
100 mA Negative Voltage **Regulators**

The MC79L00A Series negative voltage regulators are inexpensive, easy-to-use devices suitable for numerous applications requiring up to 100 mA. Like the higher powered MC7900 Series negative regulators, this series features thermal shutdown and current limiting, making them remarkably rugged. In most applications, no external components are required for operation.

The MC79L00A devices are useful for on-card regulation or any other application where a regulated negative voltage at a modest current level is needed. These regulators offer substantial advantage over the common resistor/Zener diode approach.

Features

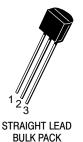
- No External Components Required
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- Low Cost
- Complementary Positive Regulators Offered (MC78L00 Series)
- Pb-Free Packages are Available

* Automotive temperature range selections are available with special test conditions and additional tests in 5, 12 and 15 V devices. Contact your local ON Semiconductor sales office for information.

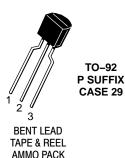
Figure 1. Representative Schematic Diagram

ON Semiconductor®

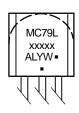
www.onsemi.com


THREE-TERMINAL LOW **CURRENT NEGATIVE FIXED VOLTAGE REGULATORS**

MARKING DIAGRAMS



4. NC 5. GND 6. V_{in} 7. V_{in} 8. NC



CASE 751

Pin 1. Ground

2. Input 3. Output

= Specific Device Code XXX Α = Assembly Location

L = Wafer Lot = Year Υ W = Work Week = B or C

у = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (-5 V) (-12, -15, -18 V) (-24 V)	V _I	-30 -35 -40	Vdc
Power Dissipation Case 29 (TO–92 Type) T _A = 25°C Thermal Resistance, Junction–to–Ambient Thermal Resistance, Junction–to–Case Case 751 (SOIC–8 Type) (Note 1) T _A = 25°C Thermal Resistance, Junction–to–Ambient Thermal Resistance, Junction–to–Ambient Thermal Resistance, Junction–to–Case	PD R _{θJA} R _{θJC} PD R _{θJA} R _{θJC}	Internally Limited 160 83 Internally Limited 180 45	W °C/W °C/W °C/W
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	+150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Human Body Model 2000 V per MIL_STD_883, Method 3015

Machine Model Method 200 V.

ELECTRICAL CHARACTERISTICS (V_I = -10 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J +125°C (for MC79LXXAB), 0°C < T_J < +125°C (for MC79LXXAC)).

		М	λ Β		
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage $(T_J = +25^{\circ}C)$	Vo	-4.8	-5.0	-5.2	Vdc
Input Regulation ($T_J = +25^{\circ}C$) $-7.0 \text{ Vdc} \ge V_I \ge -20 \text{ Vdc}$ $-8.0 \text{ Vdc} \ge V_I \ge -20 \text{ Vdc}$	Reg _{line}	- -	- -	150 100	mV
Load Regulation $T_J = +25^{\circ}C, \ 1.0 \ \text{mA} \le I_O \le 100 \ \text{mA}$ $1.0 \ \text{mA} \le I_O \le 40 \ \text{mA}$	Reg _{load}	-	- -	60 30	mV
Output Voltage $ -7.0 \text{ Vdc} \ge V_l \ge -20 \text{ Vdc}, \ 1.0 \text{ mA} \le I_O \le 40 \text{ mA} $ $V_l = -10 \text{ Vdc}, \ 1.0 \text{ mA} \le I_O \le 70 \text{ mA} $	Vo	-4.75 -4.75	- -	-5.25 -5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	-	- -	6.0 5.5	mA
Input Bias Current Change $-8.0 \text{ Vdc} \ge \text{V}_1 \ge -20 \text{ Vdc}$ $1.0 \text{ mA} \le \text{I}_0 \le 40 \text{ mA}$	I _{IB}	-	- -	1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	V _n	_	40	-	μV
Ripple Rejection ($-8.0 \ge V_1 \ge -18 \text{ Vdc}$, f = 120 Hz, $T_J = +25^{\circ}\text{C}$)	RR	41	49	-	dB
Dropout Voltage ($I_O = 40 \text{ mA}, T_J = +25^{\circ}\text{C}$)	V _I –V _O	-	1.7	-	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} SOIC-8 Junction-to-Ambient Thérmal Resistance is for minimum recommended pad size. Refer to Figure 9 for Thermal Resistance variation versus pad size.

^{*}This device series contains ESD protection and exceeds the following tests:

ELECTRICAL CHARACTERISTICS (V_I = -19 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J +125°C (for MC79LXXAB), 0°C < T_J < +125°C (for MC79LXXAC)).

		М			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	-11.5	-12	-12.5	Vdc
Input Regulation ($T_J = +25^{\circ}C$) -14.5 Vdc $\geq V_I \geq -27$ Vdc -16 Vdc $\geq V_I \geq -27$ Vdc	Reg _{line}	-	- -	250 200	mV
Load Regulation $T_J = +25^{\circ}\text{C}, \ 1.0 \ \text{mA} \leq I_O \leq 100 \ \text{mA} \\ 1.0 \ \text{mA} \leq I_O \leq 40 \ \text{mA}$	Reg _{load}	- 1	-	100 50	mV
Output Voltage $ -14.5 \text{ Vdc} \ge V_l \ge -27 \text{ Vdc}, \ 1.0 \text{ mA} \le I_O \le 40 \text{ mA} $ $V_l = -19 \text{ Vdc}, \ 1.0 \text{ mA} \le I_O \le 70 \text{ mA} $	Vo	-11.4 -11.4	- -	-12.6 -12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	- -	- -	6.5 6.0	mA
Input Bias Current Change -16 Vdc \geq V _I \geq -27 Vdc 1.0 mA \leq I _O \leq 40 mA	I _{IB}	- -	- -	1.5 0.2	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	V _n	_	80	-	μV
Ripple Rejection ($-15 \le V_1 \le -25 \text{ Vdc}$, f = 120 Hz, T _J = +25°C)	RR	37	42	-	dB
Dropout Voltage ($I_O = 40 \text{ mA}, T_J = +25^{\circ}\text{C}$)	V _I -V _O	-	1.7	-	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (V_I = -23 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J +125°C (for MC79LXXAB), 0°C < T_J < +125°C (for MC79LXXAC)).

		M			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	-14.4	-15	-15.6	Vdc
Input Regulation ($T_J = +25^{\circ}C$) -17.5 Vdc $\geq V_I \geq -30$ Vdc -20 Vdc $\geq V_I \geq -30$ Vdc	Reg _{line}	- -	- -	300 250	mV
Load Regulation $T_J = +25^{\circ}C, \ 1.0 \ \text{mA} \leq I_O \leq 100 \ \text{mA} \\ 1.0 \ \text{mA} \leq I_O \leq 40 \ \text{mA}$	Reg _{load}	_ _	- -	150 75	mV
Output Voltage $-17.5 \text{ Vdc} \ge V_l \ge -\text{Vdc}$, 1.0 mA $\le I_O \le 40$ mA $V_l = -23 \text{ Vdc}$, 1.0 mA $\le I_O \le 70$ mA	Vo	-14.25 -14.25	_ _	-15.75 -15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	- -	- -	6.5 6.0	mA
Input Bias Current Change -20 Vdc \geq V _I \geq -30 Vdc 1.0 mA \leq I _O \leq 40 mA	ΔI_{IB}	- -	- -	1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	V _N	-	90	-	μV
Ripple Rejection ($-18.5 \le V_1 \le -28.5 \text{ Vdc}$, f = 120 Hz)	RR	34	39	_	dB
Dropout Voltage I _O = 40 mA, T _J = +25°C	V _I -V _O	-	1.7	_	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (V_I = -27 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J +125°C (for MC79LXXAB), 0°C < T_J < +125°C (for MC79LXXAC), unless otherwise noted).

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage $(T_J = +25^{\circ}C)$	Vo	-17.3	-18	-18.7	Vdc
Input Regulation ($T_J = +25^{\circ}C$) $-20.7 \text{ Vdc} \ge V_I \ge -33 \text{ Vdc}$ $-21.4 \text{ Vdc} \ge V_I \ge -33 \text{ Vdc}$ $-22 \text{ Vdc} \ge V_I \ge -33 \text{ Vdc}$ $-21 \text{ Vdc} \ge V_I \ge -33 \text{ Vdc}$	Reg _{line}	- - - -	- - - -	325 - - 275	mV
Load Regulation $T_J = +25^{\circ}\text{C}, \ 1.0 \ \text{mA} \le I_O \le 100 \ \text{mA}$ $1.0 \ \text{mA} \le I_O \le 40 \ \text{mA}$	Reg _{load}	- -		170 85	mV
Output Voltage $-20.7 \text{ Vdc} \ge V_I \ge -33 \text{ Vdc}$, $1.0 \text{ mA} \le I_O \le 40 \text{ mA}$ $-21.4 \text{ Vdc} \ge V_I \ge -33 \text{ Vdc}$, $1.0 \text{ mA} \le I_O \le 40 \text{ mA}$ $V_I = -27 \text{ Vdc}$, $1.0 \text{ mA} \le I_O \le 70 \text{ mA}$	Vo	-17.1 - -17.1	- - -	-18.9 - -18.9	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	- -	_ _	6.5 6.0	mA
Input Bias Current Change $-21 \text{ Vdc} \ge \text{V}_{\text{I}} \ge -33 \text{ Vdc}$ $-27 \text{ Vdc} \ge \text{V}_{\text{I}} \ge -33 \text{ Vdc}$ $1.0 \text{ mA} \le \text{I}_{\text{O}} \le 40 \text{ mA}$	I _{IB}	- - -	- - -	1.5 _ 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	V _n	_	150	-	μV
Ripple Rejection ($-23 \le V_I \le -33$ Vdc, f = 120 Hz, $T_J = +25^{\circ}C$)	RR	33	48	_	dB
Dropout Voltage I _O = 40 mA, T _J = +25°C	V _I -V _O	_	1.7	_	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (V_I = -33 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J +125°C (for MC79LXXAB), 0°C < T_J < +125°C (for MC79LXXAC), unless otherwise noted).

Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	-23	-24	-25	Vdc
Input Regulation ($T_J = +25^{\circ}C$) $-27 \text{ Vdc} \ge V_I \ge -38 \text{ Vdc}$ $-27.5 \text{ Vdc} \ge V_I \ge -38 \text{ Vdc}$ $-28 \text{ Vdc} \ge V_I \ge -38 \text{ Vdc}$	Reg _{line}	- - -	- - -	350 - 300	mV
Load Regulation $T_J = +25^{\circ}C, \ 1.0 \ \text{mA} \le I_O \le 100 \ \text{mA}$ $1.0 \ \text{mA} \le I_O \le 40 \ \text{mA}$	Reg _{load}	- -	- -	200 100	mV
$ \begin{array}{l} \text{Output Voltage} \\ -27 \text{ Vdc} \geq V_I \geq -38 \text{ V}, \ 1.0 \text{ mA} \leq I_O \leq 40 \text{ mA} \\ -28 \text{ Vdc} \geq V_I \geq -38 \text{ Vdc}, \ 1.0 \text{ mA} \leq I_O \leq 40 \text{ mA} \\ V_I = -33 \text{ Vdc}, \ 1.0 \text{ mA} \leq I_O \leq 70 \text{ mA} \end{array} $	Vo	-22.8 - -22.8	- - -	-25.2 - -25.2	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		- -	6.5 6.0	mA
Input Bias Current Change $-28 \text{ Vdc} \ge V_l \ge -38 \text{ Vdc}$ $1.0 \text{ mA} \le I_O \le 40 \text{ mA}$	$\Delta I_{ m IB}$	- -	_ _	1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	V _n	_	200	-	μV
Ripple Rejection ($-29 \le V_I \le -35$ Vdc, f = 120 Hz, $T_J = +25^{\circ}C$)	RR	31	47	-	dB
Dropout Voltage I _O = 40 mA, T _J = +25°C	V _I -V _O	_	1.7	-	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

APPLICATIONS INFORMATION

Design Considerations

The MC79L00A Series of fixed voltage regulators are designed with Thermal Overload Protections that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire length, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good

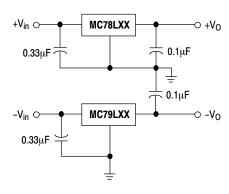
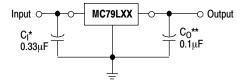



Figure 2. Positive and Negative Regulator

high–frequency characteristics to insure stable operation under all load conditions. A 0.33 μF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the ripple voltage.

- * C_I is required if regulator is located an appreciable distance from the power supply filter
- ** Co improves stability and transient response.

Figure 3. Standard Application

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

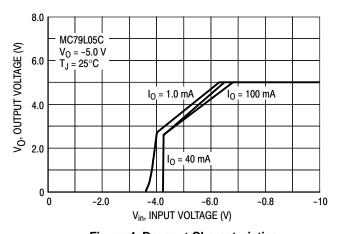


Figure 4. Dropout Characteristics

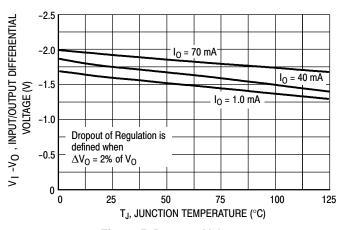


Figure 5. Dropout Voltage versus Junction Temperature

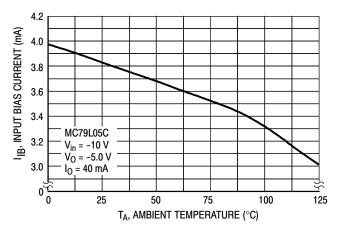


Figure 6. Input Bias Current versus Ambient Temperature

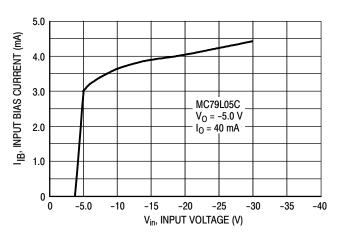


Figure 7. Input Bias Current versus Input Voltage

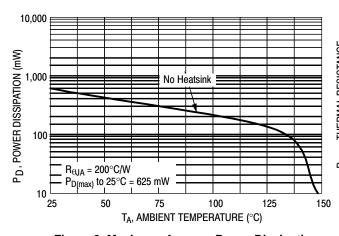


Figure 8. Maximum Average Power Dissipation versus Ambient Temperature (TO-92)

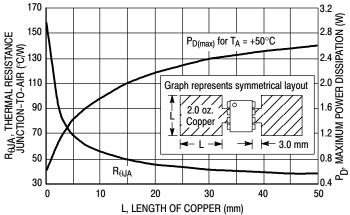
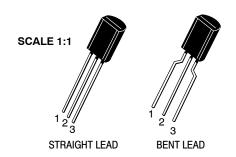
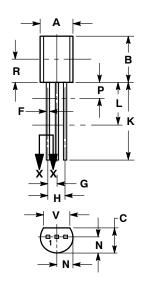


Figure 9. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length


ORDERING INFORMATION

Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC79L05ABDG	-5.0 V	TJ = −40° to +125°C	SOIC-8 (Pb-Free)	98 Units / Rail
MC79L05ABDR2G			SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC79L05ABPG			TO-92 (Pb-Free)	2000 Units / Bag
MC79L05ABPRAG			TO-92 (Pb-Free)	2000 / Tape & Reel
MC79L05ACDG		TJ = 0° to +125°C	SOIC-8 (Pb-Free)	98 Units / Rail
MC79L05ACDR2G			SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC79L05ACPG			TO-92 (Pb-Free)	2000 Units / Bag
MC79L05ACPRAG			TO-92 (Pb-Free)	2000 / Tape & Reel
MC79L05ACPRMG			TO-92 (Pb-Free)	2000 / Tape & Ammo Box
MC79L05ACPRPG			TO-92 (Pb-Free)	2000 / Tape & Ammo Box
MC79L12ABDG	-12 V	TJ = -40° to +125°C	SOIC-8 (Pb-Free)	98 Units / Rail
MC79L12ABDR2G			SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC79L12ABPG			TO-92 (Pb-Free)	2000 Units / Bag
MC79L12ABPRAG			TO-92 (Pb-Free)	2000 / Tape & Reel
MC79L12ACDG	-12 V	TJ = 0° to +125°C	SOIC-8 (Pb-Free)	98 Units / Rail
MC79L12ACDR2G			SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC79L12ACPG			TO-92 (Pb-Free)	2000 Units / Bag
MC79L12ACPRAG			TO-92 (Pb-Free)	2000 / Tape & Reel
MC79L12ACPRPG			TO-92 (Pb-Free)	2000 / Tape & Ammo Box

ORDERING INFORMATION (continued)


Device	Nominal Voltage	Operating Temperature Range	Package	Shipping [†]
MC79L15ABDG	–15 V	TJ = -40° to +125°C	SOIC-8 (Pb-Free)	98 Units / Rail
MC79L15ABDR2G			SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC79L15ABPG			TO-92 (Pb-Free)	2000 Units / Bag
MC79L15ABPRPG			TO-92 (Pb-Free)	2000 / Tape & Ammo Box
MC79L15ACDG		TJ = 0° to +125°C	SOIC-8 (Pb-Free)	98 Units / Rail
MC79L15ACDR2G			SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC79L15ACPG			TO-92 (Pb-Free)	2000 Units / Bag
MC79L15ACPRAG			TO-92 (Pb-Free)	2000 / Tape & Reel
MC79L15ACPREG			TO-92 (Pb-Free)	2000 / Tape & Reel
MC79L15ACPRPG			TO-92 (Pb-Free)	2000 / Tape & Ammo Box
MC79L18ABPRPG	–18 V	TJ = -40° to +125°C	TO-92 (Pb-Free)	2000 / Tape & Ammo Box
MC79L18ACPG		TJ = 0° to +125°C	TO-92 (Pb-Free)	2000 Units / Bag
MC79L24ABPG	-24 V	TJ = -40° to +125°C	TO-92 (Pb-Free)	2000 Units / Bag
MC79L24ACPG		TJ = 0° to +125°C	TO-92 (Pb-Free)	2000 Units / Bag
MC79L24ACPRMG			TO-92 (Pb-Free)	2000 / Tape & Ammo Box
MC79L24ACPRPG			TO-92 (Pb-Free)	2000 / Tape & Ammo Box

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TO-92 (TO-226) 1 WATT CASE 29-10 **ISSUE A**

DATE 08 MAY 2012

STRAIGHT LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- 714.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS
 UNCONTROLLED.
- UNIONI HOLLEU, DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L DIMENSIONS D AND J APPLY BETWEEN DI-MENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.135		3.43	
٧	0.135		3.43	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
G	0.094	0.102	2.40	2.80
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.135		3.43	
٧	0.135		3.43	

STYLES ON PAGE 2

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 2		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

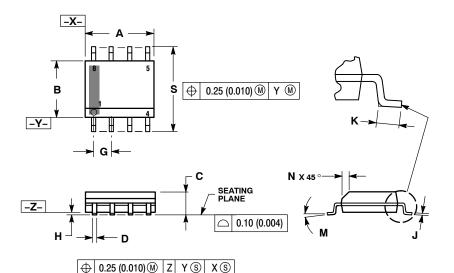
SEATING PLANE

TO-92 (TO-226) 1 WATT CASE 29-10

ISSUE A

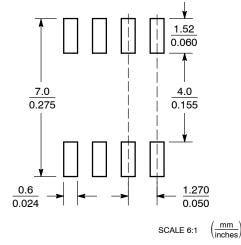
DATE 08 MAY 2012

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
STYLE 6: PIN 1. 2. 3.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	
2. 3.	CATHODE & ANODE CATHODE	2. 3.	GATE MAIN TERMINAL 2	2. 3.		2. 3.	COLLECTOR BASE	2. 3.	CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER	PIN 1.		PIN 1. 2.	GATE SOURCE DRAIN	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
3.	V _{CC} GROUND 2 OUTPUT	PIN 1. 2. 3.	MT SUBSTRATE MT	PIN 1. 2. 3.	ANODE GATE	PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN
2.	GATE DRAIN SOURCE	2.	BASE COLLECTOR EMITTER	2.	RETURN INPUT OUTPUT	2.	INPUT GROUND LOGIC		GATE COLLECTOR EMITTER

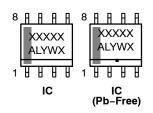

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**

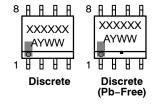

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
7	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot

= Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww

= Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 4: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 2 4. ANODE 5. ANODE #2 6. ANODE #2 7. ANODE #1 8. COMMON CATHODE
STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 STAGE Vd 7. EMITTER, #1 AGE Vd 8. COLLECTOR, #1
STYLE 12: 1 PIN 1. SOURCE 2 SOURCE 2 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COMMON 6. COLLECTOR, DIE #2 6. COMMON 7. COLLECTOR, DIE #1 6. COMMON 8. COLLECTOR, DIE #1
STYLE 20: 1 PIN 1. SOURCE (N) 2. GATE (N) 2 3. SOURCE (P) 4. GATE (P) 5. DRAIN 2 6. DRAIN 7. DRAIN 1 8. DRAIN
STYLE 24: PIN 1. BASE N ANODE/GND 2. EMITTER N ANODE/GND 3. COLLECTOR/ANODE UT 5. CATHODE N ANODE/GND 6. CATHODE N ANODE/GND 7. COLLECTOR/ANODE UT 8. COLLECTOR/ANODE
STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND E 5. V_MON E 6. VBULK E 7. VBULK 8. VIN

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative