Voltage Regulator - Ultra **High Accuracy, Low Iq, Low Dropout, Enable**

500 mA

The NCV8535 is a high performance, low dropout regulator. With accuracy of ±0.9% over line and load and ultra-low quiescent current and noise it encompasses all of the necessary features required by today's consumer electronics. This unique device is guaranteed to be stable without a minimum load current requirement and stable with any type of capacitor as small as 1.0 µF. The NCV8535 also comes equipped with sense and noise reduction pins to increase the overall utility of the device. The NCV8535 offers reverse bias protection.

Features

- High Accuracy Over Line and Load (±0.9% at 25°C)
- Ultra-Low Dropout Voltage at Full Load (260 mV typ.)
- No Minimum Output Current Required for Stability
- Low Noise (31 µVrms w/10 nF Cnr and 51 µVrms w/out Cnr)
- Low Shutdown Current (0.07 μA)
- Reverse Bias Protected
- 2.9 V to 12 V Supply Range
- Thermal Shutdown Protection
- Current Limitation
- Requires Only 1.0 µF Output Capacitance for Stability
- Stable with Any Type of Capacitor (including MLCC)
- Available in 1.5 V, 1.8 V, 1.9 V, 2.5 V, 2.8 V, 2.85 V, 3.0 V, 3.3 V, 3.5 V, 5.0 V and Adjustable Output Voltages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These are Pb-Free Devices

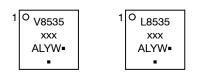
Applications

- PCMCIA Card
- Cellular Phones
- Camcoders and Cameras
- Networking Systems, DSL/Cable Modems
- Cable Set-Top Box
- MP3/CD Players
- DSP Supply
- Displays and Monitors

ON Semiconductor®

www.onsemi.com

DFN10 CASE 485C



CASE 507AM

PIN CONFIGURATION

Fixed Version	Adj Version
Pin 1, 2. V _{out}	Pin 1, 2. V _{out}
Sense	3. Adj
4. GND	4. GND
5, 6. NC	5, 6. NC
7. NR	7. NR
8. <u>SD</u>	8. <u>SD</u>
9, 10. V _{in}	9, 10. V _{in}

MARKING DIAGRAM

V8535 = Specific Device Code

- L8535 = Specific Device Code
- = ADJ, 150, 180, 190, 250, 280, XXX 285, 300, 330, 350, 500
- Α = Assembly Location
- 1 = Wafer Lot
- Y = Year
- = Work Week W
 - = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 21 of this data sheet.

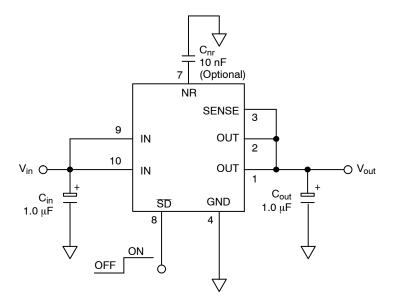


Figure 1. Typical Fixed Version Application Schematic

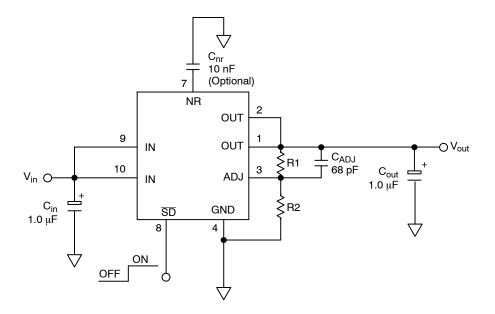


Figure 2. Typical Adjustable Version Application Schematic

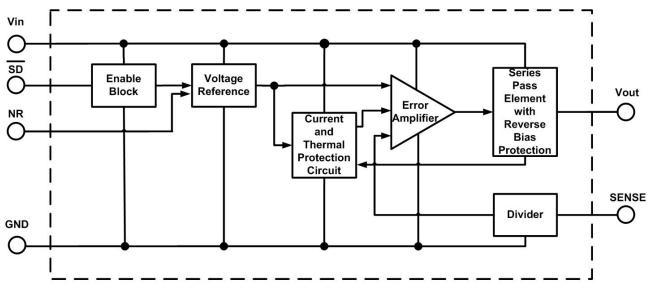


Figure 3. Block Diagram, Fixed Output Version

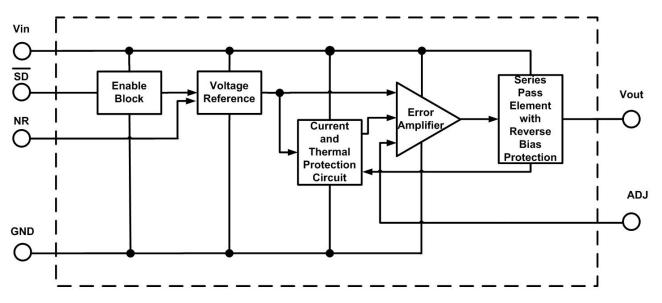


Figure 4. Block Diagram, Adjustable Output Version

PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description
FIXED VER	SION	
1, 2	V _{out}	Regulated output voltage. Bypass to ground with $C_{out} \ge 1.0 \ \mu\text{F}.$
3	SENSE	For output voltage sensing, connect to Pins 1 and 2.
4	GND	Power Supply Ground
7	NR	Noise Reduction Pin. This is an optional pin used to further reduce noise.
8	SD	Shutdown pin. When not in use, this pin should be connected to the input pin.
9, 10	V _{in}	Power Supply Input Voltage
5, 6	NC	Not Connected
EPAD	EPAD	Exposed thermal pad should be connected to ground.

ADJUSTABLE VERSION

1, 2	Vout	Regulated output voltage. Bypass to ground with $C_{out} \ge 1.0 \ \mu\text{F}.$
3	Adj	Adjustable pin; reference voltage = 1.25 V.
4	GND	Power Supply Ground
7	NR	Noise Reduction Pin. This is an optional pin used to further reduce noise.
8	SD	Shutdown pin. When not in use, this pin should be connected to the input pin.
9, 10	V _{in}	Power Supply Input Voltage
5, 6	NC	Not Connected
EPAD	EPAD	Exposed thermal pad should be connected to ground.

