” to 
UART2Ctrl and 0 to IrCtrl.

4. Set up the DMA Engine - If DMA is being used, set up the DMA engine by setting up the 
registers of the DMA block.

5. Enabling Clocks - For MIR, set up the MIR clock in MIRClkDiv. Select 0.576 or 1.152 
Mbps mode by clearing or setting IrCtrl.BRD. For FIR, enable the FIR clock by setting 
PwrCnt.FIR_EN.

6. Select Ir Mode - Select SIR, MIR, or FIR mode by writing the IrEnable.EN bit field to be 
“01”, “10”, or “11”.

7. Clear Interrupt Sticky Bits - For MIR, write the MISR register, setting the TFC, TAB, RFL, 
and RIL bits to clear them. Then read the IrRIB register to clear the RFC bit. For FIR, 
write the FISR register, setting the TFC, TAB, RFL, and RIL bits to clear them. Then 
read the IrRIB register to clear the RFC bit.

8. Select Transmit Underrun Action - When DMA is used, the TUS bit should be cleared.

9. Enable Transmit - Set the IrCtrl.TXE Transmit Enable bit. Also set IrCtrl.RXE if receive is 
to be enabled. If DMA is used, also set IrDMACR.TXDMAE (and IrDMACR.RXDMAE if 
receive is to be enabled).

10.Preloading the Transmit FIFO - Copy the first two full words of data into the transmit 
FIFO by writing them into the IrData register. The Ir encode block can hold up to 11 
bytes of data (two words in the FIFO plus up to three bytes in the IrDataTail register). If 
this is sufficient to hold the complete transmission data packet, DMA will not be needed. 
The IrCon.TUS bit should be cleared. This will cause the Ir encoder to correctly send the 
CRC and end of frame flag. Note: Prefilling the FIFO must happen immediately after 
enabling MIR or FIR. Preloading the FIFO is unnecessary for SIR. Also note that 
preloading the FIFO is unnecessary for MIR and FIR if DMA is used.

11.Loading the IrDataTail Register - In the PIO and IRQ case, once the FIFO has been 
preloaded, the IrDataTail register can be loaded. The IrDataTail register contains the last 
bytes in the frame (1, 2 or 3 bytes left over from the last whole word provided by PIO or 
IRQ). Note: If DMA is used, loading the IrDataTail register is unnecessary, as the 
IrDataTail register is disabled in that case.

12.Send out the data - If DMA is being used, everything is now enabled for the 
transmission process to begin. If PIO or IRQ is being used, data should be written to the 
IrData register.



DS785UM1 17-5
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

 17.3.2.2.3 Sending Packets Which are Not a Multiple of 4 Bytes In Length

The transmit FIFO is 32 bits wide. When using polling or interrupts to effect the transfer, 
loading the FIFO with less than 32 bits would cause extraneous zero bits to be transmitted. 
This issue is taken care of automatically by the DMA, so no special action is required. 
However in the case of polling or interrupt-driven transfers, the IrDataTail register is the 
mechanism used to preload the last 1, 2 or 3 bytes of a frame. When the transfer is complete 
and the FIFO is empty, any bytes stored in the IrDataTail register are transmitted before the Ir 
encoder sends the CRC and end-of-frame flags. There are three distinct addresses to which 
the end of frame data is written. This allows a single word write to specify the data to be 
transmitted and the number of trailing bytes to send If there is a single trailing byte to 
transmit, write to address offset 0x014, for two bytes write to 0x018, and if there are three 
trailing bytes write to 0x01C. (See Table 17-2.)

 17.3.2.2.4 End of Frame Interrupt

Once all the data sent to the FIFO has been taken by the Ir interface, the FIFO will underrun. 
When this occurs any data that has been preloaded into the IrDataTail register will be used 
and the Transmitted Frame Complete (TFC) interrupt will be generated.

 17.3.2.2.5 Disable Transmit Circuitry

To save power, the Transmit Enable (TXE) bit can be cleared in the IrEnable register if there 
are no frames that need to be sent.

 17.3.2.2.6 Error conditions

Transmitted frame abort is only signalled if IrCon register bit TUS is set to 1.

 17.3.2.3 Receiving Data
The end of a reception frame will cause an interrupt, which may be masked using the mask 
register (MIMR/FIMR). The end of frame interrupt occurs after the last data value has been 
transferred, including any odd bytes in the frame tail.

 17.3.2.3.1 Initialization

 The following settings are required: 

Address Matching To use Address Match filtering, set the local 8 bit address 
in the Address Match Value Register and set the Address 
Match Enable bit in the IrCon register.

Table 17-2. Address Offsets for End-of-Frame Data

Bytes to transmit Address offset to use

1 0x014

2 0x018

3 0x01C



17-6 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

Set up DMA Set up a DMA buffer (the buffer should be greater than 
twice the maximum possible size of received frames). 
Enable DMA.

Alternatively, two buffers may be used which are each the 
maximum possible frame size long. The DMA would then 
be programmed to switch between the two buffers.

Enable Ir Receive Set the Receive Enable bit (RXE) in IrEnable.

 17.3.2.3.2 End of Frame Interrupt

The Receive Frame Complete (RFC) interrupt is generated when the last data in a frame is 
read from the receive FIFO. To check whether the frame was received correctly (no errors) 
and for information on frame size, the Receive Information Buffer register (IrRIB) must be 
read by the interrupt service routine. This also clears the RFC interrupt condition.

Note: By the time the ARM Core responds to this interrupt, the interface may have already 
started reception of a new frame.

 17.3.2.3.3 End of Frame: Using Programmed I/O

If interrupt driven programmed I/O is used instead of DMA, every time the Receive Buffer 
Service (RFS) interrupt is serviced the IrFlag register must be read before the IrData register, 
if the IrFlag values are needed. Their Flag register gives information about error conditions 
that correspond to the data value at the head of the receive FIFO. 

Note: The IrRIB registers stores status flags for a complete frame.

 17.3.2.3.4 Error Conditions

Receive error conditions do not generate interrupts. Reading the IrData word clears the 
IrFlag register bits listed below.

Receiver Abort Detected   When set, this indicates that the transmitter sent an 
abort signal during frame transmission.

Receiver Overrun This indicates that data has not been read for the IrData 
register in time and has resulted in data loss from the 
frame. When this occurs the interface automatically 
discards the remainder of the incoming frame.

CRC Error If the CRC for the received data does not match the CRC 
value contained in the incoming data stream this condition 
will occur.

Frame Error (FIR only)   This indicates that a framing error has been detected.



DS785UM1 17-7
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

The data word and flags are held in the 39-bit wide receiver FIFO. Reading an IrData word 
removes both the data and its associated flag bits from the FIFO causing the next word in the 
FIFO (if present) to be transferred into the IrFlag and data registers. However, all error 
conditions encountered during a frame are remembered. At the end of frame they can be 
read form the IrRIB register.

When a receive overrun (ROR) or FIR framing error (FRE) is detected the remainder of the 
frame will be discarded by the receive logic (not put into the receive FIFO). In the case of 
receive overruns, if the end of frame (EOF) bit in the last entry in the FIFO is clear then the 
Receive Buffer Overrun (ROR) and EOF bits will be set. If an overrun occurs and the last 
entry in the FIFO already has the EOF bit set then the RFL interrupt will be triggered. In the 
case of a framing error an extra entry will be put into the FIFO with FIR Framing Error (FRE) 
and EOF set, this entry will not contain any valid data.

If programmed IO is used to service the IrDA interface instead of DMA a similar process 
occurs. Interrupt requests to service the receive FIFO will not occur until the rest of the frame 
has been discarded.

At the end of a frame, a valid end of frame (EOF) or an abort (RAB), a DMA request 
corresponding to the last word (which may hold 1, 2, 3, or 4 bytes of valid data) of the 
received frame will be raised. DMA will take the word. At that point the receive FIFO should 
be empty and the DMA request may be deasserted. The DMA request will be reasserted 
when data for a following frame is loaded into the receive FIFO.

The above behavior means there is no need for ARM Core intervention to service the IrDA 
interface between successive receive frames.

 17.3.2.4 Special Conditions

 17.3.2.4.1 Early Termination of Transmission

Clearing IrCon.TXE (transmit enable bit) stops transmission immediately. All data within the 
FIFO, transmit buffer and serial output shifter is cleared.

 17.3.2.4.2 Early Termination of Reception

Clearing IrCon.RXE receive enable bit stops reception immediately. All data within the 
receive buffer, serial input shifter and FIFO is cleared.

 17.3.2.4.3 Changing IrDA Mode

Poll the Transmitter Disabled bits – FD or MD bits – in IrEnable register until end of 
transmission is indicated. The new mode can then be set as described in 4.2.1General 
Configuration.

 17.3.2.4.4 Loopback Mode

For test purposes, data will be looped back – internally – from the output of the transmit serial 
shifter into the input of the receive serial shifter when IrEnable.LBM is set.



17-8 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

 17.3.3 Control Information Buffering

The ARM Core needs several items of information about a received frame that are not held in 
data DMAed from the receive FIFO, or stored in the DMA controller itself (because the DMA unit 
may be receiving the next frame by the time the ARM Core starts to work on the frame just completed). 
The additional information is as follows:

• A receive overrun or framing error occurred during frame reception.

• The frame failed the CRC check at the end of reception.

• Transmission of the frame was aborted.

• The number of bytes of valid data received in the frame (i.e. up to the end of frame or the 
overrun/framing error condition).

A control information buffer register is loaded whenever an end of received frame condition occurs. 
This event also generates an interrupt, which must be serviced before the end of the next received 
frame (at which point the buffered control information would be overwritten). The interrupt may be 
cleared by reading from the control information buffer register or by writing a ‘1’ to its status bit 
position.

 17.4 Medium IrDA Specific Features
The MIR comprises a dedicated serial port and RZI modulator/demodulator supporting the 
Infrared Data Association (IrDA) standard for transmission/reception at 0.576 and 
1.152 Mb/s.

Frames contain an 8 bit address, an optional control field, a data field of any size that is a 
multiple of 8 bits and a 16-bit CRC-CCITT. The start/stop flag and CRC generation/checking 
is performed in the hardware. Data can be selectively saved in the receive buffer by 
programming an address with which to compare against all incoming frames. Interrupts are 
signalled when CRC checks performed on received data indicate an error, when a receiver 
abort occurs, when the transmit buffer underruns during an active frame and is aborted, when 
the receive buffer overruns and data is lost.

 17.4.1 Introduction

 17.4.1.1 Bit Encoding
The MIR bit encoding uses an RZI modulation scheme where a “0” is represented by a light 
pulse. For both 0.576 and 1.152 Mbps data rates, the optical pulse duration is normally 1/4 of 
a bit duration. For example, if the data frame (in the order of transmission) is 11010010b, then 
Figure 17-1 represents the signal that is actually transmitted.



DS785UM1 17-9
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

 Figure 17-1. RZ1/NRZ Bit Encoding Example 

 17.4.1.2 Frame Format
MIR uses a flag (reserved bit pattern) to denote the beginning and end of a frame of 
information and to synchronize frame transmission. A double flag is used to indicate the start 
of a frame and a single flag the end. The flag contains eight bits, which start and end with a 
zero and contain six sequential ones in the middle (01111110b). This sequence of six ones is 
unique because all data between the start and stop flag is prohibited from having more than 
five consecutive ones. Data that violates this rule is altered before transmission by 
automatically inserting a zero after five consecutive ones are detected in the transmitted bit 
stream. This technique is commonly referred to as “bit stuffing” and is transparent to the user. 
The information field within a MIR frame is placed between the start and stop flags, consisting 
of an 8 bit address, an optional 8 bit control field, a data field containing any multiple of 8 bits 
and a 16 bit cyclic redundancy check (CRC-CCITT). Note that each byte within the address, 
control and data fields is transmitted and received LSB first, ending with the byte’s MSB. 
However, the CRC is transmitted and received MSB first. The MIR frame format is outlined 
below in Table 17-3.

Table 17-3. MIR Frame Format

8 Bits 8 Bits 8 Bits
8 Bits

(optional)
Any multiple

of 8 Bits
16 Bits 8 Bits

Start Flag
0111 1110

Start Flag
0111 1110

Address Control Data CRC-CCITT
Stop Flag
0111 1110



17-10 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

 17.4.1.2.1 Address Field

The 8 bit address field is used by a transmitter to target a select group of receivers when 
multiple stations are connected using the infrared link. The address allows up to 255 stations 
to be uniquely addressed (00000000b to 11111110b). The global address (11111111b) is used 
to broadcast messages to all stations. The serial port contains an 8 bit register that is used to 
program a unique address for broadcast recognition as well as a control bit to enable/disable 
the address match function. Note that the address of received frames is stored in the receive 
buffer along with normal data and that it is transmitted and received starting with its LSB and 
ending with its MSB.

 17.4.1.2.2 Control Field

The MIR control field is typically 8 bits, but can be any length. The serial port does not provide 
any hardware decode support for the control byte, but instead treats all bytes between the 
address and the CRC as data. Thus any control bits appear as data to the programmer. Note 
that the control field is transmitted and received starting with its LSB and ending with its MSB.

 17.4.1.2.3 Data Field

The data field can be any length that is a multiple of 8 bits, including zero. The user 
determines the data field length according to the application requirements and transmission 
characteristics of the target system. Usually a length is selected which maximizes the amount 
of data that can be transmitted per frame, while allowing the CRC checker to be able to 
consistently detect all errors during transmission. All data fields must be a multiple of 8 bits. If 
a data field that is not a multiple of 8 bits is received, an abort is signalled and the end of 
frame tag is set within the receive buffer. Also note that each byte within the data field is 
transmitted and received starting with its LSB and ending with its MSB.

 17.4.1.2.4 CRC Field

MIR uses the established CCITT cyclical redundancy check (CRC) to detect bit errors that 
occur during transmission. A 16 bit CRC-CCITT is computed using the address, control and 
data fields and is included in each frame. A separate CRC generator is implemented in both 
the transmit and receive logic. The transmitter calculates a CRC while data is actively 
transmitted and places the 16 bit value at the end of each frame before the stop flag is 
transmitted. The receiver calculates a CRC for each received data frame and compares the 
calculated CRC to the expected CRC value contained within the end of each received frame. 
If the calculated value does not match the expected value, an interrupt is signalled. The CRC 
computation logic is preset to all ones before reception/transmission of each frame. Note that 
the CRC is transmitted and received starting with its MSB and ending with its LSB. The CRC 
uses the four term polynomial:

CRC(x) = (x16 + x12 + x5 + 1)



DS785UM1 17-11
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

 17.4.2 Functional Description

Following reset, the MIR is disabled. Reset also causes the transmit and receive buffers and 
tail register to be flushed (buffers marked as empty). To transmit data in MIR mode, use the 
following procedure:

1. Set the EN bits in the IrEnable register to 10b for MIR mode. Do not begin data 
transmission.

2. Before enabling the MIR, the user must first clear any writable or “sticky” status bits that 
are set by writing a one to each bit. (A sticky bit is a readable status bit that may be 
cleared by writing a one to its location.) Set the TAB and TFC bits in the MISR register, 
then read the MISR register to clear all interrupts.

3. Next, the desired mode of operation is programmed in the control register. Set the TXE 
and RXE bits in the IrCtrl register.

4. Write 1 to 3 bytes to the appropriate IrDataTail register.

5. Once the MIR is enabled, transmission/reception of data can begin on the transmit and 
receive pins.

 17.4.2.1 Baud Rate Generation
The baud or bit rate is derived by dividing down an 18.423MHz clock. The clock is divided 
down by either 1 (BRD=1) or 2 (BRD=0) and then by a fixed value of four, generating the 
transmit clock for 1.152Mb/s and 0.576Mb/s data rates, respectively. The receive clock is 
generated by the receiver Digital Phase Locked Loop (DPLL). The DPLL uses a sample clock 
that is undivided. A sample rate counter (incremented at the sample clock rate) is used to 
generate a receive clock at the nominal data rate (sample clock divided by 41 and two-thirds). 
The sample rate counter is reset on the detection of each positive-going data transition 
(indicating the RZI encoding of a “0”) to ensure that synchronization with the incoming data 
stream is maintained.

 17.4.2.2 Receive Operation
Once the MIR receiver is enabled it enters hunt mode, searching the incoming data stream 
for the flag (01111110b). The flag serves to achieve bit synchronization, denotes the 
beginning of a frame and delineates the boundaries of individual bytes of data. The end of the 
second flag denotes the beginning of the address byte. Once the flag is found, the receiver is 
synchronized to incoming data and hunt mode is exited.

After each bit is decoded, a serial shifter is used to receive the incoming data a byte at a time. 
Once the flag is recognized, each subsequent byte of data is decoded and placed within a 
two byte temporary buffer. A temporary buffer is used to prevent the CRC from being placed 
within the receive buffer. When the temporary buffer is filled, data values are pushed out one 
by one to the receive buffer. The first byte of a frame is the address. If receiver address 
matching is enabled, the received address is compared to the address programmed in the 
address match value field in a control register. If the two values are equal or if the incoming 
address contains all ones, all subsequent data bytes including the address byte are stored in 
the receive buffer. If the values do not match, the receive logic does not store any data in the 



17-12 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

receive buffer, ignores the remainder of the frame and begins to search for the stop flag. The 
second byte of the frame can contain an optional control field that must be decoded in 
software (There is no hardware support within the MIR). Use of a control byte is determined 
by the user.

When the receive buffer contains a word of data, an interrupt or DMA request is signalled. If 
the data is not removed soon enough and the buffer is completely filled, an overrun error is 
generated when the receive logic attempts to place additional data into the full buffer. If this 
occurs all subsequent data in the frame is discarded by the interface and the last valid entry 
in the buffer is marked with the ROR and EOF bits. The interface will stall in this state until the 
receive buffer is emptied.

Frames can contain any amount of data in multiples of 8 bits. Although the MIR protocol does 
not limit frame size, in practice they tend to be implemented in numbers ranging from 
hundreds to a couple of thousand bytes. In general this interface expects received frame size 
to be limited to 2047 bytes. However, the interface can continue to operate past this limit 
provided that software drivers are written that carefully check the indicated frame length with 
the amount of data transferred (in the DMA case this is a little more difficult).

The receive logic continuously searches for the stop flag at the end of the frame. Once it is 
recognized, the last byte that was placed within the receive buffer is flagged as the last byte 
of the frame and the two bytes remaining within the temporary buffer are removed and used 
as the 16 bit CRC value for the frame. Instead of placing this in the receive buffer, the receive 
logic compares it to the CRC-CCITT value which is continuously calculated using the 
incoming data stream. If they do not match, the last byte that was placed within the receive 
buffer is also flagged with a CRC error. The CRC value is not placed in the receive buffer.

The MIR protocol permits back to back frames to be received. When this occurs, three flags 
separate back to back frames.

Most commercial IrDA transceivers can generate an abort (7 to 13 ones) when their transmit 
buffer underruns. The receive logic contains a counter that increments each time a one is 
decoded before entering the serial shifter and is reset any time a zero is decoded. When 
seven or more ones are detected, a receiver abort occurs. Note that data is moved from the 
serial shifter to the temporary buffer a byte at a time and seven consecutive ones may bridge 
two bytes. For this reason, after an abort is detected, the remaining data in the serial shifter is 
discarded along with the most recent byte of data placed in the temporary buffer. After this 
data is discarded, the oldest byte of data in the temporary buffer is placed in the receive 
buffer, the EOF tag is set within the top entry of the buffer (next to the byte transferred from 
the temporary buffer), the receiver abort interrupt is signalled and the receiver logic enters 
hunt mode until it recognizes the next flag.

This interface also generates an abort condition when a stop flag is received that is not byte 
aligned with the rest of the data in the frame. In this case the over flow data bits past the last 
byte boundary are discarded. It is not possible for the programmer to distinguish this 
condition for an normal abort condition.

If the user disables the receiver during operation, reception of the current data byte is 
stopped immediately, the serial shifter and receive buffer are cleared and all clocks used by 
the receive logic are automatically shut off to conserve power.



DS785UM1 17-13
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

 17.4.2.3 Transmit Operation
Immediately after enabling the MIR for transmission, the user may either “prime” the transmit 
buffer by filling it with data (see section Section 17.4.2 on page 17--11 for details) or allow 
service requests to cause the CPU or DMA to fill the buffer once the MIR is enabled. Once 
enabled, the transmit logic issues a service request if its buffer is empty. A Serial Infrared 
Interaction Pulse (SIP) is transmitted in order to guarantee non-disruptive co-existence with 
slower (up to 115.2 Kbps) systems, for example another device attempting to use its SIR. 
This is followed by continuous transmission of flags until valid data resides within the buffer. 
Once a byte of data resides at the bottom of the transmit buffer, it is transferred to the serial 
shifter, is encoded and shifted out onto the transmit pin clocked by the programmed baud rate 
clock. Note that the flags and CRC value are automatically transmitted and need not be 
placed in the transmit buffer.

When the transmit buffer has space for another word, an interrupt and/or DMA service 
request is signalled. If new data is not supplied soon enough, the buffer is completely 
emptied and the transmit logic attempts to take additional data from the empty buffer, one of 
two actions can be taken as programmed by the user. An underrun can either signal the 
normal completion of a frame or an unexpected termination of a frame in progress.

When normal frame completion is selected and an underrun occurs, the transmit logic 
transmits the 16 bit CRC value calculated during the transmission of all data within the frame 
(including the address and control bytes), followed by a flag to denote the end of the frame. 
The transmitter then transmits an SIP, followed by a continuous transmission of flags until 
data is once again available within the buffer. Once data is available, the transmitter begins 
transmission of the next frame.

When unexpected frame termination is selected and an underrun occurs, the transmit logic 
outputs an abort and interrupts the CPU. An abort continues to be transmitted until data is 
once again available in the transmit buffer. The MIR then transmits an SIP, followed by a 
double flag and starts the new frame. The off-chip receiver may choose to ignore the abort 
and continue to receive data, or to signal the serial port to retry transmission of the aborted 
frame. If the user disables the transmitter during operation, transmission of the current data 
byte is stopped immediately, the serial shifter and transmit buffer are cleared and all clocks 
used by the transmit logic are automatically disabled to conserve power.

 17.5 Fast IrDA Specific Features
The Fast Infrared port (FIR) operates at half-duplex and provides direct connection to 
commercially available Infrared Data Association (IrDA) compliant LED transceivers. The FIR 
supports the 4.0 Mbps IrDA standard, using four pulse position modulation (4 PPM) and a 
specialized serial packet protocol developed expressly for IrDA transmission.



17-14 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

 17.5.1 Introduction

 17.5.1.1 4PPM Modulation
Four position pulse modulation (4PPM) is used for the high-speed transmission rate of 
4.0 Mbps. Payload data is divided into data bit pairs (DBPs) for encoding with LSBs 
transmitted first. Each DBP is represented by one of four symbols (DDs) comprising a single 
125 ms pulse within a 500 ms symbol period. The 125 ms quarters of a symbol are known as 
“chips”. The resulting signal waveform for the four data DDs is shown in Figure 17-2 and 
Figure 17-3 and shows modulation of the byte, 10110001b which is constructed using four 
DBPs.

Note: 1. Bits within each DBP are not reordered, but the least significant DBP is transmitted first.

Note: 2. A “chip” in the context of the FIR is one time slice in the Position Modulation (PPM) 
symbol.

 Figure 17-2. 4PPM Modulation Encoding 



DS785UM1 17-15
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

 Figure 17-3. 4PPM Modulation Example 

 17.5.1.2 4.0 Mbps FIR Frame Format
When the 4.0 Mbps transmission rate is used, the high-speed serial/parallel (FIR) interface 
within the FIR is used along with the 4PPM bit encoding. The high-speed frame format shown 
in Figure 17-4, is similar to the SDLC format with several minor modifications: the start/stop 
flags and CRC are twice as long and instead of one start flag, a preamble and start flag of 
differing length are used.

 Figure 17-4. IrDA (4.0 Mbps) Transmission Format

64
symbols

8
symbols

4 DDs
(8 bits)

4 DDs
(8 bits)

8180 DDs max
(2045 bytes)

16 DDs
(32 bits)

8 symbols

Preamble Start Flag Address
Control

(optional)
Data CRC-32 Stop Flag

Start Flag |0000|1100|0000|1100|0110|0000|0110|0000|

|0000|1100|0000|1100|0000|0110|0000|0110| Stop Flag

Preamble |1000|0000|1010|1000|... repeated 16 times

Receive data sample counter frequency = 6x pulse width, each time-slot sampled on third clock.



17-16 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

The preamble, start and stop flags are a mixture of symbols which contain either 0, 1, or 2 
pulses within the four time slots. Symbols with 0 and 2 pulses are used to construct flags 
since they represent invalid data bit pairings (one pulse required per symbol to represent one 
of four bit pairs). The preamble contains sixteen repeated transmissions of the four symbols: 
1000 0000 1010 1000, the start flag contains one transmission of eight symbols: 0000 1100 
0000 1100 0110 0000 0110 0000 and the stop flag contains one transmission of eight 
symbols: 0000 1100 0000 1100 0000 0110 0000 0110. The address, control, data and CRC-
32 all use the standard 4PPM DDs described above.

 17.5.1.2.1 Address Field

The 8 bit address field is used by a transmitter to target a select group of receivers when 
multiple stations are connected to the same set of serial lines. The address allows up to 255 
stations to be uniquely addressed (00000000b to 11111110b). The global address 
(11111111b) is use to broadcast messages to all stations. Serial port 1 contains an 8 bit 
register which is used to program a unique address for broadcast recognition as well as a 
control bit to enable/disable the address match function. Note that the address of received 
frames is stored in the receive buffer along with normal data and that it is transmitted and 
received starting with its LSB and ending with its MSB.

 17.5.1.2.2 Control Field

The IPC control field is 8 bits and is optional (as defined by the user). The FIR does not 
provide any hardware decode support for the control byte, but instead treats all bytes 
between the address and the CRC as data. Note that the control field is transmitted and 
received starting with its LSB and ending with its MSB.

 17.5.1.2.3 Data Field

The data field can be any length which is a multiple of 8 bits, from 0 to 2045 bytes. The user 
determines the data field length according to the application requirements and transmission 
characteristics of the target system. Usually a length is selected which maximizes the amount 
of data which can be transmitted per frame, while allowing the CRC checker to be able to 
consistently detect all errors during transmission. Note that the serial port does not contain 
any hardware which restricts the maximum amount of data transmitted or received. It is up to 
the user to maintain these limits. If a data field which is not a multiple of 8 bits is received an 
abort is signalled. Also note that each byte within the data field is transmitted and received 
starting with its LSB and ending with its MSB.

 17.5.1.2.4 CRC Field

The FIR uses the established 32 bit cyclical redundancy check (CRC-32) to detect bit errors 
which occur during transmission. A 32 bit CRC is computed using the address, control and 
data fields and is included in each frame. A separate CRC generator is implemented in both 
the transmit and receive logic. The transmitter calculates a CRC while data is actively 
transmitted byte shifting each byte transmitted through its serial shifter LSB first, then places 
the inverse of the resultant 32 bit value at the end of each frame before the flag is transmitted. 
In a similar manner, the receiver also calculates a CRC for each received data frame and 
compares the calculated CRC to the expected CRC value contained within the end of each 
received frame. If the calculated value does not match the expected value, an interrupt is 



DS785UM1 17-17
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

signalled. The CRC computation logic is preset to all ones before reception/transmission of 
each frame and the result is inverted before it used for comparison or transmission. Note that 
unlike the address, control and data fields, the 32 bit inverted CRC value is transmitted and 
received from least significant byte to most significant and within each byte the least 
significant nibble is encoded/decoded first. The cyclical redundancy checker uses the 32 
term polynomial:

CRC(x) = 
      (x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1)

 17.5.2 Functional Description

Following reset, the FIR is disabled. Reset also causes the transmit and receive buffers and 
tail register to be flushed (buffers marked as empty). To transmit data in FIR mode, use the 
following procedure:

1. Set the EN bits in the IrEnable register to 11b for FIR mode. Do not begin data 
transmission.

2. Before enabling the FIR, the user must first clear any writable or “sticky” status bits that 
are set by writing a one to each bit. (A sticky bit is a readable status bit that may be 
cleared by writing a one to its location.) Set the TAB and TFC bits in the FISR register, 
then read the FISR register to clear all interrupts.

3. Next, the desired mode of operation is programmed in the control register. Set the TXE 
and RXE bits in the IrCtrl register.

4. Write 1 to 3 bytes to the appropriate IrDataTail register.

5. Once the FIR is enabled, transmission/reception of data can begin on the transmit and 
receive pins.

 17.5.2.1 Baud Rate Generation
The baud rate is derived by dividing down a fixed 48 MHz clock. The 8 MHz baud (time-slot) 
clock for the receiver is synchronized with the 4 PPM data stream each time a transition is 
detected on the receive data line using a digital PLL. To encode a 4.0 Mbps data stream, the 
required “symbol” frequency is 2.0 MHz, with four chips per symbol at a frequency of 
8.0 MHz. Receive data is sampled half way through each time-slot period by counting three 
out of the six 48 MHz clock periods which make up each chip. Refer to Figure 17-3 on 
page 17-15. The symbols are synchronized during preamble reception. Recall that the 
preamble consists of four symbols repeated sixteen times. This repeating pattern is used to 
identify the first time-slot or beginning of a symbol and resets the two bit chip counter logic, 
such that the 4 PPM data is properly decoded.



17-18 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

 17.5.2.2 Receive Operation
The IrDA standard specifies that all transmission occurs at half-duplex. This restriction forces 
the user to enable one direction at a given time; either the transmit or receive logic, but not 
both. However, the FIR’s hardware does not impose such a restriction. The user may enable 
both the transmitter and receiver at the same time. Although forbidden by the IrDA standard, 
this feature is particularly useful when using the FIR’s loop back mode, which internally 
connects the output of the transmit serial shifter to the input of the receive serial shifter.

After the FIR is enabled for 4.0 Mbps transmission, the receiver logic begins by selecting an 
arbitrary symbol boundary, receives four incoming 4 PPM symbols from the input pin using a 
serial shifter and latches and decodes the symbols one at a time. If the symbols do not 
decode to the correct preamble, the chip counter’s clock is forced to skip one 8MHz period, 
effectively delaying the chip count by one. This process is repeated until the preamble is 
recognized, signifying that the chip counter is synchronized. The preamble may be repeated 
as few as sixteen times, or may be continuously repeated to indicate an idle receive line.

At any time after the transmission of sixteen preambles, the start flag may be received. The 
start flag is eight symbols long. If any portion of the start flag does not match the standard 
encoding, the receiver signals a framing error and the receive logic once again begins to look 
for the frame preamble.

Once the correct start flag is recognized, each subsequent grouping of four DDs is decoded 
into a data byte, placed within a five byte temporary buffer which is used to prevent the CRC 
from being placed within the receive buffer. When the temporary buffer is filled, data values 
are pushed out one by one to the receive buffer. The first data byte of a frame is the address. 
If receiver address matching is enabled, the received address is compared to the address 
programmed in the address match value field in one of the control registers. If the two values 
are equal or if the incoming address contains all ones, all subsequent data bytes including 
the address byte are stored in the receive buffer. If the values do not match, the receiver logic 
does not store any data in the receive buffer, ignores the remainder of the frame and begins 
to search for the next preamble. The second data byte of the frame can contain an optional 
control field as defined by the user and must be decoded in software (there is no hardware 
support within the FIR).

Frames can contain any amount of data in multiples of 8 bits up to a maximum of 2047 bytes 
(including the address and control byte). In general this interface expects received frame size 
to be limited to 2047 bytes. However, the interface can continue to operate past this limit, thus 
it is the responsibility of the user to check that the size of each incoming frame does not 
exceed the IrDA protocol’s maximum allowed frame size. The BC field in the IrRIB register 
can not be used for this since it will over flow (and wrap), the true frame length can be 
deduced from the DMA buffer position in combination with the BC field.

When the receive buffer contains a word of data, an interrupt or DMA request is signalled. If 
the data is not removed soon enough and the buffer is completely filled, an overrun error is 
generated when the receive logic attempts to place additional data into the full buffer. If this 
occurs all subsequent data in the frame is discarded by the interface and the last valid entry 
in the buffer is marked with the ROR and EOF bits. The interface will stall in this state until the 
receiver buffer is emptied.



DS785UM1 17-19
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

When a framing error is detected all subsequent data in the frame is discarded by the interface and an 
entry is put into the buffer with the FRE and EOF bits set The data in this buffer entry is invalid.

If any two sequential symbols within the data field do not contain pulses (are 0000b), the 
frame is aborted. The oldest byte in the temporary buffer is moved to the receive buffer (the 
remaining four buffer entries are discarded). The end of frame (EOF) tag is set within the 
same buffer entry where the last “good” byte of data resides and the receiver logic begins to 
search for the preamble. An abort occurs if any data symbol contains 0011b, 1010b, 0101b, 
or 1001b (invalid symbols which do not occur in the stop flag).

The receiver continuously searches for the 8 symbol stop flag. Once it is recognized, the last 
byte placed within the receive buffer is flagged as the last byte of the frame and the data in 
the temporary buffer is removed and used as the 32 bit CRC value for the frame. Instead of 
placing this in the receive buffer, the receiver compares it to the CRC-32 value which is 
continuously calculated using the incoming data stream. If they do not match, the last byte 
which was placed in the receiver buffer is also tagged with a CRC error. The CRC value is not 
placed in the receive buffer.

If the user disables the FIR’s receiver during operation, reception of the current data byte is 
stopped immediately, the serial shifter and receive buffer are cleared and all clocks used by 
the receive logic are automatically shut off to conserve power.

 17.5.2.3 Transmit Operation
Immediately after enabling the FIR for transmission, the user may either “prime” the transmit 
buffer by filling it with data (see section Section 17.5.2 on page 17--17 for details) or allow 
service requests to cause the CPU or DMA to fill the buffer once the FIR is enabled. Once 
enabled, the transmit logic issues a service request if its buffer is empty. For each frame 
output, a minimum of sixteen preambles are transmitted. If data is not available after the 
sixteenth preamble, additional preambles are output until a byte of valid data resides within 
the bottom of the transmit buffer. The preambles are then followed by the start flag and then 
the data from the transmit buffer. Four symbols (8 bits) are encoded at a time and then loaded 
into a serial shift register. The contents are shifted out onto the transmit pin clocked by the 
8 MHz baud clock. Note that the preamble, start and stop flags and CRC value is 
automatically transmitted and need not be placed in the transmit buffer.

When the transmit buffer is emptied, an interrupt and/or DMA service request is signalled. If 
new data is not supplied quickly enough and the transmit logic attempts to take additional 
data from the empty buffer, one of two actions can be taken as programmed by the user. An 
underrun can either signal the normal completion of a frame or an unexpected termination of 
a frame in progress.

When normal frame completion is selected and an underrun occurs, the transmit logic 
transmits the 32 bit CRC value calculated during the transmission of all data within the frame 
(including the address and control bytes), followed by the stop flag to denote the end of the 
frame. The transmitter then continuously transmits preambles until data is once again 
available within the buffer. Once data is available, the transmitter begins transmission of the 
next frame.



17-20 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

When unexpected frame termination is selected and an underrun occurs, the transmit logic 
outputs an abort and interrupts the CPU. An abort continues to be transmitted until data is 
once again available in the transmit buffer. The FIR then transmits 16 preambles, a start flag 
and starts the new frame. The remote receiver may choose to ignore the abort and continue 
to receive data, or to signal the FIR to retry transmission of the aborted frame.

At the end of each frame transmitted, the FIR outputs a pulse called the serial infrared 
interaction pulse (SIP). A SIP is required at least every 500 ms to keep slower speed devices 
(115.2 kbps and slower) from colliding with the higher speed transmission. The SIP simulates 
a start bit which causes all low speed devices to stay off the bus for at least another 500 ms. 
Transmission of the SIP pulse causes the transmit pin to be forced high for a duration of 
1.625 μs and low for 7.375 μs (total SIP period = 9.0 μs). After the 9.0 μs elapses, the 
preamble is then transmitted continuously to indicate to the remote receiver that the FIR’s 
transmitter is in the idle state. The preamble continues to be transmitted until new data is 
available within the transmit buffer, or the FIR’s transmitter is disabled. Note that it is the 
responsibility of the user to ensure that a frame completes once every 500 ms such that a 
SIP pulse is produced keeping all low speed devices from interrupting transmission. Because 
most IrDA compatible devices produce a SIP after each frame transmitted, the user may only 
need to ensure that a frame is either transmitted or received by the FIR every 500 ms.

Note that frame length does not represent a significant portion of the 500 ms time frame in 
which a SIP must be produced. At 4.0 Mbps, the longest frame allowed is 16,568 bits, which 
takes just over 4 ms to transmit. Also note that the FIR issues a SIP when the transmitter is 
first enabled, to ensure all low speed devices are silenced before transmitting its first frame.

If the user disables the FIR’s transmitter during operation, transmission of the current data 
byte is stopped immediately, the serial shifter and transmit buffer are cleared. All clocks used 
by the transmit logic are automatically shut off to conserve power.

 17.5.3 IrDA Connectivity

The IrDA controller uses package pins RXD1 and TXD1. The IrDA input signal is always 
RXD1. Syscon register DeviceCfg.IonU2 controls what drives bit TXD1. See Figure 17-4.   

Therefore, to use any IrDA mode, FIR, MIR or SIR, set IonU2. To use UART2 as a UART, 
clear IonU2.

Table 17-4. DeviceCfg.IonU2 Pin Function

DeviceCfg.IonU2 Pin TXD1 Function

0 UART2 is the output signal

1 Logical OR of IrDA output signal and UART2 SIR output signal



DS785UM1 17-21
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

 17.5.4 IrDA Integration Information

 17.5.4.1 Enabling Infrared Modes

 17.5.4.2 Clocking Requirements
There are four clocks, PCLK, MIRCLK, FIRCLK, and UARTCLK.

Version 1.1 of the Infrared Data Association standard indicates the following:

• FIRCLK must by 48.0 MHz with a tolerance of 0.01%.

• MIRCLK must be 18.432 MHz with a tolerance of 0.1%. 

The worst case ratio that can be supported for PCLK:FIRCLK is a ratio of 1:5. The maximum 
that PCLK can be is 66 MHz, therefore:

Any frequencies outside the above range are not supported and will result in incorrect 
behavior of the FIR mode of the infrared peripheral.

Since MIRCLK is 18.432 MHz, PCLK can be as low as 3.68 MHz and as high as 66 MHz. Any 
PCLK frequency in this range is allowable. Any PCLK frequencies outside the range are not 
supported and will result in incorrect behavior of the MIR mode of the infrared peripheral, 
therefore:

The tolerance of UARTCLK is defined by the UART to which it is connected. 

UARTCLK frequency must accommodate the desired range of baud rates:     

The frequency of UARTCLK must also be within the required error limits for all baud rates to 
be used.

Table 17-5. UART2 / IrDA Modes 

Mode
DeviceCfg Register UART2Ctrl Register IrEnable Register

U2EN IonU2 SIREn UARTE EN[1] EN[0]

Disabled 0 x 0 0 0 0

UART2 1 0 0 1 0 0

SIR 1 1 1 1 0 1

MIR x 1 0 0 1 0

FIR x 1 0 0 1 1

1
5
---FFIRCLK FPCLK 66.0MHz< <

3.68MHz FPCLK 66.0MHz≤ ≤

FUARTCLKMIN
32 baudrateMAX×≥

FUARTCLKMAX
32 65536 b× audrateMIN×≤



17-22 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

To allow sufficient time to write the received data to the receive FIFO, UARTCLK must be less 
than or equal to four times the frequency of PCLK:   

If the IrDA SIR functionality is required, UARTCLK must have a frequency between 2.7 MHz 
and 542.7 MHz to ensure that the low-power mode transmit pulse duration complies with the 
IrDA SIR specification.

 17.5.4.3 Bus Bandwidth Requirements
There are four different IrDA modes with different bandwidth requirements. Furthermore, 
there are two basic ways of moving data to or from the IrDA FIFOs:

• Direct DMA interface - this permits byte-wide access to the IrDA without using the APB. 
The DMA block will pack/unpack individual bytes so that it reads or writes full 32-bit 
words rather than individual bytes.

• Accessing the IrDA via the APB - this requires APB/AHB bus bandwidth. Then, both a 
read and write are required for each 32-bit data word.

Assuming most bytes in a packet are moved either via the DMA interface or via 32-bit word 
accesses to the IrDA controller on the APB, Table 17-6 indicates the maximum average 
number of memory accesses per second to service IrDA TX or RX:

Note that the SIR mode bit rate is a worst case value.

Table 17-6. IrDA Service Memory Accesses / Second

Infrared Mode Bit Rate (bits / second)
Bus accesses / second

DMA APB

SIR 115,200 3,600 7,200

Slow MIR 576,000 18,000 36,000

Fast MIR 1,152,000 36,000 72,000

FIR 4,000,000 125,000 250,000

FUARTCLK 4 FPCLK×≤



DS785UM1 17-23
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

 17.6 Registers

Register Descriptions

IrEnable 

Address:
0x808B_0000 - Read/Write

Default:
0x0000_0018

Definition:
IrDA Enable Register. This register selects which Infrared interface module is 
active. The Medium and Fast modules share common control, flag, and data 
interfaces while maintaining separate status registers.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

FD: Fast done status. Read-only bit indicating that the FIR 
transmit module has completed transition of the current 
frame and that it is safe to disable the module using the 
EN control bits.

MD: Medium done status. Read-only bit indicating that the MIR 
transmit module has completed transmission of the current 
frame and that it is safe to disable the module using the 
EN control bits.

LBM: Loopback Mode, for MIR and FIR operation.
0 - Normal operation.
1 - Loopback active, the transmit serial shifter is directly 
connected to the receive serial shifter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD FD MD LBM EN



17-24 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

EN: Enable value:
00 - No encoder selected
01 - SIR, 0 to 0.1152Mbit/s data rate, using the UART2 
interface
10 - MIR, 0.576 or 1.152Mbit/s data rate, using IrDA 
interface
11 - FIR, 4.0Mbit/s data rate, using IrDA interface.

Note: While the FIR transmit section is enabled, the FD bit is low, and while the MIR transmit 
section is enabled, the MD bit is low. In FIR mode, the FD bit does not go high until the TXE 
bit in the IrCtrl register is cleared, and in MIR mode, the same bit must be cleared for MD to 
go high. Monitor the TBY bit in the IrFlag register to discover whether a packet is fully 
transmitted before clearing TXE.

IrCtrl 

Address:
0x808B_0004

Default:
0x0000_0000

Definition:
IrDA Control Register. This register selects various operating parameters. 
Note that the RXE and TXE bit must be cleared before selecting a different 
interface with the IrEnable register EN bits. The other bits in this register may 
be changed while the interface is active.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

AME: Address Match Enable.
0 - Disable receiver address match function, store data 
from all incoming frames in the receive buffer.
1 - Enable receiver address match function, do not buffer 
data unless address is recognized or incoming address 
contains all ones.

RXP: Receive Polarity Control.
0 - Data input is not inverted before decoding.
1 - Data input is inverted before decoding.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD AME RXP TXP RXE TXE TUS BRD 0



DS785UM1 17-25
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

TXP: Transmit Polarity Control.
0 - Encoded data is not inverted before being passed to 
the pins.
1 - Encoded data is inverted before being passed to the 
pins.

RXE: Receive Enable.
0 - Ir receive logic is disabled and clocks are stopped.
1 - Ir receive logic is enabled.

TXE: Transmit Enable.
0 - Transmit logic is disabled and clocks are stopped.
1 - Transmit logic is enabled.

TUS: Transmit buffer Underrun Select.
0 - Transmit buffer underrun causes CRC, stop flag, and 
SIP to be transmitted.
1 - Transmit buffer underrun causes an abort to be 
transmitted.

BRD: MIR Bit rate select.
0 - MIR data rate is 0.576 Mbit/s.
1 - MIR data rate is 1.152 Mbit/s.

0: Must be written to “0”.

IrAdrMatchVal

Address:
0x808B_0008 - Read/Write

Default:
0x0000_0000

Definition:
IrDA Address Match Value Register contains the 8 bit address match value 
field which is used by the receiver to selectively store only the data within the 
receive frames which have the same address. For incoming frames which 
have the same address value as the AMV field, the frame’s address, control 
and data is stored in the receive buffer. For those that do not match, the 
remainder of the frame is ignored and the receive logic searches for the 
beginning of the next frame. This register is used for both MIR and FIR. The 
AME bit in IrCtrl must be set to enable this function. Frames containing an 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD AMV



17-26 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

address of all ones are broadcast frames, and are always matched regardless 
of the value in the AMV. The AMV may be written at any time, allowing the 
address match value to be changed during active receive operation.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

AMV: Address Match Value.

IrFlag 

Address:
0x808B_008B - Read Only

Default:
0x0000_0000

Definition:
IrDA Flag Register. Contains the nine read only flags which indicate the 
current state of the IrDA Interface.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

TBY: Transmitter Busy Flag.
0 - Transmitter is idle, or disabled, or an abort is being 
transmitted.
1 - Transmit logic is currently transmitting a frame.

RIF: Receiver In Frame.
0 - Receiver is in preamble/start flag or is in hunt mode.
1 - Receiver is in a frame.

RSY: Receiver Synchronized Flag.
0 - Receiver is in hunt mode.
1 - Receiver logic is synchronized within the incoming 
data.

EOF: End of Frame.
0 - Current frame is not completed.
1 - The word in the receive buffer contains the last byte of 
data within the frame. When the last word in the current 
frame is read this bit is cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TBY RIF RSY EOF WST WST FRE ROR CRE RAB



DS785UM1 17-27
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

WST: Width Status.
00 - All four bytes in receive buffer are valid.
01 - Least significant byte is valid only.
10 - Least significant two bytes are valid only.
11 - Least significant three bytes are valid only.

FRE: FIR Framing Error.
0 - No framing errors encountered in the receipt of FIR 
data.
1 - Framing error occurred, FIR preamble followed by 
something other than another preamble or FIR start flag. 
The data in the buffer is invalid.

ROR: Receive buffer Overrun.
0 - Receive buffer has not experienced an overrun.
1 - Receive logic attempted to place data into receive 
buffer while it was full. The next data value in the buffer is 
the last piece of “good” data before the buffer was overrun.

CRE: CRC Error.
0 - No CRC check errors encountered in the data.
1 - CRC calculated on the incoming data does not match 
CRC value contained within the received frame.

RAB: Receiver Abort.
0 - No abort has been detected for the incoming frame.
1 - Abort detected during receipt of the incoming frame, 
EOF bit set in receive buffer next to the last piece of 
“good” data received before abort.

IrData 

Address:
0x808B_0010 - Read/Write

Default:
0x0000_0000

Definition:
IrDA Data Register. Provides access to the transmit and receive buffers used 
by the MIR and FIR interfaces.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA



17-28 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

Bit Descriptions:

DATA: IrDA data word. Values written and sent to the transmit 
FIFO. Values read are from the receiver FIFO.

IrDataTail 

Address:
0x808B_0014, 0x808B_0018, 0x808B_001C - Write Only

Default:
0x0000_0000

Definition:
IrDA Data Tail Register. This is a 24-bit write only register used for transmitting 
frames whose payload data is not an integer multiple of 4 bytes long. The bit 
locations are cleared when read by the transmit logic or when the TXE control 
bit is clear. The IrData Tail register may be written using one of three 
addresses. Bits two and three of the address determine how many bytes 
within the word are significant, that is, are intended for transmission. If none of 
the address is written, the register remains marked as empty and payload data 
will be read by the transmit logic from the 32-bit FIFO only. The status of this 
register does not affect the TFS flag, nor does it cause interrupts or DMA 
requests to be generated.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

DATA: IrDA transmit payload data. Write to address 0x014, least 
significant byte is transmitted. Write to address 0x018, 
least significant two bytes are transmitted. Write to 
address 0x01C, least significant three bytes are 
transmitted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA



DS785UM1 17-29
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

IrRIB 

Address:
0x808B_0020 - Read Only

Default:
0x0000_0000

Definition:
IrDA Receive Information Register. This register contains 15 read only bits that 
identify flag and byte count values from the last received frame. The bits are 
copied from the flag register when the last data in a frame is read from the 
receive FIFO. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

BC: Byte Count. The total number of valid bytes read from the 
interface during the last frame. If the total number of bytes 
is greater than 2047, only the lower eleven bits are 
presented.

BFRE: Buffered Framing Error.
0 - No framing errors were encountered during the last 
frame.
1 - A framing error occurred during the last frame causing 
the remainder of the frame to be discarded.

BROR: Buffered Receive buffer Overrun.
0 - The receive buffer did not overrun during the last 
frame.
1 - Receive logic attempted to place data into receive 
buffer while it was full during the last frame causing the 
remainder of the frame to be discarded.

BCRE: Buffered CRC Error.
0 - No CRC check errors encountered in the last frame.
1 - CRC calculated on the incoming data did not match 
CRC value contained within the received frame for the last 
frame.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BC BFRE BROR BCRE BRAB



17-30 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

BRAB: Buffered Receiver Abort.
0 - No abort was detected in the last frame.
1 - The last frame was terminated with an abort condition.

IrTR0 

Address:
0x808B_0024 - Read Only

Default:
0x0000_0000

Definition:
IrDA Test Register 0. This register indicates the received byte count.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

BC: Byte Count. The total number of valid bytes read by the 
receiver.

IrDMACR 

Address:
0x808B_0028 - Read/Write

Default:
0x0000_0000

Definition:
IrDA DMA Control Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DMAERR TXDMAE RXDMAE



DS785UM1 17-31
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

DMAERR: RX DMA error handing enable. If 0, the RX DMA interface 
ignores error conditions in the IrDA receive section. If “1”, 
the DMA interface stops and notifies the DMA block when 
an error occurs. Errors include framing errors, receive 
abort, and CRC mismatch.

TXDMAE: TX DMA interface enable. Setting to “1” enables the 
private DMA interface to the transmit FIFO.

RXDMAE: RX DMA interface enable. Setting to “1” enables the 
private DMA interface to the receive FIFO.

SIRTR0 

Address:
0x808B_0030 - Read/Write

Default:
0x0000_0000, except that bit 4 is unknown at reset

Definition:
IrDA Slow InfraRed Test Register 0.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

SIREN: The state of the SIREN after synchronization. Read only.

SIROUT: The state of SIROUT output from the InfraRed block. Read 
only.

TXD: The state of the TXD input to the InfraRed block from 
UART2. Read only.

RXD: The state of the RXD output from the InfraRed block to 
UART2. Read only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SIREN SIROUT TXD RXD SIRT SIRIN S16CLK TSIRC



17-32 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

MISR 

Address:
0x808B_0080 - Read/Write

Default:
0x0000_0000

Definition:
MIR Status Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RFL: Receive Frame Lost. Set to a “1” when a ROR occurred at 
the start of a new frame, before any data for the frame 
could be put into the receive FIFO. This bit is cleared by 
writing a “1” to this bit. This occurs if the last entry in the 
FIFO already contains a valid EOF bit from a previous 
frame when a FIFO overrun occurs. The ROR bit cannot 
be placed into the FIFO and all data associated with the 
frame is lost.

RIL: Receive Information Buffer Lost. Set to a “1” when the last 
data for a frame is read from the receive FIFO and the 
RFC bit is still set from a previous end of frame. This bit is 
cleared by writing a “1” to this bit. This is triggered if the 
RFC bit is already set before the last data from a frame is 
read from the IrData register. It indicates that the data from 
the IrRIB register was lost. This can occur if the CPU does 
not respond to the RFC interrupt before another (short) 
frame completes and is read from the IrData register by 
the DMA controller.

RFC: Received Frame Complete. Set to “1” when the last data 
for a frame is read from the receive FIFO (via the IrData 
register). This event also triggers the IrRIB to load the 
IrFlag and byte count. This bit is cleared when the IrRIB 
register is read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RFL RIL RFC RFS TAB TFC TFS



DS785UM1 17-33
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

RFS: Receive buffer Service Request (read only).
0 - Receive buffer is empty or the receiver is discarding 
data or the receiver is disabled.
1 - Receive buffer is not empty and the receiver is 
enabled, DMA service request signaled.

TAB: Transmit Frame Aborted. Set to “1” when a transmitted 
frame is terminated with an abort. This will only occur if the 
TUS bit is set in the IrCtrl register. Writing a “1” to this bit 
clears it.

TFC: Transmitted Frame Complete. Set to “1” whenever a 
transmitted frame completes, whether it is terminated with 
a CRC followed by a stop flag or terminated with an abort. 
Writing a “1” to this bit clears it.

TFS: Transmit buffer Service Request (read only).
0 - Transmit buffer is full or transmitter disabled.
1 - Transmit buffer is not full and the transmitter is 
enabled, DMA service is signaled.
The bit is automatically cleared after the buffer is filled.

MIMR 

Address:
0x808B_0084 - Read/Write

Default:
0x0000_0000

Definition:
MIR Interrupt Mask Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RFL: RFL mask bit. When high, the MIR RFL status can 
generate an interrupt.

RIL: RIL mask bit. When high, the MIR RIL status can generate 
an interrupt.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RFL RIL RFC RFS TAB TFC TFS



17-34 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

RFC: RFC mask bit. When high, the MIR RFC status can 
generate an interrupt.

RFS: RFS mask bit. When high, the MIR RFS status can 
generate an interrupt.

TAB: TAB mask bit. When high, the MIR TAB status can 
generate an interrupt.

TFC: TFC mask bit. When high, the MIR TFC status can 
generate an interrupt.

TFS: TFS mask bit. When high, the MIR TFS status can 
generate an interrupt.

MIIR 

Address:
0x808B_0088 - Read Only

Default:
0x0000_0000

Definition:
MIR Interrupt Register. The IrDA interrupt is asserted if any bit in the MIIR is 
high.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RFL: Logical AND of MIR RFL status bit and RFL mask bit.

RIL: Logical AND of MIR RIL status bit and RIL mask bit.

RFC: Logical AND of MIR RFC status bit and RFC mask bit.

RFS: Logical AND of MIR RFS status bit and RFS mask bit.

TAB: Logical AND of MIR TAB status bit and TAB mask bit.

TFC: Logical AND of MIR TFC status bit and TFC mask bit.

TFS: Logical AND of MIR TFS status bit and TFS mask bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RFL RIL RFC RFS TAB TFC TFS



DS785UM1 17-35
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

FISR 

Address:
0x808B_0180 - Read/Write

Default:
0x0000_0000

Definition:
FIR Status Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RFL: Receive Frame Lost. Set to a “1” when a ROR occurred at 
the start of a new frame, before any data for the frame 
could be put into the receive FIFO. This bit is cleared by 
writing a “1” to this bit. This occurs if the last entry in the 
FIFO already contains a valid EOF bit from a previous 
frame when a FIFO overrun occurs. The ROR bit cannot 
be placed into the FIFO and all data associated with the 
frame is lost.

RIL: Receive Information Buffer Lost. Set to a “1” when the last 
data for a frame is read from the receive FIFO (via the 
IrData register) and the RFC bit is still set from a previous 
end of frame. It indicates that data in the IrRIB register for 
the previous frame was lost. This can occur if the CPU 
does not respond to the RFC interrupt before another 
frame completes and is read from the IrData register by 
the DMA controller. This bit is cleared by writing a “1” to 
this bit.

RFC: Received Frame Complete. Set to “1” when the last data 
for a frame is read from the receive FIFO (via the IrData 
register). This event also triggers the IrRIB to load the 
IrFlag and byte count. This bit is cleared when the IrRIB 
register is read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RFL RIL RFC RFS TAB TFC TFS



17-36 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17

RFS: Receive buffer Service Request (read only).
0 - Receive buffer is empty or the receiver is discarding 
data or the receiver is disabled.
1 - Receive buffer is not empty and the receiver is 
enabled, DMA service request signaled.
The bit is automatically cleared when the receive buffer is 
emptied.

TAB: Transmit Frame Aborted. Set to “1” when a transmitted 
frame is terminated with an abort. This will only occur if the 
TUS bit is set in the IrCtrl register. The bit is cleared by 
writing a “1” to this bit.

TFC: Transmitted Frame Complete. Set to “1” whenever a 
transmitted frame completes (whether it is terminated with 
a CRC followed by a stop flag or terminated with an abort). 
This bit is cleared by writing a “1” to this bit.

TFS: Transmit buffer Service Request (read only).
0 - Transmit buffer is full or transmitter disabled.
1 - Transmit buffer is not full and the transmitter is 
enabled, DMA service is signaled.
The bit is automatically cleared after the buffer is filled.

FIMR 

Address:
0x808B_0184 - Read/Write

Default:
0x0000_0000

Definition:
FIR Interrupt Mask Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RFL: RFL mask bit. When high, the FIR RFL status can 
generate an interrupt.

RIL: RIL mask bit. When high, the FIR RIL status can generate 
an interrupt.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RFL RIL RFC RFS TAB TFC TFS



DS785UM1 17-37
Copyright 2007 Cirrus Logic 

IrDA
EP93xx User’s Guide

1717

17

RFC: RFC mask bit. When high, the FIR RFC status can 
generate an interrupt.

RFS: RFS mask bit. When high, the FIR RFS status can 
generate an interrupt.

TAB: TAB mask bit. When high, the FIR TAB status can 
generate an interrupt.

TFC: TFC mask bit. When high, the FIR TFC status can 
generate an interrupt.

TFS: TFS mask bit. When high, the FIR TFS status can 
generate an interrupt.

FIIR 

Address:
0x808B_0188 - Read Only

Default:
0x0000_0000

Definition:
FIR Interrupt Register. An interrupt is signalled from this block if any bit is high 
in the FIIR.

Bit Descriptions:

RSVD: Reserved. Unknown During Read.

RFL: Logical AND of FIR RFL status bit and RFL mask bit.

RIL: Logical AND of FIR RIL status bit and RIL mask bit.

RFC: Logical AND of FIR RFC status bit and RFC mask bit.

RFS: Logical AND of FIR RFS status bit and RFS mask bit.

TAB: Logical AND of FIR TAB status bit and TAB mask bit.

TFC: Logical AND of FIR TFC status bit and TFC mask bit.

TFS: Logical AND of FIR TFS status bit and TFS mask bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RFL RIL RFC RFS TAB TFC TFS



17-38 DS785UM1
Copyright 2007 Cirrus Logic

IrDA
EP93xx User’s Guide

1717

17



DS785UM1 18-1
Copyright 2007 Cirrus Logic 

1818

18

Chapter 18

18Timers

 18.1 Introduction
The timers are used to control timed events in the system. For example, a wait can be 
inserted by setting the timer value to an appropriate value and waiting for the timer interrupt. 

The Timers block contains two 16-bit timers, one 32-bit timer and one 40-bit time stamp 
debug timer.

 18.1.1 Features

The processor has these timer features:

• Two 16-bit timers

• Free running

• Load based

• One 32-bit timer

• Free running

• Load based

• One 40-bit timer

• Free running

 18.1.2 16 and 32-bit Timer Operation

The two 16-bit timers are referred to as TC1 and TC2. Each of these timers has an 
associated 16-bit read/write data register and a control register. Each counter is loaded with 
the value written to the data register immediately. This value will then be decremented on the 
next active clock edge to arrive after the write. When the timer counter decrements to “0”, it 
will assert the appropriate interrupt. The timer counters can be read at any time. The clock 
source and mode is selectable by writing to various bits in the system control register. Clock 
sources are 508 kHz and 2 kHz. Both of these clock sources are synchronized to the main 
system AHB bus clock (HCLK).

Timer 3 (TC3) has the exact same operation as TC1 and TC2, but it is a 32-bit counter. It has 
the same register arrangement as TC1 and TC2, providing a load, value, control and clear 
register. The 16- and 32-bit timer counters can operate in two modes, free running mode or 
pre-load mode.



18-2 DS785UM1
Copyright 2007 Cirrus Logic

Timers
EP93xx User’s Guide

1818

18

 18.1.2.1 Free Running Mode
In free running mode, counters TC1 and TC2 will wrap to 0xFFFF when they reach zero 
(underflow), and continue counting down. Counter TC3 will wrap to 0xFFFFFFFF when it 
underflows, and continues counting down.

 18.1.2.2 Pre-load Mode
In pre-load (periodic) mode, the value written to the TC1, TC2 or TC3 Load registers is 
automatically re-loaded when the counter underflows. This mode can be used to generate a 
programmable periodic interrupt.

 18.1.3 40-bit Timer Operation

The time stamp debug timer is a 40-bit up-counter used only for long term debugging (TC4). 
Its clock source is the 14.7456 MHz clock, divided by 15 to give a 983.04 kHz reference. The 
timer value may be read at any time by reading the lower 32-bit word first and then the high 
byte. Dividing the result by 983 yields a timestamp in milliseconds. The debug timer does not 
cause an interrupt. The timer is controlled by a single enable bit. When the timer is enabled, it 
begins counting from zero and when it is disabled, it is cleared back to zero. When it reaches 
its maximum value (0xFF_FFFF_FFFF) it wraps around to zero and continues counting 
upwards.

 18.2 Registers

Table 18-1. Timers Register Map

Address Read Location Write Location Size Reset Value

0x8081_0000 "Timer1Load," "Timer1Load," 16 bits 0

0x8081_0004 "Timer1Value," - 16 bits 0

0x8081_0008 "Timer1Control," "Timer1Control," 8 bits 0

0x8081_000C Reserved "Timer1Clear," 1 bit -

0x8081_0020 "Timer1Load," "Timer2Load" 16 bits 0

0x8081_0024 "Timer2Value" - 16 bits 0

0x8081_0028 "Timer2Control," "Timer2Control," 8 bits 0

0x8081_002C Reserved "Timer2Clear," 1 bit -

0x8081_0060 "Timer4ValueLow" - 32 0

0x8081_0064 Timer4Enablea / "Timer4ValueHigh"

a. “Enable” is a field in the "Timer4ValueHigh" register.

Timer4Enable 9 0

0x8081_0080 "Timer3Load" "Timer3Load" 32 bits 0

0x8081_0084 "Timer3Value" - 32 bits 0

0x8081_0088 "Timer3Control" "Timer3Load" 32 bits 0

0x8081_008C Reserved "Timer3Clear" 1 bit -

0x8081_0010 Reserved Reserved - -

0x8081_0030 Reserved Reserved - -

0x8081_0040 Reserved Reserved - -

0x8081_0090 Reserved Reserved - -



DS785UM1 18-3
Copyright 2007 Cirrus Logic 

Timers
EP93xx User’s Guide

1818

18

Register Descriptions

Timer1Load, 

Timer2Load     

Address:
Timer1 - 0x8081_0000 - Read/Write
Timer2 - 0x8081_0020 - Read/Write

Reset Value:
0x0000_0000

Definition:
The Load register contains the initial value of the timer and is also used as the 
reload value in periodic timer mode. The timer is loaded by writing to the Load 
register when the timer is disabled. The Timer Value register is updated with 
the Timer Load value as soon as the Timer Load register is written. The Load 
register should not be written after the Timer is enabled because this causes 
the Timer Value register to be updated with an undetermined value.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Load: Initial load value of the timer.

Timer3Load   

Address:
Timer3 - 0x8081_0080 - Read/Write

Reset Value:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Load

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Load



18-4 DS785UM1
Copyright 2007 Cirrus Logic

Timers
EP93xx User’s Guide

1818

18

Definition:
The Load register contains the initial value of the timer and is also used as the 
reload value in periodic timer mode. The timer is loaded by writing to the Load 
register when the timer is disabled. The Timer Value register is updated with 
the Timer Load value as soon as the Timer Load register is written to. The 
Load register should not be written to after the Timer is enabled as this causes 
the Timer Value register to be updated with an undetermined value.

Bit Descriptions:

Load: Initial load value of the timer.

Timer1Value, 

Timer2Value     

Address:
Timer1 - 0x8081_0004 - Read Only
Timer2 - 0x8081_0024 - Read Only

Reset Value:
0x0000_0000

Definition:
The Value location gives the current value of the timer. When the Timer Load 
register is written to, the Value register is also updated with this Load value.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Value: Current value of the timer.

Timer3Value   

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value



DS785UM1 18-5
Copyright 2007 Cirrus Logic 

Timers
EP93xx User’s Guide

1818

18

Address:
Timer3 - 0x8081_0084 - Read Only

Reset Value:
0x0000_0000

Definition:
The Value location gives the current value of the timer. When the Timer Load 
register is written to, the Value register is also updated with this Load value.

Bit Descriptions:

Value: Current value of the timer.

Timer1Clear, 

Timer2Clear, 

Timer3Clear     

Address:
Timer1 - 0x8081_000C - Write Only
Timer2 - 0x8081_002C - Write Only
Timer3 - 0x8081_008C - Write Only

Reset Value:
Not defined.

Definition:
Writing any value to the Clear location clears an interrupt generated by the 
timer. 

Bit Descriptions:

RSVD: This register has no readable bits. It is just a write trigger.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD



18-6 DS785UM1
Copyright 2007 Cirrus Logic

Timers
EP93xx User’s Guide

1818

18

Timer1Control, 

Timer2Control, 

Timer3Control    

Address:
Timer1 - 0x8081_0008 - Read/Write
Timer2 - 0x8081_0028 - Read/Write
Timer3 - 0x8081_0088 - Read/Write

Reset Value:
0x0000_0000

Definition:
The Control register provides enable/disable and mode configurations for the 
timer. 

Bit Descriptions:

RSVD: Reserved. Unknown during a Read operation. 

ENABLE: Timer enable bit. This bit must be set to “1” to enable the 
timer. When the timer is disabled, its clock sources are 
turned off. Before re-enabling the timer, its Load register 
must be written to again.

MODE: This bit sets the mode of operation of the timer. When set 
to 1, the timer is in periodic timer mode and when set to 
“0”, the timer is in free running mode.

CLKSEL: When set to “1”, the 508 kHz clock is selected and when 
set to “0”, the 2 kHz clock is selected. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD ENABLE MODE RSVD CLKSEL RSVD



DS785UM1 18-7
Copyright 2007 Cirrus Logic 

Timers
EP93xx User’s Guide

1818

18

Timer4ValueLow

Address:
Timer4 - 0x8081_0060 - Read Only

Reset Value:
0x0000_0000

Definition:
This read-only register contains the low word of the time stamp debug timer 
(Timer4). When this register is read, the high byte of the Timer4 counter is 
saved in the Timer4ValueHigh register.

Bit Descriptions:

Value: Read Only Low Word of the Timer4 counter.

Timer4ValueHigh 

Address:
Timer4 - 0x8081_0064 - Read/Write

Reset Value:
0x0000_0000

Definition:
This is a 9-bit read/write register.

Enable is the only bit that matters during a register write. When set to “1”, the 
timer is enabled and begins to count upwards. When set to 0, the debug timer 
registers are cleared to all zeros and the timer stops counting

Timer4ValueHigh is a read-only value and contains the high byte of the Timer4 
counter. Note that the Timer4ValueLow register must first be read to store the 
high byte of the TC4 in Timer4ValueHigh register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD Enable Value



18-8 DS785UM1
Copyright 2007 Cirrus Logic

Timers
EP93xx User’s Guide

1818

18

Bit Descriptions:

RSVD: Reserved. Unknown during a Read operation. 

Enable: Read/Write. Enable for Timer4.

Value: Read only. High Byte of the Timer4 counter.



DS785UM1 19-1
Copyright 2007 Cirrus Logic 

1919

19

Chapter 19

19Watchdog Timer

 19.1 Introduction
The Watchdog Timer provides a mechanism for generating a system-wide reset should the 
system hang. This functionality allows the Watchdog to recover the system and report the 
recovery to software. To prevent system-wide reset, software must periodically reset the 
Watchdog via an APB write operation. It is possible to disable the Watchdog through either 
hardware or software.

The Watchdog timer circuitry consists of a 7-bit counter. The most significant bit of the 
counter is used to trigger the WATCHDOG_RESETn output signal to the system control 
module for generating HRESETn.

The amount of time before a WATCHDOG_RESETn is initiated as well as the duration of the 
reset pulse is as follows:

• Time-out or WATCHDOG_RESETn duration = 64 / WATCHDOG_CLK frequency (units 
are seconds).

• For a 256 Hz WATCHDOG_CLK, time-out and reset pulse duration are 
64 / 256 = 250 msec.

To keep the reset pulse from occurring, SW must reset the Watchdog timer (sometimes 
known as “kick the dog”) to a predetermined count on a periodic basis. This resets the 
counter, which prevents the WATCH_RESETn from activating. The counter is reset by writing 
0x5555 to the Watchdog register. The Watchdog should be reset at least 2 
WATCHDOG_CLK periods earlier than the time-out calculation would indicate, due to clock 
synchronization and handshaking circuitry.

Once a Watchdog reset occurs, the timer also provides a 250 ms duration reset pulse. The 
Watchdog also defaults to providing the pulse duration when the reset is from other sources 
such as user reset (external reset on RSTOn), AMBA bus reset (HRESETn), or power on 
reset (internal chip voltage detect power on signal PWR_RESETn). The reset pulse duration 
can be disabled by pulling the CSn[2] (HW_RSTPULSE_DISABLEn) signal low during the 
bus reset (HRESETn low). This immediately frees the Watchdog reset output line when reset 
becomes inactive. In either case, if the reset pulse duration is provided or not, the Watchdog 
counter will start over after the WATCHDOG_RESETn output becomes inactive. This begins 
a new 250 ms cycle after reset becomes inactive before software must reset the counter.



19-2 DS785UM1
Copyright 2007 Cirrus Logic

Watchdog Timer
EP93xx User’s Guide

1919

19

 19.1.1 Watchdog Activation

The Watchdog circuitry may be disabled via software for test purposes on products that do 
not wish to use a Watchdog timer by writing 0xAA55 to the Watchdog register. The Watchdog 
may also be re-enabled via software by writing 0xAAAA to the Watchdog register.

The Watchdog circuitry may be disabled via hardware on products that do not need to use a 
Watchdog timer, by applying an external pull down on the CSn[1] 
(HW_WATCHDOG_DISABLEn) signal during reset. This will allow the block to detect the 
presence of the resistor during the bus reset (HRESETn low) and disable the counter. During 
reset, the chip will disable the output driver and provide a weak pull-up resistor on this pad. 

 19.1.2 Clocking Requirements

The WATCHDOG_CLK for stepping the counter in the Watchdog has a frequency that is 
nominally 256 Hz, for generating a 250 ms time-out and a 250 ms reset pulse duration.

 19.1.3 Reset Requirements

The Watchdog block has the following four reset inputs:

• HRESETn: This is the AHB bus reset signal from the Syscon block, which includes a 
software reset.

• USR_RESETn: This is the external user reset input, and its status is kept in register 
Watchdog[2].

• PWR_RESETn: This is the power-on-reset input for resetting everything including reset 
status bits. The power-on-reset is generated by a combination of the external PRSTn pin 
and the on chip voltage monitor/power up detector.

• RESET_KEYS_DETECTED: The Watchdog will time out if the three-key reset signal 
from the key scanning controller is activated. This input disables the ability to reset the 
Watchdog. If the Watchdog is hardware or software disabled, detection of the three-key 
reset will over-ride the Watchdog counter disable and cause the circuit to time out and 
generate the WATCHDOG_RESETn output anyway. It behaves as a USR_RESETn 
signal.

 19.1.4 Watchdog Status

The Watchdog timer register can be read to determine the cause of a reset. The register 
contains user reset status (external reset on RSTOn), three-key reset status from the key 
scan controller, and Watchdog reset status bits (reset caused by WATCHDOG_RESETn). 
The state of these bits determines if the reset condition was the result of a user reset, a three-
key reset, a power on reset, or a watch dog time-out. The status of these bits can only be 
cleared by a power on reset (internal chip voltage detect power on signal PWR_RESETn). An 
additional 7-bit status register is provided in the Watchdog module as WDSTAT. This status 
value is held through all resets but power on reset. The system can be reset by a three-key 
reset, a user reset, or a Watchdog reset without losing the contents of this register.



DS785UM1 19-3
Copyright 2007 Cirrus Logic 

Watchdog Timer
EP93xx User’s Guide

1919

19

Note: A software reset can reset the system without this register losing its contents.

19.1 Registers
 

Note: Watchdog registers are intended to be word-accessed only. Since the least significant 
bytes of the address bus are not decoded, byte and half word accesses are not allowed 
and may have unpredictable results.

Register Descriptions

Watchdog 

Address:
0x8094_0000 - Read/Write

Default:
0x0000_0000

Definition:
Watchdog control register.

Bit Descriptions:

RSVD: Reserved. Unknown during read.

WRITE ONLY BIT FIELDS

CTL: Watchdog control bits. The ARM Core writes 0x5555 to 
this half-word to periodically restart the watchdog timer. 
Writing 0xAA55 to this hword will disable the watchdog 
timer. Writing 0xAAAA to this hword will re-enable the 
watchdog timer.

Table 19-1. Watchdog Timer Register Memory Map

Address Name SW locked Type Size Description

0x8094_0000 "Watchdog" No Read/Write 16/3 bits Watchdog Control Register

0x8094_0004 "WDStatus" No Read/Write 7 bits Watchdog Status Storage Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTL CTL/PLSDSN CTL/OVRID CTL/SWDIS CTL/HWDIS CTL/URST CTL/3KRST CTL/WD



19-4 DS785UM1
Copyright 2007 Cirrus Logic

Watchdog Timer
EP93xx User’s Guide

1919

19

READ ONLY BIT FIELDS

PLSDSN: Pulse Disable Not. The Watchdog internal PLSDIS bit 
monitors the HW_PULSE_DISABLEn latch status in the 
watchdog module. This provides status of the hardware 
pulse duration disable function. Active low means that the 
reset pulse is disabled.

OVRID: Software Override of the hardware watchdog disable. The 
OVRID bit monitors the SW_OVERIDE_HW_DISABLE 
register status in the watchdog module. This provides 
status of the watchdog software disable overriding the 
hardware disable function. This bit is active high when the 
software disable is overriding the hardware disable.

SWDIS: Software Watchdog Disable. The SWDIS bit monitors the 
SW_WATCHDOG_DISABLE register status in the 
watchdog module. This provides status of the watchdog 
software disable function. This bit is active high when the 
watchdog is software disabled.

HWDIS: Hardware Watchdog Disable. The HWDIS bit monitors the 
HW_WATCHDOG_DISABLEN latch status in the 
watchdog module. This provides status of the watchdog 
hardware disable function. This bit is active high when the 
watchdog is hardware disabled.

URST: User Reset Status flip flop. Read only. When “1”, this bit 
indicates that the last reset was generated by the user 
reset signal (externally on RSTOn). This bit is not cleared 
by any resets other than power on reset, PWR_RESETn.

3KRST: Three-Key Reset Status flip flop. Read only. When “1”, this 
bit indicates that the last reset signal was generated by a 
three-key reset from the key scan controller. This bit is not 
cleared by any resets other than power on reset, 
PWR_RESETn.

WD: Watchdog Reset Status flip flop. Read only. When “1”, this 
bit indicates that the last reset was generated because of 
a watch dog time out. This bit is not cleared by any resets 
other than power on reset, PWR_RESETn.



DS785UM1 19-5
Copyright 2007 Cirrus Logic 

Watchdog Timer
EP93xx User’s Guide

1919

19

WDStatus

Address:
0x8094_0004 - Read/Write

Default:
0x0000_0000

Definition:
Watchdog status storage register. It can be used for storing your own status, 
and it can only be cleared by power-on-reset.

Bit Descriptions:

RSVD: Reserved. Unknown during read.

STAT: Watchdog Status bits. This is a watchdog status storage 
register that is not cleared by any resets other than power-
on-reset and PWR_RESETn. The system can be reset by 
a three-key reset, a user reset, or a watchdog reset 
without losing the contents of this register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD STAT



19-6 DS785UM1
Copyright 2007 Cirrus Logic

Watchdog Timer
EP93xx User’s Guide

1919

19



DS785UM1 20-1
Copyright 2007 Cirrus Logic 

2020

20

Chapter 20

20Real Time Clock With Software Trim

 20.1 Introduction
The Real Time Clock (RTC) is a circuit that keeps track of the system date and time. The 
RTC operates from the normal device power supply and the 32 kHz input clock. The RTC 
circuit operates whenever power is applied to the device and the 32 kHz input clock is 
running. 

The Real Time Clock section is composed of two blocks - Real Time Clock and the RTC 
TRIM. 

The RTC module provides second level precision for internal time keeping. In addition, the 
block provides an interrupt based on a comparison register. The Real Time Clock block 
operates whenever power is applied and the 32 kHz input clock is running. However, the RTC 
cannot be used to wake the system via its interrupt when the system is in a STANDBY or 
HALT state, where PCLK is inactive.

The RTC TRIM block takes the 32,768 Hz clock from the RTC oscillator and creates a 
digitally compensated 1 Hz reference clock for use by the time keeping functions. 

Note: The 32,768 Hz clock is referred to as the 32 kHz clock throughout the text.

 20.1.1 Software Trim

The Real Time Clock oscillator software compensation circuitry allows software controlled 
digital compensation of a 32.768 kHz crystal oscillator. Typically, crystal oscillators must be 
externally compensated using discrete components. They are mechanically calibrated during 
manufacture. Software controlled digital compensation allows the oscillator to be 
electronically calibrated by automatic test equipment during manufacture. The circuit also 
enables readjustment in the field under software control.

The RTCSWComp register value is determined by manufacturing during board initialization 
to adjust the frequency of the 1 Hz clock. Refer to Section 20.1.1.1 for details on how to 
calculate the value in this register. This value is then stored in FLASH memory for retrieval 
when the product is first enabled in the field. The compensation values need to be restored 
once the RTC is permanently enabled for field use.

The compensation value consists of two parts: a counter preload value to act as an integer 
divider, (RTCSWComp.INT[15:0]), and the number of 32.768 kHz clocks to delete on a 
periodic interval (RTCSWComp.DEL[4:0]).



20-2 DS785UM1
Copyright 2007 Cirrus Logic

Real Time Clock With Software Trim
EP93xx User’s Guide

2020

20

 20.1.1.1 Software Compensation
The 1 Hz clock is generated by running a programmable counter clocked by the 32.768 KHZ 
crystal oscillator reference. If the crystal reference and oscillator were perfect, a counter that 
counted 32768 clocks would provide a 1 Hz reference. However, the counter pre-load value 
is programmable to allow inaccuracies in the crystal and oscillator circuit. Simply allowing a 
different counter pre-load value only gives an accuracy of:

(½LSB / 32768 bits) x (3600 sec. / 1 hr) x (24hrs/day) x (30 days/month)
~= +/- 40 sec. per month

To further increase the accuracy, a fractional compensation is needed. This compensation 
mechanism provides a much better nominal RTC accuracy. The 1 Hz clock feeding the RTC 
is obtained by dividing the output of the 32.768 KHZ oscillator by an integer value. However, 
factors such as inaccuracy of the crystal, varying capacitance of the board traces, leads, and 
connections, etc., will cause the reference frequency to be inaccurate. This is corrected in 
software by adjusting the 1 Hz clock period through an integer compensation (by adjusting 
the counter preload) and with a fractional compensation (via deleting clocks at a fixed 
interval). By measuring the frequency of the reference crystal, and setting the RTCSWComp 
register value, the clock can be adjusted to a nominal accuracy of better than +/- 5 seconds 
per month.

 20.1.1.2 Oscillator Frequency Calibration
Manufacturing can use a high precision frequency counter to measure the RTC 32.768 kHz 
reference clock via the EGPIO[1] pin when the RSTCR.RonG bit is set. This mode isolates 
the measurement of the oscillator circuit during manufacturing test to avoid disturbing the 
crystal reference frequency through added probe capacitance, etc. The compensation is 
accomplished by dividing the output of the oscillator by a integer value (with a pre-loadable 
counter) and then doing a fractional adjustment by periodically deleting clocks to the counter.

 20.1.1.3 RTCSWComp Value Determination
After the true frequency of the oscillator is known, it is separated into integer and fractional 
portions. The integer portion of the frequency (less one) is set as the counter pre-load value. 
When the counter reaches zero, a carry pulse is generated and the counter is pre-loaded 
again. The carry pulse is used as the RTC 1 Hz signal reference.

The fractional part of the adjustment is done by deleting clocks from the clock stream feeding 
the integer counter. The period interval between deleting clocks is 32 seconds. The number 
of clocks deleted is set by RTCSWComp.DEL[4:0].



DS785UM1 20-3
Copyright 2007 Cirrus Logic 

Real Time Clock With Software Trim
EP93xx User’s Guide

2020

20

 20.1.1.4 Example - Measured Value Split Into Integer and Fractional 
Component

The manufacturing tester measures the oscillator output to be 33,455.870 Hz. For the integer 
portion, 33,455 - 32,768 is 687 cycles over the nominal frequency of the crystal. The integer 
pre-load value for the counter should always be chosen so that the actual clock frequency is 
faster than the value needed to generate a 1 Hz reference. Therefore, the 
RTCSWComp.INT[15:0] value is loaded with the binary equivalent of 33,455-1 or 0x82AE. 

The fractional component of the oscillator output was measured to be 0.870 Hz. Software 
must adjust the clock so that the average number of cycles that are counted before 
generating one 1 Hz clock is 33 455-1. 

Because the clock frequency is 0.870 Hz faster than the integer value, the 1 Hz clock 
generated by just the integer compensation is slightly faster than needed and may be slowed 
down by deleting clocks.

The fractional compensation value must be programmed to delete 0.870 Hz on average to 
bring the 1 Hz output frequency down to the proper value. Since the compensation procedure 
is performed only every 32 seconds, the value must be set to delete (0.870*32) = 27.84 
which, when rounded, is 28 clocks every 32 seconds. The rounded 0.16 cycles per 
32 seconds (or 0.005 Hz) represents the error in compensation. The RTCSWComp.DEL[4:0] 
fractional compensation value should be loaded with the hexadecimal equivalent of 
28 - 1 or 0x1B.

 20.1.1.5 Maximum Error Calculation vs. Real Time Clock Accuracy
The maximum error is 0.5½ clocks per 32 seconds. Therefore at 32.768 kHz, the maximum 
error is:

(0.5½ clock / 32 sec) x (1 sec / 32,768 clocks nominal) x
                             (2592000 sec/1month) = 1.24 seconds/month maximum error 

To maintain an accuracy of +/- 5 seconds per month the required interval is calculated to be:

(5 seconds/1 month) x (1 month/2,592,000 seconds) = 1.93E-6

= (1 second/32,768 clocks) x (½clock / X-interval seconds)

X-interval = 7.9 seconds 

Therefore to maintain a 5-second-per-month accuracy the compensation circuit only has to 
adjust within ½ of a 32.768 KHZ clock every 7.9 seconds. This could be done with a 3 bit 
clock delete value and an 8 second (3 bits clocked by 1 Hz) counter. However, the 
1.24 second per month number is better and has been implemented in this device.

 20.1.1.6 Real-Time Interrupt
To allow a Real Time Interrupt to be generated, VIC2 INT[10] has been connected to the 1 Hz 
clock. This interrupt should be configured as edge-triggered.



20-4 DS785UM1
Copyright 2007 Cirrus Logic

Real Time Clock With Software Trim
EP93xx User’s Guide

2020

20

 20.1.2 Reset Control

The RTC block level reset operation is a bit complicated. The reset strategy is for the time-
keeping part of the RTC to survive a system reset, and only be initialized by a power-on reset. 
The RTC interrupt enable is cleared by a user reset, so that a time count match (alarm 
interrupt) would disable with system reset.

The following register is initialized only by PRSTn: RTCSWComp

The following registers are initialized by PRSTn: RTCData, RTCMatch, RTCLoad, and 
RTCCtrl.

20.1 Registers

Register Descriptions

RTCData 

Address:
0x8092_0000 - Read Only

Default:
0x0000_0000

Definition:
RTC Data Register. Contains the 32 bit RTC counter value. This counter is 
incremented by the 1 Hz clock output from the RTC Trim module.

Bit Descriptions:

RTCDR: Counter value.

Table 20-1. Real Time Clock Register Memory Map 

Address Name Description

0x8092_0000 "RTCData" RTC Data Register

0x8092_0004 "RTCMatch" RTC Match Register

0x8092_0008 "RTCSts" RTC Status/EOI Register

0x8092_000C "RTCLoad" RTC Load Register

0x8092_0010 "RTCCtrl" RTC Control Register

0x8092_0098 "RTCSWComp" RTC Software Compensation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RTCDR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCDR



DS785UM1 20-5
Copyright 2007 Cirrus Logic 

Real Time Clock With Software Trim
EP93xx User’s Guide

2020

20

RTCMatch 

Address:
0x8092_0004 - Read/Write

Default:
0x0000_0000

Definition:
RTC Match Register. Contain the 32 bit match value. When the RTCData 
value equals the RTCMatch value the RTC will generate an interrupt if the 
RTCCtrl.MIE bit is set to “1”.

Bit Descriptions:

RTCMR: Match value.

RTCSts 

Address:
0x8092_0008 - Read/Write

Default:
0x0000_0000

Definition:
RTC Interrupt Status and End Of Interrupt Register. Writing to this register 
clears the asserted interrupt.

Bit Descriptions:

RSVD: Reserved, unknown during read.

INTR: Interrupt status, 
1 - RTC interrupt is asserted
0 - no interrupt.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RTCMR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCMR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD INTR



20-6 DS785UM1
Copyright 2007 Cirrus Logic

Real Time Clock With Software Trim
EP93xx User’s Guide

2020

20

RTCLoad 

Address:
0x8092_000C - Read/Write

Default:
0x0000_0000

Definition:
RTC Load Register. Contains the 32 bit load value. Data written to this register 
is transferred to the RTCData on the next 1 Hz tick.

Bit Descriptions:

RTCLR: Load value.

RTCCtrl 

Address:
0x8092_0010 - Read/Write

Default:
0x0000_0000

Definition:
RTC Interrupt Control Register. Contains the interrupt enable control bit.

Bit Descriptions:

RSVD: Reserved, unknown during read.

MIE: Match Interrupt Enable, 
1 - RTC match interrupt is enabled
0 - interrupt disabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RTCLR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCLR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD MIE



DS785UM1 20-7
Copyright 2007 Cirrus Logic 

Real Time Clock With Software Trim
EP93xx User’s Guide

2020

20

RTCSWComp 

Address:
0x8092_0108 - Read/Write

Default:
0x0000_7FFF

Mask:
003F_FFFF

Definition:
RTC Software Compensation Register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

0: Must be written as “0”.

DEL: Number of clocks to delete. This value determines the 
number of 32.768 KHZ clocks to delete every 32 seconds 
for compensating the oscillator. The value defaults to 0x0 
which deletes no clock pulses.

INT: Counter pre-load Integer value. This value is pre-loaded 
into the counter as the integer divide portion of the 
oscillator compensation. If set to 0x0000, no integer divide 
occurs and no clock pulses are deleted. The value defaults 
to 0x7FFF which causes the divider to divide by exactly 
32,768 to generate a 1 Hz clock. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD 0 DEL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INT



20-8 DS785UM1
Copyright 2007 Cirrus Logic

Real Time Clock With Software Trim
EP93xx User’s Guide

2020

20



DS785UM1 21-1
Copyright 2007 Cirrus Logic 

2121

21

Chapter 21

21I2S Controller

 21.1 Introduction
The I2S controller is used to stream serial audio data between the external I2S CODECs’, 
ADCs/DACs, and the ARM Core. It consists of 3 transmitter channels and 3 receiver 
channels. Each channel handles a single stereo stream. The transmitter and receiver are 
completely independent of each other and are programmed separately. Each channel (RX 
and TX) has its own set of addressable registers which allows access through the ARM APB 
or DMA accesses.

Figure 21-1 gives an architectural overview of the I2S controller. Table 21-1 lists the I2S 
controller.input and output signals.

The i2s_audioclk_mux section performs gating on the incoming audio clocks based on the 
settings within the TX and RX clock configuration registers and delivers a known clock 
definition to the rest of the I2S controller.

 Figure 21-1. Architectural Overview of the I2S Controller   

I2S_APB/

TX Channel 1

TX Channel 2

RX Channel 0

RX Channel 1

RX Channel 2

sdo0

sdo1

sdo2

sdi0

sdi1

sdi2

ARM

AMBA APB
BUS

I2S_AudioClk_Mux

TX Channel 0

lrckt & sckt to
each TX channel

lrckr & sckr
to each RX
channel

DMA IF

I2S

DMA
Controller

Memory

6 DMA Channels

Core

lrck

sck



21-2 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

The primary I2S port and the I2S clocks are multiplexed and can be assigned to either the 
SSP pins or the Ac97 pins. The second and third I2S ports use the same clock pins as the 
primary I2S port, but their serial output and input pins are multiplexed with EGPIO pins. The 
second I2S port's serial output and serial input pins are multiplexed with EGPIO[4] and 
EGPIO[5] respectively and are enabled by setting DeviceCfg.A1onG. The third I2S port's 
serial output and serial input pins are multiplexed with EGPIO[6] and EGPIO[13] respectively 
and are enabled by setting DeviceCfg.A2onG.

 21.2 I2S Transmitter Channel Overview
Each I2S TX channel provides a single stereo I2S compliant output. The Transmit channel 
can operate in master or slave mode. Data is transferred between the ARM Core and the I2S 
controller via an interrupt based mechanism or DMA access. The ARM Core or host 
processor must write words in multiples of 2 (that is, a left and right stereo pair). These words 
are serially shifted out, timed with respect to the audio bit clock and word clock (SCLK and 
LRCK) that are generated (see Chapter 5, “Clock Control” on page 5-4 for additional details). 
The key features of the I2S transmitter are:

• Three transmit data channels, master or slave mode.

Table 21-1. I2S Controller Input and Output Signals

Signal Name Type Description

lrck IN Left/right Word Audio slave clock.

sck IN Audio bit slave clock.

sdi0 IN Serial data for channel 0

sdi1 IN Serial data for channel 1

sdi2 IN Serial data for channel 2

sdo0 OUT Serial data output for TX channel 0

sdo1 OUT Serial data output for TX channel 1

sdo2 OUT Serial data output for TX channel 2

Table 21-2. Audio Interfaces Pin Assignment

Pin
Name

Normal Mode I2S on SSP Mode I2S on AC'97 Mode
Pin Description Pin Description Pin Description

SCLK1 SPI Bit Clock I2S Serial Clock SPI Bit Clock

SFRM1 SPI Frame Clock I2S Frame Clock SPI Frame Clock

SSPRX1 SPI Serial Input I2S Serial Input SPI Serial Input

SSPTX1 SPI Serial Output I2S Serial Output SPI Serial Output

(No I2S Master Clock)

ARSTn AC'97 Reset AC'97 Reset I2S Master Clock

ABITCLK AC'97 Bit Clock AC'97 Bit Clock I2S Serial Clock

ASYNC AC'97 Frame Clock AC'97 Frame Clock I2S Frame Clock

ASDI AC'97 Serial Input AC'97 Serial Input I2S Serial Input

ASDO AC'97 Serial Output AC'97 Serial Output I2S Serial Output



DS785UM1 21-3
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

• Supports 16/24/32 bit word lengths.

• Programmable left/right word clock polarity on the serial frame.

• Programmable Bit Clock polarity.

• Programmable data validity, that is, data valid on the rising/negative edge of the bit 
clock.

• Programmable first data bit position (I2S or non-I2S format).

• Programmable Left or Right data word justification

• Programmable data shift direction, that is, MSB or LSB transmitted first.

• Data underflow detection, that is, re-transmission of old data.

• Clock domain synchronization.

• DMA access. 

Each channel has a 16 deep by 32bit wide FIFO where the ARM or DMA controller can write 
up to 8 sets of left/right data pairs before enabling the channel for transmission. In order to fill 
the FIFO the following sequence of events must be performed by the programmer. (NOTE: 
The following discussion is with respect to 1 channel only but applies to all.)

1. Enable I2S controller: The I2S global control register bit, I2SGlCtrl[0] must be written to 

in order to turn on the PCLK to the I2S controller. The I2S controller will not function 
correctly if this is not done.

2. Write to the FIFO: Once the I2S controller is enabled, the TX FIFO may be written to by 
either the DMA or the ARM.

Each FIFO is split up into 8 locations. Each location consists of 2 X 32bit register and 
can hold one left and one right stereo sample (16, 24 or 32 bits per sample). For APB 
accesses, the left and right samples must be written to different addresses: I2STX0Lft 
register address for left samples and I2STX0Rt register address for right samples (see 
register definitions).

In order to fill a FIFO location, the programmer must write two data words, 
corresponding to left and right stereo data, to the FIFO. Only when both words are 
written by the programmer will the FIFO be loaded. Assuming this is the first FIFO write, 

Table 21-3. Transmitter FIFO’s

Right Sample 7 Byte 7 Byte 6 Byte 5 Byte 4

7 Left Sample 7 Byte 3 Byte 2 Byte 1 Byte 0

Right Sample 6 Byte 7 Byte 6 Byte 5 Byte 4

: : : : : :

: : : : : :

Right Sample 0 Byte 7 Byte 6 Byte 5 Byte 4

1 Left Sample 1 Byte 3 Byte 2 Byte 1 Byte 0

Right Sample 0 Byte 7 Byte 6 Byte 5 Byte 4

0 Left Sample 0 Byte 3 Byte 2 Byte 1 Byte 0



21-4 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

these two words will occupy positions 0 and 1 in the FIFO. The FIFO now contains one 
complete left / right stereo sample. The words written by the programmer must always 
be right justified when writing 16-bit and 24-bit values. 

If the programmer writes another left and right stereo sample to the I2STX0Lft and 
I2STX0Rt registers respectively, these words are loaded into the FIFO and will occupy 
positions 2 and 3. Subsequent writes will fill positions 4 and 5 and so on. The FIFO full 
flag is set when all 8 FIFO locations are filled by left / right sample pairs.

If an attempt is made to write another left / right stereo pair to the FIFO while it is full, 
the new samples are ignored and the FIFO overflow flag is set. (See “Register 
Descriptions” on page 448 on clearing this flag.) None of the existing FIFO locations are 
overwritten.

3. Enable the I2S transmit channel

Once the FIFO has been loaded, the channel enable I2STX0En one-bit register (see 

“I2S TX Register Descriptions” on page 21-13) is set. At this point, both the left and right 

stereo data from the 1st FIFO location are read by the I2S controller and copied into 
separate left and right holding registers. The left holding register is parallel loaded into a 

shift register and is serially shifted out the I2S sdo0 data line. This shifting out process is 

timed on the I2S audio word and bit clock. Once the left sample is shifted out, the right 

holding register is parallel loaded into the shift register and is serially shifted out the I2S 
sdo0 line.

If the I2S controller is programmed to transmit 16 or 24 bit words, the lower 16 or 24 bits 
are taken from the holding registers and loaded into the shift register. The upper bits are 

ignored by the I2S controller.

When the right sample is loaded into the shift register, the I2S controller reads the next left 
and right stereo samples from the 2nd FIFO location. After these have been loaded into the 
shift register in the same manner as above, FIFO location 3 is read and so on. After samples 
15 and 16 (FIFO location 7) are taken from the FIFO, the FIFO read pointer will wrap around 
to location 0 and continue as before as long as the channel is enabled. If the I2S controller is 
disabled at any point, all FIFO locations are zeroed and the FIFO write and read pointers are 
reset.

If the transmit channel corresponding to the FIFO is disabled, the I2S controller will stop 
transmitting the current sample that is in the shift register. The data in the FIFO is not touched 
and the FIFO read and write pointers stay as they are. Upon re-enabling the channel, the I2S 
controller will advance the FIFO pointer, read the left and right stereo samples, and transmit 
them. The effect of this is that the data currently residing in the holding registers at the time 
the channel is disabled is lost.

To end transmission of data completely while there is data in the FIFO, first disable the 
corresponding channel. This action will ensure that the channels state machines are reset. 
The next step should be to disable the I2S controller, which will result in the FIFO’s being 
reset. Any samples currently in the FIFO will be lost as a result.



DS785UM1 21-5
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

The I2S transmit and receive channels should be disabled before changes are made to the 
control registers. Once the new configuration has been set, the channels can be re-enabled 
following the specified start order.

If a channel is enabled while the FIFO is empty, no samples are read from the FIFO. The I2S 
controller will parallel load whatever is currently in the left holding register into the shift 
register. Once these contents have been shifted out, the right holding register is then parallel 
loaded into the shift register and then shifted out. If this occurs after the I2S controller has 
been reset, these holding registers will contain zero. If the I2S controller has been re-enabled 
after an earlier transmission, the holding registers will contain the last samples that were 
copied into them. As before, the I2S controller will attempt to read the FIFO after the right 
holding register has been loaded into the shift register. At this point, if the FIFO is still empty, 
the I2S controller will assert the FIFO underflow flag. No attempt is made to read the FIFO by 
the I2S controller and the read pointer stays pointing to location 0. The underflow will update 
a status bit in the Global Control Status register, I2SGlSts. (See “Register Descriptions” on 
page 448.) To clear the underflow the programmer must write at least one left and right stereo 
sample to the FIFO. Disabling the I2S controller will also clear the underflow.

The status of each FIFO is reflected in the Global Control Status register. There are 5 bits for 
each FIFO in this register that reflect the state of the FIFO. They are as follows:

• Tx0_underflow - Gets set when the I2S controller reads the FIFO when it is empty.

• Tx0_overflow - Gets set when the programmer attempts to write to the FIFO when it is 
full.

• Tx0_fifo_empty - Gets set when there no left and right stereo samples in the FIFO.

• Tx0_fifo_half_empty - Gets set when there are 4 left and right stereo samples or less in 
the FIFO.

• Tx0_fifo_full - Gets set when there are 8 left and right stereo samples in the FIFO.

 21.3 I2S Receiver Channel Overview
The I2S Receiver channel enables audio compression algorithms executing on the ARM 
Core to receive stereo information from external CODECS.

Each I2S RX channel provides a single stereo I2S compliant input channel. The Receive 
channel can operate in master and slave mode. Data is received from the channel input and 
transferred into two registers, the left and right stereo pair. The ARM can then read the data 
from the channel. The key features are shown below.

• Three Receive data channels, master or slave mode.

• Supports 16/24/32 bit word lengths.

• Programmable left/right word clock polarity on the serial frame.

• Programmable bit clock polarity.

• Programmable data validity, that is, data valid on the rising/negative edge of the bit 
clock.



21-6 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

• Programmable first data bit position. that is, I2S or non-I2S format.

• Programmable left or right data word justification.

• Programmable data shift direction, that is, MSB or LSB received first.

• Data overflow detection.

• Clock domain synchronization.

• DMA accesses.

The basic operation of the I2S receiver is that data is serially shifted in to form a pair of left / 
right words. This pair of words is written to a FIFO, which the ARM will read.

 21.3.1 Receiver FIFO’s

Each channel has a 16 deep by 32 bit wide FIFO where the ARM or DMA controller can read 
up to 8 sets of left / right data pairs. In order to receive left and right stereo data into the FIFO 
and read this data out from the FIFO, the following sequence of events must be performed by 
the programmer:

1. Enable the I2S controller.

The I2S global control register bit, I2SGlCtrl[0], must be written to in order to turn on the 

PCLK to the I2S controller. The I2S controller will not function correctly if this is not done.

2. Enable the receive channel.

The channel corresponding to the FIFO must be enabled in order for it to start sampling 

the data line. After being enabled, the I2S controller will wait until the start of the next 
incoming left stereo word as indicated by the audio word clock. When the start of the left 

word occurs, the I2S controller will sample the data line and load each bit into a 
dedicated left shift register. At the end of the left word and start of the right word as 
indicated by the audio word clock, the contents of the left shift register are loaded into a 

left data register. The I2S controller will continue to sample the data line loading each bit 
into a dedicated right shift register. At the end of the right word and start of the next left 
word, the contents of the right shift register are loaded into a right data register. One 
complete left and right stereo sample has now been received.

At this point, the I2S controller signals to the FIFO that there is valid data ready to be 

written to the FIFO. The I2S controller will then write this stereo sample to FIFO location 
0, which consists of 2 x 32 bit registers (assuming that this is the first sample to be 

received). The FIFO-empty bit in the I2S Global Control Status register (I2SGlSts) is 
now de-asserted. As more stereo sample pairs are received, they will be written to 
locations 1, 2, 3 and so on. 

The programmer can determine from the Global Control Status register if the FIFO has 
any valid left / right stereo samples. These samples are obtained from the FIFO via the 
APB by reading from the I2SRX0Lft and I2SRX0Rt registers. (See “Register 



DS785UM1 21-7
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

Descriptions” on page 448.) Note that both left and right sample registers must be read 

for the I2S controller to consider the location to be free and modify the internal counter.

If the programmer attempts to read from the FIFO while it is empty, the contents that 
were last read from the FIFO will be put onto the APB bus. The FIFO read pointer is not 
updated and stays pointing to the same location. The FIFO underflow flag in the Global 
Control Status register is asserted. (See “Register Descriptions” on page 448.) If this 
happens to be the first attempted read by the programmer on the FIFO while the FIFO 
is still empty, the contents at FIFO location 0 are put onto the APB bus. These contents 

are zero if the I2S controller has been reset previously.

If the I2S controller signals to the FIFO that new stereo sample pairs have been 
received and the FIFO is full, the new samples are ignored. The existing contents in 
FIFO locations 0 to 7 are not touched. An internal Overflow bit is set, marking the FIFO 
pointer location at which the last good data was received (that is, at [current FIFO 
pointer location - 1]). When the FIFO pointer eventually points at this location again, 
after reading all 7 other FIFO locations, the FIFO overflow flag in the Global Control 
Status Register is asserted (and an interrupt is asserted, if enabled). The Status 
Register bit (and interrupt) is cleared by reading a left / right stereo sample pair from this 
FIFO location.

The data in the FIFO’s is always right justified for word lengths of 16 and 24 bits. The 

upper bits will be set to zero by the I2S controller in this case. 

The I2S transmit and receive channels should be disabled before modifying the control 
registers. Once the new configuration has been set, the channels can be re-enabled 
following the specified start order.

The status of each FIFO is reflected in the Global Control Status register. This register 
has 5 bits per FIFO that reflect the state of the FIFO. They are:

• Rx0_underflow - Gets set when the programmer reads the FIFO when it is empty.

• Rx0_overflow - Gets set when an Rx overflow has occurred, and the FIFO pointer is 
pointing at the last FIFO location where data was received before the overflow 
occurred

• Rx0_fifo_empty - Gets set when there are no left and right stereo samples in the 
FIFO.

• Rx0_fifo_half_full - Gets set when there are 4 left and right stereo samples or less in 
the FIFO.

• Rx0_fifo_full - Gets set when there are 8 left and right stereo samples in the FIFO.

 21.4 I2S Master Clock Generation
The following information is required to generate a set of clocks for the I2S controller. The I2S 
port i2s_mstr_clk_cfg is used to supply the Syscon block the necessary control information in 



21-8 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

order to generate a set of audio clocks, LRCK (word clock) and SCLK (bit clock). The control 
bits required are:

• Master Mode Enable. (i2s_mstr_clk_cfg[0])

• Word Length Control (i2s_mstr_clk_cfg[2:1])

• Bit Clock Polarity (i2s_mstr_clk_cfg[3])

• Not Bit Clock Gating (i2s_mstr_clk_cfg[4]). 

• Bit Clock Rate (i2s_mstr_clk_cfg[6:5])

These control bits come from the TX and the RX clock configuration registers and the word 
length registers. This control is sent out through the i2s_mstr_clk_cfg port of the I2S controller 
to the audio clock generator. The audio clock generator responds with the correct clock 
definition based on the settings received.

If both the TX and RX are required to be in master mode at the same time, both the RX and 
TX share the same master audio clocks. The following shows how i2s_mstr_clk_cfg is 
generated.

• If the Transmitter is enabled, the clock configuration information will always come from 
I2STXClkCfg register. Therefore, the I2SRXClkCfg (receiver clock configuration) register 
must be configured to be the same as the I2STXClkCfg (transmitter clock configuration) 
register in order to ensure correct operation of the receiver. The word lengths for both 
the TX and RX must be the same.

• If the Transmitter is disabled and the Receiver is required to be in master mode, then the 
i2s_mstr_clk_cfg output is generated from the I2SRXClkCfg register and the RX word 
length register.

Please note, the I2SClkDiv (Addr=0x8093_008C) register in the SYSCON block has an effect 
on I2S clock generation as well. The details are listed in Table 21-4. The controlling bit field 
for each function is determined by the ORIDE bit in the I2SClkDiv register (I2SClkDiv[29]). 
This table does not show the details of how to control this function. Please refer to each 
individual block for a detailed description. 

Table 21-4.  I2SClkDiv SYSCON Register Effect on I2S Clock Generation 

Function ORIDE=1 ORIDE=0

SCLK polarity SPOL (I2SClkDiv[19]) i2s_mstr_clk_cfg[3]

SCLK Speed and 
Gating

DROP(I2SClkDiv[20]), 
SDIV(I2SClkDiv[16])

SCLK always is MCLK/2.
SCLK is gated when 
i2s_mstr_clk_cfg[4]=0, 
i2s_mstr_clk_cfg[6:5]=0 and
i2s_mstr_clk_cfg[2:1]=1, otherwise, 
SCLK is not gated.

LRCK Speed LRDIV(I2SClkDiv[18:17]) i2s_mstr_clk_cfg[6:5]

Audio Slave Mode SLAVE(I2SClkDiv[30]) i2s_mstr_clk_cfg[0]

Audio Clock 
(SCLK, LRCLK) 
Generation Enable

SENA(I2SClkDiv[31])

I2SonAC97 (DeviceCfg[6]) or 
I2SonSSP (DeviceCfg[7]). If either 
one is set, it enables the clock 
generation.



DS785UM1 21-9
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21
 21.5 I2S Bit Clock Rate Generation 

   

 21.5.1 Example of the Bit Clock Generation.

For nBCG = 0 and BCR[1:0] = “10” the bit clock frequency is fixed at 64 times LRCK for word 
lengths of 32 and 24 and at 32x LRCK for word lengths of 16. In the case of 24 and 32 bit 
words, this 64x clock is then gating depending on the I2S controller word size. If the I2S 
controller word size is 32, then all of the 64x clock pulses are passed. If the I2S controller 
word size is 24, then the last 8 64x clock pulses are gated off in a LRCK cycle. For an I2S 
controller word size of 16 than all of the 32x clock pulses are passed. This is shown in 
Figure 21-2.

For other values of nBCG and BCR, the register bit descriptions define the bit clock 
operation. 

Output Data Bit 
Align to SCLK Edge

When SPOL=1 and 
i2s_mstr_clk_cfg[3]=0, transition of 
output data bit and LRCK align to falling 
edge of SCLK

When SPOL=0 and 
i2s_mstr_clk_cfg[3]=1, transition of 
output data bit and LRCK align to rising 
edge of SCLK;

The output data bit is always a half-
cycle later to the SCLK edge which 
aligns to LRCK transition. If the 
SCLK rising edge is configured to 
align to the LRCK transition, then 
output data is aligned to falling edge 
of SCLK. If the SCLK falling edge 
aligns to the LRCK transition, then 
output data aligns to the SCLK rising 
edge.

Table 21-5. Bit Clock Rate Generation

Word 
Length

Bit Clock 
Rate 

(BCR[1:0])

not Bit Clock 
Gating 
(nBCG)

Actual bit clock rate with respect to 
LRCK

16 00 0 or 1 32x

24 00 0 64x with last 8 cycles gated off in each word.

24 00 1 64x Note the last 8 cycles are not gated off.

32 00 0 or 1 64x

Ignored 01 Ignored Fixed at 32x

Ignored 10 Ignored Fixed at 64x

Ignored 11 Ignored Fixed at 128x

Table 21-4.  I2SClkDiv SYSCON Register Effect on I2S Clock Generation  (Continued)

Function ORIDE=1 ORIDE=0



21-10 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

 Figure 21-2. Bit Clock Generation Example      

 21.5.2 Example of Right Justified LRCK format

Figure 21-3 shows the frame format for Right Justified data. The word length is 16 in this 
case and the MSB is transmitted first. The bit clock rate is 64x so the for the first 16 clock 
cycles in each word there is no data as it is right justified in each word frame. 

 Figure 21-3. Frame Format for Right Justified Data

 21.6 Interrupts
The I2S controller generates a single interrupt, I2SINTR to the ARM Core. This interrupt is a 
combination (logical OR) of all TX and RX internal interrupts.

The transmitter generates 4 internal interrupts within the I2S controller. Each of these reflect 
the status of the 3 individual TX FIFOs. These internal interrupts are as follows:

• TX0 FIFO empty.

• TX1 FIFO empty.

LRCKX

I2S word 
size = 32 ............... ...............

32 pulses32 pulses

I2S word 
size = 24 ..........

24 pulses24 pulses

..........

..........

16 pulses16 pulses

..........I2S word 
size = 16

Bitclk

Bitclk

Bitclk

2 1 015 2 1 015

LRCKX LEFT LRCKX RIGHT

SCK

SDATA

BCR = 64x, 32 pulses left word BCR = 64x, 32 pulses right word



DS785UM1 21-11
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

• TX2 FIFO empty.

• TX underflow.

The first three can have their interrupt level determined by I2STXCtrl[0]. If this bit = 1, then 
the FIFO empty interrupt will occur when the FIFO is empty. If this bit = 0, then the FIFO 
empty interrupt will occur when the FIFO is half empty.

All four are combined and are maskable with the TX interrupt register enable bit, 
I2STXCtrl[1].

The FIFO empty internal interrupts are cleared if the FIFO’s are filled with data or the 
corresponding channel is disabled.

The TX underflow internal interrupt is cleared by writing to both the left and right data 
registers of all enabled TX channels. This interrupt will also be cleared if the corresponding 
channel is disabled.

The I2S receiver generates 4 internal interrupts within the I2S controller. Each of these reflect 
the status of the 3 individual RX FIFOs. These internal interrupts are as follows:

• RX0 FIFO full.

• RX1 FIFO full.

• RX2 FIFO full.

• RX overflow.

The first three can have their interrupt level determined by I2SRXCtrl[0]. If this bit = 1, then 
the FIFO full interrupt will occur when the FIFO is full. If this bit = 0, then the FIFO full interrupt 
will occur when the FIFO is half full.

All four are combined and are maskable with the RX interrupt register enable bit, 
I2SRXCtrl[1].

The FIFO full internal interrupts are cleared if the FIFO’s become less than full or the 
corresponding channel is disabled.

The RX overflow internal interrupt is cleared by reading both the left and right data registers 
of all enabled RX channels. This interrupt will also be cleared if the corresponding channel is 
disabled.

The RX and TX global interrupts are combined to form the I2S controller Interrupt, I2SINTR.

Table 21-6 summarizes which FIFO flags will generate interrupts when set. For example a 
transmitter FIFO empty flag will result in an interrupt but for a receiver FIFO empty flag a 
status bit only is set.

The sticky bits refer to bits I2SGlSts[11:6]. A write of zero is required to clear the setting of 
these bits. 



21-12 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21
 21.7 Registers

 21.7.1 I2S TX Registers

Table 21-7 summarizes the register set in the Transmitter. Each of the registers listed are 
addressable. The left and right data registers for channels 0, 1 and 2 can be accessed by 
both APB and DMA accesses. The remaining registers are concerned with control / status 
information and can be only accessed through the APB bus. 

Table 21-6. FIFO Flags 

FIFO Flag Transmitter Receiver

FIFO empty Interrupt and status bit Status bit.

FIFO full Status Interrupt and status bit

FIFO overflow Sticky bit Interrupt and status bit

FIFO underflow Interrupt and status bit Sticky bit

Table 21-7. I2S TX Registers

Address Type Width
Reset
 Value

Name Description

0x8082_0010 R/W 32 0x0 I2STX0Lft Left Transmit data register for channel 0

0x8082_0014 R/W 32 0x0 I2STX0Rt Right Transmit data register for channel 0

0x8082_0018 R/W 32 0x0 I2STX1Lft Left Transmit data register for channel 1

0x8082_001C R/W 32 0x0 I2STX1Rt Right Transmit data register for channel 1

0x8082_0020 R/W 32 0x0 I2STX2Lft Left Transmit data register for channel 2

0x8082_0024 R/W 32 0x0 I2STX2Rt Right Transmit data register for channel 2

0x8082_0028 R/W 3 0x0 I2STXLinCtrlData Line Control data register

0x8082_002C R/W 2 0x0 I2STXCtrl Control register

0x8082_0030 R/W 2 0x0 I2STXWrdLen Word Length

0x8082_0034 R/W 1 0x0 I2STX0En TX0 Channel Enable

0x8082_0038 R/W 1 0x0 I2STX1En TX1 Channel Enable

0x8082_003C R/W 1 0x0 I2STX2En TX2 Channel Enable



DS785UM1 21-13
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

I2S TX Register Descriptions   

I2STX0Lft     

Address:
0x8082_0010 - Read/Write

Default:
0x0000_0000

Definition:
Transmit left data word for channel 0.

Bit Descriptions:

i2s_tx0_left: Transmit left data word for channel 0.

I2STX0Rt    

Address:
0x8082_0014 - Read/Write

Default:
0x0000_0000

Definition:
Transmit right data word for channel 0.

Bit Descriptions:

i2s_tx0_right: Transmit right data word for channel 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_tx0_left

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_tx0_left

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_tx0_right

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_tx0_right



21-14 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

I2STX1Lft    

Address:
0x8082_0018 - Read/Write

Default:
0x0000_0000

Definition:
Transmit left data word for channel 1.

Bit Descriptions:

i2s_tx1_left: Transmit left data word for channel 1.

I2STX1Rt    

Address:
0x8082_001C - Read/Write

Default:
0x0000_0000

Definition:
Transmit right data word for channel 1.

Bit Descriptions:

i2s_tx1_right: Transmit right data word for channel 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_tx1_left

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_tx1_left

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_tx1_right

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_tx1_right



DS785UM1 21-15
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

I2STX2Lft     

Address:
0x8082_0020 - Read/Write

Default:
0x0000_0000

Definition:
Transmit left data word for channel 2.

Bit Descriptions:

i2s_tx2_left: Transmit left data word for channel 2.

I2STX2Rt 

Address:
0x8082_0024 - Read/Write

Default:
0x0000_0000

Definition:
Transmit right data word for channel 2.

Bit Descriptions:

i2s_tx2_right: Transmit right data word for channel 2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_tx2_left

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_tx2_left

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_tx2_right

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_tx2_right



21-16 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

I2STXLinCtrlData    

Address:
0x8082_0028 - Read/Write

Default:
0x0000_0000

Definition:
Line Control Data Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Left_Right_Justify: Determines how the data word is justified when being 
transmitted on the sdo line output.
0 - left justified.
1 - right justified

TXUF_REPEAT_SAMPLE:On TX underflow, the I2S controller transmits all 
zeros if this bit is “1”.

If this bit is “0” the I2S controller repeats the last sample on 
underflow.

TXDIR: Transmit data shift direction.
0 - MSB first
1 - LSB first

I2STXCtrl      

Address:
0x8082_002C - Read/Write

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD Left_Right_Justify TXUF_REPEAT_SAMPLE TXDIR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TXUFIE TXEMPTY_int_level



DS785UM1 21-17
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

Definition:
Transmit Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TXUFIE: Transmit interrupt enable. Active high

TXEMPTY_int_level:Transmit empty interrupt level select.
0 - Generate interrupt when FIFO is half empty.
1 - Generate interrupt when FIFO is empty.

I2STXWrdLen    

Address:
0x8082_0030 - Read/Write

Default:
0x0000_0000

Definition:
Transmit Word Length

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

WL: Transmit Word Length.
00 - 16 bit mode
01 - 24 bit mode
10 - 32 bit mode

I2STX0En     

Address:
0x8082_0034 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WL

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_tx0_EN



21-18 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

Default:
0x0000_0000

Definition:
TX0 Channel Enable

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

i2s_tx0_EN: TX0 Channel Enable

I2STX1En      

Address:
0x8082_0038 - Read/Write

Default:
0x0000_0000

Definition:
TX1 Channel Enable

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

i2s_tx1_EN: TX1 Channel Enable

I2STX2En   

Address:
0x8082_003C - Read/Write

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_tx1_EN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_tx2_EN



DS785UM1 21-19
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

Definition:
TX2 Channel Enable

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

i2s_tx2_EN: TX2 Channel Enable

 21.7.2 I2S RX Registers

The following table summarizes the register set in the I2S Receiver block. Each of the 
registers listed are addressable. The left and right data registers for channels 0, 1 and 2 can 
be accessed by both APB and DMA accesses. The remaining registers are concerned with 
control/status information and can be only accessed through the APB bus.   

I2S RX Register Descriptions   

I2SRX0Lft         

Address:
0x8082_0040 - Read Only

Default:

Table 21-8. I2S RX Registers 

Address Type Width
Reset 
Value

Name Description

0x8082_0040 R 32 0x0 I2SRX0Lft Left Receive data register for channel 0

0x8082_0044 R 32 0x0 I2SRX0Rt Right Receive data register for channel 0

0x8082_0048 R 32 0x0 I2SRX1Lft Left Receive data register for channel 1

0x8082_004C R 32 0x0 I2SRX1Rt Right Receive data register for channel 1

0x8082_0050 R 32 0x0 I2SRX2Lft Left Receive data register for channel 2

0x8082_0054 R 32 0x0 I2SRX2Rt Right Receive data register for channel 2

0x8082_0058 R/W 2 0x0 I2SRXLinCtrlData Line Control data register

0x8082_005C R/W 2 0x0 I2SRXCtrl Control register

0x8082_0060 R/W 2 0x0 I2SRXWrdLen Word Length

0x8082_0064 R/W 1 0x0 I2SRX0En RX0 Channel Enable

0x8082_0068 R/W 1 0x0 I2SRX1En RX1 Channel Enable

0x8082_006C R/W 1 0x0 I2SRX2En RX2 Channel Enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_rx0_left

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_rx0_left



21-20 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

0x0000_0000

Definition:
Receive left data word for channel 0.

Bit Descriptions:

i2s_rx0_left: Receive left data word for channel 0.

I2SRX0Rt     

Address:
0x8082_0044 - Read Only

Default:
0x0000_0000

Definition:
Receive right data word for channel 0.

Bit Descriptions:

i2s_rx0_right: Receive right data word for channel 0.

I2SRX1Lft      

Address:
0x8082_0048 - Read Only

Default:
0x0000_0000

Definition:
Receive left data word for channel 1.

Bit Descriptions:

i2s_rx1_left: Receive left data word for channel 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_rx0_right

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_rx0_right

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_rx1_left

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_rx1_left



DS785UM1 21-21
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

I2SRX1Rt    

Address:
0x8082_004C - Read Only

Default:
0x0000_0000

Definition:
Receive right data word for channel 1.

Bit Descriptions:

i2s_rx1_right: Receive right data word for channel 1.

I2SRX2Lft   

Address:
0x8082_0050 - Read Only

Default:
0x0000_0000

Definition:
Receive left data word for channel 2.

Bit Descriptions:

i2s_rx2_left: Receive left data word for channel 2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_rx1_right

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_rx1_right

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_rx2_left

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_rx2_left



21-22 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

I2SRX2Rt   

Address:
0x8082_0054 - Read Only

Default:
0x0000_0000

Definition:
Receive right data word for channel 2.

Bit Descriptions:

i2s_rx2_right: Receive right data word for channel 2.

I2SRXLinCtrlData   

Address:
0x8082_0058 - Read/Write

Default:
0x0000_0000

Definition:
Receive Line Control Data Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. Must be written as “0”.

Left_Right_Justify: Receiver Data word Justification when being received on 
the SDI line input.
0 - Left justification.
1 - Right justification.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

i2s_rx2_right

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i2s_rx2_right

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD Left_Right_Justify RXDIR



DS785UM1 21-23
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

RXDIR: Receive data shift direction.
0 - MSB first
1 - LSB first

I2SRXCtrl 

Address:
0x8082_005C - Read/Write

Default:
0x0000_0000

Definition:
Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. Must be written as “0”.

ROFLIE: Receive interrupt enable.
Active high

RXFull_int_level: Rx full interrupt level select.
0 - Generate interrupt when FIFO is half full.
1 - Generate interrupt when FIFO is full.

I2SRXWrdLen    

Address:
0x8082_0060 - Read/Write

Default:
0x0000_0000

Definition:
Word Length

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD ROFLIE RXFull_int_level

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WL



21-24 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

Bit Descriptions:

RSVD: Reserved. Unknown During Read. Must be written as “0”.

WL: Receive Word Length.
00 - 16 bit mode
01 - 24 bit mode
10 - 32 bit mode

I2SRX0En    

Address:
0x8082_0064 - Read/Write

Default:
0x0000_0000

Definition:
RX0 Channel Enable

Bit Descriptions:

RSVD: Reserved. Unknown During Read. Must be written as “0”.

i2s_rx0_EN: RX0 Channel Enable

I2SRX1En    

Address:
0x8082_0068 - Read/Write

Default:
0x0000_0000

Definition:
RX1 Channel Enable

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_rx0_EN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_rx1_EN



DS785UM1 21-25
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

Bit Descriptions:

RSVD: Reserved. Unknown During Read. Must be written as “0”.

i2s_rx1_EN: RX1 Channel Enable

I2SRX2En     

Address:
0x8082_006C - Read/Write

Default:
0x0000_0000

Definition:
RX2 Channel Enable

Bit Descriptions:

RSVD: Reserved. Unknown During Read. Must be written as “0”.

i2s_rx2_EN: RX2 Channel Enable

 21.7.3 I2S Configuration and Status Registers
 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_rx2_EN

Table 21-9. I2S Configuration and Status Registers

Address Type Width Reset Value Name Description

0x8082_0000 R/W 7 0x0 I2STXClkCfg
Transmitter clock configuration 
register.

0x8082_0004 R/W 7 0x0 I2SRXClkCfg
Receiver clock configuration 
register

0x8082_0008 R/W 20 0x12492 I2SGlSts
I2S Global Status register. This 
reflects the status of the 3 RX 
FIFOs and the 3 TX FIFOs.

0x8082_000C R/W 2 0x0 I2SGlCtrl I2S Global Control register.



21-26 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

I2S Configuration and Status Register Descriptions

I2STXClkCfg 

Address:
0x8082_0000 - Read/Write

Default
0x0000_0000

Definition:
Transmitter clock configuration register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

i2s_tx_bcr: Defines the TX bit clock rate.
00 - I2STXClkCfg[4] defines the bit clock generation.
01 - Bit clock rate is fixed at 32x. Word length is ignored.
10 - Bit clock rate is fixed at 64x. Word length is ignored.

11 - Bit clock rate is fixed at 128x. Word length is ignored.

i2s_tx_nbcg: Defines TX not bit clock gating mode.

If I2STXClkCfg[5:6] = 00, this bit defines the bit clock rate, 
otherwise ignored.

Bit clock rate = 32x if word length is 16.
Bit clock rate = 64x if word length is 32.
Bit clock rate = 64x if word length is 24.

There is a special case when the word length is 24.
If this bit = 0 and the word length is 24, the last 8 cycles 
are gated off in each word.
If this bit = 1 and the word length is 24, the last 8 cycles 
are not gated off in each word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_tx_bcr i2s_tx_nbcg i2s_mstr i2s_trel i2s_tckp i2s_tlrs



DS785UM1 21-27
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

i2s_mstr: Defines if the TX Audio clocks are
slave or master.
0 - slave mode.
1 - master mode.

i2s_trel: Determines the timing of the lrckt with respect to the sdox 
data outputs.

0 - Transition of lrckt occurs together with the first data bit.
1 - Transition of lrckt occurs one bitclk cycle before the first 

sdox data bit. This is I2S format.

i2s_tckp: Defines polarity of the TX bitclk.

1 - Positive clock polarity. The lrckt and sdox lines change 
synchronously with the positive edge of the bitclk and are 
considered valid during negative transitions.
0 - Negative clock polarity. The lrckt and sdox lines change 
synchronously with the negative edge of the bitclk and are 
considered valid during positive transitions.

i2s_tlrs: Defines the polarity of lrckt.

0 - if lrckt is low, then it is the left word, if lrckt is high, then 
it is the right word.
1 - if lrckt is low, then it is the right word, if lrckt is high, 
then it is the left word.

I2SRXClkCfg   

Address:
0x8082_0004 - Read/Write

Default:
0x0000_0000

Definition:
Receiver clock configuration register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_rx_bcr i2s_rx_nbcg i2s_mstr i2s_rrel i2s_rckp i2s_rlrs



21-28 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

i2s_rx_bcr: RX bit clock rate.
00 - I2SRXClkCfg[4] defines the bit clock generation.
01 - Bit clock rate is fixed at 32x. Word length is ignored.
10 - Bit clock rate is fixed at 64x. Word length is ignored.
11 - Bit clock rate is fixed at 128x. Word length is ignored.

i2s_rx_nbcg: Defines RX not bit clock gating mode.

If I2SRXClkCfg[5:6] = 00, this bit defines the bit clock rate, 
otherwise ignored.

Bit clock rate = 32x if word length is 16.
Bit clock rate = 64x if word length is 32.
Bit clock rate = 64x if word length is 24.

There is a special case when the word length is 24.
If this bit = 0 and the word length is 24, the last 8 cycles 
are gated off in each word.
If this bit = 1 and the word length is 24, the last 8 cycles 
are not gated off in each word.

i2s_mstr: Defines if the RX Audio clocks are slave or master.
0 - slave mode.
1 - master mode.

i2s_rrel: Determines the timing of the lrckr with respect to the sdix 
data inputs.
0 - Transition of lrckr occurs together with the first data bit.
1 - Transition of lrckr occurs one bitclk cycle before the first 
sdix data bit.

i2s_rckp: Defines polarity of the RX bitclk.
1 - Positive clock polarity. The lrckr and sdix lines change 
synchronously with the positive edge of the bitclk and are 
considered valid during negative transitions.
0 - Negative clock polarity. The lrckr and sdix lines change 
synchronously with the negative edge of the bitclk and are 
considered valid during positive transitions.

i2s_rlrs: Defines the polarity or lrckr.
0 - if lrckr is low then it is the left word, if lrckr is high then it 
is the right word.
1 - if lrckr is low then it is the right word, if lrckr is high then 
it is the left word.



DS785UM1 21-29
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

 21.7.4 I2S Global Status Registers

I2S Global Status Registers

I2SGlSts    

Address:
0x8082_0008 - Read/Write

Default:
0x0001_2492

Definition:
UART Data Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Tx0_underflow: when = 1, TX0 FIFO has underflowed.

Tx1_underflow: when = 1, TX0 FIFO has underflowed.

Tx2_underflow: when = 1, TX0 FIFO has underflowed.

Rx0_overflow: when = 1, RX0 FIFO has overflowed and the FIFO pointer 
is currently pointing at the last data received before the 
overflow occurred.

Rx1_overflow: when = 1, RX1 FIFO has overflowed and the FIFO pointer 
is currently pointing at the last data received before the 
overflow occurred.

Rx2_overflow: when = 1, RX2 FIFO has overflowed and the FIFO pointer 
is currently pointing at the last data received before the 
overflow occurred.

Tx0_overflow: when = 1, the tx0 FIFO is full and an attempt has been 
made to write data to it by the APB or DMA. This bit is 
cleared by writing a 0 to it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD rx2_fif
o_half_

full

rx2_fifo
_empty

rx2_fifo_f
ull

tx2_fifo_h
alf_

empty

tx2_fifo_e
mpty

tx2_fifo_
full

rx1_fifo
_half_

full

rx1_fifo
_empty

rx1_fifo
_full

tx1_fifo_
half_

empty

tx1_fifo_
empty

tx1_fifo_f
ull

rx0_fifo_h
alf_
full

rx0_fifo_e
mpty

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rx0_fifo
_full

tx0_fifo
_half_
empty

tx0_fifo
_empty

tx0_fifo
_full

Rx2_
underflow

Rx1_
underflow

Rx0_
underflow

Tx2_
overflow

Tx1_
overflow

Tx0_
overflow

Rx2_
overflow

Rx1_
overflow

Rx0_
overflow

Tx2_
underflow

Tx1_
underflow

Tx0_
underflow



21-30 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21

Tx1_overflow: when = 1, the tx1 FIFO is full and an attempt has been 
made to write data to it by the APB or DMA. This bit is 
cleared by writing a 0 to it.

Tx2_overflow: when = 1, the tx2 FIFO is full and an attempt has been 
made to write data to it by the APB or DMA. This bit is 
cleared by writing a 0 to it.

Rx0_underflow: when = 1, the rx0 FIFO is empty and an attempt has been 
made to read data from it by the APB or DMA. This bit is 
cleared by writing a 0 to it.

Rx1_underflow: when = 1, the rx1 FIFO is empty and an attempt has been 
made to read data from it by the APB or DMA. This bit is 
cleared by writing a 0 to it.

Rx2_underflow: when = 1, the rx2 FIFO is empty and an attempt has been 
made to read data from it by the APB or DMA. This bit is 
cleared by writing a 0 to it.

tx0_fifo_full: when = 1, FIFO is full, otherwise not full

tx0_fifo_empty: when = 1, FIFO is empty, otherwise not empty

tx0_fifo_half_empty:when = 1, FIFO is half empty, otherwise less than half 
empty

rx0_fifo_full: when = 1, FIFO is full, otherwise not full

rx0_fifo_empty: when = 1, FIFO is empty, otherwise not empty

rx0_fifo_half_full: when = 1, FIFO is half full, otherwise less than half full

tx1_fifo_full: when = 1, FIFO is full, otherwise not full

tx1_fifo_empty: when = 1, FIFO is empty, otherwise not empty

tx1_fifo_half_empty:when = 1, FIFO is half empty, otherwise less than half 
empty

rx1_fifo_full: when = 1, FIFO is full, otherwise not full

rx1_fifo_empty: when = 1, FIFO is empty, otherwise not empty

rx1_fifo_half_full: when = 1, FIFO is half full, otherwise less than half full

tx2_fifo_full: when = 1, FIFO is full, otherwise not full

tx2_fifo_empty: when = 1, FIFO is empty, otherwise not empty

tx2_fifo_half_empty:when = 1, FIFO is half empty, otherwise less than half 
empty

rx2_fifo_full: when = 1, FIFO is full, otherwise not full



DS785UM1 21-31
Copyright 2007 Cirrus Logic 

I2S Controller
EP93xx User’s Guide

2121

21

rx2_fifo_empty: when = 1, FIFO is empty, otherwise not empty

rx2_fifo_half_full: when = 1, FIFO is half full, otherwise less than half full

I2SGlCtrl    

Address:
0x8082_000C - Read/Write

Default:
0x0000_0000

Definition:
I2S Global Control Register

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

i2s_ife: Defines if I2S controller is enabled and PCLK is turned on 

for the I2S controller.
0 - PCLK is off.
1 - PCLK is on.

i2s_loopback: Defines loopback operation.
0 - not in loopback mode
1 - Loopback mode selected.

The I2S global register deals with enabling the block and whether loopback mode is used. 
The I2S enable bit determines whether the PCLK is turned on for the I2S. All registers except 
for the data registers can be written without the I2S PCLK enabled. The ARM provides its own 
clock cycles when writing to any of the control status registers.

When the I2S controller is required to transmit or receive data, PCLK must be turned on via 
this register.

The I2S controller loopback mode bit determines if TX channel 0 is connected to RX channel 
0. This will allow data be sent in a loop fashion from the transmitter back through the receiver. 
This applies to all channels, with TX1 looped to RX1, and TX2 looped to RX2. When 
loopback is active, data at the receiver input is ignored and transmit data is sent out normally. 
The transmit section will control the clock configuration during loopback the same as if full-
duplex operation was used.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD i2s_loopback i2s_ife



21-32 DS785UM1
Copyright 2007 Cirrus Logic

I2S Controller
EP93xx User’s Guide

2121

21



DS785UM1 22-1
Copyright 2007 Cirrus Logic 

2222

22

Chapter 22

22AC’97 Controller

 22.1 Introduction
The AC’97 Controller includes a 5-pin serial interface to an external audio codec. The AC-
Link is a bi-directional, fixed rate, serial PCM (Pulse Code Modulation) digital stream, dividing 
each audio frame into 12 outgoing and 12 incoming data streams (slots), each with 20-bit 
sample resolution.

The AC’97 Controller contains logic that controls the AC-Link to the audio codec and an 
interface to the AMBA APB.

The main features of the AC’97 are:

• Serial-to-parallel conversion on data received from the external codec.

• Parallel-to-serial conversion on data transmitted to the external codec.

• Reception / Transmission of control and status information.

• Supports up to 4 different sampling rates at a time with 4 transmit and 4 receive 
channels. The transmit and receive paths are buffered with internal FIFO memories 
allowing data to be stored independently in both transmit and receive modes. The data 
for the FIFOs can be written via either the APB interface or the DMA channels (1-3).

Table 22-1 lists the input and output signals for the AC’97 controller.

The AC’97 pins are multiplexed and may be used for the I2S controller instead of AC'97 by 
setting DeviceCfg.I2SonAC97.

The AC’97 Controller can support up to four different sampling rates at a time. To allow the 
controller to support all slots per frame, it has been assumed that the sampling rate for each 
different type of data are the same. For example, all audio data are at the same sampling rate 

Table 22-1. AC’97 Input and Output Signals

Signal Name Input/Output Description

SDATAIN Input
Serial input data stream from the audio codec. It contains status 
information and digital audio input streams.

BITCLK Input Clock from serial codec. Fixed at 12.288 MHz.

SDATAOUT Output
This serial output transmits the control information and digital audio 
output streams to the audio codec.

SYNC Output
Synchronization signal to the external codec. Fixed at 48 kHz. It is also 
output asynchronously when the audio codec is in warm reset state.

RESET Output Asynchronous cold reset (active low, resets codec registers).



22-2 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

and all modem data are at the same sampling rate. If the external codec supported the 
following channels: PCM LEFT, PCM RIGHT, MODEM1, PCM CENTRE, PCM L 
SURROUND, PCM R SURROUND, PCM LFE, MODEM2 and HSET, then the user would 
have to program the transmit side of the controller so that all the audio data was in channel 1, 
modem data in channel 2, and the HSET data in channel 3. The controller could also receive 
MIC data at a different rate. This data would have to be stored in channel 4. The controller is 
designed to allow any slot data to be stored into any channel the user wishes. If the external 
codec supports more than 4 sample rates, the user will have to determine which sample rates 
to allow.

The controller has four channels, which consist of a transmit FIFO, receive FIFO and their 
associated control logic. The control logic can be configured to allow the FIFOs to accept any 
data to or from any slot in a frame. 

The receive part of each channel is controlled via its AC97RXCR register. This register 
controls the following:

• Which slot data from the received frame is to be stored in the FIFO. The controller will 
not store any other slots than those specified in these registers. The user must ensure 
that all slot data stored in the FIFO is at the same sampling rate.

• The length of time before a timeout interrupt is generated. 

• Whether the FIFO is enabled or not. 

• The number of bits in the slot that is captured.

• Whether the channel is enabled to receive data or not. 

The transmit part of each channel is controlled via its AC97TXCR register. This register 
controls the following:

• Which slot the data in the FIFO is to be transmitted in, the user must ensure that all the 
data in the FIFO is intended for slots with the same sampling rate. The data must be 
supplied lowest slot number first.

• Whether the FIFO is enabled or not. 

• The number of bits that need to be appended to the data from the CPU to make the word 
20 bits. 

• Whether the channel is enabled to transmit data or not. 

• The transmit channel also supports variable sample rates via the Data Request Disable 
Slots from the external codec in slot 1. The data request bits for all audio and modem 
data are expected to occur at the same time. 

Slot 0 for transmission is determined by the controller depending on the values in the 
AC97TXCR register, the data request bits, and the FIFO having valid data to send. If a slot 
does not have any data for transmission, the controller will fill the slot with zeros and set the 
Tag bits as invalid.

If the external codec does not support the Data Request Disable bits/Variable Rate Extension 
the bits will always be “0” meaning a sample rate of 48 kHz. As slots 1 and 2 are always 



DS785UM1 22-3
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

transmitted at 48 kHz, the external codec does not have Data Request Disable bits for these 
slots. Data for transmission on slots 1, 2, and 12 can be obtained from either the channels or 
the registers SLOT1RXTX, AC97S2Data and AC97S12Data. However, consistent usage of 
one of these two methods should be maintained.

If the slot enable bits are set when receiving the data for slots 1, 2, and 12, the data is stored 
in the channel and not the SLOT1/2/12RX registers. If the slot enable bits are not set, then 
the data will always go to the registers.

The user should only use the channels to transmit slot 1 and 2 data when they are setting the 
external codec up for operation. Once the set up of the external codec is complete, the data 
for slot 1 and 2 should come via the SLOT1/2TX registers. This action frees up the channel.

 22.2 Interrupts
The AC’97 Controller generates individual maskable active HIGH interrupts. Each interrupt 
may be enabled or disabled using the appropriate enable bit. Setting the bit HIGH enables 
the corresponding interrupt. This allows for a system interrupt controller to provide the mask 
registers for each interrupt.

The status of the individual interrupt sources can be read from appropriate register. The 
interrupts are ORed to create one interrupt (AC97INTR) for the AC’97 controller block

 22.2.1 Channel Interrupts

The individual interrupts that are generated by each transmit/receive channel are described 
below. The status of the interrupts can be read from the AC97RISRx or AC97ISRx registers, 
and is masked in the AC97IEx register.

 22.2.1.1 RIS
If the receive FIFO is enabled and the mask bit RIE is set, the FIFO receive interrupt is 
asserted when the AC’97 Controller receive FIFO is greater than or equal to half full. The 
receive interrupt is cleared when the FIFO becomes less than half full.

If the receive FIFO is disabled, it has a depth of one location. Any data received will fill that 
one location, causing the receive interrupt to be asserted high. The receive interrupt is 
cleared by performing a single read of the receive FIFO.

 22.2.1.2 TIS
If the transmit FIFO is enabled and the mask bit TIE is set, the FIFO transmit interrupt is 
asserted when the AC’97 Controller transmit FIFO is at least half-empty. The FIFO transmit 
interrupt is cleared by filling the transmit FIFO more than half full.

If the transmit FIFO is disabled (has a depth of one location) and there is no data present in 
the transmitters single location, the transmit interrupt is asserted high. The transmit interrupt 
is cleared by performing a single write to the transmit FIFO.



22-4 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

 22.2.1.3 RTIS
The receive timeout interrupt is asserted when the receive FIFO is not empty and no further 
data is received over a number of frames. This number is set by the TOC value in the 
AC97RXCR register. The receive timeout interrupt is cleared when the FIFO becomes empty 
through reading all the data. 

 22.2.1.4 TCIS
The transmit complete interrupt is asserted when the transmit FIFO is empty and the parallel 
to serial shifter is empty. This indicates that there is no data left in the FIFOs to be sent.

 22.2.2 Global Interrupts

The individual interrupts that are global for the AC97 controller are described below. The 
status of these interrupts can be read from the AC97GIS or AC97RGIS registers, and are 
masked in the AC97IM register.

 22.2.2.1 CODECREADY 
The Codec Ready Interrupt is asserted when the codec has indicated that it is ready by 
setting bit15 of Slot0. 

This interrupt is cleared by writing a “1” to the appropriate bit of the AC97EOI register.

 22.2.2.2 WINT
The Wake-up interrupt is asserted when a wake-up event will trigger the assertion of 
SDATAIN while the AC-Link is powered down. The wake-up is caused by the external 
codec’s GPIO pins, which have been configured to generate a wake-up event via the codec’s 
GPIO pin Wake-up Control register (0x52). An AC-Link wake-up interrupt is defined as a 0-to-
1 transition on SDATAIN when the AC-Link is powered down. The controller knows when the 
external codec has been powered down as the SLOT1/2TX registers are monitored to check 
for this condition. When the wake up event has been detected on the SDATAIN line, an 
interrupt is generated to allow the ARM Core to reactivate the link with either a warm or cold 
reset.

This interrupt is cleared by writing a “1” to the appropriate bit of the AC97EOI register.

 22.2.2.3 GPIOINT
The receive GPIOINT interrupt is asserted when bit 0 in slot 12 of the incoming SDATAIN is 
“1”. This bit indicates that one or more of the bits in slot 12 have changed since the last 
frame. It is up to the interrupt service routine to read the AC97S12Data register in order to 
clear this interrupt. The external codec’s register (0x54) GPIO pin Status reflects the state of 
all of the GPIO pins.



DS785UM1 22-5
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

 22.2.2.4 GPIOTXCOMPLETE
The transmit GPIOTXCOMPLETE interrupt is asserted when all values written to the 
AC97S12Data have been transmitted. It is cleared when any data is written to the 
AC97S12Data.

 22.2.2.5 SLOT2INT
The receive SLOT2INT interrupt is asserted when the AC97S2Data register has new data 
that has not been read. By reading the data in the AC97S2Data register the SLOT2INT 
interrupt is cleared.

 22.2.2.6 SLOT1TXCOMPLETE
The transmit SLOT1TXCOMPLETE interrupt is asserted when all values written to the 
AC97S1Data have been transmitted. It is cleared when any data is written to the 
AC97S1Data.

 22.2.2.7 SLOT2TXCOMPLETE
The transmit SLOT2TXCOMPLETE interrupt is asserted when all values written to the 
AC97S2Data have been transmitted. It is cleared when any data is written to the 
AC97S2Data.

 22.3 System Loopback Testing
A loopback test mode is available for system testing so that data transmitted on SDATAOUT 
can also be received on SDATAIN. Loopback mode is entered when a “1” is written to the 
LOOP bit in AC97GCR register. For normal operation the LOOP bit must always be “0”, 
which is also the default state at reset. 

Note: For this test mode to work, an external bit clock will need to be supplied.

 22.4 Registers
   

Table 22-2. AC’97 Register Memory Map

Address Type Name Description

0x8088_0000 Read/Write AC97DR1 Data read or written from/to FIFO1

0x8088_0004 Read/Write AC97RXCR1 Control register for receive

0x8088_0008 Read/Write AC97TXCR1 Control register for transmit

0x8088_000C Read AC97SR1 Status register

0x8088_0010 Read AC97RISR1 Raw interrupt status register

0x8088_0014 Read AC97ISR1 Interrupt Status

0x8088_0018 Read/Write AC97IE1 Interrupt Enable

0x8088_001C - - Reserved

0x8088_0020 Read/Write AC97DR2 Data read or written from/to FIFO2

0x8088_0024 Read/Write AC97RXCR2 Control register for receive

0x8088_0028 Read/Write AC97TXCR2 Control register for transmit

0x8088_002C Read AC97SR2 Status register



22-6 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

Register Descriptions

AC97DRx 

0x8088_0030 Read AC97RISR2 Raw interrupt status register

0x8088_0034 Read AC97ISR2 Interrupt Status

0x8088_0038 Read/Write AC97IE2 Interrupt Enable

0x8088_003C - - Reserved

0x8088_0040 Read/Write AC97DR3 Data read or written from/to FIFO3.

0x8088_0044 Read/Write AC97RXCR3 Control register for receive

0x8088_0048 Read/Write AC97TXCR3 Control register for transmit

0x8088_004C Read AC97SR3 Status register 

0x8088_0050 Read AC97RISR3 Raw interrupt status register

0x8088_0054 Read AC97ISR3 Interrupt Status 

0x8088_0058 Read/Write AC97IE3 Interrupt Enable 

0x8088_005C - - Reserved

0x8088_0060 Read/Write AC97DR4 Data read or written from/to FIFO4. 

0x8088_0064 Read/Write AC97RXCR4 Control register for receive 

0x8088_0068 Read/Write AC97TXCR4 Control register for transmit 

0x8088_006C Read AC97SR4 Status register 

0x8088_0070 Read AC97RISR4 Raw interrupt status register 

0x8088_0074 Read AC97ISR4 Interrupt Status 

0x8088_0078 Read/Write AC97IE4 Interrupt Enable 

0x8088_007C - - Reserved

0x8088_0080 Read/Write AC97S1Data Data received/transmitted on SLOT1

0x8088_0084 Read/Write AC97S2Data Data received/transmitted on SLOT2

0x8088_0088 Read/Write AC97S12Data Data received/transmitted on SLOT12 

0x8088_008C Read/Write AC97RGIS Raw Global interrupt status register 

0x8088_0090 Read AC97GIS Global interrupt status register 

0x8088_0094 Read/Write AC97IM Interrupt mask register 

0x8088_0098 Write AC97EOI End Of Interrupt register

0x8088_009C Read/Write AC97GCR Main Control register 

0x8088_00A0 Read/Write AC97Reset RESET control register.

0x8088_00A4 Read/Write AC97SYNC SYNC control register.

0x8088_00A8 Read AC97GCIS Global channel FIFO interrupt status register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD / DATA (See Definition, below.) DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA

Table 22-2. AC’97 Register Memory Map (Continued)

Address Type Name Description



DS785UM1 22-7
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

Address:
AC97DR1 - 0x8088_0000 - Read/Write
AC97DR2 - 0x8088_0020 - Read/Write
AC97DR3 - 0x8088_0040 - Read/Write
AC97DR4 - 0x8088_0060 - Read/Write

Definition:
The AC97DR registers are read / write data registers that are normally 20 bits 
wide. In 16-bit compact mode, all 32 available bits are used. This register is 
zero at reset.

Bit Descriptions: 

RSVD: Reserved. Unknown During Read. 

DATA: Write - Transmit FIFO: The AC97TXCR register qualifies 
the data within the TX FIFO.
Read - Receive FIFO: The AC97RXCR register qualifies 
the data within the FIFO.

For words to be transmitted:

• If the FIFOs are enabled, data written to this location is pushed onto the transmit FIFO.

• If the FIFOs are not enabled, data is stored in the transmitter holding register (the bottom 
word of the transmit FIFO).

For received words:

• If the FIFOs are enabled, the data received is pushed onto the receive FIFO.

• If the FIFOs are not enabled, the data received is stored in the receiving holding register 
(the bottom word of the receive FIFO).

The receive FIFO is 21 bits wide. The 21st bit, the receive overrun error status, can only be 
read via the AC97ISR registers. The receive overrun error status bit is transferred down to 
the FIFO buffer along with the overrun data value. 

AC97RXCRx 

Address:
AC97RXCR1 - 0x8088_0004 - Read/Write
AC97RXCR2 - 0x8088_0024 - Read/Write
AC97RXCR3 - 0x8088_0044 - Read/Write
AC97RXCR4 - 0x8088_0064 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD TOC FDIS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CM RSIZE RX12 RX11 RX10 RX9 RX8 RX7 RX6 RX5 RX4 RX3 RX2 RX1 REN



22-8 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

Definition:
Receive Control Registers. The AC97RXCR registers are read/write registers 
that are 32 bits. The data contained within the register controls the data slots 
that are contained within the receive FIFO. The data contained within the 
RSIZE bits controls the number of zeros that are to be appended to data to 
make it 20 bits.

Should two channels be enabled for the same data slot, then data is taken 
from, or given to, the lower channel number.

The data from the receive channel is stored in the lowest slot first. If for 
example the receive FIFO is setup to store slots 3 and 4 then the first data 
word out of the FIFO will be slot 3 followed by slot 4.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TOC: Time out count value. The FIFOs have the capability of 
generating a timeout interrupt when the receive FIFO is 
not empty and no further data is received for a period of 
time. This time period is specified by the value written 
here. The value is the number of frames that must occur 
without any data being received (a count of the SYNC 
signal). A write of “0” to this value disables the counter, 
and no timeout interrupt is generated. On reset the value 
is “0”. The maximum count of 4096 will allow the timeout 
period to be set to 85 msec. 

FDIS: FIFO Disable
0 - The FIFO buffers are Enabled (FIFO mode). 
1 - The FIFO is disabled (character mode). That is, the 
FIFO becomes 1-byte-deep holding registers.

CM: Compact mode enable. If the RSIZE value is either “00” or 
“11” (setting the data word size to 12- or 16-bits) then the 
CM bit determines whether the two data words are 
compacted into one 32-bit word, or each is sent in a 
separate word. If the RSIZE value is either “01” or “10” 
(setting the data word size to 18- or 20-bits) then the CM 
bit has no effect. See Table 22-3. 
0 - The data is justified into separate 32 bit words   
1 - The two data words are compacted into one 32-bit 
word for reading by the CPU. 



DS785UM1 22-9
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

RSIZE: Determines how many bits to a data word. See Table 22-3 
for details of the interaction between RSIZE and CM.
00 data is 16 bits
01 data is 18 bits
10 data is 20 bits 
11 data is 12 bits 

RX12: FIFO stores SLOT12 data (takes precedence over 
AC97S12Data)

RX11: FIFO stores SLOT11 data

RX10: FIFO stores SLOT10 data

RX9: FIFO stores SLOT9 data

RX8: FIFO stores SLOT8 data

RX7: FIFO stores SLOT7 data

RX6: FIFO stores SLOT6 data

RX5: FIFO stores SLOT5 data

RX4: FIFO stores SLOT4 data

RX3: FIFO stores SLOT3 data

RX2: FIFO stores SLOT2 data

RX1: FIFO stores SLOT1 data

REN: A “1” written to this bit enables the receive for this FIFO 
and enables the PCLK for the respective channel.

Table 22-3. Interaction Between RSIZE and CM

CM RSIZE Data to CPU

0 0 0 Justified, one 16 bits

0 1 1 Justified, one 12 bits

1 0 0 Compacted, two 16 bits

1 1 1 Compacted, two 12 bits

X 1 0 Justified, 20 bit

X 0 1 Justified, 18 bit



22-10 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

AC97TXCRx 

Address:
AC97TXCR1 - 0x8088_0008 - Read/Write
AC97TXCR2 - 0x8088_0028 - Read/Write
AC97TXCR3 - 0x8088_0048 - Read/Write
AC97TXCR4 - 0x8088_0068 - Read/Write

Definition:
Transmit Control Registers. The AC97TXCR registers are read/write. The data 
contained within the register controls the data slots that are contained within 
the FIFO’s transmit register. The data within this FIFO must be of the same 
sampling frequency, such as all audio slot data at 44.1 kHz. This register is 
used to create slot 0 for transmitting. If this register specifies that the data 
within is for Slot1 and 2, this will take precedence over the data in the 
SLOT1TX and SLOT2TX register. If Slot 1 and 2 data is to be sent via this 
FIFO, it will always be transmitted at 48kHz. Therefore, it is advisable not to 
enable any other slots unless they too are sampled at 48kHz.

The data contained within the TSIZE bits controls the number of zeros that are 
to be appended to data to make it 20 bits.

Should two channels be enabled for the same data slot, then data is taken 
from/given to the lower channel number.

The data into the FIFO is stored in the lowest slot first. For example if the FIFO 
is set up to store in slots 3 and 4, then slot 3 is the first data into the FIFO and 
slot 4 the second.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

FDIS: FIFO Disable
0 - The FIFO buffers are Enabled (FIFO mode). 
1 - The FIFO is disabled (character mode). That is, the 
FIFO becomes 1-byte-deep holding registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD FDIS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CM TSIZE TX12 TX11 TX10 TX9 TX8 TX7 TX6 TX5 TX4 TX3 TX2 TX1 TEN



DS785UM1 22-11
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

CM: Compact mode enable. If the RSIZE value is either “00” or 
“11” (setting the data word size to 12- or 16-bits) then the 
CM bit determines whether the two data words are 
compacted into one 32-bit word, or each is sent in a 
separate word. If the RSIZE value is either “01” or “10” 
(setting the data word size to 18- or 20-bits) then the CM 
bit has no effect. See Table 22-4. 
0 - The data is justified into one 32 bit word   
1 - The two data words are compacted into one 32-bit 
word for reading by the CPU. 

RSIZE: Determines how many bits to a data word. See Table 22-4 
for details of the interaction between RSIZE and CM.
00 data is 16 bits
01 data is 18 bits
10 data is 20 bits 
11 data is 12 bits    

TX12: FIFO stores SLOT12 data (takes precedence over 
AC97S12Data)

TX11: FIFO stores SLOT11 data

TX10: FIFO stores SLOT10 data

TX9: FIFO stores SLOT9 data

TX8: FIFO stores SLOT8 data

TX7: FIFO stores SLOT7 data

TX6: FIFO stores SLOT6 data

TX5: FIFO stores SLOT5 data

TX4: FIFO stores SLOT4 data

TX3: FIFO stores SLOT3 data

TX2: FIFO contains SLOT2 data (only use if sampling rate is 
48 kHz). Takes precedence over AC97S2Data. 

Table 22-4. Interaction Between RSIZE and CM Bits

CM RSIZE Data to CPU

0 0 0 Justified, one 16 bits

0 1 1 Justified, one 12 bits

1 0 0 Compacted, two 16 bits

1 1 1 Compacted, two 12 bits

X 1 0 Justified, 20 bit

X 0 1 Justified, 18 bit



22-12 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

TX1: FIFO contains SLOT1 data (only use if sampling rate is 
48 kHz). Takes precedence over AC97S1DATA. 

TEN: A “1” written to this bit enables the transmit for this FIFO 
and enables the PCLK for the respective Channel.

AC97SRx 

Address:
AC97SR1 - 0x8088_000C - Read Only
AC97SR2 - 0x8088_002C - Read Only
AC97SR3 - 0x8088_004C - Read Only
AC97SR4 - 0x8088_006C - Read Only

Definition:
Status Registers. The AC’97 Controller status registers are read only registers 
that give information about the transmit/receive status of the block. After reset, 
the TXFF, RXFF and TXBUSY are “0”, and TXFE and RXFE are “1”. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

TXUE: TX Underrun Error - This bit is set to “1” if an underrun 
error has been detected (if data is to be transmitted and 
the FIFO is empty).

This bit is cleared to “0” by writing to the AC97DR register.

Note: Bit will only be set if FIFO had been written to at least once in 
current data transfer.

RXOE: RX Overrun Error - This bit is set to “1” if an overrun error 
has been detected. This bit is set to “1” if data is received 
and the FIFO is already full. 

This bit is cleared to “0” by reading the AC97DR register. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD TXUE RXOE TXBUSY TXFF RXFF TXFE RXFE



DS785UM1 22-13
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

TXBUSY: TXBUSY is set when TEN = “1” AND there is data in the 
FIFO, OR when data from this FIFO is being sent in the 
current frame.

TXBUSY is cleared at the start of the next frame following 
the assertion of the corresponding channel’s TXFE flag 
(the value of TEN is irrelevant).

TXFF: Transmit FIFO full flag, active HIGH. 
This bit is asserted HIGH if the transmit FIFO is full.

RXFF: Receive FIFO full flag, active HIGH.
This bit is asserted HIGH if the receive FIFO is full.

TXFE: Transmit FIFO empty flag, active HIGH. 
This bit is asserted HIGH if the transmit FIFO is empty.

RXFE: Receive FIFO empty flag, active HIGH. 
This bit is asserted HIGH if the receive FIFO is empty.

 AC97RISRx 

Address:
AC97RISR1 - 0x8088_0010 - Read Only
AC97RISR2 - 0x8088_0030 - Read Only
AC97RISR3 - 0x8088_0050 - Read Only
AC97RISR4 - 0x8088_0070 - Read Only

Definition:
Raw Interrupt Status. The AC97ISR registers are the raw Interrupt status 
registers for the controller FIFOs. All bits are cleared to zero on reset except 
for the TCIS as the FIFO and shift register should both be empty. Any write to 
this register clears the overrun error.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RIS: RX Interrupt Status - This bit is set to “1” if the receive 
FIFO becomes half full.

TIS: TX Interrupt Status - This bit is set to “1” if the transmit 
FIFO becomes half empty.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RIS TIS RTIS TCIS



22-14 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

RTIS: RX Timeout Interrupt Status - If this bit is set to “1”, the 
timeout FIFO interrupt is asserted.

TCIS: TX complete Interrupt Status - If this bit is set to “1”, the 
transmit FIFO complete interrupt is asserted.

AC97ISRx 

Address:
AC97ISR1 - 0x8088_0014 - Read Only
AC97ISR2 - 0x8088_0034 - Read Only
AC97ISR3 - 0x8088_0054 - Read Only
AC97ISR4 - 0x8088_0074 - Read Only

Definition:
Interrupt Status Register. The AC97ISR registers are the Interrupt status 
registers for the controller FIFOs. All bits are cleared to zero on reset except 
for the TCIS as the FIFO and shift register should both be empty.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RIS: RX Interrupt Status - If this bit is set to “1”, the receive 
FIFO interrupt is asserted.

TIS: TX Interrupt Status - If this bit is set to “1”, the transmit 
FIFO interrupt is asserted.

RTIS: RX Timeout Interrupt Status - If this bit is set to “1”, the 
timeout FIFO interrupt is asserted.

TCIS: TX complete Interrupt Status - If this bit is set to “1”, the 
transmit FIFO complete interrupt is asserted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RIS TIS RTIS TCIS



DS785UM1 22-15
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

AC97IEx 

Address:
AC97IE1 - 0x8088_0018 - Read/Write
AC97IE2 - 0x8088_0038 - Read/Write
AC97IE3 - 0x8088_0058 - Read/Write
AC97IE4 - 0x8088_0078 - Read/Write

Definition:
Interrupt Enable Register. The AC97IE registers control the Interrupt Enables 
for the FIFOs within the controller. All bits are cleared on reset. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RIE: Receive Interrupt Enable - If this bit is set to “1”, the FIFO 
receive interrupt is enabled.

TIE: Transmit Interrupt Enable - If this bit is set to “1”, the FIFO 
transmit interrupt is enabled.

RTIE: Receive Timeout Interrupt Enable - If this bit is set to “1”, 
the FIFO receive timeout interrupt is enabled.

TCIE: Transmit Complete Interrupt Enable - If this bit is set to “1”, 
the FIFO transmit complete interrupt is enabled.

AC97S1Data

Address:
0x8088_0080 - Read/Write

Definition:
Slot 1 Data Register. The AC97S1Data register is a read / write register. When 
a write has occurred to this register, the data contained within it is sent on the 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RIE TIE RTIE TCIE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DATA



22-16 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

next available frame in SLOT1. As both the AC97S1Data and AC97S2Data 
data are required for writes to the external codec, the AC97S2Data data will 
only become valid for transmission when the AC97S1Data has been written 
also. In order to perform a write to the external codec, the AC97S1Data 
register must be written to after the AC97S2Data register is written. 

Bit[19] of Slot1 on SDATAOUT from the AC’97 indicates whether a read or a 
write is being performed to or from the external codec. This bit is generated 
automatically in the AC’97 as follows:

• When data is written to the AC97S2Data register, the read / write bit is set to “0”

• The read / write bit is set to “1” when the slot 2 data has been transmitted

• The read / write bit is set to “1” when a read occurs from either the AC97S1Data or 
AC97S2Data register

If a power down is required, then the software must write the address 0x26 to 
this location (for the external device), which will be recorded by the controller. 
If the AC97S2Data bit 12 is set, then the controller will go into power down 
mode. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

DATA: Read operation: Read data value of the last value written 
to this register via the AC-Link interface. The data 
contained within it is the last valid received slot 1, for 
example, the slot 0 received tagged slot1 as valid.

Write operation: Write data value to transmit on slot1 on 
the next available frame. Once the data has been 
transmitted, it will be marked as invalid.

AC97S2Data 

Address:
0x8088_0084 - Read/Write

Definition:
Slot 2 Data Register. The AC97S2Data register is a read / write register. When 
a write has occurred to this register, the data contained within it will be sent on 
the next available frame in SLOT2. In order to perform a write to the external 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA



DS785UM1 22-17
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

codec, the AC97S2Data register must be written to before the AC97S1Data 
register is written.

If a power down is required, then the software must write to SLOT1TX location 
address 0x26, which is recorded by the controller. If the AC97S2Data bit 12 is 
set, then the controller will go into power down mode. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

DATA: Read operation: Read data value of the last value written 
to this register via the AC-Link interface. 

Write operation: Write data value to transmit on slot 2 on 
next available frame. Once the data has been transmitted, 
it will marked as invalid.

AC97S12Data 

Address:
0x8088_0088 - Read/Write

Definition:
Slot 12 Data Register. The AC97S12Data register is a read / write register. 
Data written to it will be sent on the next available frame in SLOT 12. When 
this register is read, the data contained within it is the data that was last 
received for SLOT 12.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

DATA: Read operation: Read data value of the last value received 
in SLOT 12. Bit 0 is monitored to see if a GPIOINT has 
occurred.

Write operation: Write data value to transmit on slot 12 on 
next available frame. Once the data has been transmitted 
it will marked as invalid.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA



22-18 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

AC97RGIS 

Address:
0x8088_008C - Read Only

Definition:
Raw Global Interrupt Status Register. The AC’97 raw global interrupt status 
register is a read/write register that gives the status of various functions 
outside of the FIFO functionality within the controller. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

SLOT2TXCOMPLETE:Set when the AC97S2Data register has completed 
transmission. This bit is cleared when data is in the 
register to be transmitted.

CODECREADY: This bit is set to “1” during a wakeup when the codec 
indicates that it is ready by setting bit 15 of Slot0. It is 
cleared by writing to Bit1 of the AC97EOI Register.

WINT: RAW Wake-up Interrupt Status. If this bit is set to “1”. The 
RAW Wake-up interrupt is asserted. This bit is cleared 
with a write to the AC97EOI register.

GPIOINT: The GPIOINT shows the raw status of the GPIOINT bit 
(slot 12 bit 0) in the receive frame, which is stored in 
the AC97S12Data register. This bit is cleared when 
the AC97S12Data register is read.

GPIOTXCOMPLETE:GPIO Transmission Complete. Set when a new value to 
the AC97S12Data register has completed 
transmission. Cleared when data is placed in the 
register to be transmitted.

SLOT2RXVALID: The AC97S2Data register has new data that has not been 
read. Reading the data in the AC97S2Data register 
clears this bit.

SLOT1TXCOMPLETE:Set when the AC97S1Data register has completed 
transmission. This bit is cleared when data is written 
to the AC97S1Data register to be transmitted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SLOT2TX
COMPLETE

CODEC
READY

WINT GPIO
INT

GPIOTX
COMPLETE

SLOT2RX
VALID

SLOT1TX
COMPLETE



DS785UM1 22-19
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

AC97GIS 

Address:
0x8088_0090 - Read Only

Definition:
Global Interrupt Status. The AC97GIS register is the global interrupt status 
register. All bits are cleared to zero on reset. Each bit is the logical AND of the 
corresponding bits in the AC97RGIS register and the AC97IM register.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

SLOT2TXCOMPLETE:If this bit is set to “1”, the SLOT2TXCOMPLETE 
interrupt is asserted.

CODECREADY: This bit is set to “1” during a wakeup when the codec 
indicates that it is ready by setting bit 15 of Slot0

WINT: Wake-up Interrupt Status: If this bit is set to “1”, the Wake-
up Interrupt is asserted. 

GPIOINT: GPIO Interrupt Status: If this bit is set to “1”, the GPIOINT 
interrupt is asserted.

GPIOTXCOMPLETE:If this bit is set to “1”, the GPIOTXCOMPLETE interrupt 
is asserted.

SLOT2RXVALID: If this bit is set to “1”, SLOT2RXVALID interrupt is 
asserted.

SLOT1TXCOMPLETE:If this bit is set to “1”, SLOT1TXCOMPLETE interrupt is 
asserted.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SLOT2TX
COMPLETE

CODEC
READY

WINT GPIO
INT

GPIOTX
COMPLETE

SLOT2R
XVALID

SLOT1TX
COMPLETE



22-20 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

AC97IM   

Address:
0x8088_0094 - Read/Write

Definition:
Controller Interrupt Enable Register. The AC’97 Controller interrupt enable 
register is a read/write register that controls the interrupt enables for the 
interrupts outside the FIFO channels.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

SLOT2TXCOMPLETE:If this bit is set to “1”, the SLOT2TXCOMPLETE 
interrupt is enabled.

CODECREADY: If this bit is set to “1”, the Codec Ready Interrupt is 
enabled. 

WINT: If this bit is set to “1”, the Wake-up Interrupt is enabled. 

GPIOINT: If this bit is set to “1”, the GPIO interrupt is enabled.

GPIOTXCOMPLETE:If this bit is set to “1”, the GPIOTXCOMPLETE interrupt 
is enabled.

SLOT2RXVALID: If this bit is set to “1”, SLOT2RXVALID interrupt is enabled.

SLOT1TXCOMPLETE:If this bit is set to “1”, SLOT1TXCOMPLETE interrupt is 
enabled.

AC97EOI

Address:
0x8088_0098 - Write Only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SLOT2TX
COMPLETE

CODEC
READY

WINT GPIO
INT

GPIOTX
COMPLETE

SLOT2RX
VALID

SLOT1TX
COMPLETE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD CODECREADY WINT



DS785UM1 22-21
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

Definition:
End Of Interrupt Register. The AC’97 End Of Interrupt Register is a write-only 
register that allows the CODECREADY and WIS interrupts to be cleared. A 
write to this location clears the interrupt.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

CODECREADY: CODECREADY Interrupt Status Clear. A write of “1” to this 
location will clear the CODECREADY interrupt bit.

WINT: Wake-up Interrupt Status Clear. A write of “1” to this 
location will clear the WIS interrupt bit.

AC97GCR 

Address:
0x8088_009C - Read/Write

Definition:
Global Control Register. The AC97GCR register is the main control register for 
the AC’97 Controller. All bits are cleared on reset.

The AC97IFE creates the clock enable signal for the clock controller block. It 
is used to enable/disable both PCLK and AC97LK.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

OCODECReady: If set to “1”, this bit will override normal CODEC-ready 
definition.

LOOP: Loopback mode: If this is set to “1”, loopback test mode is 
enabled. Defaults to “0” when reset. Ensure this bit 
is always “0” for normal operation.

AC97IFE: AC97IF Enable: If this bit is set the AC’97 is enabled. 
Defaults to “0” on reset. When set to “0”, all FIFOs 
are reset to “0”.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD OCODECReady LOOP AC97IFE



22-22 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

AC97Reset

Address:
0x8088_00A0 - Read/Write

Definition:
Controller Reset Register. The AC’97 Controller RESET register is a 
read/write register that controls various functions within the AC’97 Controller 
of the RESET port. All the register bits are cleared to “0” when reset.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

EFORCER: Enable for the Forced RESET bit.
1 - FORCEDRESET become active
0 - FORCEDRESET has no effect.

FORCEDRESET: If the EFORCER bit is set to “1”, the RESET port will follow 
whatever value is written to this bit. If this mechanism is 
used to control the RESET port, it is up to software to 
ensure that the signal is high long enough to meet the 
specification of the external device.

This bit has priority over the TIMEDRESET bit.

TIMEDRESET: If this bit is set to “1”, the RESET port is forced to “0” for 
five pulses of the 2.9491 MHz clock 
(0.339 µs x 5 = 1.695 µs maximum reset pulse and 
1.356 µs minimum reset pulse using this 2.9491 MHz 
clock). After which this bit is zeroed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD EFORCER FORCED
RESET

TIMED
RESET



DS785UM1 22-23
Copyright 2007 Cirrus Logic 

AC’97 Controller
EP93xx User’s Guide

2222

22

AC97SYNC 

Address:
0x8088_00A4 - Read/Write

Definition:
Sync Control Register. The AC’97 Sync Controller register is a read / write 
register that controls various functions within the AC’97 Controller of the 
SYNC port. All the register bits are cleared to “0” when reset.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

EFORCES: Enable for Forced SYNC bit
1 - FORCEDSYNC become active
0 - FORCEDSYNC has no effect.

FORCEDSYNC: If EFORCES bit is set to “1”, the SYNC port will follow 
whatever value is written to this bit. If this mechanism is 
used to control the SYNC port it is up to software to 
ensure that the signal is high long enough to meet the 
specification of the external device. 

This bit has priority over the TIMEDSYNC bit.

TIMEDSYNC: If this bit is set to “1”, the SYNC port is forced to “1” for five 
pulses of the 2.9491 MHz (0.339 µs x 5 = 1.695 µs 
maximum SYNC pulse and 1.356 µs minimum SYNC 
pulse using this clock). After which this bit is zeroed, 
allowing the SYNC to be controlled via the BITCLK 
counter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD EFORCES FORCED
SYNC

TIMED
SYNC



22-24 DS785UM1
Copyright 2007 Cirrus Logic

AC’97 Controller
EP93xx User’s Guide

2222

22

AC97GCIS 

Address:
0x8088_00A8 - Read Only

Definition:
Global Channel Interrupt Status. The AC97GCIS register (AC’97 Global 
Channel Interrupt Status) is read only, and echoes all the interrupt status 
registers in the controller. This register allows the software to read all the 
interrupt sources with one read. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

AC97GIS: Copy of the AC97GIS register

AC97ISR4: Copy of the AC97ISR 4 register

AC97ISR3: Copy of the AC97ISR 3 register

AC97ISR2: Copy of the AC97ISR 2 register

AC97ISR1: Copy of the AC97ISR 1 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD AC97GIS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AC97ISR4 AC97ISR3 AC97ISR2 AC97ISR1



DS785UM1 23-1
Copyright 2007 Cirrus Logic 

2323

23

Chapter 23

23Synchronous Serial Port

 23.1 Introduction
The Synchronous Serial Port (SSP) is a master or slave interface for synchronous serial 
communication with slave peripheral devices that have either Motorola® SPI, National 
Semiconductor® Microwire™, or Texas Instruments® synchronous serial interfaces.

The SSP performs serial-to-parallel conversion on data received from a peripheral device. 
The CPU or DMA reads and writes data and control and status information. The transmit and 
receive paths are buffered with internal FIFO memories allowing up to eight 16-bit values to 
be stored independently in both transmit and receive modes. Serial data is transmitted on 
SSPTXD and received on SSPRXD.

 23.2 Features
Following is a list of features of the Synchronous Serial Port.

• Master or Slave operation

• Programmable clock bit rate and prescaler

• Separate transmit and receive FIFO memory buffers, 16-bits wide, 8 locations deep

• Programmable data frame size from 4 to 16 bits

• Independent masking of transmit FIFO, receive FIFO and receive overrun interrupts

The SSP has a programmable choice of interfaces: SPI, Microwire, or TI synchronous serial. 
The features of each of these are listed below.

• SPI features:

• Full duplex, four-wire synchronous transfers

• Programmable clock polarity and phase

• The feature of the National Semiconductor Microwire interface is:

• Half duplex transfer using 8-bit control message

• Texas Instrument synchronous serial interface features:

• Full duplex four-wire synchronous transfer

• Transmit data pin can be in high impedance state when not transmitting



23-2 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23

 23.3 SSP Functionality
The SSP includes a programmable bit rate clock divider and prescaler to generate the serial 
output clock SCLKOUT from the input clock SSPCLK. Bit rates are supported to 2MHz and 
beyond, subject to choice of frequency for SSPCLK. The maximum bit rate will usually be 
determined by peripheral devices.

The SSP operating mode, frame format and size are programmed though the control 
registers SSPCR0, SSPCR1.

Three individually maskable interrupt outputs, SSPTXINTR, SSPRXINTR and SSPRORINTR 
are generated:

• SSPTXINTR requests servicing of the transmit buffer

• SSPRXINTR requests servicing of the receive buffer

• SSPRORINTR indicates an overrun condition in the receive FIFO.

 23.4 SSP Pin Multiplex
The SSP pins are multiplexed and may be used for the I2S controller instead of SSP by 
setting DeviceCfg.I2SonSSP.

 23.5 Configuring the SSP
Following reset, the SSP logic is disabled and must be configured when in this state. Control 
registers SSPCR0 and SSPCR1 need to be programmed to configure the peripheral as a 
master or slave operating under one of the following protocols:

•  Motorola SPI

•  Texas Instruments SSI

•  National Semiconductor.

The bit rate, derived from the external SSPCLK, requires the programming of the clock 
prescale register SSPCPSR. The following procedure must be used to initialize the SSP 
function:

1. Set the enable bit (SSE) in register SSPCR1. 

2. Write the other SSP configuration registers: SSPCR0 and SSPCPSR. 

3. Clear the enable bit (SSE) in register SSPCR1. 

4. Set the enable bit (SSE) in register SSPCR1. 

 23.5.1 Enabling SSP Operation

You can either prime the transmit FIFO, by writing up to eight 16-bit values when the SSP is 
disabled, or allow the transmit FIFO service request to interrupt the CPU. Once enabled, 
transmission or reception of data begins on the transmit (SSPTXD) and receive (SSPRXD) 
pins.



DS785UM1 23-3
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

 23.5.2 Master/Slave Mode

To configure the SSP as a master, clear the SSPCR1 register master or slave selection bit 
(MS) to 0, which is the default value on reset. Setting the SSPCR1 register MS bit to 1 
configures the SSP as a slave. When configured as a slave, enabling or disabling of the SSP 
SSPTXD signal is provided through the SSPCR1 slave mode SSPTXD output disable bit 
(SOD).

 23.5.3 Serial Bit Rate Generation

The serial bit rate is derived by dividing down the 7.4 MHz SSPCLK. The clock is first divided 
by an even prescale value CPSDVSR from 2 to 254, which is programmed in SSPCPSR. The 
clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value 
programmed in SSPCR0. The frequency of the output signal bit clock, SCLKOUT, is defined 
below:

Fsspclkout = Fsspclk / (cpsdvr  (1 + scr))

 23.5.4  Frame Format

Each data frame is between 4 and 16 bits long depending on the size of data programmed, 
and is transmitted starting with the MSB. There are three basic frame types that can be 
selected:

•  Texas Instruments synchronous serial

•  Motorola SPI

•  National Semiconductor Microwire.

For all three formats, the serial clock (SCLKOUT) is held inactive while the SSP is idle, and 
transitions at the programmed frequency only during active transmission or reception of data. 
The idle state of SCLKOUT is utilized to provide a receive timeout indication that occurs 
when the receive FIFO still contains data after a timeout period.

For Motorola SPI and National Semiconductor Microwire frame formats, the serial frame 
(SFRMOUT) pin is active LOW, and is asserted (pulled down) during the entire transmission 
of the frame.

For Texas Instruments synchronous serial frame format, the SFRMOUT pin is pulsed for one 
serial clock period starting at its rising edge, prior to the transmission of each frame. For this 
frame format, both the SSP and the off-chip slave device drive their output data on the rising 
edge of SCLKOUT, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the National 
Semiconductor Microwire format uses a special master-slave messaging technique, which 
operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is 
transmitted to the off-chip slave. During this transmit, no incoming data is received by the 
SSP. After the message has been sent, the off-chip slave decodes it and, after waiting one 
serial clock after the last bit of the 8-bit control message has been sent, responds with the 
requested data. The returned data can be 4 to 16 bits in length, making the total frame length 
anywhere from 13 to 25 bits.



23-4 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23

 23.5.5 Texas Instruments® Synchronous Serial Frame Format

Figure 23-1 shows the Texas Instruments synchronous serial frame format for a single 
transmitted frame.

 Figure 23-1. Texas Instruments Synchronous Serial Frame Format (Single Transfer)

In this mode, SCLKOUT and SFRMOUT are forced LOW, and the transmit data line SSPTXD 
is put in the high impedance state whenever the SSP is idle. Once the bottom entry of the 
transmit FIFO contains data, SFRMOUT is pulsed HIGH for one SCLKOUT period. The value 
to be transmitted is also transferred from the transmit FIFO to the serial shift register of the 
transmit logic. On the next rising edge of SCLKOUT, the MSB of the 4 to 16-bit data frame is 
shifted out on the SSPTXD pin. Likewise, the MSB of the received data is shifted onto the 
SSPRXD pin by the off-chip serial slave device.

Both the SSP and the off-chip serial slave device then clock each data bit into their serial 
shifter on the falling edge of each SCLKOUT. The received data is transferred from the serial 
shifter to the receive FIFO on the first rising edge of SCLKOUT after the LSB has been 
latched. Figure 23-2 shows the Texas Instruments synchronous serial frame format when 
back-to-back frames are transmitted.

 Figure 23-2. TI Synchronous Serial Frame Format (Continuous Transfer)

4 to 16 bits

M SB LSB

SSPOE

SSPTXD /
SSPRXD

SFRMOUT /
SFRMIN

SCLKOUT /
SCLKIN

MS B LSB

4 to 16 bits

SSPOE (=0)

SSPTXD /
SSPRXD

SFRMOUT /
SFRMIN

SCLKOUT /
SCLKIN



DS785UM1 23-5
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

 23.5.6 Motorola® SPI Frame Format

The Motorola SPI interface is a four-wire interface where the SFRMOUT signal behaves as a 
slave select. The main feature of the Motorola SPI format is that the inactive state and phase 
of the SCLKOUT signal are programmable through the SPO and SPH bits within the control 
register, “SSPCR0” on page 23-13.

 23.5.6.1 SPO Clock Polarity
When the SPO clock polarity control bit is LOW, it produces a steady state low value on the 
SCLKOUT pin. If the SPO clock polarity control bit is HIGH, a steady state high value is 
placed on the SCLKOUT pin when data is not being transferred.

 23.5.6.2 SPH Clock Phase
The SPH control bit selects the clock edge that captures data and allows it to change state. It 
has the most impact on the first bit transmitted by either allowing or not allowing a clock 
transition before the first data capture edge.

When the SPH phase control bit is LOW, data is captured on the first clock edge transition. If 
the SPH clock phase control bit is HIGH, data is captured on the second clock edge 
transition.

 23.5.7 Motorola SPI Format with SPO=0, SPH=0

Single and continuous transmission signal sequences for Motorola SPI format with SPO=0, 
SPH=0 are shown in Figure 23-3 and Figure 23-4 on page 23-6.

 Figure 23-3. Motorola SPI Frame Format (Single Transfer) with SPO=0 and SPH=0

4 to 16 bits

MS B

LSB Q

LSB

MS B

SSPTXD

SSPOE

SSPRXD

SFRMOUT /
SFRMIN

SCLKOUT /
SCLKIN



23-6 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23
 Figure 23-4. Motorola SPI Frame Format (Continuous Transfer) 

with SPO=0 and SPH=0

In this configuration, during idle periods:

•  the SCLKOUT signal is forced LOW

•  SFRMOUT is forced HIGH

•  the transmit data line SSPTXD is arbitrarily forced LOW

• when the SSP is configured as a master, the SSPCTLOE line is driven LOW, enabling 
the SCLKOUT pad (active LOW enable)

• when the SSP is configured as a slave, the SSPCTLOE line is driven HIGH, disabling 
the SCLKOUT pad (active LOW enable).

If the SSP is enabled and there is valid data within the transmit FIFO, the start of 
transmission is signified by the SFRMOUT master signal being driven LOW. This causes 
slave data to be enabled onto the SSPRXD input line of the master. The master SSPTXD 
output pad is enabled.

One half SCLKOUT period later, valid master data is transferred to the SSPTXD pin. Now 
that both the master and slave data have been set, the SCLKOUT master clock pin goes 
HIGH after one further half SCLKOUT period.

The data is now captured on the rising edges, and is propagated on the falling edges, of the 
SCLKOUT signal.

In the case of a single word transmission, after all bits of the data word have been 
transferred, the SFRMOUT line is returned to its idle HIGH state one SCLKOUT period after 
the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SFRMOUT signal must 
be pulsed HIGH between each data word transfer. This is because the slave select pin 
freezes the data in its serial peripheral register and does not allow it to be altered if the SPH 
bit is logic zero. Therefore the master device must raise the SFRMIN pin of the slave device 
between each data transfer to enable the serial peripheral data write. On completion of the 
continuous transfer, the SFRMOUT pin is returned to its idle state one SCLKOUT period after 
the last bit has been captured.

M SB LSBLSB M SB

4 to 16 bits

M SB LSBLSB M SBSSPTXD
SSPOE (=0)

SSPRXD

SFRMOUT /
SFRMIN

SCLKIN
SCLKOUT /



DS785UM1 23-7
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

 23.5.8  Motorola SPI Format with SPO=0, SPH=1

The transfer signal sequence for Motorola SPI format with SPO=0, SPH=1 is shown in 
Figure 23-5, which covers both single and continuous transfers.

 Figure 23-5. Motorola SPI Frame Format with SPO=0 and SPH=1

In this configuration, during idle periods:

• the SCLKOUT signal is forced LOW

• SFRMOUT is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• when the SSP is configured as a master, the SSPCTLOE line is driven LOW, enabling 
the SCLKOUT pad (active LOW enable)

• when the SSP is configured as a slave, the SSPCTLOE line is driven HIGH, disabling 
the SCLKOUT pad (active LOW enable).

If the SSP is enabled and there is valid data within the transmit FIFO, the start of 
transmission is signified by the SFRMOUT master signal being driven LOW. The master 
SSPTXD output pad is enabled. After a further one half SCLKOUT period, both master and 
slave valid data is enabled onto their respective transmission lines. At the same time, the 
SCLKOUT is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the 
SCLKOUT signal.

In the case of a single word transfer, after all bits have been transferred, the SFRMOUT line 
is returned to its idle HIGH state one SCLKOUT period after the last bit has been captured.

For continuous back-to-back transfers, the SFRMOUT pin is held LOW between successive 
data words and termination is the same as that of the single word transfer.

4 to 16 bits

MS B

LSB

LSB

Q M SB Q

SSTXD

SSPOE

SSRXD

SFRMOUT /
SFRMIN

SCLKOUT /
SCLKIN



23-8 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23

 23.5.9 Motorola SPI Format with SPO=1, SPH=0

Single and continuous transmission signal sequences for Motorola SPI format with SPO=1, 
SPH=0 are shown in Figure 23-6 and Figure 23-7.

 Figure 23-6. Motorola SPI Frame Format (Single Transfer) with SPO=1 and SPH=0

Note: In Figure 23-6, Q is an undefined signal.

 Figure 23-7. Motorola SPI Frame Format (Continuous Transfer) 
with SPO=1 and SPH=0

In this configuration, during idle periods

• the SCLKOUT signal is forced HIGH

• SFRMOUT is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

• when the SSP is configured as a master, the SSPCTLOE line is driven LOW, enabling 
the SCLKOUT pad (active LOW enable)

• when the SSP is configured as a slave, the SSPCTLOE line is driven HIGH, disabling 
the SCLKOUT pad (active LOW enable).

4 to 16 bits

MS B

LSB

LSB

QMS B

SSPTXD

SSPOE
SSPRXD

SFRMOUT /
SFRMIN

SCLKOUT /
SCLKIN

MS B LSBLSB MS B

4 to 16 bits

SSPOE (=0)

SSPRXD
SSPTXD /

SFRMOUT /
SFRMIN

SCLKOUT /
SCLKIN



DS785UM1 23-9
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

If the SSP is enabled and there is valid data within the transmit FIFO, the start of 
transmission is signified by the SFRMOUT master signal being driven LOW, which causes 
slave data to be immediately transferred onto the SSPRXD line of the master. The master 
SSPTXD output pad is enabled.

One half period later, valid master data is transferred to the SSPTXD line. Now that both the 
master and slave data have been set, the SCLKOUT master clock pin becomes LOW after 
one further half SCLKOUT period. This means that data is captured on the falling edges and 
is propagated on the rising edges of the SCLKOUT signal.

In the case of a single word transmission, after all bits of the data word are transferred, the 
SFRMOUT line is returned to its idle HIGH state one SCLKOUT period after the last bit has 
been captured.

However, in the case of continuous back-to-back transmissions, the SFRMOUT signal must 
be pulsed HIGH between each data word transfer. This is because the slave select pin 
freezes the data in its serial peripheral register and does not allow it to be altered if the SPH 
bit is logic zero. Therefore the master device must raise the SFRMIN pin of the slave device 
between each data transfer to enable the serial peripheral data write. On completion of the 
continuous transfer, the SFRMOUT pin is returned to its idle state one SCLKOUT period after 
the last bit has been captured.

 23.5.10 Motorola SPI Format with SPO=1, SPH=1

The transfer signal sequence for Motorola SPI format with SPO=1, SPH=1 is shown in 
Figure 23-8, which covers both single and continuous transfers.

 Figure 23-8. Motorola SPI Frame Format with SPO=1 and SPH=1

Note: Figure 23-8, Q is an undefined signal.

In this configuration, during idle periods:

• the SCLKOUT signal is forced HIGH

• SFRMOUT is forced HIGH

• the transmit data line SSPTXD is arbitrarily forced LOW

4 to 16 bits

MS B

LSB

LSB

Q M SB Q

SSPTXD

SSPOE

SSPRXD

SFRMOUT /
SFRMIN

SCLKOUT /
SCLKIN



23-10 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23

• when the SSP is configured as a master, the SSPCTLOE line is driven LOW, enabling 
the SCLKOUT pad (active LOW enable)

• when the SSP is configured as a slave, the SSPCTLOE line is driven HIGH, disabling 
the SCLKOUT pad (active LOW enable).

If the SSP is enabled and there is valid data within the transmit FIFO, the start of 
transmission is signified by the SFRMOUT master signal being driven LOW. The master 
SSPTXD output pad is enabled. After a further one half SCLKOUT period, both master and 
slave data are enabled onto their respective transmission lines. At the same time, the 
SCLKOUT is enabled with a falling edge transition. Data is then captured on the rising edges 
and propagated on the falling edges of the SCLKOUT signal.

After all bits have been transferred, in the case of a single word transmission, the SFRMOUT 
line is returned to its idle HIGH state one SCLKOUT period after the last bit has been 
captured.

For continuous back-to-back transmissions, the SFRMOUT pins remains in its active LOW 
state, until the final bit of the last word has been captured, and then returns to its idle state as 
described above.

For continuous back-to-back transfers, the SFRMOUT pin is held LOW between successive 
data words and termination is the same as that of the single word transfer.

 23.5.11 National Semiconductor® Microwire™ Frame Format

Figure 23-9 shows the National Semiconductor Microwire frame format, again for a single 
frame. Figure 23-10 on page 23-12 shows the same format when back to back frames are 
transmitted.

 Figure 23-9. Microwire Frame Format (Single Transfer)

SCLK

SFRM

SSPTXD

SSPRXD 0 MSB LSB

4 to 16  bits output data

tclkrftclk_high

tclk_low

tclk_per

M SB LSB

8-bit control



DS785UM1 23-11
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

Microwire format is very similar to SPI format, except that transmission is half-duplex instead 
of full-duplex, using a master-slave message passing technique. Each serial transmission 
begins with an 8-bit control word that is transmitted from the SSP to the off-chip slave device. 
During this transmission, no incoming data is received by the SSP. After the message has 
been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of 
the 8-bit control message has been sent, responds with the required data. The returned data 
is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

• the SCLKOUT signal is forced LOW

• SFRMOUT is forced HIGH

•  the transmit data line SSPTXD is arbitrarily forced LOW

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of 
SFRMOUT causes the value contained in the bottom entry of the transmit FIFO to be 
transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control 
frame to be shifted out onto the SSPTXD pin. SFRMOUT remains LOW for the duration of the 
frame transmission. The SSPRXD pin remains in a high impedance state during this 
transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge 
of each SCLKOUT. After the last bit is latched by the slave device, the control byte is 
decoded during a one clock wait-state, and the slave responds by transmitting data back to 
the SSP. Each bit is driven onto SSPRXD line on the falling edge of SCLKOUT. The SSP in 
turn latches each bit on the rising edge of SCLKOUT. At the end of the frame, for single 
transfers, the SFRMOUT signal is pulled HIGH one clock period after the last bit has been 
latched in the receive serial shifter, that causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can put the receive line in a high impedance state either on the 
falling edge of SCLKOUT after the LSB has been latched by the receive shifter, or when 
the SFRMOUT pin goes HIGH.

For continuous transfers, data transmission begins and ends in the same manner as a single 
transfer. However, the SFRMOUT line is continuously asserted (held LOW) and transmission 
of data occurs back to back. The control byte of the next frame follows directly after the LSB 
of the received data from the current frame. Each of the received values is transferred from 
the receive shifter on the falling edge SCLKOUT, after the LSB of the frame has been latched 
into the SSP.



23-12 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23

 Figure 23-10. Microwire Frame Format (Continuous Transfers)

 23.5.11.1 Setup and Hold Time Requirements on SFRMIN with 
Respect to SCLKIN in Microwire Mode

In the Microwire mode, the SSP slave samples the first bit of receive data on the rising edge 
of SCLKIN after SFRMIN has gone LOW. Masters that drive a free-running SCLKIN must 
ensure that the SFRMIN signal has sufficient setup and hold margins with respect to the 
rising edge of SCLKIN.

Figure 23-11 illustrates these setup and hold time requirements. With respect to the SCLKIN 
rising edge on which the first bit of receive data is to be sampled by the SSP slave, SFRMIN 
must have a setup of at least two times the period of SCLKIN on which the SSP operates. 
With respect to the SCLKIN rising edge previous to this edge, SFRMIN must have a hold of 
at least one SCLKIN period.

 Figure 23-11. Microwire Frame Format, SFRMIN Input Setup and Hold Requirements

LSB

0 MSB

MSB LSB

LSB MSB

4 to 16  bits output data

8-bit control

SCLK

SFRM

SSPTXD

SSPRXD

SCLKIN

SFRM IN

SSPRXD
First RX data b it to  be
sam pled by SSP slave

0 M SB

tclkm ax

tsetup = (2tSSPC LKIN)
thold = tSSPC LKIN



DS785UM1 23-13
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

 23.6 Registers
The SSP registers are shown in the following table.

Register Descriptions

SSPCR0 

Address:
0x808A_0000 - Read/Write

Default:
0x0000_0000

Definition:
SSPCR0 is the control register 0 and contains four different bit fields, which 
control various functions within the SSP.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

Table 23-1. SSP Register Memory Map Description

Address Type Width
Reset 
value

Name Description

0x808A_0000 Read/write 16 0x0000 SSPCR0 Control register 0.

0x808A_0004 Read/write 8 0x00 SSPCR1 Control register 1.

0x808A_0008 Read/write 16 0x0000 SSPDR
Receive FIFO (Read)/
Transmit FIFO data 
register (Write).

0x808A_000C Read 7 0x00 SSPSR Status register. 

0x808A_0010 Read/write 8 0x00 SSPCPSR Clock prescale register.

0x808A_0014 Read 3 0x0
SSPIIR/
SSPICR

Interrupt identification 
register (read)
Interrupt clear register 
(write).

0x808A_0018 - 0x808A_003C - - - - Reserved

0x808A_0094 - 0x808A_00FF - - - - Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCR SPH SPO FRF DSS



23-14 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23

SCR: Serial clock rate. The value SCR is used to generate the 
transmit and receive bit rate of the SSP. SCR is a value 
from 0 to 255. This provides the secondary divide of 
(1+SCR) after a pre divide of CPSDVSR (ranging from 2 to 
254)

SPH: SCLKOUT phase (applicable to Motorola SPI frame format 
only).

SPO: SCLKOUT polarity (applicable to Motorola SPI frame 
format only).

FRF: Frame format:
00 Motorola SPI frame format
01 - TI synchronous serial frame format
10 - National Semiconductor Microwire frame format
11 - Reserved, undefined operation

DSS: Data Size Select:
0000 - Reserved, undefined operation
0001 - Reserved, undefined operation
0010 - Reserved, undefined operation
0011 - 4-bit data
0100 - 5-bit data
0101 - 6-bit data
0110 - 7-bit data
0111 - 8-bit data
1000 - 9-bit data
1001 - 10-bit data
1010 - 11-bit data
1011 - 12-bit data
1100 - 13-bit data
1101 - 14-bit data
1110 - 15-bit data
1111 - 16-bit data

SSPCR1 

Address:
0x808A_0004 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SOD MS SSE LBM RORIE TIE RIE



DS785UM1 23-15
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

Default:
0x0000_0000

Definition:
SSPCR1 is the control register 1 and contains six different bit fields, which 
control various functions within the SSP.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

SOD: Slave-mode output disable. This bit is relevant only in the 
slave mode (MS=1). In multiple-slave systems, it is 
possible for an SSPMS master to broadcast a message to 
all slaves in the system while ensuring that only one slave 
drives data onto its serial output line. In such systems the 
RXD lines from multiple slaves can be tied together. To 
operate in such systems, the SOD may be set if the SSP 
slave is not supposed to drive the SSPTXD line.
0 - SSP may drive the SSPTXD output in slave mode.
1 - SSP must not drive the SSPTXD output in slave 
modes.

MS: Master / Slave mode select. This bit can be modified only 
when the SSP is disabled (SSE=0).
0 - Device configured as master (default).
1 - Device configured as slave.

SSE: Synchronous serial port enable:
0 - SSP operation disabled
1 - SSP operation enabled.

LBM: Loop back mode:
0 - Normal serial port operation enabled.
1 - Output of transmit serial shifter is connected to input of 
receive serial shifter internally.

RORIE: Receive FIFO overrun interrupt enable:
0 - Overrun detection is disabled. Overrun condition does 
not generate the SSPRORINTR interrupt.
1 - Overrun detection is enabled. Overrun condition 
generates the SSPRORINTR interrupt. 

TIE: Transmit FIFO interrupt enable:
0 - Transmit FIFO half-full or less condition does not 
generate the SSPTXINTR interrupt.
1 - Transmit FIFO half-full or less condition generates the 
SSPTXINTR interrupt.



23-16 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23

RIE: Receive FIFO interrupt enable:
0 - Receive FIFO half-full or more condition does not 
generate the SSPRXINTR interrupt.
1 - Receive FIFO half-full or more condition generates the 
SSPRXINTR interrupt.

SSPDR 

Address:
0x808A_0008 - Read/Write

Default:
0x0000_0000

Definition:
SSPDR is the data register and is 16-bits wide. When SSPDR is read, the 
entry in the receive FIFO (pointed to by the current FIFO read pointer) is 
accessed. As data values are removed by the SSPs receive logic from the 
incoming data frame, they are placed into the entry in the receive FIFO 
(pointed to by the current FIFO write pointer).

When SSPDR is written, the entry in the transmit FIFO (pointed to by the write 
pointer), is written. Data values are removed from the transmit FIFO one value 
at a time by the transmit logic. It is loaded into the transmit serial shifter, then 
serially shifted out onto the SSPTXD pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify 
data written to the transmit FIFO. The transmit logic ignores the unused bits. 
Received data less than 16 bits is automatically right justified in the receive 
buffer.

When the SSP is programmed for National Semiconductor Microwire frame 
format, the default size for transmit data is eight bits (the most significant byte 
is ignored). The receive data size is controlled by the programmer. The 
transmit FIFO and the receive FIFO are not cleared even when SSE is set to 
zero. This allows the software to fill the transmit FIFO before enabling the 
SSP.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA



DS785UM1 23-17
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

DATA: Transmit / Receive FIFO:
Read - Receive FIFO
Write - Transmit FIFO

Note: The user should right-justify data when the SSP is programmed for a data size that is less 
than 16 bits. Unused bits at the top are ignored by transmit logic. The receive logic 
automatically right justifies.

SSPSR 

Address:
0x808A_000C - Read Only

Default:
0x0000_0000

Definition:
SSPSR is a read-only status register, which contains bits that indicate the 
FIFO fill status and the SSP busy status. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

BSY: SSP busy flag (read-only):
0 - SSP is idle.
1 - SSP is currently transmitting and / or receiving a frame 
or the transmit FIFO is non-empty.

RFF: Receive FIFO full (read-only):
0 - Receive FIFO is not full
1 - Receive FIFO is full

RNE: Receive FIFO not empty (read-only):
0 - Receive FIFO is empty.
1 - Receive FIFO is not empty

TNF: Transmit FIFO not full (read-only):
0 - Transmit FIFO is full.
1 - Transmit FIFO is not full.

TFE: Transmit FIFO empty (read-only):
0 - Transmit FIFO is not empty
1 - Transmit FIFO is empty

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD BSY RFF RNE TNF TFE



23-18 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23

SSPCPSR 

Address:
0x808A_0010 - Read/Write

Default:
0x0000_0000

Definition:
SSPCPSR is the clock prescale register and specifies the division factor by 
which the input SSPCLK should be internally divided before further use.

The value programmed into this register should be an even number between 2 
and 254. The least significant bit of the programmed number is hard-coded to 
zero. If an odd number is written to this register, data read back from this 
register will have the least significant bit as zero.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

CPSDVSR: Clock pre-scale divisor. Should be an even number from 2 
to 254, depending on the frequency of SSPCLK. The least 
significant bit CPSDVSR[0] always returns zero on reads 
since it is hard-coded to 0

SSPIIR / SSPICR   

Address:
0x808A_0014 - Read Only

Note: A write to this register clears the receive overrun interrupt, regardless of the data value 
written.

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD CPSDVSR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RORIS TIS RIS



DS785UM1 23-19
Copyright 2007 Cirrus Logic 

Synchronous Serial Port
EP93xx User’s Guide

2323

23

Definition:
The interrupt status is read from the SSP interrupt identification register 
(SSPIIR). A write of any value to the SSP interrupt clear register (SSPICR) 
clears the SSP receive FIFO overrun interrupt. Therefore, clearing the RORIE 
bit in the SSPCR1 register will also clear the overrun condition if already 
asserted. All the bits are cleared to zero when reset.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

RORIS: Read: SSP Receive FIFO overrun interrupt status 
0 - SSPRORINTR is not asserted.
1 - SSPRORINTR is asserted.
This bit is cleared by writing any value to the SSPSR 
register

TIS: Read: SSP transmit FIFO service request interrupt status 
0 - SSPTXINTR is not asserted indicating that the transmit 
FIFO is more than half full.
1 - SSPTXINTR is asserted indicating that the transmit 
FIFO is less than half full (space available for at least four 
half words).

RIS: Read: SSP receive FIFO service request interrupt status
0 - SSPRXINTR is not asserted indicating that the receive 
FIFO is less than half full.
1 - SSPRXINTR is asserted indicating that the receive 
FIFO is more than half full (4 or more half words present in 
FIFO)



23-20 DS785UM1
Copyright 2007 Cirrus Logic

Synchronous Serial Port
EP93xx User’s Guide

2323

23



DS785UM1 24-1
Copyright 2007 Cirrus Logic 

2424

24

Chapter 24

24Pulse Width Modulator

 24.1 Introduction

Note: The EP9307 processor has one PWM with one output, PWMOUT.

Note: The EP9301, EP9302, EP9312, and EP9315 processors each have two PWMs with 
two outputs, PWMOUT and PWMO1. PWMO1 is an alternate function for EGPIO14.

The Pulse Width Modulators (PWMs) have the following features:

• Configurable dual output

• Separate input clocks for each PWM output

• 16-bit resolution

• Programmable synchronous mode support

• Allows external input to start PWM

• Programmable pulse width (duty cycle), interval (frequency), and polarity

• Static programming: PWM is stopped

• Dynamic programming: PWM is running

• Updates duty cycle, frequency, and polarity at end of a PWM cycle

 24.2 Theory of Operation
Each PWM is an Advanced Microcontroller Bus Architecture (AMBA) compliant system-on-a 
chip (SOC) peripheral. Each is a configurable dual-output, dual clock input AMBA slave 
module, and each connects to the Advanced Peripheral Bus (APB). The PWM Interfaces 
comply with the AMBA Specifications (Rev.2.0). This design assumes little-endian memory 
organization. 

Both of the PWM peripherals are programmed via the APB, receive scaled clock inputs from 
the clock controller and produce outputs at external pins. 

The processor has two independent DC-level PWM outputs, PWMOUT and PWMO1. The 
PWM outputs are sourced by programable duty-cycle pulse generators. From a 
programmer's point of view, for each channel there are two 16-bit registers. These can be 
used to specify the width of the pulse cycle (in terms of number of PWM clock cycles), and 
the duration of high-phase of the pulse (set in terms of the number of PWM clock cycles). 



24-2 DS785UM1
Copyright 2007 Cirrus Logic

Pulse Width Modulator
EP93xx User’s Guide

2424

24

With those two counters specified, a fixed pulse is generated. The two channels are totally 
independent. This is a DC-level PWM. 

Either PWM channel can be utilized to create reoccurring pulses at the PWMx output pins. 
Depending upon how a PWM is programmed, its output can vary from a continuous level 
(100% duty-cycle), to a square wave (50% duty-cycle), to a narrow pulse approaching a 0% 
duty-cycle. Both PWMs offer 16-bit resolution of the input clock signal.

The outputs of both PWM channels are programmed in terms of PWM input clock cycles. 
Each PWM may be programmed statically (when it is halted) or dynamically (while it is 
running). The output of either PWM may be programmed as normal or inverted. With the 
exception of inversion, if a PWM is programmed statically, no change to the output will occur 
until the PWM is enabled. If a PWM is reprogrammed while it is running (enabled), the output 
is updated to the new programming (total period, total period asserted) at the beginning of the 
next PWM cycle. The exception for inverted operation is explained below. Both PWMs are 
reset to the halted condition.

The output of either PWM can be programmed for either normal or inverted operation. 
Inversion affects the output pin when the PWM peripheral is halted and also when it is 
running. Both outputs are reset to the normal (non-inverted) configuration, which places the 
output pins in a LOW condition at reset. When the output is reprogrammed to be inverted (or 
to be normal), the new programming does not become effective until the rising edge of the 
PWM input clock signal.

Note: In the design, because of the use of clock gating on PCLK, the write enable and read 
enable were altered to work correctly within the design.

 24.2.1 PWM Programming Examples

The reference clock for PWM is XTALI.

 24.2.1.1 Example 
To produce a PWM output of 100 kHz (10 μsec) and 20% duty cycle with a system clock of 
66 MHz (15 nsec):

1. Calculate PWMxTermCnt = (66 MHz / 0.1 MHz) – 1 = 659 (decimal).

2. Calculate PWMxDutyCycle = (0.2 × (659 + 1)) – 1 = 131 (decimal).

 24.2.1.2 Static Programming (PWM is Not Running) Example

Table 24-1. Static Programming Steps

Step Register Value

Stop PWM PWMxEn 0x0000

Wait for PWM to finish current cycle -----------------

Program TC value with 659 (decimal) PWMxTermCnt 0x0293

Program DC value with 131 (decimal) PWMxDutyCycle 0x0083

Program PWM output to invert PWMxInvert 0x0001

Enable/Start PWM PWMxEn 0x0001



DS785UM1 24-3
Copyright 2007 Cirrus Logic 

Pulse Width Modulator
EP93xx User’s Guide

2424

24

 24.2.1.3 Dynamic Programming (PWM is Running) Example
Note: Updates will take place at the end of the PWM cycle. Order of programming of the 

Terminal Count and Duty Cycle is important. See Section 24.2.2 on page 24-3.

 24.2.2 Programming Rules

1. Because the user can not tell the state of the PWM between cycles, care must be taken 
while programming on the fly (while the PWM is running). To insure proper operation 
observe the following rules to preserve the relationship of PWMxDutyCycle to 
PWMxTermCnt:

A. If PWMxTermCnt (new) > PWMxTermCnt (current):

Program PWMxTermCnt (new) first then PWMxDutyCycle (new)

B. If PWMxTermCnt (new) < PWMxTermCnt (current):

Program PWMxDutyCycle (new) first then PWMxTermCnt (new)

If the rules “A” and “B” are not followed, a duty cycle of 100% may result until both 
PWMxTermCnt and PWMxDutyCycle are updated. 

2. Program PWMxTermCnt and PWMxDutyCycle with values that meet the specification. 

3. When PWM is stopped (PWM_EN = 0), it does not stop immediately but waits for the 
end of the current PWM cycle and then stops.

 24.3 Registers
 

Note: All pwmout outputs will drive a logical “0” during reset. Coming out of reset, it will continue 
to drive a logical “0”, and the PWM will be in halt mode. 

Table 24-2. Dynamic Programming Steps

Step Register Value

Program TC value with 659 PWMxTermCnt 0x0293

Program DC value with 131 PWMxDutyCycle 0x0081

Table 24-3. PWM Registers Map

Address Register Name Reset Value Access Size

0x8091_0000 PWM0TermCnt PWM0 Terminal Count 0x0000 R/W 16

0x8091_0004 PWM0DutyCycle PWM0 Duty Cycle 0x0000 R/W 16

0x8091_0008 PWM0En PWM0 Enable 0x0000 R/W 16

0x8091_000C PWM0Invert PWM0 Invert 0x0000 R/W 16

0x8091_0020 PWM1TermCnt PWM1 Terminal Count 0x0000 R/W 16

0x8091_0024 PWM1DutyCycle PWM1 Duty Cycle 0x0000 R/W 16

0x8091_0028 PWM1En PWM1 Enable 0x0000 R/W 16

0x8091_002C PWM1Invert PWM1 Invert 0x0000 R/W 16



24-4 DS785UM1
Copyright 2007 Cirrus Logic

Pulse Width Modulator
EP93xx User’s Guide

2424

24

Note: All undefined register bits will be read as 0.

Register Descriptions

PWMxTermCnt 

Address:
PWM0TermCnt: 0x8091_0000 - Read/Write
PWM1TermCnt: 0x8091_0020 - Read/Write

Default:
0x0000_0000

Definition:
PWMx Terminal Count

Bit Descriptions:

PWM_TC: PWMxTermCnt is used to adjust the output frequency of 
the PWM. PWMxTermCnt gives the PWM up to 16-bit 
resolution. 

PWMxTermCnt is double buffered to allow it to be 
programed statically (PWM is stopped) or dynamically 
(PWM is running). 

Programmed dynamically, PWMxTermCnt is updated at 
the end of a PWM cycle to prevent any output glitches or 
errors. Reading the register reflects what was written to it, 
not the state of the counter. 

PWMxDutyCycle 

Address:
PWM0DutyCycle: 0x8091_0004 - Read/Write
PWM1DutyCycle: 0x8091_0024 - Read/Write

Default:
0x0000_0000

Definition:
PWMx Duty Cycle

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PWM_TC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PWM_DC



DS785UM1 24-5
Copyright 2007 Cirrus Logic 

Pulse Width Modulator
EP93xx User’s Guide

2424

24

Bit Descriptions:

PWM_DC: PWM_DC is used in conjunction with PWMxTermCnt to 
adjust the output duty cycle of PWM. PWMxDutyCycle is 
double buffered to allow it to be programed statically 
(PWM is stopped) or dynamically (PWM is running). 
Programmed dynamically, PWMxDutyCycle is updated at 
the end of a PWM cycle to prevent any output glitches or 
errors. Reading the register reflects what was written to it, 
not the state of the counter.

PWMxEn 

Address:
PWM0En: 0x8091_0008 - Read/Write
PWM1En: 0x8091_0028 - Read/Write

Default:
0x0000_0000

Definition:
PWMx Enable

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

EN: Enable PWM

0 - Disable/Stop PWM. The PWM is actually stopped when 
it reaches the end of its current cycle. PWM output is:
0 - If PWM_INV = 0
1 - if PWM_INV = 1

1 - PWM is Enabled. When in normal mode writing a one 
will start the PWM. 
PWMxTermCnt is updated with its new buffered value.
PWMxDutyCycle is updated with its new buffered value.

PWMxInvert 

Address:
PWM0Invert: 0x8091_000C - Read/Write
PWM1Invert: 0x8091_002C - Read/Write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD EN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD INV



24-6 DS785UM1
Copyright 2007 Cirrus Logic

Pulse Width Modulator
EP93xx User’s Guide

2424

24

Default:
0x0000_0000

Definition:
PWMx Invert

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

INV: Invert PWM output
0 = Output is not inverted. PWMOUT will output tON first 
then tOFF, PWMxDutyCycle controls tON
1 = Output is inverted. PWMOUT will output tOFF first then 
tON, PWMxDutyCycle controls tOFF.

PWM_INV is double buffered to allow it to be programmed 
statically (PWM is stopped) or dynamically (PWM is 
running). 

Programmed statically, the invert takes affect after the 
APB write completes and CLK_PWM is running. After the 
update, CLK_PWM can be turned off without affecting 
PWMOUT. In this way, the PWM output can be inverted 
without enabling the PWM. 

Programmed dynamically, PWM_INV is updated at the 
end of a PWM cycle to prevent any output glitches or 
errors. Read/write accesses to PWM_INV will read/write 
its buffer. 

Figure 24-1 provides an example of the effect of the 
PWM_INV invert bit.

 Figure 24-1. PWM_INV Example

clk_pwm

1 2 3 4 5 6 7 8 9

pwmout
PWM_INV = 0

PULSE 1 PULSE 2 PULSE 3

pwmout
PWM_INV = 1

ton

toff ton

toff Duty Cycle = ton/(ton+toff)

Duty Cycle = toff/(ton+toff)



DS785UM1 25-1
Copyright 2007 Cirrus Logic 

2525

25

Chapter 25

25Analog Touch Screen Interface

 25.1 Introduction

Note: The EP9301 and EP9302 processors each support a general 5-bit ADC, but no touch 
screen .

Note: The EP9307, EP9312, and EP9315 processors each support up to an 8-wire touch 
screen or a general 12-bit  ADC.

The touch screen controller is a hardware engine that controls scanning for 4, 5, 7, or 8-wire 
analog resistive touch screens (TS). The engine performs all sampling, averaging, and range 
checking for analog-to-digital converter values. The hardware engine also controls an analog 
switch array for controlling the different scan modes. 

Through the APB interface, it is possible to disable the touch screen hardware engine and 
directly control the switch matrix and the analog-to-digital converter. This allows for the 
implementation of more complex software scanning algorithms if desired. However, the 
hardware engine provides all features necessary to implement a standard interface and 
eliminates almost all ARM Core intervention in the scanning process. 

For both X and Y axes, the touch screen controller engine does the following:

• Takes 4, 8, 16, or 32 sample sets.

• Checks to see if the deviation in the sample set is too great.

• Averages the samples.

• Checks the average to see if the move is too great to be realistic.

• Checks to see if the move is large enough to bother the ARM Core. 

Many touch screen controllers send a continuous information stream to the processor when 
the touch screen is in use. This controller, in contrast, only interrupts the ARM Core when the 
stimulus change is significant.

 25.2 Touch Screen Controller Operation
To understand the controller operation, it is first important to understand the electrical 
implementation of touch screen technologies. The schematics for various resistive touch 
screen technologies are shown in Figure 25-1. When the front and back indium-tin-oxide 
layers are pressed together, a resistive contact is made. 



25-2 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 Figure 25-1. Different Types of Touch Screens 

For 8- and 4-wire touch screens, the point at which the contact is made can be determined by 
measuring a voltage driven between the bus bars on the X-axis layer through either or both of 
the Y lines, and by then measuring a voltage driven between the bus bars on the Y-axis layer 
through either or both of the X lines. By comparing these voltages to values determined 
during calibration, the location of the touch can be determined. 

4 WIRE ANALOG RESISTIVE TOUCH SCREEN SCHEMATIC

X+
Y+
X-
Y-

8 WIRE ANALOG RESISTIVE TOUCH SCREEN SCHEMATIC

X+
Y+
X-
Y-

SX+
SY+
SX-
SY-

5 WIRE ANALOG RESISTIVE TOUCH SCREEN SCHEMATIC

V+
Z+/-
V-

Z-/+

Wiper

7 WIRE (5 WIRE WITH FEEDBACK) ANALOG RESISTIVE
TOUCH SCREEN SCHEMATIC

V+
Z+/-
V-

Z-/+

sV+

sV-

Wiper



DS785UM1 25-3
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

For 8-wire touch screens, the SX and SY lines are used as the measurement reference for 
the analog-to-digital converter to provide better resolution during a reading and compensate 
for any drift in samples due to other factors. A 4-wire analog resistive touch screen is the 
same as an 8-wire without the SX and SY feedback lines. A 4-wire analog resistive touch 
screen may be adequate for non-industrial use or small touch screens. 

For 5-wire touch screens and 7-wire (5-wires with feedback) touch screens, a constant 
voltage is applied from corner to corner of the lower layer. Switching of the X and Y axis is 
performed by driving appropriate voltages on Z+/- and Z-/+. The location values during both 
the X and Y scans are then read by sampling the Wiper input. A 7-wire touch screen (5-wires 
with feedback), provides reference feedback voltages to the analog-to-digital converter to 
eliminate analog switch and other circuit resistances.

The changes in connection for sampling are performed by a set of separately controlled 
analog switches. These switches may be connected in a variety of ways which allows a high 
degree of flexibility in using the analog-to-digital converter. To avoid contention, each switch 
drive circuit has a much faster turn-off than turn-on to provide an overall break-before-make 
array function. 

Logic safeguards are included to condition the control signals for power connection to the 
matrix to prevent part damage. In addition, a software lock register is included that must be 
written with 0xAA before each register write to change the values of the four switch matrix 
control registers. 

Table 25-1 provides switch definitions and the logical safeguards that are implemented to 
prevent physical part damage. A “1” in the register bit position closes the corresponding 
switch.

Table 25-1. Switch Definitions and Logical Safeguards to Prevent Physical Damage  

Switc
h 

CTL

Connection
From

Connection
To

Only allowed if

Bit 0 X+ ADC input -

Bit 1 X- ADC input -

Bit 2 Y+ ADC input -

Bit 3 Y- ADC input -

Bit 4 sY- ADC input -

Bit 5 sY+ ADC input -

Bit 6 sX- ADC input -

Bit 7 sX+ ADC input -

Bit 8 VBAT ADC input SW8 = HIGH and the bus SW[7-0] = 0x00

Bit 9 AVDD ADC REF+ SW9 = HIGH and SW26 = LOW and SW24 = LOW

Bit 10 AGND ADC REF- -

Bit 11 X+ AGND -

Bit 12 X- AGND -

Bit 13 Y+ AGND -

Bit 14 Y- AGND -

Bit 15 sX+ AGND -

Bit 16 sX- AGND -

Bit 17 sY+ AGND -



25-4 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 25.2.1 Touch Screen Scanning: Four-wire and Eight-wire Operation

Figure 25-2 shows control for an 8-wire analog resistive touch screen. The register values 
TSDetect, TSDischarge, TSXSample, and TSYSample are derived from the switch positions 
in the diagram. These values are listed in Table 25-2.

The left most part of the diagram shows how the switches are driven to detect a touch press. 
This configuration is controlled by the TSDetect register.

The second part of the diagram shows all lines of the touch screen switched to ground for 
discharging as controlled by the TSDischarge register.

The third example shows a voltage driven across the X-axis with the A / D sample input 
connected to both Y-axis lines and the A / D referenced to the SX feedback lines as 
controlled by the TSXSample register.

The right most part of the diagram shows a voltage driven across the Y-axis with the A / D 
sample input connected to both X-axis lines and the A / D referenced to the SY feedback 
lines for digitization as controlled by the TSYSample register.

Each time the analog switching configuration is changed, an appropriate time interval must 
be provided for the circuit to stabilize due to the touch screen capacitance, and any EMI 
filtering provided on the signals. This is controlled by the DLY field in the TSSetup register.

The analog touch screen interface circuitry is internally connected to a signed 12-bit analog-
to-digital converter. The 12-bit digital result is held stable until another sample is requested. 
The controller reads the digital value by issuing a read pulse. This read pulse signal from the 
controller is also used as a convert command for the analog-to-digital converter to begin 
conversion of its next sample. The output of the ADC is a signed value. For the comparison 
functions of the touch controller to work correctly, the TSSetup2.SIGND bit should be set.

The flow chart in Figure 25-4 demonstrates the sample process used for determining touch 
input on a touch screen. The ARM Core must load all of the setup registers for the touch 

Bit 18 sY- AGND -

Bit 19 X+ AVDD SW19 = HIGH and SW11 = LOW and SW0 = LOW

Bit 20 Y+ AVDD SW20 = HIGH and SW13 = LOW and SW2 = LOW

Bit 21 Y- AVDD SW21 = HIGH and SW14 = LOW and SW3 = LOW

Bit 22 X+ Pull-up to AVDD
SW22 = HIGH and SW11 = LOW and 

(SW0 = LOW or the bus SW[7-0] = 0x01)

Bit 23 Y+ Pull-up to AVDD
SW23 = HIGH and SW13 = LOW and 

(SW2 = LOW or the bus SW[7-0] = 0x04)

Bit 24 sX+ ADC REF+ -

Bit 25 sX- ADC REF- -

Bit 26 sY+ ADC REF+ -

Bit 27 sY- ADC REF- -

Bit 28
TOUCH_PRES

S gate
Touch_Press 
NAND gate

Gates input to prevent oscillations

Bit 29 DAC ADC input DAC to ADC feedback test switch

Bit 30 VBAT ADC input Load Resistor Also gates PRSTn for measuring battery with load

Table 25-1. Switch Definitions and Logical Safeguards to Prevent Physical Damage (Continued) 



DS785UM1 25-5
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

array scanning and enable the state machine. In determining a touch point, the first axis to be 
scanned is the X-axis. X and Y axis definitions are arbitrary and must only be coordinated 
with the code when determining a screen position. For 8-wire and 4-wire implementations, 
the touch screen X and Y axis positioning should be linear for all checking algorithms to work 
linearly. The algorithm and the returned values will not be linear for a 5-wire touch screens or 
7-wire (5-wires with feedback) touch screens and must be adjusted by software to determine 
screen position. Some newer technology 5-wire touch screens approach linearity and will 
need to be adjusted differently in software.

The same algorithm for sampling is used by 4, 5, 7, and 8-wire touch screens. However, the 
switch combinations controlled by the algorithm are determined by configuration registers. 
The configuration registers are set up by software according to the touch screen type. 
Table 25-2 details the configuration values required for 4-, 5-, 6-, and 8-wire touch screens. 

 Figure 25-2.  8-Wire Resistive Interface Switching Diagram

DISCHARGE ALL LINES SAMPLE X-AXIS SAMPLE Y-AXIS

X+
X-
Y+
Y-

SX+
SX-
SY+
SY-

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

X+
X-
Y+
Y-

SX+
SX-
SY+
SY-

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

X+
X-
Y+
Y-

SX+
SX-
SY+
SY-

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

TOUCH DETECT

X+
X-
Y+
Y-

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW8

VBAT

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

TOUCH_PRESS

SX+
SX-
SY+
SY-

SW28

SW30

DACSW29



25-6 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 Figure 25-3. 4-Wire Analog Resistive Interface Switching Diagram

X+
X-
Y+
Y-

Not
used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

X+
X-
Y+
Y-

not
used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

X+
X-
Y+
Y-

not
used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

X+
X-
Y+
Y-

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

Not
used

DISCHARGE ALL LINES SAMPLE X-AXIS SAMPLE Y-AXISTOUCH DETECT

SW8

VBAT

TOUCH_PRESS
SW28

SW30

DACSW29



DS785UM1 25-7
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

The algorithm begins by putting the touch screen into its touch detect settling state for up to 
1024 μsec as determined by the DLY value in the TSSetup register. After the delay value, the 
algorithm moves to the touch detect state. The switches in the settling and touch detect 
states are controlled by the TSDetect register value. The algorithm stays in the touch detect 
state until a touch is detected.

    

Once a touch is detected, the algorithm moves to the discharge X state and stays there for up 
to 1024 μsec as determined by the DLY value in the TSSetup register. The switches in the 
discharge state are controlled by the TSDischarge register value. After the delay value, the 
algorithm moves to the sample X state. In this state, the analog switches are set to the 
TSXSample register. For example, for an 8-wire touch screen, VDD voltage is applied to X+, 
with X- held at ground potential, and the SX+ and SX- lines are connected as the reference 
for the A / D. The sample X state is also held for up to 1024 μsec as determined by the DLY 
value in the TSSetup register before any samples are taken. 

At the end of the delay, the logic begins to take A / D samples. The initial read is a convert 
command and data from the initial sample is discarded. The number of samples taken is 4, 8, 
16, or 32 as determined by the NSMP value in the TSSetup register. Each sample is 
compared with a min and max register to determine the range of samples taken. The min 
register is initialized to a value of 4095 and the max register is initialized to a value of 0. Any 
data points sampled will fall within this range and the min and max stored sample values will 
be adjusted based on the comparison. In addition, as the samples are taken, a running 
accumulator adds each 12-bit sample to a 17-bit total. After all samples are taken, the stored 
min is subtracted from the stored max for the sample set. The difference is compared to 4, 8, 
12, 16, 24, 32, 64, or 128 as determined by the DEV value in the TSSetup register. If the 
range exceeds the deviation allowed, the results are scrapped and the logic starts over with 
initialization and detection of a valid touch. This allows a data set to be screened for bad 
points (possibly caused by noise or removing a press) that would adversely affect an average 
value. If the range does not exceed the maximum deviation allowed, the resulting value in the 
accumulator register is shifted by 2, 3, 4, or 5 places to divide by the number of samples as 
determined by the NSMP value in the TSSetup register. This generates the average for the 
sample set for a new X value. 

Table 25-2. Touch Screen Switch Register Configurations

Register Name 4-Wire 5-Wire 7-Wire 8-Wire

TSDetect 
(If TSSetup2.S28EN = 0)

0x0040_3604 0x0042_0620 0x0042_0620 0x0040_3604

TSDetect 
(If TSSetup2.S28EN = 1)

0x1040_3604 0x1042_0620 0x1042_0620 0x1040_3604

TSDischarge 0x0007_FE04 0x0002_2E20 0x030A_3020 0x0007_FE04

TSXSample 0x0008_1604 0x001D_D620 0x0318_5020 0x0308_1004

TSYSample 0x0010_4601 0x002D_B620 0x0328_3020 0x0C10_4001



25-8 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

The difference between this new X value and the last valid X value is then compared against 
the XMIN value stored in the TSXYMaxMin register (unless the X interrupt pending flag is 
set). If the difference is less than this value no action is taken, and the algorithm continues by 
discharging and scanning the Y-axis. If the difference between the new X value and the last X 
value is greater than the XMIN value, the algorithm continues by comparing the difference 
between the new X value and the last X value to the XMAX value in the TSXYMaxMin 
register. If the difference is greater than XMAX, it is assumed that this distance is too far for a 
touch input to possibly move in the short scan time interval and that the key press is invalid. 
However, it is stored as the last recorded X location in case a truly new location is being 
determined. The X move interrupt pending flag is also set at this point to cause the algorithm 
to skip over the comparison to XMIN on consecutive sample sets. This flag will also cause a 
ARM Core interrupt after valid X and Y samples have been established. 

The algorithm then starts again, discharging and detecting a valid press. If the difference 
between the new X value and the last stored X value is less than the XMAX value, the 
algorithm stores the new X value, sets the X move interrupt pending flag and continues by 
discharging and scanning a Y-axis value. Figure 25-4 is the flow chart demonstrating the 
scanning process.

The Y-axis scan proceeds in the same fashion as the X-axis scan, except that the switch 
matrix is now controlled by the TSYSample register. When the new Y value has been 
calculated, the difference between this new Y value and the last valid Y value is then 
compared against the YMIN value stored in the TSXYMaxMin register (unless the Y interrupt 
pending flag is set). If the difference is less than this value, no Y action is taken and the 
algorithm continues by checking the X interrupt pending flag. If this flag is set the Y value is 
stored in the Y last register and the interrupt to the ARM Core is generated. 



DS785UM1 25-9
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 Figure 25-4. Analog Resistive Touch Screen Scan Flow Chart 

START

SCAN X-AXIS

DISCHARGE ALL FOR
PRESET SETTLING TIME

APPLY VOLTAGE TO
X-AXIS

DELAY FOR PRESET
SETTLING TIME

TAKE 4,8,16,OR 32
SAMPLES STORING

MAX,MIN,AND AVERAGE

ABS(MAX-MIN)
LESS THAN X

DEVIATION
or DEVTMR

carry?

Y

N

ABS(X-XLAST)
GREATER THAN

XMAX?

Y

N

X INT PENDING?

Y

N

SET X INT PENDING
XLAST = X

SCAN Y-AXIS

DISCHARGE ALL FOR
PRESET SETTLING TIME

APPLY VOLTAGE TO
Y-AXIS

DELAY FOR PRESET
SETTLING TIME

TAKE 4,8,16,OR 32
SAMPLES STORING

MAX,MIN,AND AVERAGE

N

SET X INT PENDING
XLAST = X

N

ABS(X-XLAST) LESS
THAN XMIN?

Y

Y

ABS(Y-YLAST)
GREATER THAN

YMAX?

Y

N

Y INT PENDING?

Y

N

SET Y INT PENDING
YLAST = Y

SET INTERRUPT
YLAST = Y

N

ABS(Y-YLAST) LESS
THAN YMIN?

Y

N

X INT PENDING?

Y

SETTLING TIME FOR KEY
DETECTION

WAIT FOR TOUCH PRESS

ABS(MAX-MIN)
LESS THAN Y
DEVIATION
or DEVTMR

carry?



25-10 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

The algorithm then would continue by discharging and detecting a valid touch. With no X 
interrupt pending flag, the algorithm also continues by discharging and detecting a valid 
touch, but without interrupt generation. If the difference between the new Y value and the last 
Y value is greater than the YMIN value, the algorithm continues by comparing the difference 
between the new Y value and the last Y value to the YMAX value in the TSXYMaxMin 
register. If the difference is greater than YMAX, it is assumed that this distance is too far for a 
touch input to possibly move in the short scan time interval and that the key press is invalid. 
However, it is stored as the last recorded Y location in case a truly new location is being 
determined (that is, no contact to contact or contact to no contact). 

The Y move interrupt pending flag is also set at this point to cause the algorithm to skip over 
the comparison to YMIN on consecutive sample sets. This flag will also cause an ARM Core 
interrupt as soon as a valid Y sample can be established. The algorithm then starts over 
discharging and detecting a valid press. If the difference between the new Y value and the 
last stored Y value is less than the YMAX value, the algorithm stores the new Y value in the Y 
last register, and the stored X value is moved to the X last register. The interrupt to the ARM 
Core is generated, and the algorithm continues by moving to the settle state and detecting a 
valid press. The interrupt is cleared when the TSXYResult register is read or by clearing the 
TSSetup2.TINT bit.

As can be seen from Figure 25-3, 4-wire touch screens are operated in much the same way a 
8-wire touch screens, except that the reference for the A / D converter is internal instead of a 
feedback. The register values TSDetect, TSDischarge, TSXSample, and TSYSample are 
derived from the switch positions in the diagram. They are documented in Table 25-2.

 25.2.2 Five-wire and Seven-wire Operation

Five-wire touch screens require a different connection scheme than 4- or 8-wire touch 
screens. The X+ and X- lines become static V+ and V- lines. The Y+ and Y- lines are Z+/- and 
Z-/+ and are used to switch between X and Y axis. The reference for the A / D converter is 
internal. One of the feedback lines, for example, sY+ is used as a Wiper input to the A / D 
converter. The register values TSDetect, TSDischarge, TSXSample, and TSYSample are 
derived from the switch positions in the diagram. They are provided in Table 25-2.

Seven-wire touch screens (5-wires with feedback) are very similar to a normal 5-wire touch 
screen, except that the A / D reference is taken from the external circuit. The X+ and X- lines 
are still static V+ and V-lines. The Y+ and Y- lines are still Z+/- and Z-/+ and are used to 
switch between X and Y axis. However, the reference for the A / D converter is on the sX+ 
and sX- lines relabelled as sV+ and sV-. The sY+ feedback line is still used as a Wiper input 
to the A / D converter. 

The register values TSDischarge, TSXSample, and TSYSample are derived from the switch 
positions in the diagram. They are provided in Table 25-2.



DS785UM1 25-11
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 Figure 25-5. 5-Wire Analog Resistive Interface Switching Diagram 

5 WIRE ANALOG RESISTIVE INTERFACE SWITCHING DIAGRAM

V+
V-

Z+/-
Z-/+

Not used
Not used

Wiper
Not used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

V+
V-

Z+/-
Z-/+

Not used
Not used

Wiper
Not used

V+
V-

Z+/-
Z-/+

Not used
Not used

Wiper
Not used

Not used
Not used

Wiper
Not used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

V+
V-

Z+/-
Z-/+

DISCHARGE ALL LINES SAMPLE X-AXIS SAMPLE Y-AXISTOUCH DETECT

SW8

VBAT

TOUCH_PRESS
SW28

SW30

DACSW29



25-12 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 Figure 25-6. 5-Wire Feedback (7-Wire) Analog Resistive Interface Switching Diagram 

 25.2.3 Direct Operation

When the touch screen controller is disabled (TSSetup.ENABLE low), the ARM Core has 
direct control of the analog switch array through the TSDirect register. The full 12-bit output of 
the analog-to-digital converter can also be read from the TSXYResult register when the touch 
screen engine is disabled. Please note that the initial read value should be viewed as a 
convert command where the data provided is stale and should be discarded. After the 
conversion time for the A / D converter, the actual value may be read. This also sets off 
another convert command.

The next few figures demonstrate some special functions that can be implemented with direct 
ARM Core control of the switch array. The touch screen can be set up in a way that it can be 
disabled for low power mode and still have the ability to interrupt the ARM Core. Figure 25-7 
shows how to detect a key press in either 4 / 8-wire or 5-wire installations with the touch 
screen controller disabled. The TOUCH_PRESS signal in the figure is gated into the interrupt 
logic when the touch screen controller is disabled and in low power mode. In this mode, the 
clock to the module can be disabled and interrupts will still be generated. The low-power 
mode should be entered and exited with the touch screen interrupt disabled, as the 
asynchronous operation of this logic could cause glitches on the interrupt line. Entering the 
low-power state with interrupts enabled may trigger false interrupts.

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

V+
V-

Z+/-
Z-/+

sV+
sV-

Wiper
Not Used

V+
V-

Z+/-
Z-/+

sV+
sV-

Wiper
Not Used

V+
V-

Z+/-
Z-/+

sV+
sV-

Wiper
Not Used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

V+
V-

Z+/-
Z-/+

sV+
sV-

Wiper
Not Used

DISCHARGE ALL LINES SAMPLE X-AXIS SAMPLE Y-AXISTOUCH DETECT

SW8

VBAT

TOUCH_PRESS
SW28

SW30

DACSW29



DS785UM1 25-13
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

The register values for TSDirect can be derived from the switch positions in the diagram. A 
“1” in the register bit position indicates that the switch is made or closed. When 
TSSetup.S28EN is low, the TSDirect value for 4- or 8-wire touch press detection should be 
set to 0x0040_4601. Otherwise, when TSSetup.S28EN is high, the TSDetect value should be 
0x1040_4601. And, when TSSetup.S28EN is low, the TSDirect value for 5-wire touch press 
detection should be set to 0x0042_0601. Otherwise, when TSSetup.S28EN is high, the 
TSDirect value should be 0x1042_0601.

  

 25.2.4 Measuring Analog Input with the Touch Screen Controls Disabled

The analog switch array can be used to measure the chip battery voltage, Digital to Analog 
Converter feedback, or other miscellaneous analog inputs when the touch screen controller is 
disabled. Figure 25-8 shows the switch configuration for reading these values. Note that any 
extra reference lines that are not used for 4-wire or 5-wire touch screens can be read from 
the APB bus by temporarily disabling the touch screen controller. Please note that the initial 
read should be viewed as a convert command where the data provided is stale and should be 
discarded.

4/8 wire detect Press

Figure 25-7. Power Down Detect Press Switching Diagram

X+
X-
Y+
Y-

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

Not used
Not used

Wiper
Not used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

V+
V-

Z+/-
Z-/+

5 wire detect Press

SW8

VBAT

TOUCH_PRESS
SW28

SW30

DACSW29

SW8

VBAT

TOUCH_PRESS
SW28

SW30

DACSW29



25-14 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

The register values for TSDirect can be derived from the switch positions shown in Figure 25-
8. A “1” in the register bit position indicates that the switch is made or closed. Therefore, the 
TSDirect value for battery sampling should be set to 0x4000_0700, the TSDirect value for the 
measuring the DAC feedback example should be set to 0x2000_0600, and the TSDirect 
value for measuring a miscellaneous input example should be set to 0x0000_0601.

To use the miscellaneous measurement input, TSDIRECT should be set to 0x0000_0601 and 
the input should be on Xp pin. By using this configuration, we can measure the FULL range, 
from 0 to 3.3 V. Also, to use this function we need to configure 2 items in Syscon: 

• Enable the Clock for the Touch Screen (KTDIV register in Syscon) 

• Set the TIN bit in DeviceCfg in Syscon. This sets the Touch Screen controller to an 
inactive state. 

 Figure 25-8. Other Switching Diagrams 

Test DAC Measure Other Misc Input

Not
Used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

Not
Used

IN

Not
Used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

Not
Used

SW8

VBAT

TOUCH_PRESS
SW28

SW30

DACSW29

SW8

VBAT

TOUCH_PRESS
SW28

SW30

DACSW29

SAMPLE VBAT

Not
Used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

Not
Used

SW8

VBAT

TOUCH_PRESS
SW28

SW30

DACSW29



DS785UM1 25-15
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 25.2.5 Measuring Touch Screen Resistance

The analog switch array can be configured to get an approximation of touch screen 
resistance. This may be useful for advanced touch screen algorithms that either try to 
determine how hard a touch screen is being pressed, or if it is being pressed in more than 
one location. The touch screen controller built-in algorithm does not use this feature. More 
advanced algorithms would need to perform either primary or additional scanning through the 
APB interface. Please note that the initial A / D converter read should be viewed as a convert 
command where the data provided is stale and should be discarded.

The register values for TSDirect can be derived from the switch positions in the diagram. A 
“1” in the register bit position indicates that the switch is made or closed. Therefore, the 
TSDirect value for 4- or 8-wire X-axis resistance measurement should be set to 
0x0040_1601, the TSDirect value for 4- or 8-wire Y-axis resistance measurement should be 
set to 0x0080_4604, and the TSDirect value for 5-wire resistance measurement should be 
set to 0x0080_4604. See Figure 25-9.

 Figure 25-9. Measure Resistance Switching Diagram 

4/8 wire Measure X-AXIS
Resistance

4/8 wire Measure Y-AXIS
Resistance

X+
X-
Y+
Y-

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

X+
X-
Y+
Y-

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

Wiper
Not used
Not used
Not used

SW12

SW14

SW13

SW20

A/D CONVERTER

IN

REF+

REF-

VDD

SW21

SW19

SW11

SW0

SW1

SW2

SW3

SW24

SW25

SW26

SW27

100K SW23

SW22100K

SW9

SW10

SW6

SW7

SW4

SW5

SW15

SW16

SW17

SW18

V+
V-

Z+/-
Z-/+

5 wire Measure Corner  to
Corner Resistance



25-16 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 25.2.6 Polled and Interrupt-Driven Modes

The ADC provides support for synchronous sampling, in both polled mode and interrupt-
driven mode. In either mode, the touch screen scanning state machine should be disabled by 
setting bit 15 of the TSSetup register to zero.

The ADC decimation filter conversion value appears in the TSXYResult register. With the 
touch screen scanning state machine disabled, bit 31 of this register is the SDR, or 
Synchronous Data Ready, bit. This bit is set when a new valid conversion value appears in 
this register, and is cleared when this register is read. Hence, in polled mode, the 
TSXYResult register may be read repeatedly. If two consecutive reads show the bit clear and 
then set, the second read has a new valid value.

Conversion data may also be processed using interrupts from this module. If bit 11 in the 
TSSetup2 register (the RINTEN bit) is set, an interrupt occurs whenever the SDR bit in the 
TSXYResult register is set. Therefore, an interrupt handler can read the TSXYResult register 
whenever a new valid sample appears in the register, which both returns a new conversion 
value and clears the interrupt.

 25.2.7 Touch Screen Package Dependency

The Touch block uses the following external pins

Table 25-3. External Signal Functions

Signals Function

DAC_VDD Should be connected to ADC_VDD on the board.

ADC_VDD
 Touch Screen ADC power, nominal 3.3V. This supply is internally diode connected to the 

DAC_VDD supply to provide additional ESD protection.
Should be connected to DAC_VDD on the board.

Xp
Xm

 Touch Screen ADC X axis analog bias output.

Yp
Ym

 Touch Screen ADC Y axis analog bias output.

sXp
sXm

 Touch Screen ADC X axis voltage feedback inputs.

sYp
sYm

 Touch Screen ADC Y axis voltage feedback inputs.

ADC_GND  Touch Screen ADC ground



DS785UM1 25-17
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

 25.3 Registers 

Note: The touch screen controller block decodes APB address bits PADR[6:2] only. If the decode 
for the PSEL_HATSH APB block select is a larger block size in the APB decoder, the 
registers will be repeated through memory. Touch screen controller registers are intended 
to be word accessed only. Since the least significant bytes of the address bus are not 
decoded, byte and half word accesses are not allowed and may have unpredictable 
results.

Register Descriptions

TSSetup

Address:
0x8090_0000

Default:
0x0000_0000

Table 25-4. Analog Touch Screen Register Memory Map

Address Name
SW 

locked
Type Size Description

0x8090_0000 TSSetup No Read/Write 26 bits Analog Resistive Touch Screen controller setup control register.

0x8090_0004 TSXYMaxMin No Read/Write 32 bits Analog Resistive Touch Screen controller max/min register.

0x8090_0008 TSXYResult No Read Only 32 bits Analog Resistive Touch Screen controller result register.

0x8090_000C TSDischarge Write Read/Write 28 bits Analog Resistive Touch Screen controller Switch Matrix control register.

0x8090_0010 TSXSample Write Read/Write 28 bits Analog Resistive Touch Screen controller Switch Matrix control register.

0x8090_0014 TSYSample Write Read/Write 28 bits Analog Resistive Touch Screen controller Switch Matrix control register.

0x8090_0018 TSDirect Write Read/Write 28 bits Analog Resistive Touch Screen controller Switch Matrix control register.

0x8090_001C TSDetect Write Read/Write 28 bits Analog Resistive Touch Screen controller Switch Matrix control register.

0x8090_0020 TSSWLock NA Read/Write
1-bit read
8-bit write

Analog Resistive Touch Screen controller software lock register.

0x8090_0024 TSSetup2 No Read/Write 9 bits Analog Resistive Touch Screen controller setup control register #2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TDTCT RSVD DLY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN DEV NSMP SDLY



25-18 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

Mask:
03FF_FFFF

Definition:
Analog Touch screen Setup and Deviation Register.

Bit Descriptions:

RSVD: Reserved. Unknown during read.

TDTCT: TouchDetect Read only bit. Allows the ARM Core the 
ability to read the state of the TOUCH_DETECT line.

SDLY: Defines the amount of settling time between A / D samples 
from 3 to 1024 μsec assuming a 1 MHz clock.

NSMP: Defines the number of samples averaged per X or Y 
reading.
00 - 4 samples
01 - 8 samples
10 - 16 samples
11 - 32 samples

DEV: Defines the amount of max to min range deviation in a 
sample set allowed before rejection.
000 - +/- 4 LSBs
001 - +/- 8 LSBs
010 - +/- 12 LSBs
011 - +/- 16 LSBs
100 - +/- 24 LSBs
101 - +/- 32 LSBs
110 - +/- 64 LSBs
111 - +/- 128 LSBs

ENABLE: Enables the touch screen scanning state machine.
0 - Disabled.
1 - Enabled.

DLY: Defines the amount of settling time between changes to 
the touch screen drive conditions from 3 to 1024 μs 
assuming a 1 MHz clock.



DS785UM1 25-19
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

TSXYMaxMin 

Address:
0x8090_0004

Default:
0x0000_0000

Definition:
Analog Touch screen MAX and MIN move Register.

Bit Descriptions:

YMAX[11:4],XMAX[11:4]:Defines the amount of x-y distance from a previous 
touch that represents an invalid data point. The user could 
not move to a new location this many pixels away within 
the scan time limit. The definition can be from 16 to 4096, 
in increments of 16 decode locations, in a 4096 x 4096 
decode array.

YMIN[7:0],XMIN[7:0]:Defines the amount of x-y distance from a previous 
touch value to a new touch value for a touch detection to 
initiate another interrupt to the ARM Core. The x-y box 
definition can be up to 512 x 512 (+/-256).

TSXYResult 

Address:
0x8090_0008

Default:
0x0000_0000

Definition:
Analog Touch screen X and Y result Register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

YMAX[11:4] XMAX[11:4]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

YMIN[7:0] XMIN[7:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SDR RSVD Y

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AD AD_X



25-20 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

Bit Descriptions:

RSVD: Reserved. Unknown during read.

SDR: Synchronous Data Ready. This bit is set when new 
conversion data from the ADC digital filter appears the 
TSXYResult register. The bit is cleared when the 
TSXYResult register is read. The bit is always clear unless 
the touch screen scanning state machine is disabled 
(TSSetup bit 15 is zero).

Y, AD_X: X and Y controller calculated reading when touch screen 
controller is enabled at 12-bit resolution. The interrupt 
output is cleared when this register is read.

AD, AD_X: Direct analog-to-digital controller output when touch 
screen controller is disabled at 16-bit resolution.

TSDischarge, TSXSample, TSYSample, TSDirect, TSDetect 

Address:
TSDischarge: 0x8090_000C
TSXSample: 0x8090_0010
TSYSample: 0x8090_0014
TSDirect: 0x8090_0018
TSDetect: 0x8090_001C

Default:
0x0000_0000

Definition:
Analog switch control Registers.

Bit Descriptions:

RSVD: Reserved. Unknown during read.

SCTL[29]: Analog switch control value for direct analog switch control 
only (TSDirect) when the touch screen controller is 
disabled. Controls DAC routing to ADC input.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD SCTL[29] SCTL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCTL



DS785UM1 25-21
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

SCTL: Analog switch control values for the touch controller touch 
detect, discharge, sample X, and sample Y states and 
direct analog switch control when the touch screen 
controller is disabled. A “1” indicates that the switch is 
made or closed. A “0” indicates that the switch is open.

Table 25-2 contains the values that must be loaded into the switch registers, depending on 
the type of touch screen being used.

TSSWLock 

Address:
0x8090_0020

Default:
0x0000_0000

Definition:
Software lock register.

Bit Descriptions:

RSVD: Reserved. Unknown during read.

SWLCK: Software lock bits.

WRITE: The Unlock value for this feature is 0xAA. Writing 
0xAA to this register will unlock all locked registers until 
the next block access. The ARM lock instruction prefix 
should be used for the two consecutive write cycles when 
writing to locked chip registers.

READ: During a read operation SWLCK[0] has the 
following meaning:
1 = Unlocked for current bus access.
0 = Locked

The Read feature of the SWLOCK register is used for 
testing the locking function. Since the software lock only 
remains unlocked for the next block cycle, this test must 
be performed on two consecutive cycles using the ARM 
lock instruction prefix. The contents of SWLCK[7:1] are 
unknown during a read operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD SWLCK



25-22 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

TSSetup2 

Address:
0x8090_0024

Default:
0x0000_0000

Definition:
Touch screen Setup Register #2.

Bit Descriptions:

RSVD: Reserved. Unknown during read.

RINTEN: Synchronous Data Ready Interrupt Enable. Setting this bit 
results in an interrupt whenever the Synchronous Data 
Ready (SDR) bit in the TSXYResult register is set. The 
SDR bit will never be set unless the EN bit of the TSSetup 
register is clear.

S28EN: Switch 28 Enable. The touch detect NAND gate can be 
triggered separately by bit 28 of the switch registers or in 
conjunction with bit 22 which also controls the X+ pullup.
0 = NAND gate controlled by bit 22.
1 = NAND gate controlled by bit 28.

NSIGND: Unsigned ADC output type. The touch input information 
can be processed as signed or unsigned integers. The 
default bit value is “0” for signed.

DISDEV: Disable Deviation check for both X and Y ADC sampling. 
Setting this bit high causes the deviation test to always 
pass and forces a sample set.

DTMEN: Deviation Timer Enable. Setting this bit high enables the 
timeout for the deviation check. If the deviation check fails 
255 times for either the X or Y axis the algorithm will skip 
this check and force a sample set anyway.

DINTEN: Deviation Error Interrupt Enable. Setting this bit high 
causes an interrupt when the sample deviation check fails 
255 times for either the X or Y axis. The DTMEN bit must 
be high for this bit to be effective.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RINTEN S28EN NSIGND DISDEV DTMEN DINTEN DEVINT PINTEN PENSTS PINT NICOR TINT



DS785UM1 25-23
Copyright 2007 Cirrus Logic 

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25

DEVINT: Deviation Interrupt. This is the deviation error interrupt. 
When the DINTEN and DTMEN bits are set high and an 
axis fails the deviation test 255 times causing an interrupt, 
this bit must be written to a “0” to clear the interrupt.

PINTEN: Pen up Interrupt Enable. Setting this bit high causes an 
interrupt when the algorithm first detects a pen up 
condition.

PENSTS: Pen Status. This bit allows access to directly read the 
status of the pen up / down indicator. Read only.
0 - pen up.
1 - pen down.

PINT: Pen up Interrupt. This is the Pen up interrupt. When the 
PINTEN bit is set and a pen up condition is detected after 
a pen down, this bit will be set high and cause the interrupt 
output to go high. This bit may be written high for test 
purposes and written low to clear the interrupt.

NICOR: No Interrupt Clear on Read. This bit controls clearing of 
the touch interrupt.
0 - TINT clears when reading TSXYResult register.
1 - The TINT bit must be written low to clear the interrupt.

TINT: Touch Interrupt. This is the touch screen activation 
interrupt. When a new stable set of X and Y ADC values is 
resolved, this bit will activate. It may be triggered from an 
off-screen unpressed stable value. Writing a “0” to this bit 
will clear the touch interrupt. This bit may be written high 
for test purposes.



25-24 DS785UM1
Copyright 2007 Cirrus Logic

Analog Touch Screen Interface
EP93xx User’s Guide

2525

25



DS785UM1 26-1
Copyright 2007 Cirrus Logic 

2626

26

Chapter 26

26Keypad Interface

 26.1 Introduction

Note: This chapter applies only to the EP9307, EP9312, and EP9315 processors.

The keypad interface has the following features:

• A maximum 8x8 array of normally open, single pole contacts

• A back drive feature to minimize capacitance effects

• A typical scan count limit of 3 consecutive scans

• A maximum mechanical bounce time for a key press of 20 milliseconds

• A typical interrupt interval between 24 and 44 milliseconds

• A low-power wakeup mode

• A three-key reset

If the system does not use a keyboard, the Row[7:0] and Column[7:0] pins can be remapped 
to General Purpose Input/Output (GPIO) pins. For details, see Chapter 5, “DeviceCfg” on 
page 5-25 and Chapter 28, Table 28-4 on page 28-8.

A block diagram for the key array scanning circuitry is shown in Figure 26-1. 

 Figure 26-1. Key Array Block Diagram     

Precounter

Debounce Counter

Row/Collumn
Counter

Pipeline

Scan
Control

Row Decoder

Column Mux

Temp Key Regs Key Regs

Interrupt
Controller 3 Key Reset Key Detector

Diagnostics

Equal
Compare

Pipeline

Row lines

Column lines

Inactive

Interrrupt

3 Key Reset



26-2 DS785UM1
Copyright 2007 Cirrus Logic

Keypad Interface
EP93xx User’s Guide

2626

26

 26.2 Theory of Operation
The circuitry scans an array of up to 64 keys. The keys are normally open, single pole 
contacts arranged in an array of 8 rows by 8 columns. The array may be partially filled. The 
key array rows are designated as ROW0 through ROW7, and the columns are designated as 
COL0 through COL7. 

Any 1 or 2 keys in the array that are pressed are de-bounced and decoded. If more than 2 
keys are pressed, only the keys or apparent keys in the array with the lowest address will be 
decoded. 

Keys or apparent keys with address values greater than that of the lowest two will be ignored. 
An apparent key is a condition that may occur when more than 2 keys are pressed. Apparent 
keys are caused by alternate current paths in the key array. 

A key address is the binary row number concatenated with the binary column address. Key 
addresses range from 0x00 to 0x3F. A diagram of the key array is shown in Figure 26-2.

The circuitry scans the key array by driving each ROW line low, one line at a time. At the end 
of each ROW time period, column data is read. The key array column lines are registered and 
decoded by a multiplexer. The column address selects the column multiplexer input. Each of 
the column lines is passively pulled up by the chip. 

When a key is pressed, the column line for the key will be driven low when the row which 
contains the key is driven low. On the next key array scan, the output of the multiplexer in the 
chip will be asserted active when the row and column is the same as the key address. When 
the multiplexer output is active then the key is detected and the address is stored, if it is one 
of the first two from the start of a key array scan.

When more than 2 keys are pressed, it is possible to detect apparent keys. Apparent keys 
look like actual pressed keys to the device but are not. An example of an apparent key is 
described in “Apparent Key Detection”.



DS785UM1 26-3
Copyright 2007 Cirrus Logic 

Keypad Interface
EP93xx User’s Guide

2626

26

 Figure 26-2. 8 x 8 Key Array Diagram   

 26.2.1 Apparent Key Detection

When more than two keys are pressed, the key array controller may detect “apparent” keys. 
An apparent key detection is caused by misinterpreting the basic electrical signals. For 
example, in Figure 26-3, three keys are pressed: 

• (ROW0, COL3) with address 0x03

• (ROW3, COL0) with address 0x18

• (ROW3, COL3) with address 0x1B

The controller’s instruction is to decode the two keys with the lowest addresses. Therefore 
the system interprets the electrical signals as:

• An apparent key address of 0x00 at (ROW0, COL0)] 

• An actual key address of 0x03 at (ROW0, COL3)

• No press for address 0x18 at (ROW3, COL0)

ROW 0

KEY 00H KEY 01H KEY 02H KEY 03H KEY 04H KEY 05H KEY 06H KEY 07H

ROW 1

KEY 08H KEY 09H KEY 0AH KEY 0BH KEY 0CH KEY 0DH KEY 0EH KEY 1FH

ROW 2

KEY 10H KEY 11H KEY 12H KEY 13H KEY 14H KEY 15H KEY 16H KEY 17H

ROW 3

KEY 18H KEY 19H KEY 1AH KEY 1BH KEY 1CH KEY 1DH KEY 1EH KEY 1FH

ROW 4

KEY 20H KEY 21H KEY 22H KEY 23H KEY 24H KEY 25H KEY 26H KEY 27H

ROW 5

KEY 28H KEY 29H KEY 2AH KEY 2BH KEY 2CH KEY 2DH KEY 2EH KEY 2FH

ROW 6

KEY 30H KEY 31H KEY 32H KEY 33H KEY 34H KEY 35H KEY 36H KEY 37H

ROW 7

KEY 38H KEY 39H KEY 3AH KEY 3BH KEY 3CH KEY 3DH KEY 3EH KEY 3FH

COL 0 COL 1 COL 2 COL 3 COL 4 COL 5 COL 6 COL 7



26-4 DS785UM1
Copyright 2007 Cirrus Logic

Keypad Interface
EP93xx User’s Guide

2626

26

• No press for address 0x1B at (ROW3, COL3)

The ignored addresses, 0x18 and 0x1B, are greater than the addresses of the two keys 
detected. The following controller actions occur:

• ROW0 is driven low. 

• When ROW0 is low, COL0 and COL3 are also low due to the current paths formed by 
the keys pressed. 

• During the time that ROW1 is low each of the columns (COL0 through COL7) is 
scanned. 

• Since COL0 is low the key 0x00 appears to be pressed. 

 Figure 26-3. Apparent Key 00H     

ROW 0

KEY 00H KEY 01H KEY 02H KEY 03H KEY 04H KEY 05H KEY 06H KEY 07H

ROW 1

KEY 08H KEY 09H KEY 0AH KEY 0BH KEY 0CH KEY 0DH KEY 0EH KEY 1FH

ROW 2

KEY 10H KEY 11H KEY 12H KEY 13H KEY 14H KEY 15H KEY 16H KEY 17H

ROW 3

KEY 18H KEY 19H KEY 1AH KEY 1BH KEY 1CH KEY 1DH KEY 1EH KEY 1FH

ROW 4

KEY 20H KEY 21H KEY 22H KEY 23H KEY 24H KEY 25H KEY 26H KEY 27H

ROW 5

KEY 28H KEY 29H KEY 2AH KEY 2BH KEY 2CH KEY 2DH KEY 2EH KEY 2FH

ROW 6

KEY 30H KEY 31H KEY 32H KEY 33H KEY 34H KEY 35H KEY 36H KEY 37H

ROW 7

KEY 38H KEY 39H KEY 3AH KEY 3BH KEY 3CH KEY 3DH KEY 3EH KEY 3FH

COL 0 COL 1 COL 2 COL 3 COL 4 COL 5 COL 6 COL 7



DS785UM1 26-5
Copyright 2007 Cirrus Logic 

Keypad Interface
EP93xx User’s Guide

2626

26

 26.2.2 Scan and Debounce

Products are scanned based on the KEY_SCAN register value. Each complete array scan 
starts with ROW7 and then progresses to ROW0, 1, and so on because of the pipelined 
nature of the key scan controller. Keys in this ROW have precedence and are considered first 
in the scan order because ROW7 is scanned first. When a key is pressed, it may 
mechanically bounce for a up to 20 msec. The key array scan circuit will count the number of 
consecutive scans that decode to the same 1 or 2 first keys encountered from the start of a 
scan. 

When a preset scan count limit is reached (counted by the DEBOUNCE_COUNT counter), 
the key is considered to be de-bounced and an interrupt will occur. If a scan does not decode 
the same 1 or 2 first keys as the previous scan, then the scan count will be reset. The scan 
count limit is adjustable from 0 to 255 scans by writing to the DEBOUNCE_COUNT register 
in the chip. The register is written with the complement of the desired scan count limit. 
Typically a scan count limit of 3 is used. 

Key arrays may have significant capacitance. If a key is pressed at a location ROWY, COLX, 
the capacitance associated with COLX is discharged when the ROWY line is driven low 
during the scan. When ROWY + 1 is driven, the capacitance associated with COLX must 
then charge to a logic 1 passively before the COL inputs are sampled. If not, an erroneous 
key press will be detected. For fast scan times, the time to charge the key array between 
column samples is reduced. To reduce the time to charge the key array, the back drive 
feature may be used. When back drive is enabled, the column lines and row lines are all 
driven high for a short period of time between ROW scanning time to charge the array 
capacitance.

 26.2.3 Interrupt Generation

An interrupt is generated whenever the key scanner detects a new stable set of keys. This 
means that an interrupt occurs after a key is pressed and then after the key is released. An 
interrupt will also occur if the first or second pressed keys in the array change to different 
keys. When the interrupt occurs, the number of decoded keys pressed and the array 
coordinates of the pressed keys are stored. The interrupt signal is maintained by a flip flop. 
The interrupt flip flop is cleared when the key register is read by the ARM Core. The interrupt 
condition can also be read by the ARM Core. Interrupt conditions are 1 key, 2 keys, and no 
keys. 

Assume that the keys may bounce for up to 20 msec and each scan is roughly 8 msec and 
the scan count limit is set to 3 then an interrupt will occur between 24 and 44 msec after a key 
is pressed or released. If a scan count limit of 0 is set by writing 0xFF to the de-bounce count 
pre-load register then an interrupt will only occur the first time a key is pressed. No further 
interrupts will occur because the DEBOUNCE_COUNT counter will always be reset to its 
terminal count.   

If an interrupt is ignored, then a subsequent interrupt will be pending until the first interrupt is 
serviced. If further keypad activity occurs after an interrupt is pending then the most recent 
de-bounced and decoded event will become pending and the previous pending conditions 
will be lost.



26-6 DS785UM1
Copyright 2007 Cirrus Logic

Keypad Interface
EP93xx User’s Guide

2626

26

 26.2.4 Low Power Mode

The key scanning block also supports a low power wake-up mode. In this mode, a key press 
generates a wake up interrupt. The key scan interrupt should be masked. Because the wake 
up interrupt is asynchronous, and depends on external keypad lines which may have a large 
capacitance value, glitches may occur on the interrupt when transitioning to low power mode. 
After transitioning, all clocks to the key scanning circuitry can be shut down. In the low power 
mode, all of the column line drivers should be in input mode in a high state due to the pad pull 
up resistors. The column inputs are ANDed together to detect any key presses. This signal 
directly toggles the interrupt output. The detect condition is not de-bounced.

 26.2.5 Three-key Reset

The key scanning circuitry provides a three-key reset output by detecting keys (columns) 2, 
4, and 7 activated in row 0. The three-key reset detect is used by the watchdog circuit to 
generate a three-key initiated reset to the system.

The output RESET_KEYS_DETECTED goes to the Watchdog block to indicate that a three-
key reset is being requested.

 26.3 Registers
 

Note: Key scan controller registers are intended to be word accessed only. Since the least 
significant bytes of the address bus are not decoded, byte and half word accesses are not 
allowed and may have unpredictable results.

Register Descriptions

KeyScanInit 

Table 26-1. Keypad Interface Register Memory Map 

Address Name SW locked Type Size Description

0x808F_0000 KeyScanInit No Read/Write 24 bits Key Scan Initialization Register

0x808F_0004 KeyDiagnostic No Read/Write 6 bits Key Scan Diagnostic Register

0x808F_0008 KeyRegister No Read Only 16 bits Key Value Capture Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD DBNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIS3KY DIAG BACK T2 NA PRSCL



DS785UM1 26-7
Copyright 2007 Cirrus Logic 

Keypad Interface
EP93xx User’s Guide

2626

26

Address:
0x808F_0000

Default:
0x0000_0000

Definition:
Key scan initialization register.

Bit Descriptions:

RSVD: Reserved. Unknown during read.

DBNC: De-bounce start count. This value is used to pre-load the 
de-bounce counter. The de-bounce counter counts the 
number of consecutive scans that decoded the same 
keys. Terminal count for the de-bounce counter is 0xFF. 
Terminal count indirectly generates a key scan interrupt. A 
pre-load value of 0xFC will cause the key scan circuitry to 
count 3 identical consecutive keypad scans.

DIS3KY: Disable 3 Key reset. Setting this bit high disables the three 
key reset output to the watchdog reset block. Setting it 
back low re-enables it.

DIAG: Key scan diagnostic mode. Setting this bit high allows key 
scanning to be directly controlled through the key register 
by writes from the ARM Core. The DIAG.KEY[5:0] value is 
written by the ARM Core. Then the KeyRegister.K bit is 
read to determine if there is a key press. The result from 
reading the KeyRegister.K bit is not hardware de-bounced.

BACK: Key scan back driving enable. Setting this bit high enables 
the key scanning logic to back drive the row and column 
pins of the chip high during the first two column counts in 
the row/column counter.

T2: Test mode bit. When this bit is set to “1”, the counter 
RC_COUNT is advanced by 8 counts when EN is active. 
The effect is that only column 0 is checked in each row. 
This test mode allows a faster test of the ROW pins.

NA: Not Assigned. These bits will read back the value written.



26-8 DS785UM1
Copyright 2007 Cirrus Logic

Keypad Interface
EP93xx User’s Guide

2626

26

PRSCL: Row/Column counter pre-scaler load value. This value is 
used to pre-load the RC pre-scale counter. The pre-scale 
down counter counts the number of 1 MHz clocks for 
every step of the RC counter. When the pre-scale counter 
reaches 0, the RC counter steps. A pre-load value of 
0x002 will cause the RC counter to step every three 
clocks. The PRSCL value should never be set to 0x000 or 
0x001, except for high speed counter tests, as the key 
state machine will not resolve keys properly for these 
values.

Key array scan time = clock period * (PRSCL+1)[64keys]
Example scan time for PRSCL[9:0] = 0x0FA
Scan time = 1 μs * (249 +1) = 16 ms
if de-bounce = 0xFC, key detection interrupt is fired in 
approximately 48 ms.
Array scan time can range from 64 μsec. to 65.536 ms.

KeyDiagnostic

Address:
0x808F_0004 

Default:
0x0000_0000

Definition:
Diagnostic key value register.

Bit Descriptions:

RSVD: Reserved. Unknown during read.

DIAG: Diagnostic key value. When diagnostic mode is enabled 
(KeyScanInit.DIAG high) and this register is written, the 
Row Column scan value is used to directly control the chip 
key matrix scan drivers and receivers. Results are read 
back via the KeyRegister.K bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DIAG



DS785UM1 27-1
Copyright 2007 Cirrus Logic 

2727

27

Chapter 27

27IDE Interface

 27.1 Introduction

Note: This chapter applies only to the EP9312 and EP9315 processors.

The IDE interface provides an industry standard connection to ATA/ATAPI compliant devices. 
A single IDE port is provided which will attach to master or slave devices. The interface will 
support up to:

• 2 Devices

• PIO Mode 4

• Multi-word DMA Mode 2

• Ultra DMA Mode 4

The IDE block will use the internal DMA controller to do the data transfers in Multiword DMA 
and Ultra DMA modes. The interface will support only 16 bit devices. The data transfer is 
always 16-bit wide, even for a non-data transfer in PIO mode, when only the lower 8 bits are 
valid.

 27.2 Theory of Operation
The IDE host has one request line, DMAide to the DMA controller, used to request DMA 
service. It has an external interrupt line, INTRQ, from the device for interrupt service. It also 
has an internally generated interrupt signal INTide for reporting internal errors in the IDE host 
to the ARM Core.

The IDE port is connected to the external ATAPI device through a 28-pin interface. Of these 
28 signals, 25 use dedicated pins, 2 share EGPIO pins (EGPIO[2] for DMARQ and 
EGPIO[15] for DASPn), and the device interrupt request uses one of the INT pins (INT[3]) for 
INTRQ.

The IDE interface hardware is composed of several elements: a GPIO like Pin Interface, a 
MDMA Transfer State Machine, a UDMA Transfer State Machine, a pair of Read and Write 
Data Buffer FIFOs, and a pair of CRC generation circuits.

The interface between the IDE host and the IDE device is defined in Table 27-1. The column 
labeled Type identifies the block associated with the processor pin. The GPIO type indicates 
the 2 pins that are shared with the EGPIO block. The INT type indicates the pin using one of 
the INT pins. The NI type indicates an IDE signal that is not supported. All others are 
dedicated pins. 



27-2 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27

 27.2.1 Diagrams and State Machines

 Figure 27-1. IDE Interface Signal Connections 

 

Table 27-1. IDE Host to IDE Interface Definition

IDE Pin Type
No. of
Pins

Description

CS0n -  1 Chip select for device registers with base address 0x1F0

CS1n -  1 Chip select for device registers with base address 0x3F0

DA[2:0] -  3 3-bit binary encoded address

DIORn/
HDMARDYn/
HSTROBE

- 1
Strobe signal to read device regs or data port/ 
Flow control signal for Ultra DMA data-in burst/ 
Flow control signal for Ultra DMA data-out burst 

DIOWn/
STOP 

- 1
Strobe signal to write device regs or data port/ 
Terminates an Ultra DMA burst

DMACKn - 1 DMA acknowledge to DMARQ to initiate DMA transfers 

DASPn GPIO 1
Signal to indicate that a device is active, or that Device 1 is 
present

DMARQ GPIO 1 DMA request for DMA to and from the controller 

INTRQ INT 1 Device interrupt

CS0n, CS1n

DA[2:0]

DD[15:0]

DMARQ

DMACKn

DIORn/HDMARDYn/HSTROBE

DIOWn/STOP

INTRQ

IORDY/DDMARDYn/DSTROBE

IDE Controller IDE Connector 

DMA 

AHB Bus

Processor

Controller

DASPn



DS785UM1 27-3
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

Note: NI = Not supported at this time.

 27.2.2 PIO Operations

For PIO operations, the Pin Interface unit handles all the operations. Register read and write 
operations by the host are sufficient to operate the IDE interface in PIO mode for both non-
data and data transfer in both directions. 

Most IDE controllers handle this automatically, but this IDE controller does not. The diagrams 
are located in Information Technology AT Attachment with Packet Interface (ATA/ATAPI-5), 
Section 10.2.2, Figure 44. See  "Preface" chapter, “Reference Documents” on page P-3 for 
additional information.

Initial state: pins DIORn and DIOWn low.

For a Read operation.

1. Write out the register value.

2. Delay as follows, based on the PIO mode.
    PIO Mode 0 - Delay for 70 ns 
    PIO Mode 1 - Delay for 50 ns. 
    PIO Mode 2 - Delay for 30 ns. 
    PIO Mode 3 - Delay for 30 ns 
    PIO Mode 4 - Delay for 25 ns 

3. Bring DIORn high.

4. Based on the PIO mode, delay as follows before the next read or write can occur.
    PIO Mode 0 - Delay for 290 ns. 
    PIO Mode 1 - Delay for 290 ns
    PIO Mode 2 - Delay for 290 ns. 
    PIO Mode 3 - Delay for 80 ns
    PIO Mode 4 - Delay for 70 ns 

5. Bring DIORn low.

6. Read IDE Data in the register.

IORDY/

DDMARDYn/
DSTROBE

- 1

Negate to extend the host transfer cycle of any host read or 
write access/ 
Flow control signal for Ultra DMA data-out burst/ 
Flow control signal for Ultra DMA data-in burst

IOCS16n NI 1 Device indicates it supports 16-bit I/O bus cycles

PDIAGn/

CBLIDn 
NI 1

Asserted by device 1 to indicate to device 0 that it has finished 
diagnostic/ 
Cable assembly type identifier

DD[15:0] - 16 16-bit data interface between controller and device 

Table 27-1. IDE Host to IDE Interface Definition (Continued)

IDE Pin Type
No. of
Pins

Description



27-4 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27

For a Write Operation.

1. Write out the register value.

2. Delay as follows, based on the PIO mode.
    PIO Mode 0 - Delay for 70 ns. 
    PIO Mode 1 - Delay for 50 ns. 
    PIO Mode 2 - Delay for 30 ns
    PIO Mode 3 - Delay for 30 ns
    PIO Mode 4 - Delay for 25 ns 

3. Bring DIOWn high.

4. Delay as follows, based on the PIO mode.
    PIO Mode 0 - Delay for 290 ns. 
    PIO Mode 1 - Delay for 290 ns 
    PIO Mode 2 - Delay for 290 ns 
    PIO Mode 3 - Delay for 80 ns
    PIO Mode 4 - Delay for 70 ns

5. Bring DIOWn low.

6. Delay as follows, based on the PIO mode before the next read or write can occur.
    PIO Mode 0 - 240 ns.
    PIO Mode 1 - 50 ns
    PIO Mode 2 - 20 ns
    PIO Mode 3 - 70 ns
    PIO Mode 4 - 25 ns

Minimum total cycle time for the various PIO modes is as follows:
    PIO Mode 0 - 600 ns
    PIO Mode 1 - 383 ns
    PIO Mode 2 - 330 ns
    PIO Mode 3 - 180 ns 
    PIO Mode 4 - 120 ns

You must also setup IDECFG and WST as follows, according to the PIO mode:
    PIO Mode 0 - Delay for 30 ns
    PIO Mode 1 - Delay for 20 ns
    PIO Mode 2 - Delay for 15 ns 
    PIO Mode 3 - Delay for 10 ns
    PIO Mode 4 - Delay for 5 ns

 27.2.3 MDMA Operations

For MDMA operations, DMA commands are set up using PIO operations by the host. The 
registers IDEMDMADataOut and IDEMDMADataIn act as the 1-deep buffer for write and 
read operations respectively. The state machine sets up the necessary signals including the 
DMA request to the DMA controller. 



DS785UM1 27-5
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

In a write operation, when the DMA controller writes to IDEMDMADataOut for completing the 
DMA transfer, the state machine toggles DIOWn and drives the data onto the DD bus. In a 
read operation, when data is filled into IDEMDMADataIn by the host latching in the DD bus at 
the DIORn rising edge, the state machine sends the DMA request. The DMA transfer is 
completed when the IDEMDMADataIn register is read by the DMA controller. These two 
registers should only be written or read by the DMA controller. 

The registers IDEDataOut and IDEDataIn are aliased to IDEMDMADataOut and 
IDEMDMADataIn during MDMA operations. The host can read IDEDataOut and IDEDataIn 
registers at any time. All data transfers are 32-bit wide, with 2 16-bit wide data transfers to or 
from the DD bus executed before the next DMA request is sent. 

 27.2.4 UDMA Operations

For UDMA operations, DMA commands are set up using PIO operations by the host. There is 
a 32-bit, 12-deep output write buffer and a 32-bit, 12-deep input read buffer. These buffers 
are circular buffers with head and tail pointers. The state machine set up the necessary 
signals including the DMA request to the DMA controller. 

In a write operation, when the write buffer has less than 4 entries, a DMA request will be sent 
to fill 4 32-bit entries in the buffer. At the same time, the state machine does the handshaking 
with the device and sends out the data in 16-bit pieces. Flow control is achieved by the host 
through controlling when to toggle HSTROBE and by the device through temporarily 
deasserting DDMARDYn. 

In a read operation, the state machine does the handshaking and starts to receive data from 
the device. When the read buffer has 4 or more entries filled, a DMA request is sent to the 
DMA controller. Flow control is achieved by the host through temporarily deasserting 
HDMARDYn or by the device through controlling when to toggle DSTROBE. 

In both write and read, either the host or the device can terminate the transfer and the state 
machine handles the termination handshaking mechanism. 

A 16-bit CRC result is always sent from the host to device in both write and read operations 
for checking. The CRC registers are “seeded” or pre-loaded with the value of 0x4ABA at the 
beginning of the transfer. The “ping-pong” method is used and a “grace” area is provided in 
the buffers in case the handshaking required for pausing comes more slowly than the data. 
All data transfers are in chunks of four 32-bit words. Pieces of 16-bit wide data to or from the 
DD bus are consumed or collected. All data to be transferred through the DMA controller 
must be on word boundaries. In case the last chunk contains less than 4 32-bit words, a non-
4-word transfer is allowed.

 27.2.5 Performance Considerations

IDE data transfer performance depends on many factors. All PIO operations are expected to 
complete at the normal speed of the IDE interface when configured for the fastest PIO mode. 
Payload data transfers will normally use one of the DMA modes. For host read operations the 
DMA controller will try to keep the input read buffer empty. For host write operations the DMA 
controller will try to keep the output write buffer at least half full. If the DMA Transfer State 



27-6 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27

Machine sees that the incoming versus outgoing data rate is out of balance, it will signal the 
controlling device to pause the transfer. For both read and write operations it is expected that 
the DMA controller will get behind and not be able to keep up with the device transfer rate. 
Thus the net transfer rate is determined by the available DMA controller bandwidth and how 
fast the DMA completion is acknowledged by interrupt or by reading some DMA transfer 
counters. The DMA controller does a DMA data transfer by:

• Requesting the AHB

• Reading the source data to a local buffer 

• Requests the AHB for the write to the destination. 

No burst transfer is allowed. 

 27.2.6 UDMA Example

For an estimation of the speed of operation, consider a UDMA read operation. After being 
granted master status on the AHB bus, the DMA controller access to the IDEUDMADataIn 
register will complete in 2 AHB clock cycles. Typical data transfers are to system dynamic 
memory through the SDRAM controller. Single cycle writes to SDRAM get posted and are 
completed in 2 AHB cycles, provided that the SDRAM controller is not busy. Consecutive 
SDRAM single transfer writes will take 8 AHB cycles. If we assume one clock cycle for bus 
arbitration, we end up with a maximum sustained DMA transfer rate of one 32-bit transfer 
every 11 AHB clocks. For a 100 MHz AHB (10 ns cycle time), and two 16-bit IDE transfers 
per DMA transfer, this example works out to 55 ns per IDE transfer peak rate. 

A more typical DMA exists when the DMA request conflicts with ARM Core cache line fills or 
raster display memory access. Cache line fills use quad word bursts and raster accesses use 
16 word bursts. The worst case is the raster, which will hold the SDRAM controller for 20 AHB 
clocks. Assuming a worst case system load where raster is getting 50% of the memory 
bandwidth, and each raster burst in between is a cache line fill, the DMA controller can only 
get 12 of the 40 available clocks. In this case, the DMA write would get posted, and flushed, 
but a read would use 8 of the 12 cycles. Either case would be able to complete one DMA 
transfer every 40 AHB clocks. The IDE transfer rate for this example is 400 ns per DMA 
transfer, which is 200 ns per IDE transfer. This still nets 10 megabytes per second (MBps) in 
a heavily loaded system. 

In this last example, the DMA controller would not keep up with the IDE device and the 
transfers would rely on proper signaling to pause the IDE transfers until the DMA catches up. 
An additional overhead would be how fast the DMA controller is configured to do another 
DMA transfer after finishing one. There might be the possibility that the request line has been 
pulled high even before the DMA controller is set to service this request after the completion 
of the previous request is acknowledged.

The device operates asynchronously to the host and all input signals to the host are 
synchronized to the AHB clock. In a UDMA read operation, there is a possibility that the 
device is transmitting the data and toggling DSTROBE too quickly for the host to keep up with 
latching the data from DD bus, based on the synchronized version of DSTROBE. There is a 
lower limit for AHB clock speed, where lowering the speed further cannot guarantee correct 



DS785UM1 27-7
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

latching of the data. It is calculated that the cycle time of AHB clock has to be smaller than 
(IDE cycle time)*2/3. For different UDMA speed modes, the minimum AHB clock speeds are 
listed below. There is no special speed constraint imposed on the design for PIO and MDMA 
modes.

 27.2.7 DMA Request Latency

 27.2.7.1 DMA Request Deassertion
Multi-word DMA Write to IDE Controller: 

The DMAide signal deassertion is generated based on the AHB write logic. The act of writing 
to the Multi-word DMA write-FIFO causes the deassertion to appear on the following bus 
cycle. 

Multi-word DMA Read from IDE Controller:

The DMAide signal deassertion is generated based on the AHB read logic. The act of 
reading from the Multi-word DMA read-FIFO causes the deassertion to appear on the 
following bus cycle. 

Ultra DMA Write to IDE Controller:

The DMAide signal deassertion is generated based on the contents of the Ultra DMA write 
FIFO. If the FIFO contains four or more elements, the DMAide signal deasserts. 

Ultra DMA Read from IDE Controller:

The DMAide signal deassertion is generated based on an internal counter. The DMAide 
signal will deassert if four DMA reads have occurred or if the FIFO is now empty (which only 
occurs at the end of a non-quad word aligned read from the IDE device)

 27.2.7.2 DMA Request Latency Overview
The IDE controller requires a certain number of cycles to deassert the DMA request line 
DMAide after a DMA access for Multi-word DMA and Ultra DMA modes. The number of wait-
states required are listed below in addition to the pipeline breakdown of the signal 
propagation. The assumption is that the deassertion should follow an AHB bus command 
(read or write) in HCLK cycle 1.

Table 27-2. IDE Cycle Times and Data Transfer Rates 

UDMA Speed Mode Min. IDE Cycle Time
Max. AHB Cycle 

Time
Min. AHB Clock 

Frequency

0 112 ns 74.7 ns 13.4 MHz

1 73 ns 48.7 ns 20.5 MHz

2 54 ns 36.0 ns 27.8 MHz

3 39 ns 26.0 ns 38.5 MHz

4 25 ns 16.7 ns 59.8 MHz



27-8 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27 Note: This is the number of wait states required by the IDE Controller to deassert the DMA 
Controller request line after each word transfer is complete.

 27.2.7.3 IDE DMA Programming Considerations
This is a general guideline for programming the DMA controller to properly interact with the 
IDE controller without receiving malformed data. All cases assume the DMA controller is 
capable of burst read or burst write operations. Non-ideal DMA controllers may be able to 
avoid wait-states due to less than optimal bus utilization.

 27.2.7.3.1 General Note

Please verify that the DMA controller will ignore DMA requests if it's transfer counter register 
has gone to zero. If this is not the case, the DMA controller must be configured to time out 
based on the wait-state table in Table 27-3 and Table 27-4. Quad-word bursts are not 
allowed.

 27.2.7.3.2 Multi-word DMA

Follow the wait-state number listed in the wait-state table in Table 27-3 and Table 27-4. Quad-
word bursts are not allowed.

Table 27-3. Wait State Value for the DMA M2M Register Control.PWSC

Wait States: Multi-Word DMA Request Ultra DMA Request

Read 0 1

Write 3 2

Table 27-4. HCLK Cycles to De-assert DMA Request

Operation HCLK Cycle Event

Multi-word DMA Write to IDE Controller: 0 AHB write command

1 DMAide deasserts

Multi-word DMA Read from IDE Controller: 0 AHB read command 

1 AHB read data, DMAide deasserts

Ultra DMA Write to IDE Controller: 0 AHB write command

1 Data stored in IDE register

2 Data stored in FIFO, FIFO status updates

3 DMAide deasserts

Ultra DMA Read from IDE Controller: 0 AHB read command

1 AHB read data, word counter updates

2 DMAide deasserts



DS785UM1 27-9
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

 27.2.7.3.3 Ultra DMA Read from IDE Controller

Follow the wait-state number listed in the wait-state table in Table 27-3 and Table 27-4. 
However, the DMA request will not assert unless there are 4 words present in the read FIFO 
or the transfer is non-quad aligned and has the last remaining bits of data, so quad-word 
bursts are permissible if the total Ultra DMA transfer size is quad-word aligned.

 27.2.7.3.4 Ultra DMA Write to IDE Controller

Although the DMA request line has a non-insignificant DMAIDE latency, the DMA write FIFO 
is of sufficient size to absorb any overage incurred during the DMA request latency period. 
The DMA controller can be run without wait-states. Quad-word bursts are permissible if the 
Ultra DMA transfer size is quad-word aligned. 

 27.2.8 IDE Package Dependency

The block uses the following external pins:

IDECS0n, IDECS1n, IDEDA, DIORn, DIOWn, DMACKn, DD, IORDY, INT[3], EGPIO[2], 
and EGPIO[15].

 27.2.8.1 System Configuration Constraints
The following system configuration modes force the disabling of the IDE controller:

- GPIOEonIDE
- GPIOFonIDE
- GPIOGonIDE
- GPIOHonIDE

 27.2.8.2 Bus Bandwidth Requirements
The block does not have any hard bandwidth constraints because it can throttle performance 
to the available bandwidth without data corruption. The maximum free bandwidth that the 
block will consume is limited by the IDE mode the device is in. Maximum theoretical 
bandwidths are listed in Table 27-5.

Table 27-5. Maximum Theoretical Bandwidths for Various Operating Modes

Mode MAX IDE Device Bandwidth

PIO Mode 0 3.33 MBps

PIO Mode 1 5.22 MBps

PIO Mode 2 8.33 MBps

PIO Mode 3 11.11 MBps

PIO Mode 4 16.67 MBps

MDMA Mode 0 4.17 MBps

MDMA Mode 1 13.33 MBps

MDMA Mode 2 16.67 MBps



27-10 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27

For both PIO and MDMA modes, the actual throughput is limited by the ARM Core's ability to 
service requests, not raw bandwidth. For UDMA, the throughput is dependent on the 
bandwidth available to the DMA controller.

 27.3 Registers

Register Descriptions

IDECtrl 

Address:
0x800A_0000 - Read/Write

Default:
0x0000_0063

Definition:
IDE Control Register. This register is used for IDE PIO control operations. 
IORDY, INTRQ, DMARQ, and DASPn reflect external pins. Their reset state 
can vary depending on system implementation and system configuration.

Table 27-6. IDE Interface Register Map

Address Name Description

0x800A_0000 IDECtrl IDE Control Register

0x800A_0004 IDECfg IDE Configuration Register

0x800A_0008 IDEMDMAOp IDE MDMA Operation Register

0x800A_000C IDEUDMAOp IDE UDMA Operation Register

0x800A_0010 IDEDataOut IDE PIO Data Output Register

0x800A_0014 IDEDataIn IDE PIO Data Input Register

0x800A_0018 IDEMDMADataOut IDE MDMA Data Output Register

0x800A_001C IDEMDMADataIn IDE MDMA Data Input Register

0x800A_0020 IDEUDMADataOut IDE UDMA Data Output Register

0x800A_0024 IDEUDMADataIn IDE UDMA Data Input Register

0x800A_0028 IDEUDMASts IDE UDMA Status Register

0x800A_002C IDEUDMADebug IDE UDMA Debug Register

0x800A_0030 IDEUDMAWrBufSts IDE UDMA Write Buffer Status Register

0x800A_0034 IDEUDMARdBufSts IDE UDMA Read Buffer Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD IORDY INTRQ DMARQ DASPn DIOWn DIORn DA CS1n CS0n



DS785UM1 27-11
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

Bit Descriptions:

RSVD: Reserved. Unknown during read, ignored during write.

CS0n: Chip Select 0 pin output control.

CS1n: Chip Select 1 pin output control.

DA: Device address output control.

DIORn: DIORn pin output control.

DIOWn: DIOWn pin output control.

DASPn: DASPn pin input state. This signal comes in on the 
EGPIO[15] pin. Read only.

DMARQ: DMARQ pin input state. This signal comes in on the 
EGPIO[2] pin. Read only.

INTRQ: INTRQ pin input state. This input comes from the INT[3] 
input pin and is routed to the Interrupt Controller. Read 
only.

IORDY: IORDY pin input state. Read only.

IDECfg 

Address:
0x800A_0004 - Read/Write

Default:
0x0000_0000

Definition:
IDE Configuration Register.

Bit Descriptions:

RSVD: Reserved. Unknown during read, ignored during write.

IDEEN: IDE master enable.

PIO: Polled IO operation selection.

MDMA: Multiword DMA operation selection.

UDMA: Ultra DMA operation selection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD WST MODE UDMA MDMA PIO IDEEN



27-12 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27

Note: At most, one of the above 3 bits should be set to 1 at any time. If more than one is set, the 
results will be unpredictable, and the data invalid.

MODE: Speed mode number. (0 to 4 defined for PIO, 0 to 2 
defined for MDMA, 0 to 4 defined for UDMA). 

WST: Wait State for Turn. Number of HCLK cycles to hold the 
data bus after a PIO write operation.

IDEMDMAOp 

Address:
0x800A_0008 Read/Write 

Default:
0x0000_0000

Definition:
IDE MDMA Configuration Register.

Bit Descriptions:

RSVD: Reserved. Unknown during read, ignored during write.

MEN: Enable Multiword DMA operation.
1 - to start MDMA
0 - to terminate MDMA by the host.

RWOP: Read or write operation selection: 
0 - Read
1 - Write.

IDEUDMAOp 

Address:
0x800A_000C - Read/Write 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RWOP MEN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RWOP UEN



DS785UM1 27-13
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

Default:
0x0000_0000

Definition:
IDE UDMA Configuration Register.

Bit Descriptions:

RSVD: Reserved. Unknown during read, ignored during write.

RWOP: Read or write operation selection: 
0 - Read
1 - Write.

UEN: Enable Ultra DMA operation. 
1 - to start UDMA
0 - to terminate UDMA by the host.

Note: Before setting the UEN bit to enable UDMA operation:
1 - Set or Clear the RWOP bit to configure for a Write or Read operation.
2 - Perform a dummy read of the IDEUDMAOp register.
3 - Set the UEN bit to enable UDMA operation.

IDEDataOut 

Address:
0x800A_0010 - Read/Write

Default:
0x0000_0000

Definition:
In PIO mode write operation, this register is the Output Data Registers, 
containing the register contents or the data to be written to the device. The 
register is driven onto the DD pins when DIOWn is low. The register is both 
read write in this operation. In MDMA and UDMA data-out operations, this 
register is an exact copy of the data in the output buffer to be transferred to the 
device. The register should only be read in these operations for checking the 
output data. Any write in these two operation modes is ignored. 

Bit Descriptions:

IDEDD: IDE output data in PIO writes (read write), data in output 
buffer in MDMA and data at the tail of output buffer in 
UDMA mode (read only).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDEDD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDEDD



27-14 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27

IDEDataIn 

Address:
0x800A_0014 - Read Only

Default:
0x0000_0000

Definition:
In PIO mode read operation, this register is the Input Data Registers, 
containing the register contents or the data read from the device. The register 
is loaded from the DD pins at the positive edge of the DIORn signal. The 
register is read only in this operation. In MDMA and UDMA data-in operations, 
this register is an exact copy of the data in the input buffer to be transferred 
through DMA. The register is read only in these operations. Any write to this 
register is ignored.

Bit Descriptions:

IDEDD: IDE input data in PIO read, data in input buffer in MDMA 
and data at the head of input buffer in UDMA mode.

IDEMDMADataOut 

Address:
0x800A_0018 - Write Only (should be written by the DMA controller only)

Default:
0x0000_0000

Definition:
In MDMA data-out operations, this register contains the data in the output 
buffer to be transferred to the device. The data is written into this register by 
the DMA controller. This register should only be addressed and written by the 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDEDD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDEDD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDEDD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDEDD



DS785UM1 27-15
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

DMA controller. A write by the host during MDMA data-out operation will 
erroneously interfere with the MDMA state machine. Any read will return zero. 

Bit Descriptions:

IDEDD: IDE output data in the output buffer in MDMA mode.

IDEMDMADataIn 

Address:
0x800A_001C - Read Only (should be read by the DMA controller only)

Default:
0x0000_0000

Definition:
In MDMA data-in operations, this register contains the data in the input buffer 
just transferred from the device. The data is read from this register by the DMA 
controller. This register should only be addressed and read by the DMA 
controller. A read by the host during MDMA data-in operation will erroneously 
interfere with the MDMA state machine. Any write is ignored.

Bit Descriptions:

IDEDD: IDE input data in the input buffer in MDMA mode.

IDEUDMADataOut 

Address:
0x800A_0020 - Write Only (should be written by the DMA controller only)

Default:
0x0000_0000

Definition:
In UDMA data-out operations, this register contains the data at the tail of the 
output buffer to be written by the DMA controller. This register should only be 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDEDD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDEDD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDEDD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDEDD



27-16 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27

addressed and written by the DMA controller. A write by the host during UDMA 
data-out operation will erroneously interfere with the UDMA state machine. 
Any read will return zero.

Bit Descriptions:

IDEDD: IDE output data at the tail of the output buffer in UDMA 
mode.

IDEUDMADataIn 

Address:
0x800A_0024 - Read Only (should be read by the DMA controller only)

Default:
0x0000_0000

Definition:
In UDMA data-in operations, this register contains the data at the head of the 
input buffer to be transferred by the DMA controller. The data is read from this 
register by the DMA controller. This register should only be addressed and 
read by the DMA controller. A read by the host during UDMA data-in operation 
will erroneously interfere with the UDMA state machine. Any write is ignored.

Bit Descriptions:

IDEDD: IDE input data at the head of the input buffer in UDMA 
mode.

IDEUDMASts 

Address:
0x800A_0028 - Read Only

Default:
0x0000_0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDEDD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDEDD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD N4X NDI NDO RSVD SBUSY INTide DMAide

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DSDD DMARQ DDOE DM STOP HSHD DA CS1n CS0n



DS785UM1 27-17
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

Definition:
In UDMA data-out and data-in operations, this register contains status about 
the output and input signals, state machine status and error reporting. Several 
bits reflect external pins. Their reset state can vary depending on system 
implementation and system configuration.

Bit Descriptions:

RSVD: Reserved. Unknown during read, ignored during write.

CS0n: Chip select pin0 status. Should be driven to 1 (deasserted) 
in UDMA.

CS1n: Chip select pin1 status. Should be driven to 1 (deasserted) 
in UDMA.

DA: Device address status. Should be driven to 0x0 (de-
asserted) in UDMA.

HSHD: HSTROBE (during data-out) and HDMARDYn (during 
data-in) status. Driven by UDMA state machine.

STOP: STOP (during data-out) status. Driven by UDMA state 
machine.

DM: DMACKn (both data-out and data-in) status. Driven by 
UDMA state machine.

DDOE: DD bus output enable as controlled by UDMA state 
machine.

DMARQ: Synchronized version of DMARQ input from device.

DSDD: DSTROBE (during data-in) and DDMARDYn (during data-
out) status from device.

DMAide: DMA request signal from UDMA state machine.

INTide: INT line generated by UDMA because of errors in the state 
machine.

SBUSY: UDMA state machine busy, not in idle state.

NDO: Error for data-out not completed.

NDI: Error for data-in not completed.

N4X: Error for data transferred not multiples of four 32-bit words.



27-18 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27

IDEUDMADebug 

Address:
0x800A_002C - Read/Write

Default:
0x0000_0000

Definition:
Debug register to reset some internal signals in the UDMA state machine for 
debug purpose.

Bit Descriptions:

RSVD: Reserved. Unknown during read, ignored during writes.

RWOE: Reset UDMA write data-out error.

RWPTR: Reset UDMA write buffer pointer to 0.

RWDR: Reset UDMA write DMA request.

RROE: Reset UDMA read data-in error.

RRPTR: Reset UDMA read buffer pointer to 0.

RRDR: Reset UDMA read DMA request.

IDEUDMAWrBufSts 

Address:
0x800A_0030 - Read Only

Default:
0x0000_0100

Definition:
Status register for UDMA write buffer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD RRDR RRPTR RROE RWDR RWPTR RWOE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CRC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD FULL NFULL HOM EMPTY TPTR HPTR



DS785UM1 27-19
Copyright 2007 Cirrus Logic 

IDE Interface
EP93xx User’s Guide

2727

27

Bit Descriptions:

RSVD: Reserved. Unknown during read, ignored during writes.

HPTR: Head pointer in the write buffer. 

TPTR: Tail pointer in the write buffer. 

EMPTY: Write buffer empty status.

HOM: Half or more entries in write buffer filled status.

NFULL: Write buffer near full status.

FULL: Write buffer full status.

CRC: CRC result for data-out operation. Reset to 0x4ABA after 
finishing UDMA operation.

IDEUDMARdBufSts   

Address:
0x800A_0034 - Read Only

Default:
0000_0100

Definition:
Status register for UDMA read buffer.

Bit Descriptions:

RSVD: Reserved. Unknown during read, ignored during writes.

HPTR: Head pointer in the read buffer. 

TPTR: Tail pointer in the read buffer. 

EMPTY: Read buffer empty status.

HOM: Half or more entries in read buffer filled status.

NFULL: Read buffer near full status.

FULL: Read buffer full status.

CRC: CRC result for data-in operation. Reset back to 0x4ABA 
after finishing UDMA operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CRC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD FULL NFULL HOM EMPTY TPTR HPTR



27-20 DS785UM1
Copyright 2007 Cirrus Logic

IDE Interface
EP93xx User’s Guide

2727

27



DS785UM1 28-1
Copyright 2007 Cirrus Logic 

2828

28

Chapter 28

28GPIO Interface

 28.1 Introduction

Note: The EP9301 and EP9302 processors each have 18 standard GPIOs and 19 enhanced 
GPIOs. 

Note: The EP9307 processor has 30 standard GPIOs and 18 enhanced GPIOs. 

Note: The EP9312 processor has 31 standard GPIOs and 16 enhanced GPIOs. 

Note: The EP9315 processor has 31 standard GPIOs and 24 enhanced GPIOs.

The General Purpose Input/Output (GPIO) is an Advanced Peripheral Bus (APB) slave 
module. The GPIO block is the primary controller for the EGPIO, RDLED, GRLED, SLA[1:0], 
EECLK, and EEDAT pins. It is a secondary controller for the ROW[7:0], COL[7:0], PCMCIA 
and IDE control pins.

There are two types of GPIOs, standard and enhanced. The enhanced GPIO, called EGPIO, 
have interrupt generation capability.

The GPIO block has eight ports, named Port A through Port H. Ports C, D, E, G, and H are 
standard GPIO ports. Ports A, B, and F are enhanced GPIO ports. 

Each GPIO port controls eight individual pins. Each port has an 8-bit data register and an 8-
bit data direction register. The EGPIO ports each have additional 8-bit registers for interrupt 
configuration and status. The control of an individual pin is determined in a bit-slice fashion 
across all registers for that port; only a single bit at a particular index from each register 
affects or is affected by that pin.



28-2 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28

 Figure 28-1. System Level GPIO Connectivity   

Port A
EGPIO[7:0]

MUX_IOOE

DATA

EP

Control

Mux
Controls

Port B
EGPIO[15:8]

MUX_IOOE

DATA

EP

Control

Mux
Controls

Port C
ROW[7:0]

MUX_IOOE

DATA

EP

Control

Mux
Controls

Port D
COL[7:0]

MUX_IOOE

DATA

EP

Control

Mux
Controls

Port E MUX_IOOE

DATA

EP

Control

Mux
Controls

Port F

VS2

MUX_IOOE

DATA

EP

Control

Mux
Controls

Port G
DD[15:12]

MUX_IOOE

DATA

EP

Control

Mux
Controls

Port H
DD[7:0]

MUX_IOOE

DATA

EP

Control

Mux
Controls

SLA[1:0]
EEDAT
EECLK

IDEDA[2:0]

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

IDECS0n
IDECS1n
DIORn
RDLED
GRLED

READY
VS1
MCBVD2
MCBVD1
MCCD2
MCCD1
WP



DS785UM1 28-3
Copyright 2007 Cirrus Logic 

GPIO Interface
EP93xx User’s Guide

2828

28

 28.1.1 Memory Map

The GPIO base address is 0x8084_0000. All registers are 8 bits wide and are aligned on 
word boundaries. For all registers, the upper 24 bits are not modified when written and 
always read zeros.

 28.1.2 Functional Description

Each port has an 8-bit data register and an 8-bit direction register. The data direction register 
controls whether each individual GPIO pin is an input or output. Writing to a data register only 
affects the pins that are configured as outputs. Reading a data register returns the value on 
the corresponding GPIO pins.

Ports A, B, and F also provide interrupt capability. The 16 interrupt sources from Ports A and 
B are combined into a single signal GPIOINTR which is connected to the system interrupt 
controller. All eight individual interrupt signals on Port F are available to the system interrupt 
controller as GPIO0INTR through GPIO7INTR.

The interrupt properties of each of the GPIO pins on ports A, B, and F are individually 
configurable. Each interrupt can be either high or low level sensitive or either positive or 
negative edge triggered. It is also possible to enable debouncing on the Port A, B, and F 
interrupts. Debouncing is implemented using a 2-bit shift register clocked by a 128 Hz clock.

There are seven additional registers for port A, B, and F: 

• GPIO Interrupt Enable registers (GPIOAIntEn, GPIOBIntEn, GPIOFIntEn) control which 
bits are to be configured as interrupts. Setting a bit in this register configures the 
corresponding pin as an interrupt input.

• GPIO Interrupt Type 1 registers (GPIOAIntType1, GPIOBIntType1, GPIOFIntType1) 
determines interrupt type. Setting a bit in this register configures the corresponding 
interrupt as edge sensitive; clearing it makes it level sensitive.

• GPIO Interrupt Type 2 registers (GPIOAIntType2, GPIOBIntType2, GPIOFIntType2) 
determines interrupt polarity. Setting a bit in this register configures the corresponding 
interrupt as rising edge or high level sensitive; clearing it configures the interrupt as 
falling edge or low level sensitive.

• GPIO End-Of-Interrupt registers (GPIOAEOI, GPIOBEOI, GPIOFEOI) are used to clear 
specific bits in the interrupt Status Register. Writing a one to a bit will clear the 
corresponding interrupt; writing a zero has no effect.

• GPIO Debounce registers (GPIOADB, GPIOBDB, GPIOFDB) enable debouncing of 
specific interrupts signals.

• Interrupt Status registers (IntStsA, IntStsB, IntStsF) provide the status of any pending 
unmasked interrupt.

• Raw Interrupt Status registers (RawIntStsA, RawIntStsB, RawIntStsF) provide the status 
of any pending interrupt regardless of masking.



28-4 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28

In order to stop any spurious interrupts that may occur during the programming of the 
GPIOxINTTYPEx registers, the following sequence should be observed:

1. Disable interrupt by writing to GPIO Interrupt Enable register.

2. Set interrupt type by writing GPIOxINTTYPE1/2 register.

3. Clear interrupt by writing to GPIOxEOI register.

4. Enable interrupt by writing to GPIO Interrupt Enable register.

Figure 28-2 and Figure 28-3 illustrate the signal connections for GPIO and EGPIO.

 Figure 28-2. Signal Connections Within the Standard GPIO Port Control Logic 
(Ports C, D, E, G, H)   

DDR OE[7:0]OE

Standard GPIO Ports C, D, E, G, and H

DR DATA DATA[7:0]

EP[7:0]

TISR OE

to PRDATA[7:0]

Register
Read 
Select TESTINPSEL

TESTRDSEL

0

1
1

0



DS785UM1 28-5
Copyright 2007 Cirrus Logic 

GPIO Interface
EP93xx User’s Guide

2828

28

 Figure 28-3. Signal Connections Within the Enhanced GPIO Port Control Logic 
(Ports A, B, F)    

 28.1.3 Reset

All GPIO registers are initialized on system reset. The data and data direction registers for all 
ports (except as noted below) are cleared, configuring them as inputs. Port E[1:0] bits are 
used for the LED outputs RDLED and GRLED respectively and are set to drive high. Port 
G[3:2] bits are used for SLA[1:0] outputs and are set to drive low. Port G[1:0] bits are used 
for EEDAT and EECLK respectively and are set up as inputs. All interrupt control and 
debounce registers are cleared.

Enhanced GPIO Ports A, B, and F

DDR OE[7:0]OE

DR DATA DATA[7:0]

EP[7:0]

TISR OE

to PRDATA[7:0]

Register
Read 
Select

TESTINPSEL
TESTRDSEL

0

1
1

0

INTEN ENA

INTTYPE1 EDGE

INTTYPE2 POL

DB OE

IN

S
T

A
T

U
S

R
A

W

INTERRUPT
CONTROL
LOGIC

CLK ICLK



28-6 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28

 28.1.4 GPIO Pin Map

All GPIO signals are mapped to device pins. The Syscon DeviceCfg register contains four 
bits that control mapping of the GPIO Ports to device pins: GonK, EonIDE, GonIDE, and 
HonIDE. Table 28-1, Table 28-2, Table 28-3, and Table 28-4 show how the GPIO ports map 
to EP93xx pins depending on these control signals.

1. GRLED is the Green LED pin.

2. RDLED is the Red LED pin.
3. EECLK is the EEPROM clock pin.
4. EEDAT is the EEPROM data pin.

1. GRLED is the Green LED pin.
2. RDLED is the Red LED pin.
3. EECLK is the EEPROM clock pin.

Table 28-1. EP9301 and EP9302 GPIO Port to Pin Map

Pin Name Default Function

EGPIO[7:0] Port A

EGPIO[15:8] Port B

GRLED1 Port E0

RDLED2 Port E1

EECLK3 Port G0

EEDAT4 Port G1

Table 28-2. EP9307 GPIO Port to Pin Map

Pin
Name

Default
Function

Function in
GonK
Mode

EGPIO[7:0] Port A Port A 

EGPIO[13:8] Port B Port B

EGPIO[15] Port B Port B

GRLED1 Port E0 Port E0

RDLED2 Port E1 Port E1

EECLK3 Port G0 Port G0

EEDAT4 Port G1 Port G1

ROW[7:0]5 ROW[7:0] Port C

COL[7:0]6 COL[7:0] Port D



DS785UM1 28-7
Copyright 2007 Cirrus Logic 

GPIO Interface
EP93xx User’s Guide

2828

28

4. EEDAT is the EEPROM data pin.
5. ROW[7:0] are the Key Matrix row pins.

6. COL[7:0] are the Key Matrix column pins.

1. IDEDA[2:0], IDECS0n, IDECS1n, and DIORn are IDE control pins.

2. DD[15:0] are the IDE data pins. DD[11:8] has no GPIO pin mapping.

3. GRLED is the Green LED pin.
4. RDLED is the Red LED pin.
5. EECLK is the EEPROM clock pin.

6. EEDAT is the EEPROM data pin.
7. ROW[7:0] are the Key Matrix row pins.

8. COL[7:0] are the Key Matrix column pins.

Table 28-3. EP9312 GPIO Port to Pin Map

Pin
Name

Default
Function

Function in
GonK
Mode

Function in
EonIDE
Mode

Function in
GonIDE
Mode

Function in
HonIDE
Mode

EGPIO[7:0] Port A Port A Port A Port A Port A

EGPIO[15:8] Port B Port B Port B Port B Port B

GRLED3 Port E0 Port E0 Port E0 Port E0 Port E0

RDLED4 Port E1 Port E1 Port E1 Port E1 Port E1

EECLK5 Port G0 Port G0 Port G0 Port G0 Port G0

EEDAT6 Port G1 Port G1 Port G1 Port G1 Port G1

SLA[1:0] Port G3:2 Port G3:2 Port G3:2 Port G3:2 Port G3:2

ROW[7:0]7 ROW[7:0] Port C ROW[7:0] ROW[7:0] ROW[7:0]

COL[7:0]8 COL[7:0] Port D COL[7:0] COL[7:0] COL[7:0]

IDEDA[2:0]1 IDEDA[2:0] IDEDA[2:0] Port E7:5 IDEDA[2:0] IDEDA[2:0]

IDECS1n1 IDECS1n IDECS1n Port E4 IDECS1n IDECS1n

IDECS0n1 IDECS0n IDECS0n Port E3 IDECS0n IDECS0n

DIORn1 DIORn DIORn Port E2 DIORn DIORn

DD[15:12]2 DD[15:12] DD[15:12] DD[15:12] Port G7:4 DD[15:12]

DD[11:8]2 DD[11:8] DD[11:8] DD[11:8] DD[11:8] DD[11:8]

DD[7:0]2 DD[7:0] DD[7:0] DD[7:0] DD[7:0] Port H



28-8 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28

1. IDEDA[2:0], IDECS0n, IDECS1n, and DIORn are IDE control pins.

2. VS2, VS1, MCBVD[2:1], MCD[2;1], READY, and WP are PCMCIA pins.
3. SLA[1:0] are the PCMCIA voltage control pins.

4. DD[15:0] are the IDE data pins. DD[11:8] has no GPIO pin mapping.
5. GRLED is the Green LED pin.
6. RDLED is the Red LED pin.

7. EECLK is the EEPROM clock pin.
8. EEDAT is the EEPROM data pin.
9. ROW[7:0] are the Key Matrix row pins.

Table 28-4. EP9315 GPIO Port to Pin Map 

Pin
Name

Default
Function

Function in
GonK
Mode

Function in
EonIDE
Mode

Function in
GonIDE
Mode

Function in
HonIDE
Mode

EGPIO[7:0] Port A Port A Port A Port A Port A

EGPIO[15:8] Port B Port B Port B Port B Port B

GRLED5 Port E0 Port E0 Port E0 Port E0 Port E0

RDLED6 Port E1 Port E1 Port E1 Port E1 Port E1

VS22 Port F7 Port F7 Port F7 Port F7 Port F7

READY2 Port F6 Port F6 Port F6 Port F6 Port F6

VS12 Port F5 Port F5 Port F5 Port F5 Port F5

MCBVD[2:1]2 Port F4:3 Port F4:3 Port F4:3 Port F4:3 Port F4:3

MCD[2:1]2 Port F2:1 Port F2:1 Port F2:1 Port F2:1 Port F2:1

WP2 Port F0 Port F0 Port F0 Port F0 Port F0

EECLK7 Port G0 Port G0 Port G0 Port G0 Port G0

EEDAT8 Port G1 Port G1 Port G1 Port G1 Port G1

SLA[1:0]3 Port G3:2 Port G3:2 Port G3:2 Port G3:2 Port G3:2

ROW[7:0]9 ROW[7:0] Port C ROW[7:0] ROW[7:0] ROW[7:0]

COL[7:0]10 COL[7:0] Port D COL[7:0] COL[7:0] COL[7:0]

IDEDA[2:0]1 IDEDA[2:0] IDEDA[2:0] Port E7:5 IDEDA[2:0] IDEDA[2:0]

IDECS1n1 IDECS1n IDECS1n Port E4 IDECS1n IDECS1n

IDECS0n1 IDECS0n IDECS0n Port E3 IDECS0n IDECS0n

DIORn1 DIORn DIORn Port E2 DIORn DIORn

DD[15:12]4 DD[15:12] DD[15:12] DD[15:12] Port G7:4 DD[15:12]

DD[11:8]4 DD[11:8 DD[11:8] DD[11:8] DD[11:8] DD[11:8]

DD[7:0] DD[7:0] DD[7:0] DD[7:0] DD[7:0] Port H



DS785UM1 28-9
Copyright 2007 Cirrus Logic 

GPIO Interface
EP93xx User’s Guide

2828

28

10. COL[7:0] are the Key Matrix column pins.

Note: The various functional modes described in Table 28-4 are selected via bits set in the 
DeviceCfg register in Syscon. See Chapter 5, “DeviceCfg” on page 5-25 for additional 
register information. 

When the GPIO port signals are not explicitly mapped to a device pin, the inputs will continue 
to monitor the pin while outputs are disconnected. For example, when the Key Matrix block 
has control of the ROW pins, GPIO port C inputs still monitor the state of the ROW pins.

Another level of functional muxing is applied to several EGPIO pins. The Syscon DeviceCfg 
register bits RonG, MonG, TonG, HC3EN, HC1EN, and map different functionality to the 
EGPIO pins:

• MonG maps RI (modem Ring Indicator) onto EGPIO[0].

• RonG maps CLK32K, the 32 KHz clock monitor output for RTC calibration, onto 
EGPIO[1].

• TonG maps TENn, the RS485 transmit enable output, onto EGPIO[3].

• Both HC3EN and HC1EN map the synchronous HDLC clock onto EGPIO[3].

Some GPIO signals are used as inputs by other functional blocks. EGPIO[2:1] are routed to 
the DMA controller to allow for external DMA requests. IDE interface input signals DMARQ 
and DASPn are EGPIO[2] and EGPIO[15], respectively.

 28.2 Registers

Table 28-5. GPIO Register Address Map

Address Read Location Type Write Location Reset Value

0x8084_0000 PADR R/W PADR Note 1

0x8084_0004 PBDR R/W PBDR Note 1

0x8084_0008 PCDR R/W PCDR Note 1

0x8084_000C PDDR R/W PDDR Note 1

0x8084_0010 PADDR R/W PADDR 0x00

0x8084_0014 PBDDR R/W PBDDR 0x00

0x8084_0018 PCDDR R/W PCDDR 0x00

0x8084_001C PDDDR R/W PDDDR 0x00

0x8084_0020 PEDR R/W PEDR Note 2

0x8084_0024 PEDDR R/W PEDDR 0x03

0x8084_0028 RSVD - RSVD -

0x8084_002C RSVD - RSVD -

0x8084_0030 PFDR R/W PFDR Note 1

0x8084_0034 PFDDR R/W PFDDR 0x00

0x8084_0038 PGDR R/W PGDR Note 1

0x8084_003C PGDDR R/W PGDDR 0x0C

0x8084_0040 PHDR R/W PHDR Note 1

0x8084_0044 PHDDR R/W PHDDR 0x00

0x8084_0048 RSVD - RSVD -

0x8084_004C GPIOFIntType1 R/W GPIOFIntType1 0x00



28-10 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28

1. A read from the data register returns the value of the GPIO module input port. These ports have a
default pin assignment. The read value default is the pin state based on the default pin map.

2.  Port E bits 1 and 0 provide the LED driver function. The Port E[1:0] defaults to drive high. A read from
the Port E data register would be expected to return 0x03, if the other pins mapped to Port E inputs are
zero. However since the Port E[7:2] inputs are mapped to IDE control signals, the default read value will
depend on the default action of the IDE controller and the external interface.
3. The RAWSTATUSx registers have pin dependent default read states. The interrupt control registers
default to low level sensitive interrupt on reset. Therefore the external pin state will ripple through the
interrupt logic to determine the RAWSTATUSx default.

Register Descriptions

PxDR     

Address:

0x8084_0050 GPIOFIntType2 R/W GPIOFIntType2 0x00

0x8084_0054 Reserved, Read undefined Write Only GPIOFEOI 0x00

0x8084_0058 GPIOFIntEn R/W GPIOFIntEn 0x00

0x8084_005C IntStsF Read only - 0x00

0x8084_0060 RawIntStsF Read only - Note 3

0x8084_0064 GPIOFDB R/W GPIOFDB 0x00

0x8084_0090 GPIOAIntType1 R/W GPIOAIntType1 0x00

0x8084_0094 GPIOAIntType2 R/W GPIOAIntType2 0x00

0x8084_0098 - Write Only GPIOAEOI -

0x8084_009C GPIOAIntEn R/W GPIOAIntEn 0x00

0x8084_00A0 IntStsA Read only - 0x00

0x8084_00A4 RawIntStsA Read only - Note 3

0x8084_00A8 GPIOADB R/W GPIOADB 0x00

0x8084_00AC GPIOBIntType1 R/W GPIOBIntType1 0x00

0x8084_00B0 GPIOBIntType2 R/W GPIOBIntType2 0x00

0x8084_00B4 - Write Only GPIOBEOI -

0x8084_00B8 GPIOBIntEn R/W GPIOBIntEn 0x00

0x8084_00BC IntStsB Read only - 0x00

0x8084_00C0 RawIntStsB Read only - Note 3

0x8084_00C4 GPIOBDB R/W GPIOBDB 0x00

0x8084_00C8 EEDrive R/W EEDrive 0x00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxDATA

Table 28-5. GPIO Register Address Map (Continued)

Address Read Location Type Write Location Reset Value



DS785UM1 28-11
Copyright 2007 Cirrus Logic 

GPIO Interface
EP93xx User’s Guide

2828

28

PADR: 0x8084_0000 - Read/Write
PBDR: 0x8084_0004 - Read/Write
PCDR: 0x8084_0008 - Read/Write
PDDR: 0x8084_000C - Read/Write
PEDR: 0x8084_0020 - Read/Write
PFDR: 0x8084_0030 - Read/Write
PGDR: 0x8084_0038 - Read/Write
PHDR: 0x8084_0040 - Read/Write

Definition:
Port x Data Register. Values written to this 8-bit read/write register will be 
output on port x pins if the corresponding data direction bits are set HIGH (port 
output). Values read from this register reflect the external state of Port x 
inputs. All bits are cleared by a system reset. (“X.” stands for a letter, A 
through H.)

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PxDATA: Port x 8-bit data. 

PxDDR     

Address:
PADDR: 0x8084_0010 - Read/Write
PBDDR: 0x8084_0014 - Read/Write
PCDDR: 0x8084_0018 - Read/Write
PDDDR: 0x8084_001C - Read/Write
PEDDR: 0x8084_0024 - Read/Write
PFDDR: 0x8084_0034 - Read/Write
PGDDR: 0x8084_003C - Read/Write
PHDDR: 0x8084_0044 - Read/Write

Definition:
Port x Data Direction Register. Bits cleared in this 8-bit read/write register will 
select the corresponding pin in port x to become an input, setting a bit sets the 
pin to output. All bits are cleared by a system reset. (“X.” stands for a letter, A 
through H.)

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxDIR



28-12 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28

PxDIR: Port x direction bits. 

GPIOxIntEn     

Address:
GPIOAIntEn: 0x8084_009C - Read/Write
GPIOBIntEn: 0x8084_00B8 - Read/Write
GPIOFIntEn: 0x8084_0058 - Read/Write

Definition:

The GPIO Interrupt Enable register controls which bits of port A/B/F are to be configured as 
interrupts. A “1” written to a bit in this register will configure the bit on port A/B/F to become an 
interrupt. The user must make sure that the direction of port A/B/F is set to input (PxDDR 
defaults to input on reset). Writing a “0” (default on reset) to a bit in the register will configure 
that bit on port A/B/F as a normal GPIO port and the interrupt output corresponding to that bit 
will be zeroed. The user can read the inputs on port A/B/F in either mode via the PxDR. 

The interrupt type is controlled by the GPIOxINTTYPE1/2 registers described in the following 
sections. 

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PxINT: Port x interrupt enables. 

GPIOxIntType1     

Address:
GPIOAIntType1: 0x8084_0090 - Read/Write
GPIOBIntType1: 0x8084_00AC - Read/Write
GPIOFIntType1: 0x8084_004C - Read/Write

Definition:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxINT

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxINTE



DS785UM1 28-13
Copyright 2007 Cirrus Logic 

GPIO Interface
EP93xx User’s Guide

2828

28

The INTTYPE1 register controls what type of INTERRUPT can occur on Port A/B/F. Level 
sensitive when “0” is written to a bit location (“0” default on reset), edge sensitive when “1” is 
written to a bit location (the type of edge/level is controlled by the INTTYPE2 register). The 
user must make sure that the direction of port A/B/F is set to input and the corresponding bit 
in the GPIO INTERRUPT ENABLE register is set to allow the interrupt. 

All bits are cleared by a system reset.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PxINTE: Determines which type of interrupt may occur.

GPIOxIntType2     

Address:
GPIOAIntType2: 0x8084_0094 - Read/Write
GPIOBIntType2: 0x8084_00B0 - Read/Write
GPIOFIntType2: 0x8084_0050 - Read/Write

Definition:

The GPIOxINTTYPE2 registers controls the type of edge/level sensitive interrupt that can 
occur on the bits in Ports A/B/F. 

The interrupt is rising edge or high level sensitive if a “1” is written to the corresponding bit in 
GPIOxINTTYPE2 and falling edge or low level sensitive if a “0” is written to the corresponding 
bit in GPIOxINTTYPE2. The user must make sure that the direction of port A/B/F is set to 
input and the corresponding bits in the GPIO Interrupt Enable register and GPIOxINTTYPE1 
are set correctly in order for this register to have any effect. For edge sensitive interrupts the 
GPIOxINTTYPE1 bit should set high and low for level sensitive interrupts.

All bits are cleared by a system reset.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PxINTR: Determines which type of edge or level sensitive interrupt 
may occur.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxINTR



28-14 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28

GPIOxEOI     

Address:
GPIOAEOI: 0x8084_0098 - Write Only
GPIOBEOI: 0x8084_00B4 - Write Only
GPIOFEOI: 0x8084_0054 - Write Only

Definition:

In order to clear an edge sensitive interrupt that can occur over port A/B/F, the user must 
write a data value of “1” to the corresponding bit in the GPIOxEOI register bit. The user must 
clear an interrupt before changing Port A/B/F from interrupt mode to GPIO mode as the 
interrupts are cleared once this change has occurred. Once an interrupt has occurred and the 
interrupt service routine has started, one of the first instructions should be a write to this 
location in order to clear the interrupt so that subsequent interrupts on the same line are not 
missed.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PxINTC: Clears Interrupts

GPIOxDB 

Address:
GPIOADB: 0x8084_00A8 - Read/Write
GPIOBDB: 0x8084_00C4 - Read/Write
GPIOFDB: 0x8084_0064 - Read/Write

Definition:

For each port, if interrupts are enabled, it is possible to debounce the input signal. Setting a 
bit in this register enables debouncing for the corresponding interrupt signal; clearing the bit 
disables debouncing. Debouncing is implemented by passing the input signal through a 2-bit 
shift register clocked by a 128 Hz clock.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxINTC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxINTDB



DS785UM1 28-15
Copyright 2007 Cirrus Logic 

GPIO Interface
EP93xx User’s Guide

2828

28

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PxINTDB: Interrupt debounce enable.

RawIntStsX 

Address:
RawIntStsA: 0x8084_00A4 - Read Only
RawIntStsB: 0x8084_00C0 - Read Only
RawIntStsF: 0x8084_0060 - Read Only

Definition:

Each bit in the register reports whether an interrupt would be signalled if the interrupt were 
enabled for the corresponding port; a set bit indicates that an interrupt would be signalled. 
The value reported is unaffected by whether interrupts are enabled or disabled. How a bit is 
set depends on the interrupt type. If the interrupt is level sensitive active high, it reflects the 
pin value. If level sensitive active low, it reflects the inverse of the pin value. If the interrupt is 
edge triggered, the bit latches a one whenever the proper level change occurs. How a bit is 
cleared also depends on the interrupt type. When an interrupt is level sensitive, it is cleared 
when not asserted. When edge triggered, it is cleared by writing the corresponding bit in 
GPIOxEOI. Note that the value of a bit is a debounced value if debouncing is enabled.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PxINTRS: Raw Interrupt Status.

IntStsX 

Address:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxINTRS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PxINTS



28-16 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28

IntStsA: 0x8084_00A0 - Read Only
IntStsB: 0x8084_00BC - Read Only
IntStsF: 0x8084_005C - Read Only

Definition:

For each port, this register reports the same value as the RawIntStsX register for each bit 
whose corresponding interrupt is enabled. Bits whose corresponding interrupt is not enabled 
report “0”.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PxINTS: Masked Interrupt Status.

EEDrive     

Address:
0x8084_00C8 - Read/Write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD DATOD CLKOD



DS785UM1 28-17
Copyright 2007 Cirrus Logic 

GPIO Interface
EP93xx User’s Guide

2828

28

Definition:

EEPROM interface pin drive type control. Defines the driver type for the EECLK and EEDAT 
pins. When set, the corresponding pin is open drain, so that the pin will require an external 
pull-up. When clear, the corresponding pin is a normal CMOS driver. DATOD controls the 
EEDAT pin. CLKOD controls the EECLK pin.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

DATOD: Defines the EEDAT pin output driver. 

CLKOD: Defines the EECLK pin output driver. 



28-18 DS785UM1
Copyright 2007 Cirrus Logic

GPIO Interface
EP93xx User’s Guide

2828

28



DS785UM1 29-1
Copyright 2007 Cirrus Logic 

2929

29

Chapter 29

29Security

 29.1 Introduction
Security is a generalized architecture consisting of Boot ROM, laser fuses and proprietary 
circuitry for secure hardware initialization. In the context of this environment, the chip 
supports multiple digital-rights-management content-protection from several security 
vendors, (such as Microsoft and InterTrust). It exceeds all the requirements set forth by the 
Secure Digital Music Initiative and allows for protection of object code as well as content.

 29.2 Features
Key features include:

• 256 bits of laser fuse for permanent IDs and passwords.

• Security boot firmware and private passwords are “invisible” except when the IC is 
“locked”.

• Each instantiation of the system software may be uniquely encoded and protected using 
the private ID.

• Multiple security vendors can co-exist in the same system.

• JTAG functionality is disabled when security is enabled.

• External boot is disabled when security is enabled.

 29.3 Contact Information
Contact Cirrus Logic at www.cirrus.com for additional information regarding security features.



29-2 DS785UM1
Copyright 2007 Cirrus Logic

Security
EP93xx User’s Guide

2929

29

 29.4 Registers
This section contains the detailed register descriptions for some of the registers in the 
Security block. Table 29-1 shows the address map for the registers in this block, followed by 
a detailed listing for each register.

Note: Most Security registers are not documented in this Guide. Please contact Cirrus Logic at 
www.cirrus.com for additional information regarding security features.  

Register Descriptions

ExtensionID   

Address:
0x8083_2714 - Read Only

Definition:
This register contains the PartID for EP93XX processors.

Bit Descriptions:

RSVD: Reserved. Unknown During Read. 

PartID: Identification number for each type of EP93XX processors. 
See the respective EP93xx processor data sheet to 
determine the PARTID for a specific EP93xx processor.

Table 29-1. Security Register List 

Address Name SW Locked Type Size Description

0x8083_2714 ExtensionID No R 32 PartID for EP93XX devices

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RSVD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSVD PartID RSVD

http://www.cirrus.com/


DS785UM1 30-1
Copyright 2007 Cirrus Logic 

3030

30

Chapter 30

30Glossary

Table 30-1. Glossary 

Term Definition

AC’97 Serial Audio data transmission standard

ADC Analog to Digital Converter

AMBA Advanced Micro-controller Bus Architecture

APB Advanced Peripheral Bus

ARM920T ARM9 is the general purpose processor core in the EP93xx processors.

ATAPI AT Advanced Packet Interface

Buffer A “buffer” refers to the area in system memory that is characterized by a buffer descriptor, that is, a start 
address and the length of the buffer in bytes. 

CODEC Coder/Decoder

CRC Cyclic Redundancy Check

DAC Digital to Analog Converter

DMA Direct Memory Access

EEPROM Electronically Erasable Programmable Read Only Memory

FIQ Fast Interrupt Request

FIR Fast Infrared

FLASH FLASH memory

GPIO General Purpose Input Output

HDLC High-level Data Link Control

I2C See I2S

I2S Inter-IC Sound, also known as I2S

ICE In-circuit Emulator

IDE Integrated Drive Electronics

Ir or IR Infrared

IrDA Infrared Data Association

IRQ Standard Interrupt Request

ISO International Standards Organization

JTAG Joint Test Action Group

LCDDAC Liquid Crystal Display Digital to Analog Converter



30-2 DS785UM1
Copyright 2007 Cirrus Logic

Glossary
EP93xx User’s Guide

3030

30

LED Light Emitting Diode

MAC Media Access Controller - Ethernet

MII Media Independent Interface

MIR Medium Infrared

MMU Memory Management Unit

OHCI Open Host Controller Interface

PHY Physical layer

PIO Programmed I/O

PLL Phase Locked Loop

PPM Pulse Position Modulation

RISC Reduced Instruction Set Computer

RTC The ARM Real Time Clock

RTL Register Transfer Level

RTZ Return-to-zero

RZI Return-to-zero Inverted

SDLC Synchronous Data Link Control

SDMI Secure Digital Music Initiative

SDRAM Synchronous Dynamic Random Access Memory

SIR Slow Infrared

SPI Serial Peripheral Interface. Also known as SSP. Synchronous Serial Interface supporting the Motorola SPI 
format. 

SRAM Static Random Access Memory

Syscon System control registers

TFT Thin Film Transistor

TLB Translation Lookaside Buffer

TTB Translation Table Base

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VIC Vectored Interrupt Controller

Watchdog A count down timer designed to restart the ARM Core if the processor hangs.

Table 30-1. Glossary  (Continued)

Term Definition



DS785UM1 31-1
Copyright 2007 Cirrus Logic 

EP93XX Register List
EP93xx User’s Guide

3131

31

Chapter 31

31EP93XX Register List

Table 31-1 provides an alphabetical list of the EP93XX registers discussed in this manual. 
Click on the register name to view a detailed discussion of that register.

Table 31-1. EP93xx Register List

Register Name Page Number

AC97RISRx 22-13

GrySclLUTB  7-73

AC97DRx  22-6

AC97EOI 22-20

AC97GCIS  22-24

AC97GCR  22-21

AC97GIS  22-19

AC97IEx  22-15

AC97IM    22-20

AC97ISRx  22-14

AC97Reset 22-22

AC97RGIS  22-18

AC97RXCRx  22-7

AC97S12Data  22-17

AC97S1Data 22-15

AC97S2Data  22-16

AC97SRx  22-12

AC97SYNC  22-23

AC97TXCRx  22-10

ACRate 7-56

AFP    9-52

APBWait    5-22

BACKGROUND  8-35

BASEx  10-29

BCRx  10-41

BkgrndOffset 7-65



31-2 DS785UM1
Copyright 2007 Cirrus Logic

EP93XX Register List
EP93xx User’s Guide

3131

31

BlinkMask  7-63

BlinkPattrn  7-64

BlinkRate  7-63

BLKDESTHEIGHT 8-28

BLKDESTSTRT 8-25

BLKDESTWIDTH  8-27

BLKSRCWIDTH  8-26

BLOCKCTRL  8-30

BLOCKMASK  8-34

BMCtl  9-67

BMSts  9-70

BootModeClr    5-24

BootSts  13-17

Brightness  7-50

BusMstrArb  5-23

CHIP_ID    5-33

ClkSet1 5-18

ClkSet2  5-20

ColorLUT 7-77

CONTROL 10-22

CONTROL 10-31

CURRENTx    10-30

CursorAdrReset  7-67

CursorAdrStart 7-66

CursorBlinkColor1,  7-69

CursorBlinkColor2 7-69

CursorBlinkRateCtrl  7-72

CursorColor1,  7-69

CursorColor2,  7-69

CursorDScanLHYLoc 7-71

CursorSize 7-68

CursorXYLoc  7-70

DAR_BASEx  10-43

DAR_CURRENTx  10-44

DESTLINELENGTH  8-29

DESTPIXELSTRT  8-23

Table 31-1. EP93xx Register List

Register Name Page Number



DS785UM1 31-3
Copyright 2007 Cirrus Logic 

EP93XX Register List
EP93xx User’s Guide

3131

31

DeviceCfg    5-25

DiagAd  9-48

DiagDa  9-49

DMAChArb  10-45

DMAGlInt  10-44

EEDrive      28-16

EOLOffset  7-49

ExtensionID    29-2

FCF  9-51

FCT  9-50

FIFOLevel  7-56

FIIR  17-37

FIMR  17-36

FISR  17-35

GlConfig  13-14

GlIntFrc  9-64

GlIntMsk    9-63

GlIntROSts    9-64

GlIntSts  9-62

GPIOxDB  28-14

GPIOxEOI      28-14

GPIOxIntEn      28-12

GPIOxIntType1      28-12

GPIOxIntType2      28-13

GrySclLUTG, 7-73

GrySclLUTR, 7-73

GT  9-49

HActiveStrtStop  7-43

HashTbl  9-54

HBlankStrtStop  7-44

HcBulkCurrentED 11-23

HcBulkHeadED 11-22

HcCommandStatus  11-15

HcControl  11-12

HcControlCurrentED 11-22

HcControlHeadED 11-21

Table 31-1. EP93xx Register List

Register Name Page Number



31-4 DS785UM1
Copyright 2007 Cirrus Logic

EP93XX Register List
EP93xx User’s Guide

3131

31

HcDoneHead 11-24

HcFmInterval  11-24

HcFmNumber  11-26

HcFmRemaining  11-25

HcHCCA  11-20

HcInterruptDisable  11-19

HcInterruptEnable  11-18

HcInterruptStatus  11-17

HClkStrtStop  7-45

HClkTotal 7-42

HcLSThreshold  11-27

HcPeriodCurrentED 11-20

HcPeriodicStart 11-26

HcRevision  11-12

HcRhDescriptorA  11-28

HcRhDescriptorB  11-29

HcRhPortStatusx  11-32

HcRhStatus  11-30

HSigStrtStop  7-80

HSyncStrtStop  7-42

I2SClkDiv    5-31

I2SGlCtrl  21-31

I2SGlSts    21-29

I2SRX0En     21-24

I2SRX0Lft          21-19

I2SRX0Rt      21-20

I2SRX1En     21-24

I2SRX1Lft       21-20

I2SRX1Rt     21-21

I2SRX2En      21-25

I2SRX2Lft    21-21

I2SRX2Rt    21-22

I2SRXClkCfg    21-27

I2SRXCtrl  21-23

I2SRXLinCtrlData    21-22

I2SRXWrdLen     21-23

Table 31-1. EP93xx Register List

Register Name Page Number



DS785UM1 31-5
Copyright 2007 Cirrus Logic 

EP93XX Register List
EP93xx User’s Guide

3131

31

I2STX0En      21-17

I2STX0Lft      21-13

I2STX0Rt     21-13

I2STX1En       21-18

I2STX1Lft     21-14

I2STX1Rt     21-14

I2STX2En    21-18

I2STX2Lft      21-15

I2STX2Rt  21-15

I2STXClkCfg  21-26

I2STXCtrl       21-16

I2STXLinCtrlData     21-16

I2STXWrdLen     21-17

IDECfg  27-11

IDECtrl  27-10

IDEDataIn  27-14

IDEDataOut  27-13

IDEMDMADataIn  27-15

IDEMDMADataOut  27-14

IDEMDMAOp  27-12

IDEUDMADataIn  27-16

IDEUDMADataOut  27-15

IDEUDMADebug  27-18

IDEUDMAOp  27-12

IDEUDMARdBufSts    27-19

IDEUDMASts  27-16

IDEUDMAWrBufSts  27-18

IndAd  9-53

IntEn  9-57

INTERRUPT 10-35

INTERRUPT  10-25

IntStsP/IntStsC  9-60

IntStsX  28-15

IrAdrMatchVal 17-25

IrCtrl  17-24

IrData  17-27

Table 31-1. EP93xx Register List

Register Name Page Number



31-6 DS785UM1
Copyright 2007 Cirrus Logic

EP93XX Register List
EP93xx User’s Guide

3131

31

IrDataTail  17-28

IrDMACR  17-30

IrEnable  17-23

IrFlag  17-26

IrRIB 17-28

IrTR0  17-30

KeyDiagnostic 26-8

KeyScanInit  26-6

KeyTchClkDiv    5-32

LineCarry  7-49

LINEINC  8-36

LINEINIT  8-36

LineLength  7-47

LINEPATTRN  8-37

LUTSwCtrl  7-76

MAXCNTx  10-29

MaxFrmLen  9-91

MIICmd  9-65

MIIData  9-66

MIIR  17-34

MIISts  9-66

MIMR  17-33

MIRClkDiv    5-30

MISR  17-32

ParllIfIn  7-61

ParllIfOut 7-60

PattrnMask  7-65

PCAttribute  12-13

PCCommon  12-14

PCIO  12-15

PCMCIACtrl  12-17

PixelMode  7-57

PPALLOC 10-23

PWMxDutyCycle  24-4

PWMxEn  24-5

PWMxInvert  24-5

Table 31-1. EP93xx Register List

Register Name Page Number



DS785UM1 31-7
Copyright 2007 Cirrus Logic 

EP93XX Register List
EP93xx User’s Guide

3131

31

PWMxTermCnt  24-4

PwrCnt  5-15

PwrSts    5-14

PxDDR      28-11

PxDR      28-10

RasterSWLock 7-55

RawIntStsX  28-15

Receive Descriptor Format - First Word  9-15

Receive Descriptor Format - Second Word  9-15

Receive Status - First Word  9-18

Receive Status - Second Word 9-20

RefrshTimr 13-16

REMAIN 10-28

RTCCtrl  20-6

RTCData  20-4

RTCLoad  20-6

RTCMatch  20-5

RTCSts  20-5

RTCSWComp  20-7

RXBCA    9-74

RXBufThrshld  9-85

RXCtl  9-41

RXDCurAdd  9-73

RXDEnq  9-74

RXDQBAdd  9-71

RXDQBLen  9-72

RXDQCurLen  9-72

RXDThrshld  9-89

RXHdrLen  9-78

RXMissCnt  9-55

RXRuntCnt  9-56

RXStsEnq  9-78

RXStsQBAdd  9-75

RXStsQBLen  9-76

RXStsQCurAdd  9-77

RXStsQCurLen  9-76

Table 31-1. EP93xx Register List

Register Name Page Number



31-8 DS785UM1
Copyright 2007 Cirrus Logic

EP93XX Register List
EP93xx User’s Guide

3131

31

RXStsThrshld  9-87

SAR_BASEx  10-42

SAR_CURRENTx  10-43

ScratchReg0, ScratchReg1    5-22

ScrnLines  7-47

SDRAMDevCfg[3:0] 13-18

SelfCtl  9-46

SigClrStr  7-81

SIRTR0  17-31

SMCBCR[7:0}  12-10

SRCLINELENGTH 8-26

SRCPIXELSTRT 8-23

SSPCPSR  23-18

SSPCR0  23-13

SSPCR1  23-14

SSPDR  23-16

SSPIIR / SSPICR    23-18

SSPSR  23-17

Standby and Halt    5-17

STATUS  10-26

STATUS  10-37

STFClr  5-18

SysCfg  P-4

SysCfg  5-34

SysSWLock  5-35

TEOI    5-17

TestCtl  9-57

Timer1Clear, 18-5

Timer1Control, 18-6

Timer1Load, 18-3

Timer1Value, 18-4

Timer2Clear, 18-5

Timer2Control, 18-6

Timer2Load      18-3

Timer2Value      18-4

Timer3Clear      18-5

Table 31-1. EP93xx Register List

Register Name Page Number



DS785UM1 31-9
Copyright 2007 Cirrus Logic 

EP93XX Register List
EP93xx User’s Guide

3131

31

Timer3Control     18-6

Timer3Load    18-3

Timer3Value    18-4

Timer4ValueHigh  18-7

Timer4ValueLow 18-7

Transmit Descriptor Format - First Word  9-28

Transmit Descriptor Format - Second Word  9-29

Transmit Status  9-32

TRANSPATTRN  8-34

TSDischarge, TSXSample, TSYSample, 
TSDirect, TSDetect  

25-20

TSSetup 25-17

TSSetup2  25-22

TSSWLock  25-21

TSXYMaxMin  25-19

TSXYResult  25-19

TXBufThrshld  9-86

TXCollCnt  9-55

TXCtl  9-44

TXDEnq  9-82

TXDQBAdd  9-79

TXDQBLen  9-80

TXDQCurAdd  9-81

TXDQCurLen  9-80

TXDThrshld  9-90

TXStsQBAdd  9-82

TXStsQBLen  9-83

TXStsQCurAdd    9-84

TXStsQCurLen  9-84

TXStsThrshld  9-88

UART1Ctrl  14-22

UART1Data  14-17

UART1DMACtrl  14-25

UART1Flag  14-22

UART1HDLCAddMask  14-31

UART1HDLCAddMtchVal 14-30

Table 31-1. EP93xx Register List

Register Name Page Number



31-10 DS785UM1
Copyright 2007 Cirrus Logic

EP93XX Register List
EP93xx User’s Guide

3131

31

UART1HDLCCtrl  14-27

UART1HDLCRXInfoBuf  14-31

UART1HDLCSts  14-32

UART1IntIDIntClr  14-24

UART1LinCtrlHigh  14-19

UART1LinCtrlLow  14-21

UART1LinCtrlMid 14-20

UART1ModemCtrl  14-25

UART1ModemSts  14-26

UART1RXSts  14-18

UART2Ctrl  15-12

UART2Data  15-7

UART2DMACtrl  15-16

UART2Flag  15-13

UART2IntIDIntClr  15-14

UART2IrLowPwrCntr  15-15

UART2LinCtrlHigh  15-9

UART2LinCtrlLow  15-11

UART2LinCtrlMid  15-10

UART2RXSts  15-8

UART2TMR  15-17

UART3Ctrl  16-8

UART3Data  16-3

UART3DMACtrl  16-11

UART3Flag  16-9

UART3HDLCAddMask  16-16

UART3HDLCAddMtchVal  16-16

UART3HDLCCtrl  16-13

UART3HDLCRXInfoBuf  16-17

UART3HDLCSts  16-18

UART3IntIDIntClr 16-10

UART3LinCtrlHigh  16-5

UART3LinCtrlLow  16-7

UART3LinCtrlMid  16-7

UART3LowPwrCntr  16-11

UART3ModemCtrl  16-12

Table 31-1. EP93xx Register List

Register Name Page Number



DS785UM1 31-11
Copyright 2007 Cirrus Logic 

EP93XX Register List
EP93xx User’s Guide

3131

31

UART3RXSts  16-4

USBCfgCtrl  11-36

USBHCISts    11-37

VActiveStrtStop  7-39

VBlankStrtStop  7-40

VClkStrtStop  7-41

VICxDefVectAddr    6-15

VICxFIQStatus     6-10

VICxIntEnable       6-11

VICxIntEnClear       6-12

VICxIntSelect      6-11

VICxIRQStatus         6-9

VICxProtection      6-13

VICxRawIntr     6-10

VICxSoftInt     6-12

VICxSoftIntClear       6-13

VICxVectAdd12, 6-16

VICxVectAdd9, 6-16

VICxVectAddr     6-14

VICxVectAddr0 6-15

VICxVectAddr1, 6-15

VICxVectAddr10, 6-16

VICxVectAddr11, 6-16

VICxVectAddr13, 6-16

VICxVectAddr14, 6-16

VICxVectAddr15  6-16

VICxVectAddr2, 6-15

VICxVectAddr3, 6-15

VICxVectAddr4, 6-15

VICxVectAddr5, 6-15

VICxVectAddr6 6-15

VICxVectAddr7, 6-16

VICxVectAddr8, 6-16

VICxVectCntl0, 6-17

VICxVectCntl1, 6-17

VICxVectCntl10, 6-17

Table 31-1. EP93xx Register List

Register Name Page Number



31-12 DS785UM1
Copyright 2007 Cirrus Logic

EP93XX Register List
EP93xx User’s Guide

3131

31

VICxVectCntl11, 6-17

VICxVectCntl12, 6-17

VICxVectCntl13, 6-17

VICxVectCntl14, 6-17

VICxVectCntl15  6-18

VICxVectCntl2, 6-17

VICxVectCntl3, 6-17

VICxVectCntl4, 6-17

VICxVectCntl5, 6-17

VICxVectCntl6, 6-17

VICxVectCntl7, 6-17

VICxVectCntl8, 6-17

VICxVectCntl9, 6-17

VidClkDiv  5-29

VideoAttribs  7-51

VidScrnHPage  7-46

VidScrnPage  7-46

VidSigCtrl  7-78

VidSigRsltVal  7-77

VLineStep  7-48

VLinesTotal  7-38

VSigStrtStop  7-79

VSyncStrtStop  7-38

Watchdog  19-3

WDStatus 19-5

Table 31-1. EP93xx Register List

Register Name Page Number



Mouser Electronics
  

Authorized Distributor
 
  

Click to View Pricing, Inventory, Delivery & Lifecycle Information:
 
 
 
 Cirrus Logic:   

  EP9315-CBZ  EP9315-IBZ

http://www.mouser.com/Cirrus-Logic
http://www.mouser.com/access/?pn=EP9315-CBZ
http://www.mouser.com/access/?pn=EP9315-IBZ

	Contents
	Figures
	Tables
	Revision History

	Preface
	P.1 About the EP93xx User’s Guide
	P.2 Related Documents from Cirrus Logic
	P.3 Reference Documents
	P.4 Notational Conventions
	P.5 Register Example

	Introduction
	1.1 Introduction
	1.2 EP93xx Features
	1.3 EP93xx Processor Applications
	1.4 EP93xx Processor Highlights
	1.4.1 High-Performance ARM920T Core
	1.4.2 MaverickCrunch™ Co-processor for Ultra-Fast Math Processing
	1.4.3 MaverickKey™ Unique ID Secures Digital Content in OEM Designs
	1.4.4 Integrated Multi-Port USB 2.0 Full Speed Hosts with Transceivers
	1.4.5 Integrated Ethernet MAC Reduces BOM Costs
	1.4.6 8x8 Keypad Interface Reduces BOM Costs
	1.4.7 Multiple Booting Mechanisms Increase Flexibility
	1.4.8 Abundant General Purpose I/Os Build Flexible Systems
	1.4.9 General-Purpose Memory Interface (SDRAM, SRAM, ROM, FLASH)
	1.4.10 12-Bit Analog-to-Digital Converter (ADC) Provides an Integrated Touch-Screen Interface or General ADC Functionality
	1.4.11 Raster Analog / LCD Controller
	1.4.12 Graphics Accelerator
	1.4.13 PCMCIA Interface


	ARM920T Core and Advanced High-Speed Bus (AHB)
	2.1 Introduction
	2.2 Overview: ARM920T Core
	2.2.1 Features
	2.2.2 Block Diagram
	2.2.3 Operations
	2.2.3.1 ARM9TDMI Core
	2.2.3.2 Memory Management Unit
	2.2.3.3 Cache and Write Buffer

	2.2.4 Co-processor Interface
	2.2.5 AMBA AHB Bus Interface Overview
	2.2.6 AHB Implementation Details
	2.2.7 Memory and Bus Access Errors
	2.2.8 Bus Arbitration
	2.2.8.1 Main AHB Bus Arbiter
	2.2.8.2 SDRAM Slave Arbiter
	2.2.8.3 EBI Bus Arbiter


	2.3 AHB Decoder
	2.3.1 AHB Slave
	2.3.2 AHB-to-APB Bridge
	2.3.2.1 Function and Operation of the AHB-to-APB Bridge

	2.3.3 APB Slave
	2.3.4 Register Definitions
	2.3.5 Memory Map
	2.3.6 Internal Register Map
	2.3.6.1 Memory Access Rules



	MaverickCrunch Co-Processor
	3.1 Introduction
	3.1.1 Features
	3.1.2 Operational Overview
	3.1.3 Pipelines and Latency
	3.1.4 Data Registers
	3.1.5 Integer Saturation Arithmetic
	3.1.6 Comparisons

	3.2 Programming Examples
	3.2.1 Example 1
	3.2.1.1 Setup Code
	3.2.1.2 C Code
	3.2.1.3 Accessing MaverickCrunch with ARM Co-Processor Instructions
	3.2.1.4 MaverickCrunch Assembly Language Instructions

	3.2.2 Example 2
	3.2.2.1 C Code
	3.2.2.2 MaverickCrunch Assembly Language Instructions


	3.3 DSPSC Register
	3.4 ARM Co-Processor Instruction Format
	3.5 Instruction Set for the MaverickCrunch Co-Processor
	3.5.1 Load and Store Instructions
	3.5.2 Move Instructions
	3.5.3 Accumulator and DSPSC Move Instructions
	3.5.4 Copy and Conversion Instructions
	3.5.5 Shift Instructions
	3.5.6 Compare Instructions
	3.5.7 Floating Point Arithmetic Instructions
	3.5.8 Integer Arithmetic Instructions
	3.5.9 Accumulator Arithmetic Instructions


	Boot ROM
	4.1 Introduction
	4.1.1 Boot ROM Hardware Operational Overview
	4.1.1.1 Memory Map

	4.1.2 Boot ROM Software Operational Overview
	4.1.2.1 Image Header
	4.1.2.2 Boot Algorithm
	4.1.2.3 Flowchart


	4.2 Boot Options
	4.2.1 UART Boot
	4.2.2 SPI Boot
	4.2.3 FLASH Boot
	4.2.4 SDRAM or SyncFLASH Boot
	4.2.5 Synchronous Memory Operation


	System Controller
	5.1 Introduction
	5.1.1 System Startup
	5.1.2 System Reset
	5.1.3 Hardware Configuration Control
	5.1.4 Software System Configuration Options
	5.1.5 Clock Control
	5.1.5.1 Oscillators and Programmable PLLs
	5.1.5.2 Bus and Peripheral Clock Generation
	5.1.5.3 Steps for Clock Configuration

	5.1.6 Power Management
	5.1.6.1 Clock Gatings
	5.1.6.2 System Power States

	5.1.7 Interrupt Generation

	5.2 Registers

	Vectored Interrupt Controller
	6.1 Introduction
	6.1.1 Interrupt Priority
	6.1.2 Interrupt Configuration
	6.1.3 Interrupt Details

	6.2 Registers

	Raster Engine With Analog/LCD Integrated Timing and Interface
	7.1 Introduction
	7.2 Features
	7.3 Raster Engine Features Overview
	7.3.1 Hardware Blinking
	7.3.2 Color Look-Up Tables
	7.3.3 Grayscale/Color Generation for Monochrome/Passive Low Color Displays
	7.3.4 Frame Buffer Organization
	7.3.5 Frame Buffer Memory Size
	7.3.6 Pulse Width Modulated Brightness
	7.3.7 Hardware Cursor

	7.4 Functional Details
	7.4.1 VILOSATI (Video Image Line Output Scanner and Transfer Interface)
	7.4.2 Video FIFO
	7.4.3 Video Pixel MUX
	7.4.4 Blink Function
	7.4.5 Color Look-Up-Tables
	7.4.6 Color RGB Mux
	7.4.7 Pixel Shift Logic
	7.4.8 Grayscale/Color Generator for Monochrome/Passive Low Color Displays
	7.4.8.1 HORZ_CNT3, HORZ_CNT4 Counters
	7.4.8.2 VERT_CNT3, VERT_CNT4 Counters
	7.4.8.3 FRAME_CNT3, FRAME_CNT4 Counters
	7.4.8.4 HORZ_CNTx (pixel) timing
	7.4.8.5 VERT_CNTx (line) timing
	7.4.8.6 FRAME_CNTx timing
	7.4.8.7 Grayscale Look-Up Table (GrySclLUT)
	7.4.8.8 GrySclLUT Timing Diagram

	7.4.9 Hardware Cursor
	7.4.9.1 Registers Used for Cursor

	7.4.10 Video Timing
	7.4.10.1 Setting the Video Memory Parameters
	7.4.10.2 PixelMode

	7.4.11 Blink Logic
	7.4.11.1 BlinkRate
	7.4.11.2 Defining Blink Pixels
	7.4.11.3 Types of Blinking

	7.4.12 Color Mode Definition
	7.4.12.1 Pixel Look-up Table Mode
	7.4.12.2 Triple 8-bit Color Definition Mode
	7.4.12.3 16-bit 565 Color Definition Mode
	7.4.12.4 16-bit 555 Color Definition Mode


	7.5 Registers

	Graphics Accelerator
	8.1 Overview
	8.2 Block Processing Modes
	8.2.1 Copy
	8.2.1.1 Transparency
	8.2.1.2 Logical Mask
	8.2.1.3 Logical Destination
	8.2.1.4 Operation Precedence

	8.2.2 Remapping
	8.2.3 Block Fills
	8.2.4 Packed Memory Transfer

	8.3 Line Draws
	8.3.1 Breshenham Line Draws
	8.3.2 Pixel Step Line Draws

	8.4 Memory Organization for Graphics Accelerator
	8.4.1 Memory Organization for 1 Bit Per Pixel (bpp)
	8.4.2 Memory Organization for 4-Bits Per Pixel
	8.4.3 Memory Organization for 8-Bits Per Pixel
	8.4.4 Memory Organization for 16-Bits Per Pixel
	8.4.5 Memory Organization for 24-Bits Per Pixel
	8.4.6 Memory Map Access

	8.5 Register Programming
	8.5.1 Word Count
	8.5.1.1 Example: 8 BPP mode
	8.5.1.2 Example: 24 BPP (packed) mode

	8.5.2 Pixel End and Start
	8.5.2.1 4 BPP Word Layout
	8.5.2.2 8 BPP Word Layout
	8.5.2.3 16 BPP WORD Layout
	8.5.2.4 24 BPP mode


	8.6 Register Usage
	8.6.1 Breshenham’s Algorithm Line Draw
	8.6.2 Example of Breshenham’s Algorithm Line Draw
	8.6.3 Block Fill Function
	8.6.4 Block Copy Function
	8.6.4.1 Example of Block Copy


	8.7 Registers

	1/10/100 Mbps Ethernet LAN Controller
	9.1 Introduction
	9.1.1 Detailed Description
	9.1.1.1 Host Interface and Descriptor Processor
	9.1.1.2 Reset and Initialization
	9.1.1.3 Power-down Modes
	9.1.1.4 Address Space

	9.1.2 MAC Engine
	9.1.2.1 Data Encapsulation

	9.1.3 Packet Transmission Process
	9.1.3.1 Carrier Deference

	9.1.4 Transmit Back-Off
	9.1.4.1 Transmission
	9.1.4.2 The FCS Field
	9.1.4.3 Bit Order
	9.1.4.4 Destination Address (DA) Filter
	9.1.4.5 Perfect Address Filtering
	9.1.4.6 Hash Filter
	9.1.4.7 Flow Control
	9.1.4.8 Receive Flow Control
	9.1.4.9 Transmit Flow Control
	9.1.4.10 Rx Missed and Tx Collision Counters
	9.1.4.11 Accessing the MII


	9.2 Descriptor Processor
	9.2.1 Receive Descriptor Processor Queues
	9.2.2 Receive Descriptor Queue
	9.2.3 Receive Status Queue
	9.2.3.1 Receive Status Format
	9.2.3.2 Receive Flow
	9.2.3.3 Receive Errors
	9.2.3.4 Receive Descriptor Data/Status Flow
	9.2.3.5 Receive Descriptor Example
	9.2.3.6 Receive Frame Pre-Processing
	9.2.3.7 Transmit Descriptor Processor Queues
	9.2.3.8 Transmit Descriptor Queue
	9.2.3.9 Transmit Descriptor Format
	9.2.3.10 Transmit Status Queue
	9.2.3.11 Transmit Status Format
	9.2.3.12 Transmit Flow
	9.2.3.13 Transmit Errors
	9.2.3.14 Transmit Descriptor Data/Status Flow

	9.2.4 Interrupts
	9.2.4.1 Interrupt Processing

	9.2.5 Initialization
	9.2.5.1 Interrupt Processing
	9.2.5.2 Receive Queue Processing
	9.2.5.3 Transmit Queue Processing
	9.2.5.4 Other Processing
	9.2.5.5 Transmit Restart Process


	9.3 Registers

	DMA Controller
	10.1 Introduction
	10.1.1 DMA Features List
	10.1.2 Managing Data Transfers Using a DMA Channel
	10.1.3 DMA Operations
	10.1.3.1 Memory-to-Memory Channels
	10.1.3.2 Memory-to-Peripheral Channels

	10.1.4 Internal M2P or P2M AHB Master Interface Functional Description
	10.1.5 M2M AHB Master Interface Functional Description
	10.1.5.1 Software Trigger Mode
	10.1.5.2 Hardware Trigger Mode for Internal Peripherals (SSP and IDE) and for External Peripherals without Handshaking Signals
	10.1.5.3 Hardware Trigger Mode for External Peripherals with Handshaking Signals

	10.1.6 AHB Slave Interface Limitations
	10.1.7 Interrupt Interface
	10.1.8 Internal M2P/P2M Data Unpacker/Packer Functional Description
	10.1.9 Internal M2P/P2M DMA Functional Description
	10.1.9.1 Internal M2P/P2M DMA Buffer Control Finite State Machine
	10.1.9.2 Data Transfer Initiation and Termination

	10.1.10 M2M DMA Functional Description
	10.1.10.1 M2M DMA Control Finite State Machine
	10.1.10.2 M2M Buffer Control Finite State Machine
	10.1.10.3 Data Transfer Initiation
	10.1.10.4 Data Transfer Termination
	10.1.10.5 Memory Block Transfer
	10.1.10.6 Bandwidth Control
	10.1.10.7 External DMA Request (DREQ) Mode

	10.1.11 DMA Data Transfer Size Determination
	10.1.11.1 Software Initiated M2M and M2P/P2M Transfers
	10.1.11.2 Hardware-Initiated M2M Transfers

	10.1.12 Buffer Descriptors
	10.1.12.1 Internal M2P/P2M Channel Rx Buffer Descriptors
	10.1.12.2 Internal M2P/P2M Channel Tx Buffer Descriptors
	10.1.12.3 M2M Channel Buffer Descriptors

	10.1.13 Bus Arbitration

	10.2 Registers
	10.2.1 DMA Controller Memory Map
	10.2.2 Internal M2P/P2M Channel Register Map


	Universal Serial Bus Host Controller
	11.1 Introduction
	11.1.1 Features

	11.2 Overview
	11.2.1 Data Transfer Types
	11.2.2 Host Controller Interface
	11.2.2.1 Communication Channels
	11.2.2.2 Data Structures

	11.2.3 Host Controller Driver Responsibilities
	11.2.3.1 Host Controller Management
	11.2.3.2 Bandwidth Allocation
	11.2.3.3 List Management
	11.2.3.4 Root Hub

	11.2.4 Host Controller Responsibilities
	11.2.4.1 USB States
	11.2.4.2 Frame Management
	11.2.4.3 List Processing

	11.2.5 USB Host Controller Blocks
	11.2.5.1 AHB Slave
	11.2.5.2 AHB Master
	11.2.5.3 HCI Slave Block
	11.2.5.4 HCI Master Block
	11.2.5.5 USB State Control
	11.2.5.6 Data FIFO
	11.2.5.7 List Processor
	11.2.5.8 Root Hub and Host SIE


	11.3 Registers

	Static Memory Controller
	12.1 Introduction
	12.2 Static Memory Controller Operation
	12.3 PCMCIA Interface (EP9315 Processor Only)
	12.4 PC Card Memory-Mode Enable Signals
	12.5 PC Card Memory Mapping
	12.6 Registers
	12.6.1 Bank Configuration Registers
	12.6.2 PCMCIA Configuration Registers (EP9315 Processor Only)


	SDRAM, SyncROM, and SyncFLASH Controller
	13.1 Introduction
	13.2 Booting from SyncROM or SyncFLASH
	13.3 Address Pin Usage
	13.4 SDRAM Initialization
	13.5 Programming Mode Register: SDRAM Or SyncROM Device
	13.6 SDRAM Self Refresh
	13.6.1 Entering Self Refresh Mode
	13.6.2 Exiting Self Refresh Mode

	13.7 Programming Registers: SyncFLASH Device
	13.8 External Synchronous Memory System
	13.8.1 Chip Select SDCSN[3:0] Decoding
	13.8.2 Address/Data/Control Required by Memory System

	13.9 Registers

	UART1 With HDLC and Modem Control Signals
	14.1 Introduction
	14.2 UART Overview
	14.2.1 UART Functional Description
	14.2.1.1 AMBA APB Interface
	14.2.1.2 DMA Block
	14.2.1.3 Register Block
	14.2.1.4 Baud Rate Generator
	14.2.1.5 Transmit FIFO
	14.2.1.6 Receive FIFO
	14.2.1.7 Transmit Logic
	14.2.1.8 Receive Logic
	14.2.1.9 Interrupt Generation Logic
	14.2.1.10 Synchronizing Registers and Logic

	14.2.2 UART Operation
	14.2.2.1 Error Bits
	14.2.2.2 Disabling the FIFOs
	14.2.2.3 System/diagnostic Loopback Testing
	14.2.2.4 UART Character Frame

	14.2.3 Interrupts
	14.2.3.1 UARTMSINTR
	14.2.3.2 UARTRXINTR
	14.2.3.3 UARTTXINTR
	14.2.3.4 UARTRTINTR
	14.2.3.5 UARTINTR


	14.3 Modem
	14.4 HDLC
	14.4.1 Overview of HDLC Modes
	14.4.2 Selecting HDLC Modes
	14.4.3 HDLC Transmit
	14.4.4 HDLC Receive
	14.4.5 CRCs
	14.4.6 Address Matching
	14.4.7 Aborts
	14.4.8 DMA
	14.4.9 Writing Configuration Registers

	14.5 UART1 Package Dependency
	14.5.1 Clocking Requirements
	14.5.2 Bus Bandwidth Requirements

	14.1 Registers

	UART2
	15.1 Introduction
	15.2 IrDA SIR Block
	15.2.1 IrDA SIR Encoder/decoder Functional Description
	15.2.1.1 IrDA SIR Transmit Encoder
	15.2.1.2 IrDA SIR Receive Decoder

	15.2.2 IrDA SIR Operation
	15.2.2.1 System/diagnostic Loopback Testing

	15.2.3 IrDA Data Modulation
	15.2.4 Enabling Infrared (Ir) Modes

	15.3 UART2 Package Dependency
	15.3.1 Clocking Requirements
	15.3.2 Bus Bandwidth Requirements

	15.4 Registers

	UART3 With HDLC Encoder
	16.1 Introduction
	16.2 Implementation Details
	16.2.1 UART3 Package Dependency
	16.2.2 Clocking Requirements
	16.2.3 Bus Bandwidth Requirements

	16.3 Registers

	IrDA
	17.1 Introduction
	17.2 IrDA Interfaces
	17.3 Shared IrDA Interface Feature
	17.3.1 Overview
	17.3.2 Functional Description
	17.3.2.1 General Configuration
	17.3.2.2 Transmitting Data
	17.3.2.3 Receiving Data
	17.3.2.4 Special Conditions

	17.3.3 Control Information Buffering

	17.4 Medium IrDA Specific Features
	17.4.1 Introduction
	17.4.1.1 Bit Encoding
	17.4.1.2 Frame Format

	17.4.2 Functional Description
	17.4.2.1 Baud Rate Generation
	17.4.2.2 Receive Operation
	17.4.2.3 Transmit Operation


	17.5 Fast IrDA Specific Features
	17.5.1 Introduction
	17.5.1.1 4PPM Modulation
	17.5.1.2 4.0 Mbps FIR Frame Format

	17.5.2 Functional Description
	17.5.2.1 Baud Rate Generation
	17.5.2.2 Receive Operation
	17.5.2.3 Transmit Operation

	17.5.3 IrDA Connectivity
	17.5.4 IrDA Integration Information
	17.5.4.1 Enabling Infrared Modes
	17.5.4.2 Clocking Requirements
	17.5.4.3 Bus Bandwidth Requirements


	17.6 Registers

	Timers
	18.1 Introduction
	18.1.1 Features
	18.1.2 16 and 32-bit Timer Operation
	18.1.2.1 Free Running Mode
	18.1.2.2 Pre-load Mode

	18.1.3 40-bit Timer Operation

	18.2 Registers

	Watchdog Timer
	19.1 Introduction
	19.1.1 Watchdog Activation
	19.1.2 Clocking Requirements
	19.1.3 Reset Requirements
	19.1.4 Watchdog Status

	19.1 Registers

	Real Time Clock With Software Trim
	20.1 Introduction
	20.1.1 Software Trim
	20.1.1.1 Software Compensation
	20.1.1.2 Oscillator Frequency Calibration
	20.1.1.3 RTCSWComp Value Determination
	20.1.1.4 Example - Measured Value Split Into Integer and Fractional Component
	20.1.1.5 Maximum Error Calculation vs. Real Time Clock Accuracy
	20.1.1.6 Real-Time Interrupt

	20.1.2 Reset Control

	20.1 Registers

	I2S Controller
	21.1 Introduction
	21.2 I2S Transmitter Channel Overview
	21.3 I2S Receiver Channel Overview
	21.3.1 Receiver FIFO’s

	21.4 I2S Master Clock Generation
	21.5 I2S Bit Clock Rate Generation
	21.5.1 Example of the Bit Clock Generation.
	21.5.2 Example of Right Justified LRCK format

	21.6 Interrupts
	21.7 Registers
	21.7.1 I2S TX Registers
	21.7.2 I2S RX Registers
	21.7.3 I2S Configuration and Status Registers
	21.7.4 I2S Global Status Registers


	AC’97 Controller
	22.1 Introduction
	22.2 Interrupts
	22.2.1 Channel Interrupts
	22.2.1.1 RIS
	22.2.1.2 TIS
	22.2.1.3 RTIS
	22.2.1.4 TCIS

	22.2.2 Global Interrupts
	22.2.2.1 CODECREADY
	22.2.2.2 WINT
	22.2.2.3 GPIOINT
	22.2.2.4 GPIOTXCOMPLETE
	22.2.2.5 SLOT2INT
	22.2.2.6 SLOT1TXCOMPLETE
	22.2.2.7 SLOT2TXCOMPLETE


	22.3 System Loopback Testing
	22.4 Registers

	Synchronous Serial Port
	23.1 Introduction
	23.2 Features
	23.3 SSP Functionality
	23.4 SSP Pin Multiplex
	23.5 Configuring the SSP
	23.5.1 Enabling SSP Operation
	23.5.2 Master/Slave Mode
	23.5.3 Serial Bit Rate Generation
	23.5.4 Frame Format
	23.5.5 Texas Instruments® Synchronous Serial Frame Format
	23.5.6 Motorola® SPI Frame Format
	23.5.6.1 SPO Clock Polarity
	23.5.6.2 SPH Clock Phase

	23.5.7 Motorola SPI Format with SPO=0, SPH=0
	23.5.8 Motorola SPI Format with SPO=0, SPH=1
	23.5.9 Motorola SPI Format with SPO=1, SPH=0
	23.5.10 Motorola SPI Format with SPO=1, SPH=1
	23.5.11 National Semiconductor® Microwire™ Frame Format
	23.5.11.1 Setup and Hold Time Requirements on SFRMIN with Respect to SCLKIN in Microwire Mode


	23.6 Registers

	Pulse Width Modulator
	24.1 Introduction
	24.2 Theory of Operation
	24.2.1 PWM Programming Examples
	24.2.1.1 Example
	24.2.1.2 Static Programming (PWM is Not Running) Example
	24.2.1.3 Dynamic Programming (PWM is Running) Example

	24.2.2 Programming Rules

	24.3 Registers

	Analog Touch Screen Interface
	25.1 Introduction
	25.2 Touch Screen Controller Operation
	25.2.1 Touch Screen Scanning: Four-wire and Eight-wire Operation
	25.2.2 Five-wire and Seven-wire Operation
	25.2.3 Direct Operation
	25.2.4 Measuring Analog Input with the Touch Screen Controls Disabled
	25.2.5 Measuring Touch Screen Resistance
	25.2.6 Polled and Interrupt-Driven Modes
	25.2.7 Touch Screen Package Dependency

	25.3 Registers

	Keypad Interface
	26.1 Introduction
	26.2 Theory of Operation
	26.2.1 Apparent Key Detection
	26.2.2 Scan and Debounce
	26.2.3 Interrupt Generation
	26.2.4 Low Power Mode
	26.2.5 Three-key Reset

	26.3 Registers

	IDE Interface
	27.1 Introduction
	27.2 Theory of Operation
	27.2.1 Diagrams and State Machines
	27.2.2 PIO Operations
	27.2.3 MDMA Operations
	27.2.4 UDMA Operations
	27.2.5 Performance Considerations
	27.2.6 UDMA Example
	27.2.7 DMA Request Latency
	27.2.7.1 DMA Request Deassertion
	27.2.7.2 DMA Request Latency Overview
	27.2.7.3 IDE DMA Programming Considerations

	27.2.8 IDE Package Dependency
	27.2.8.1 System Configuration Constraints
	27.2.8.2 Bus Bandwidth Requirements


	27.3 Registers

	GPIO Interface
	28.1 Introduction
	28.1.1 Memory Map
	28.1.2 Functional Description
	28.1.3 Reset
	28.1.4 GPIO Pin Map

	28.2 Registers

	Security
	29.1 Introduction
	29.2 Features
	29.3 Contact Information
	29.4 Registers

	Glossary
	EP93XX Register List