MAXIMUM RATINGS

Rating	Symbol	/mbol Value		
Input Voltage	V _{in} -0.3 to +16			
Output Voltage	V _{out} –0.3 to V _{in} +0.3 or 10 V*			
Shutdown Pin Voltage	V _{sh}	/ _{sh} –0.3 to +16		
Junction Temperature Range	Т _Ј	–40 to +150	°C	
Storage Temperature Range	T _{stg}	–55 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

should not be assumed, damage may occur and reliability may be affected. NOTE: This device series contains ESD protection and exceeds the following tests: Human Body Model (HBM) tested per AEC-Q100-002 (EIA/JESD22-A114)

Machine Model (MM) tested per AEC-Q100-003 (EIA/JESD22-A115)

Charged Device Model (CDM) tested per EIA/JESD22-C101

*Which ever is less. Reverse bias protection feature valid only if $V_{out} - V_{in} \le 7 \text{ V}$.

THERMAL CHARACTERISTICS

	Test Conditions	(Typical Value)	
Characteristic	Min Pad Board (Note 1)	1" Pad Board (Note 1)	Unit
Junction-to-Air, θJA	215	66	°C/W
Junction-to-Pin, ψJL2	55	17	°C/W

1. As mounted on a 35 x 35 x 1.5 mm FR4 Substrate, with a single layer of a specified copper area of 2 oz (0.07 mm thick) copper traces and heat spreading area. JEDEC 51 specifications for a low and high conductivity test board recommend a 2 oz copper thickness. Test conditions are under natural convection or zero air flow.

ELECTRICAL CHARACTERISTICS - 5.0 V

(V_{out} = 5.0 V typical, V_{in} = 5.4 V, T_A = -40°C to +85°C, unless otherwise noted, Note 2.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V _{in} = 5.4 V to 9.0 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 4.955	5.0	+0.9% 5.045	V
Output Voltage (Accuracy) $V_{in} = 5.4 \text{ V to } 9.0 \text{ V}, I_{load} = 0.1 \text{ mA to } 500 \text{ mA}, T_A = 0^{\circ}\text{C to } +85^{\circ}\text{C}$	V _{out}	-1.4% 4.930	5.0	+1.4% 5.070	V
Output Voltage (Accuracy) $V_{in} = 5.4 \text{ V to } 9.0 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA to } 500 \text{ mA}, \text{ T}_{\text{A}} = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$	V _{out}	-1.5% 4.925	5.0	+1.5% 5.075	V
Line Regulation V _{in} = 5.4 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 5.4 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) I _{load} = 500 mA I _{load} = 300 mA I _{load} = 50 mA I _{load} = 0.1 mA	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 16)	lpk	500	700	830	mA
Short Output Current (See Figure 16)	I _{sc}			930	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation I _{load} = 500 mA (Note 3) I _{load} = 300 mA (Note 3) I _{load} = 50 mA I _{load} = 0.1 mA	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 4.9 V, I _{load} = 0.1 mA			-	500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μA
Output Noise $C_{nr} = 0 nF, I_{load} = 500 mA, f = 10 Hz to 100 kHz, C_{out} = 10 \mu F$ $C_{nr} = 10 nF, I_{load} = 500 mA, f = 10 Hz to 100 kHz, C_{out} = 10 \mu F$	V _{noise}		93 58		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_{D} Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μA
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μA
Reverse Bias Protection, Current Flowing from the Output Pin to GND $(V_{in} = 0 \text{ V}, V_{out forced} = 5.0 \text{ V})$	I _{OUTR}		10		μA

Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
 T_A must be greater than 0°C.

ELECTRICAL CHARACTERISTICS - 3.5 V

(V_{out} = 3.5 V typical, V_{in} = 3.9 V, T_A = -40°C to +85°C, unless otherwise noted, Note 4.)

V _{out}	-0.9% 3.469	3.5	+0.9%	V
V _{out}			3.532	v
	-1.4% 3.451	3.5	+1.4% 3.549	V
V _{out}	-1.5% 3.448	3.5	+1.5% 3.553	V
Line _{Reg}		0.04		mV/V
Load _{Reg}		0.04		mV/mA
V _{DO}			340 230 110 10	mV
lpk	500	700	800	mA
I _{sc}			900	mA
TJ		160		°C
I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
		-	500	μΑ
I _{GNDsh}		0.07	1.0	μA
V _{noise}		68 47		μVrms μVrms
	2.0		0.4	V V
I _{SD}		0.07	1.0	μA
I _{OSD}		0.07	1.0	μA
IOUTR		10		μA
	Line _{Reg} Load _{Reg} V _{DO} Ipk Isc TJ IGND IGNDsh Vnoise Vnoise ISD	3.448 Line _{Reg} Load _{Reg} VDO VDO Ipk Jpk Jpk <td< td=""><td>3.448 Line_{Reg} 0.04 Load_{Reg} 0.04 V_{DO} 0.04 V_{DO} 100 Ipk 500 700 IgND 9.0 4.6 IGND 9.0 4.6 IGND 0.07 4.6 Voise 68 - IGNDsh 0.07 68 Isp 2.0 0.07 IoSp 0.07 0.07</td><td>3.448 3.553 Line_{Reg} 0.04 Load_{Reg} 0.04 VDO 0.04 VDO 340 Ipk 500 Ipk 500 Ipk 500 Ipk 900 Ipk 500 Ipk 160 Ipk 160 Ipk 160 Ipk 10 Ipk 10 Ipk 10 Ipk 10 Ipk 10 Ipk 2.0 Ipk 1.0 Ipk 2.0 Ipk 0.07 Ipk<</td></td<>	3.448 Line _{Reg} 0.04 Load _{Reg} 0.04 V _{DO} 0.04 V _{DO} 100 Ipk 500 700 IgND 9.0 4.6 IGND 9.0 4.6 IGND 0.07 4.6 Voise 68 - IGNDsh 0.07 68 Isp 2.0 0.07 IoSp 0.07 0.07	3.448 3.553 Line _{Reg} 0.04 Load _{Reg} 0.04 VDO 0.04 VDO 340 Ipk 500 Ipk 500 Ipk 500 Ipk 900 Ipk 500 Ipk 160 Ipk 160 Ipk 160 Ipk 10 Ipk 10 Ipk 10 Ipk 10 Ipk 10 Ipk 2.0 Ipk 1.0 Ipk 2.0 Ipk 0.07 Ipk<

Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
 T_A must be greater than 0°C.

ELECTRICAL CHARACTERISTICS - 3.3 V

(V_{out} = 3.3 V typical, V_{in} = 3.7 V, T_A = -40°C to +85°C, unless otherwise noted, Note 6.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V _{in} = 3.7 V to 7.3 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 3.270	3.3	+0.9% 3.330	V
Output Voltage (Accuracy) V_{in} = 3.7 V to 7.3 V, I _{load} = 0.1 mA to 500 mA, T _A = 0°C to +85°C	V _{out}	-1.4% 3.254	3.3	+1.4% 3.346	V
Output Voltage (Accuracy) V_{in} = 3.7 V to 7.3 V, I _{load} = 0.1 mA to 500 mA, T _A = -40°C to +125°C	V _{out}	-1.5% 3.250	3.3	+1.5% 3.350	V
Line Regulation V _{in} = 3.7 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 3.7 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 16)	lpk	500	700	800	mA
Short Output Current (See Figure 16)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500 \text{ mA}$ (Note 7) $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 3.2 V, I _{load} = 0.1 mA			-	500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μA
Output Noise $C_{nr} = 0 nF, I_{load} = 500 mA, f = 10 Hz to 100 kHz, Cout = 10 \muFC_{nr} = 10 nF, I_{load} = 500 mA, f = 10 Hz to 100 kHz, Cout = 10 \muF$	V _{noise}		69 46		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	v v
S_{D} Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ
Reverse Bias Protection, Current Flowing from the Output Pin to GND $(V_{in} = 0 \text{ V}, V_{out forced} = 3.3 \text{ V})$	I _{OUTR}		10		μΑ

6. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
 7. T_A must be greater than 0°C.

ELECTRICAL CHARACTERISTICS - 3.0 V

(V_{out} = 3.0 V typical, V_{in} = 3.4 V, T_A = -40°C to +85°C, unless otherwise noted, Note 8.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V _{in} = 3.4 V to 7.0 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 2.973	3.0	+0.9% 3.027	V
Output Voltage (Accuracy) V_{in} = 3.4 V to 7.0 V, I _{load} = 0.1 mA to 500 mA, T _A = 0°C to +85°C	V _{out}	-1.4% 2.958	3.0	+1.4% 3.042	V
Output Voltage (Accuracy) V_{in} = 3.4 V to 7.0 V, I _{load} = 0.1 mA to 500 mA, T _A = -40°C to +125°C	V _{out}	-1.5% 2.955	3.0	+1.5% 3.045	V
Line Regulation V _{in} = 3.4 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 3.4 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 16)	lpk	500	700	800	mA
Short Output Current (See Figure 16)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation I _{load} = 500 mA (Note 9) I _{load} = 300 mA I _{load} = 50 mA I _{load} = 0.1 mA	I _{GND}		9.0 4.6 0.8	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 2.9 V, I _{load} = 0.1 mA			-	500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μA
Output Noise $C_{nr} = 0 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$	V _{noise}		56 37		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	v v
S_{D} Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μΑ
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ
Reverse Bias Protection, Current Flowing from the Output Pin to GND $(V_{in} = 0 \text{ V}, V_{out forced} = 3.0 \text{ V})$	IOUTR		10		μΑ

Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
 T_A must be greater than 0°C.

ELECTRICAL CHARACTERISTICS - 2.85 V

(V_{out} = 2.85 V typical, V_{in} = 3.25 V, T_A = -40° C to $+85^{\circ}$ C, unless otherwise noted, Note 10)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V_{in} = 3.25 V to 6.85 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 2.824	2.85	+0.9% 2.876	V
Output Voltage (Accuracy) V _{in} = 3.25 V to 6.85 V, I _{load} = 0.1 mA to 500 mA, T _A = 0°C to +85°C	V _{out}	-1.4% 2.810	2.85	+1.4% 2.890	V
Output Voltage (Accuracy) (Note 11) V_{in} = 3.25 V to 6.85 V, I _{load} = 0.1 mA to 500 mA, T _A = -40°C to +125°C	V _{out}	-1.5% 2.807	2.85	+1.5% 2.893	V
Line Regulation V _{in} = 3.25 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 3.25 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1\text{mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 16)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 16)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500 \text{ mA} \text{ (Note 12)}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 2.75 V, I _{load} = 0.1 mA			_	500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μA
Output Noise $C_{nr} = 0 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu\text{F}$	V _{noise}		61 40		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μA
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μΑ
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out forced} = 2.85 V)	IOUTR		10		μA

10. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
11. For output current capability for T_A < 0°C, please refer to Figure 18.
12. T_A must be greater than 0°C.

ELECTRICAL CHARACTERISTICS - 2.8 V

(V_{out} = 2.8 V typical, V_{in} = 3.2 V, T_A = -40°C to +85°C, unless otherwise noted, Note 13.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V _{in} = 3.2 V to 6.8 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 2.774	2.8	+0.9% 2.826	V
Output Voltage (Accuracy) $V_{in} = 3.2 \text{ V to } 6.8 \text{ V}, I_{load} = 0.1 \text{ mA to } 500 \text{ mA}, T_A = 0^{\circ}\text{C to } +85^{\circ}\text{C}$	V _{out}	-1.4% 2.760	2.8	+1.4% 2.840	V
Output Voltage (Accuracy) (Note 14) $V_{in} = 3.2$ V to 6.8 V, $I_{load} = 0.1$ mA to 500 mA, $T_A = -40^{\circ}$ C to +125°C	V _{out}	-1.5% 2.758	2.8	+1.5% 2.842	V
Line Regulation V _{in} = 3.2 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 3.2 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) $I_{load} = 500 \text{ mA}$ $I_{load} = 300 \text{ mA}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1\text{mA}$	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 16)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 16)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation $I_{load} = 500$ mA (Note 15) $I_{load} = 300$ mA (Note 15) $I_{load} = 50$ mA $I_{load} = 0.1$ mA	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 2.7 V, I _{load} = 0.1 mA			_	500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μA
Output Noise $C_{nr} = 0 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu F$ $C_{nr} = 10 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu F$	V _{noise}		52 36		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	v v
S_{D} Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μA
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μA
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out_forced} = 2.8 V)	I _{OUTR}		10		μΑ

13. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
14. For output current capability for T_A < 0°C, please refer to Figure 19.
15. T_A must be greater than 0°C.

ELECTRICAL CHARACTERISTICS - 2.5 V

(V_{out} = 2.5 V typical, V_{in} = 2.9 V, T_A = -40°C to +85°C, unless otherwise noted, Note 16.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V _{in} = 2.9 V to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 2.477	2.5	+0.9% 2.523	V
Output Voltage (Accuracy) V _{in} = 2.9 V to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _A = 0°C to +85°C	V _{out}	-1.4% 2.465	2.5	+1.4% 2.535	V
Output Voltage (Accuracy), (Note 17) $V_{in} = 2.9 V$ to 6.5 V, I _{load} = 0.1 mA to 500 mA, T _A = -40°C to +125°C	V _{out}	-1.5% 2.462	2.5	+1.5% 2.538	V
Line Regulation V _{in} = 2.9 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 2.9 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) I _{load} = 500 mA (Note 18) I _{load} = 300 mA (Note 18) I _{load} = 50 mA I _{load} = 0.1mA	V _{DO}			340 230 110 10	mV
Peak Output Current (See Figure 16)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 16)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation I _{load} = 500 mA (Note 18) I _{load} = 300 mA (Note 18) I _{load} = 50 mA I _{load} = 0.1 mA	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout V _{in} = 2.4 V, I _{load} = 0.1 mA				500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μA
Output Noise $C_{nr} = 0 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$ $C_{nr} = 10 \text{ nF}, I_{load} = 500 \text{ mA}, f = 10 \text{ Hz to } 100 \text{ kHz}, C_{out} = 10 \mu\text{F}$	V _{noise}		56 35		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_{D} Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μA
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μA
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out forced} = 2.5 V)	I _{OUTR}		10		μΑ

16. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
17. For output current capability for T_A < 0°C, please refer to Figure 20.
18. T_A must be greater than 0°C.

ELECTRICAL CHARACTERISTICS - 1.9 V

(V_{out} = 1.9 V typical, V_{in} = 2.9 V, $T_A = -40^{\circ}C$ to +85°C, unless otherwise noted, Note 19.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V _{in} = 2.9 V to 5.9 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 1.883	1.9	+0.9% 1.917	V
Output Voltage (Accuracy) $V_{in} = 2.9 V$ to 5.9 V, $I_{load} = 0.1 mA$ to 500 mA, $T_A = 0^{\circ}C$ to +85°C	V _{out}	-1.4% 1.873	1.9	+1.4% 1.927	V
Output Voltage (Accuracy), (Note 20) V_{in} = 2.9 V to 5.9 V, I _{load} = 0.1 mA to 500 mA, T _A = -40°C to +125°C	V _{out}	–1.5% 1.872	1.9	+1.5% 1.929	V
Line Regulation V _{in} = 2.9 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 2.9 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) I _{load} = 500 mA (Notes 21, 22) I _{load} = 300 mA (Notes 21, 22) I _{load} = 50 mA (Notes 21, 22)	V _{DO}		367 156 90	1030 1030 1030	mV
Peak Output Current (See Figure 16)	I _{pk}	500	700	800	mA
Short Output Current (See Figure 16)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation I _{load} = 500 mA (Note 21) I _{load} = 300 mA (Note 21) I _{load} = 50 mA I _{load} = 0.1 mA	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout $V_{in} = 2.2 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$				500	μΑ
In Shutdown $S_D = 0 V$	I _{GNDsh}		0.07	1.0	μΑ
Output Noise C _{nr} = 0 nF, I _{load} = 500 mA, f = 10 Hz to 100 kHz, C _{out} = 10 μF C _{nr} = 10 nF, I _{load} = 500 mA, f = 10 Hz to 100 kHz, C _{out} = 10 μF	V _{noise}		53 33		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μA
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μA
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out forced} = 1.9 V)	IOUTR		10		μΑ

19. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
20. For output current capability for T_A < 0°C, please refer to Figure 21.
21. T_A must be greater than 0°C.
22. Maximum dropout voltage is limited by minimum input voltage V_{in} = 2.9 V recommended for guaranteed operation.

ELECTRICAL CHARACTERISTICS - 1.8 V

(V_{out} = 1.8 V typical, V_{in} = 2.9 V, $T_A = -40^{\circ}C$ to +85°C, unless otherwise noted, Note 23.)

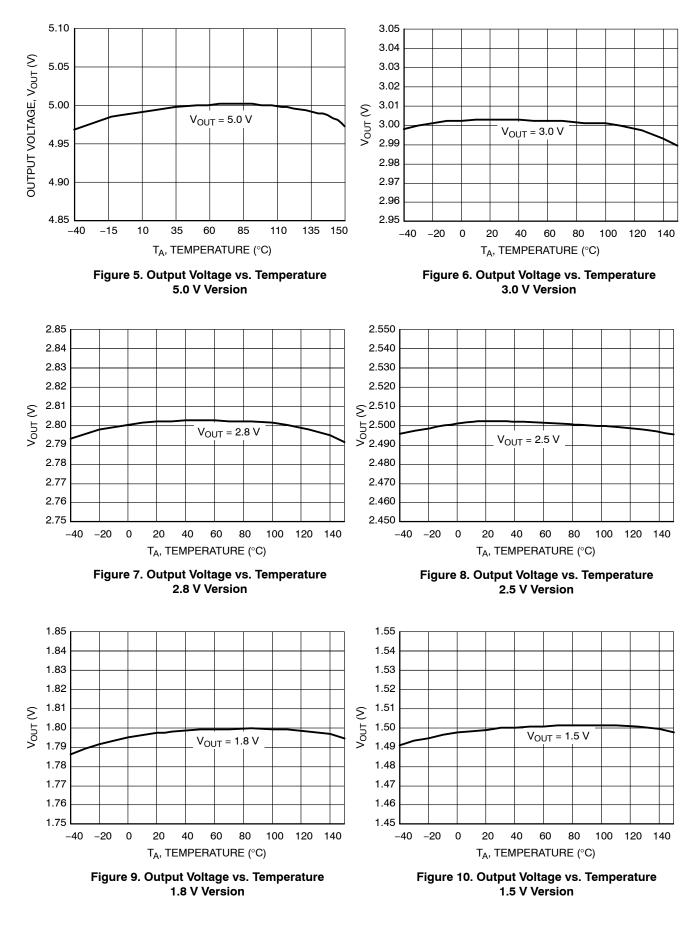
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (Accuracy) V _{in} = 2.9 V to 5.8 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 1.783	1.8	+0.9% 1.817	V
Output Voltage (Accuracy) V_{in} = 2.9 V to 5.8 V, I _{load} = 0.1 mA to 500 mA, T _A = 0°C to +85°C	V _{out}	-1.4% 1.774	1.8	+1.4% 1.826	V
Output Voltage (Accuracy), (Note 24) $V_{in} = 2.9 V$ to 5.8 V, I _{load} = 0.1 mA to 500 mA, T _A = -40°C to +125°C	V _{out}	–1.5% 1.773	1.8	+1.5% 1.827	V
Line Regulation V _{in} = 2.9 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 2.9 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note) I _{load} = 500 mA (Notes 25, 26) I _{load} = 300 mA (Notes 25, 26) I _{load} = 50 mA (Notes 25, 26)	V _{DO}		620 230 95	1130 1130 1130	mV
Peak Output Current (See Figure 16)	I _{pk}	500	700	830	mA
Short Output Current (See Figure 16)	I _{sc}			900	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation I _{load} = 500 mA (Note 25) I _{load} = 300 mA (Note 25) I _{load} = 50 mA I _{load} = 0.1 mA	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout $V_{in} = 2.2 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$				500	μΑ
In Shutdown S _D = 0 V	I _{GNDsh}		0.07	1.0	μΑ
Output Noise $C_{nr} = 0 nF, I_{load} = 500 mA, f = 10 Hz to 100 kHz, C_{out} = 10 \mu F$ $C_{nr} = 10 nF, I_{load} = 500 mA, f = 10 Hz to 100 kHz, C_{out} = 10 \mu F$	V _{noise}		52 33		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μA
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μA
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out forced} = 1.8 V)	I _{OUTR}		10		μΑ

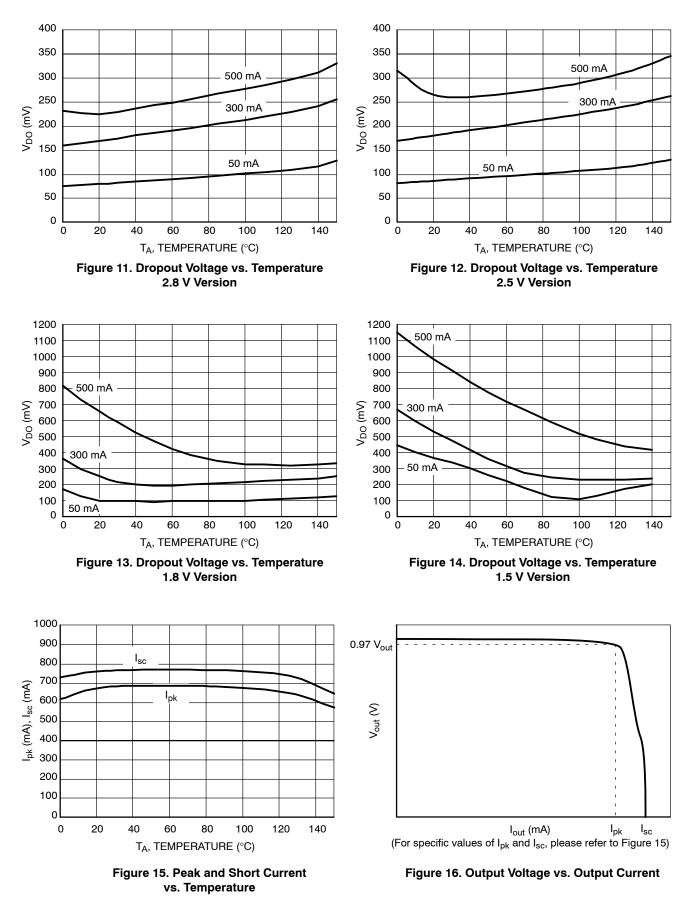
23. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
24. For output current capability for T_A < 0°C, please refer to Figure 21.
25. T_A must be greater than 0°C.
26. Maximum dropout voltage is limited by minimum input voltage V_{in} = 2.9 V recommended for guaranteed operation.

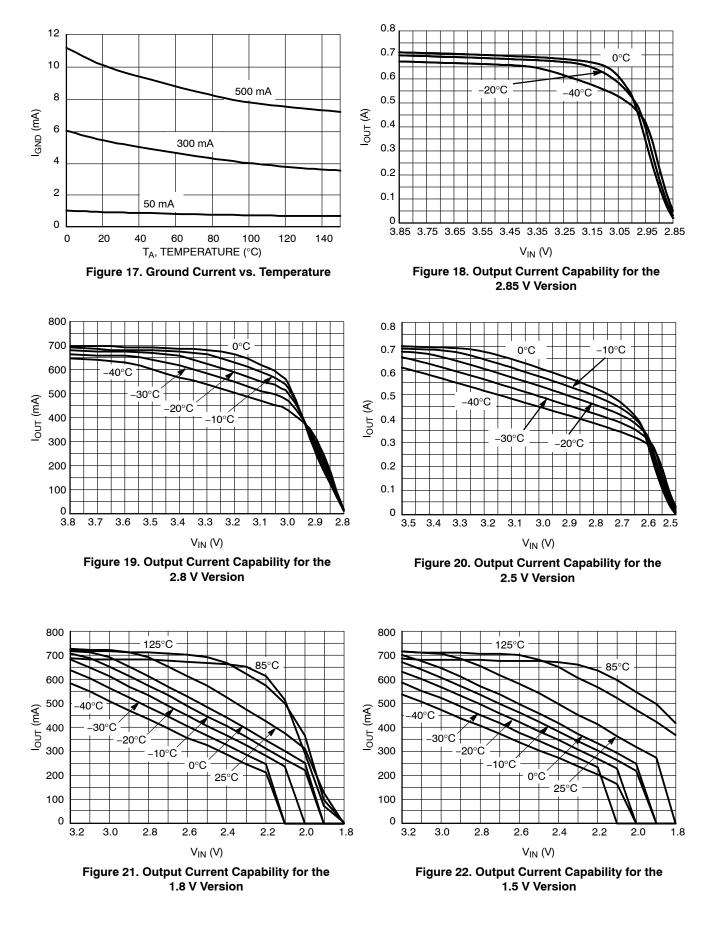
ELECTRICAL CHARACTERISTICS - 1.5 V

(V_{out} = 1.5 V typical, V_{in} = 2.9 V, $T_A = -40^{\circ}C$ to +85°C, unless otherwise noted, Note 27.)

Characteristic	Symbol	Min	Тур	Max	Unit	
Output Voltage (Accuracy) V _{in} = 2.9 V to 5.5 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{out}	-0.9% 1.486	1.5	+0.9% 1.514	V	
Output Voltage (Accuracy) V_{in} = 2.9 V to 5.5 V, I _{load} = 0.1 mA to 500 mA, T _A = 0°C to +85°C	V _{out}	-1.4% 1.479	1.5	+1.4% 1.521	V	
Output Voltage (Accuracy), (Note 28) V_{in} = 2.9 V to 5.5 V, I _{load} = 0.1 mA to 500 mA, T _A = -40°C to +125°C	V _{out}	–1.5% 1.477	1.5	+1.5% 1.523	V	
Line Regulation V _{in} = 2.9 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V	
Load Regulation V _{in} = 2.9 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA	
Dropout Voltage (See App Note) I _{load} = 500 mA (Notes 29, 30) I _{load} = 300 mA (Notes 29, 30) I _{load} = 50 mA (Notes 29, 30)	V _{DO}		940 500 350	1430 1430 1430	mV	
Peak Output Current (See Figure 16)	I _{pk}	500	700	860	mA	
Short Output Current (See Figure 16)	I _{sc}			900	mA	
Thermal Shutdown	TJ		160		°C	
Ground Current In Regulation $I_{load} = 500 \text{ mA} \text{ (Note 29)}$ $I_{load} = 300 \text{ mA} \text{ (Note 29)}$ $I_{load} = 50 \text{ mA}$ $I_{load} = 0.1 \text{ mA}$	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA	
In Dropout $V_{in} = 2.2 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA}$				500	μΑ	
In Shutdown $S_D = 0 V$	I _{GNDsh}		0.07	1.0	μΑ	
Output Noise C _{nr} = 0 nF, I _{load} = 500 mA, f = 10 Hz to 100 kHz, C _{out} = 10 μF C _{nr} = 10 nF, I _{load} = 500 mA, f = 10 Hz to 100 kHz, C _{out} = 10 μF	V _{noise}		51 31		μVrms μVrms	
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V	
S_{D} Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in}	I _{SD}		0.07	1.0	μA	
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μA	
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out forced} = 1.5 V)	I _{OUTR}		10		μΑ	


27. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
28. For output current capability for T_A < 0°C, please refer to Figure 22.
29. T_A must be greater than 0°C.
30. Maximum dropout voltage is limited by minimum input voltage V_{in} = 2.9 V recommended for guaranteed operation.


ELECTRICAL CHARACTERISTICS – Adjustable


(V_{out} = 1.25 V typical, V_{in} = 2.9 V, T_A = -40° C to $+85^{\circ}$ C, unless otherwise noted, Note 31)

Characteristic	Symbol	Min	Тур	Max	Unit
Reference Voltage (Accuracy) V_{in} = 2.9 V to V _{out} + 4.0 V, I _{load} = 0.1 mA to 500 mA, T _A = 25°C	V _{ref}	-0.9% 1.239	1.25	+0.9% 1.261	V
Reference Voltage (Accuracy) $V_{in} = 2.9 \text{ V to } V_{out} + 4.0 \text{ V}, \text{ I}_{load} = 0.1 \text{ mA to 500 mA}, \text{ T}_{A} = 0^{\circ}\text{C to } +85^{\circ}\text{C}$	V _{ref}	-1.4% 1.233	1.25	+1.4% 1.268	V
Reference Voltage (Accuracy) (Note 32) $V_{in} = 2.9 \text{ V to } V_{out} + 4.0 \text{ V}, I_{load} = 0.1 \text{ mA to 500 mA}, T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	V _{ref}	-1.5% 1.231	1.25	+1.5% 1.269	V
Line Regulation V _{in} = 2.9 V to 12 V, I _{load} = 0.1 mA	Line _{Reg}		0.04		mV/V
Load Regulation V _{in} = 2.9 V, I _{load} = 0.1 mA to 500 mA	Load _{Reg}		0.04		mV/mA
Dropout Voltage (See App Note), $V_{out} = 2.5$ V to 10 V $I_{load} = 500$ mA (Note 33) $I_{load} = 300$ mA $I_{load} = 50$ mA $I_{load} = 0.1$ mA	V _{DO}			340 230 110 10	mV
Peak Output Current (Note 33) (See Figure 16)	lpk	500	700	860	mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	I _{sc}			900 990	mA
Thermal Shutdown	TJ		160		°C
Ground Current In Regulation I _{load} = 500 mA (Note 33) I _{load} = 300 mA (Note 33) I _{load} = 50 mA I _{load} = 0.1 mA	I _{GND}		9.0 4.6 0.8 -	14 7.5 2.5 190	mA μA
In Dropout $V_{in} = V_{out} - 0.1 \text{ V or } 2.2 \text{ V}$ (whichever is higher), $I_{load} = 0.1 \text{ mA}$			-	500	μΑ
In Shutdown $S_D = 0 V$	I _{GNDsh}		0.07	1.0	μA
Output Noise $C_{nr} = 0 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu F$ $C_{nr} = 10 \text{ nF}$, $I_{load} = 500 \text{ mA}$, f = 10 Hz to 100 kHz, $C_{out} = 10 \mu F$	V _{noise}		38 26		μVrms μVrms
Shutdown Threshold Voltage ON Threshold Voltage OFF		2.0		0.4	V V
S_D Input Current, V_{SD} = 0 V to 0.4 V or V_{SD} = 2.0 V to V_{in} $$V_{in} \le 5.4 \ V_{in} > 5.4 \ V$	I _{SD}		0.07	1.0 5.0	μA
Output Current In Shutdown Mode, V _{out} = 0 V	I _{OSD}		0.07	1.0	μA
Reverse Bias Protection, Current Flowing from the Output Pin to GND (V _{in} = 0 V, V _{out forced} = V _{out} (nom) ≤ 7 V) (Note 34)	IOUTR		1.0		μA

31. Performance guaranteed over the operating temperature range by design and/or characterization, production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
32. For output current capability for T_A < 0°C, please refer to Figures 18 to 22.
33. T_A must be greater than 0°C.
34. Reverse bias protection feature valid only if V_{out} - V_{in} ≤ 7 V.

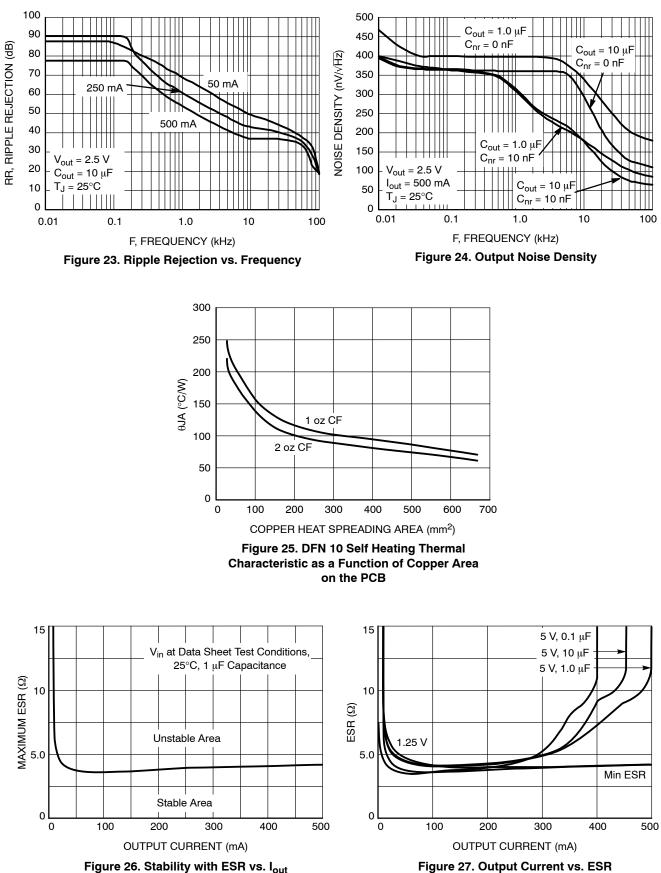


Figure 26. Stability with ESR vs. Iout

NOTE: Typical characteristics were measured with the same conditions as electrical characteristics.

APPLICATIONS INFORMATION

Reverse Bias Protection

Reverse bias is a condition caused when the input voltage goes to zero, but the output voltage is kept high either by a large output capacitor or another source in the application which feeds the output pin.

Normally in a bipolar LDO all the current will flow from the output pin to input pin through the PN junction with limited current capability and with the potential to destroy the IC.

Due to an improved architecture, the NCV8535 can withstand up to 7.0 V on the output pin with virtually no current flowing from output pin to input pin, and only negligible amount of current (tens of μ A) flowing from the output pin to ground for infinite duration.

Input Capacitor

An input capacitor of at least 1.0 μ F, any type, is recommended to improve the transient response of the regulator and/or if the regulator is located more than a few inches from the power source. It will also reduce the circuit's sensitivity to the input line impedance at high frequencies. The capacitor should be mounted with the shortest possible track length directly across the regular's input terminals.

Output Capacitor

The NCV8535 remains stable with any type of capacitor as long as it fulfills its 1.0 μ F requirement. There are no constraints on the minimum ESR and it will remain stable up to an ESR of 5.0 Ω . Larger capacitor values will improve the noise rejection and load transient response.

Noise Reduction Pin

Output noise can be greatly reduced by connecting a 10 nF capacitor (C_{nr}) between the noise reduction pin and ground (see Figure 1). In applications where very low noise is not required, the noise reduction pin can be left unconnected.

For the adjustable version, in addition to the 10 nF C_{nr} , a 68 pF capacitor connected in parallel with R1 (see Figure 2) is recommended to further reduce output noise and improve stability.

Adjustable Operation

The output voltage can be set by using a resistor divider as shown in Figure 2 with a range of 1.25 to 10 V. The appropriate resistor divider can be found by solving the equation below. The recommended current through the resistor divider is from 10 μ A to 100 μ A. This can be accomplished by selecting resistors in the k Ω range. As result, the I_{adj}*R2 becomes negligible in the equation and can be ignored.

$$V_{out} = 1.25 * \left(1 + \frac{R1}{R2}\right) + I_{adj} * R2$$
 (eq. 1)

Example:

For $V_{out} = 2.9$ V, can use $R_1 = 36$ k Ω and $R_2 = 27$ k Ω .

$$1.25 * \left(1 + \frac{36 \text{ k}\Omega}{27 \text{ k}\Omega} \right) = 2.91 \text{ V}$$
 (eq. 2)

Dropout Voltage

The voltage dropout is measured at 97% of the nominal output voltage.

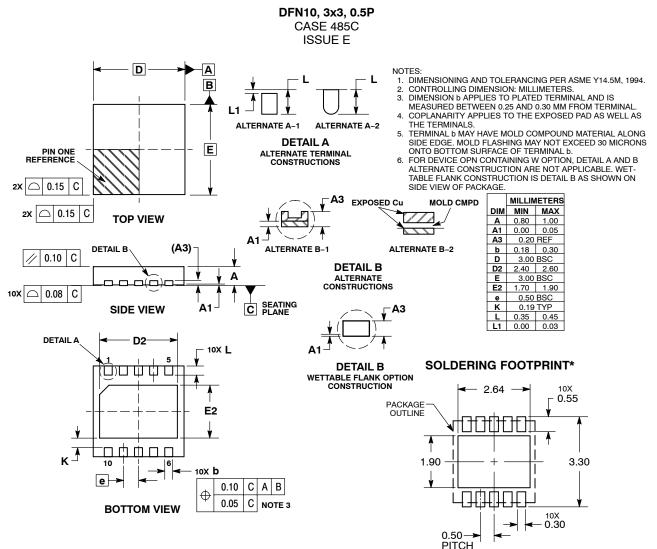
No-Load Regulation Considerations

If there is no load at output of the regulator and ambient temperature is higher than 85° C leakage current flowing from input to output through pass transistor may cause increase of output voltage out of specification range up to input voltage level. To avoid this situation minimum load current of 100 μ A or higher is recommended if ambient temperature exceeds 85° C.

Thermal Considerations

Internal thermal limiting circuitry is provided to protect the integrated circuit in the event that the maximum junction temperature is exceeded. This feature provides protection from a catastrophic device failure due to accidental overheating. This protection feature is not intended to be used as a substitute to heat sinking. The maximum power that can be dissipated, can be calculated with the equation below:

$$P_{D} = \frac{T_{J}(max) - T_{A}}{R_{\theta}JA}$$
 (eq. 3)

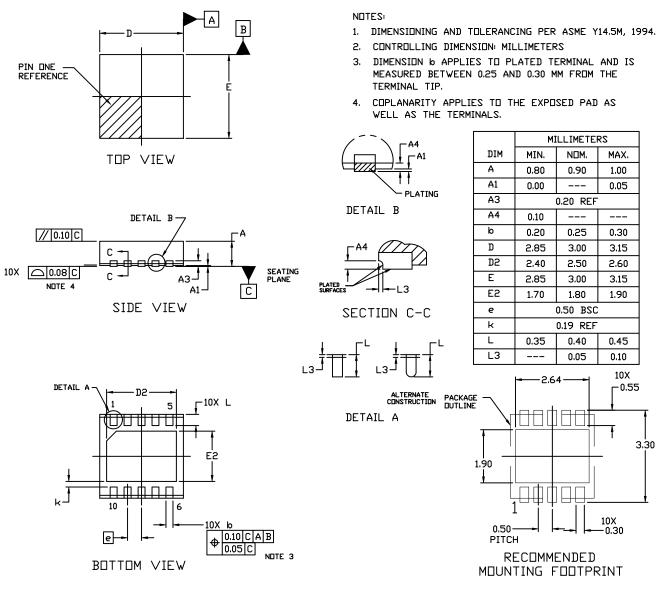

DEVICE ORDERING INFORMATION

Device*	Voltage Option	Marking Code	Package	Feature	Shipping [†]			
NCV8535MNADJR2G	Adj.	V8535 ADJ						
NCV8535MN150R2G	1.5 V	V8535 150						
NCV8535MN180R2G	1.8 V	V8535 180						
NCV8535MN190R2G	1.9 V	V8535 190						
NCV8535MN250R2G	2.5 V	V8535 250						
NCV8535MN280R2G	2.8 V	V8535 280	DFN10 (Pb-Free)	Non-Wettable Flank	3000 / Tape & Reel			
NCV8535MN285R2G	2.85 V	V8535 285	(
NCV8535MN300R2G	3.0 V	V8535 300						
NCV8535MN330R2G	3.3 V	V8535 330						
NCV8535MN350R2G	3.5 V	V8535 350						
NCV8535MN500R2G	5.0 V	V8535 500						
NCV8535MLADJR2G	Adj.	L8535 ADJ		Wettable Flank				
NCV8535ML180R2G	1.8 V	L8535 180	DFN10					
NCV8535ML250R2G	2.5 V	L8535 250	(Pb–Free)	SLP Process	3000 / Tape & Reel			
NCV8535ML330R2G	3.3 V	L8535 330						

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

Capable.

PACKAGE DIMENSIONS


DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DFNW10 3x3, 0.5P CASE 507AM

ISSUE A

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hard use, exert applications, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Furgoe Middle Fast and Africa Technical Support:

Europe, Middle East and Africa Technical Support: C Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative