

FEATURES

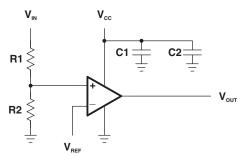
- Low Supply Current...20 μA Typ
- Single Power Supply
- Rail-to-Rail Common-Mode Input Voltage Range
- Push-Pull Output Circuit
- Low Input-Bias Current

APPLICATIONS

- Battery Packs for Sensing Battery Voltage
- MP3 Players, Digital Cameras, PMPs
- Cellular Phones, PDAs, Notebook Computers
- Test Equipment
- General-Purpose Low-Voltage Applications

DESCRIPTION/ORDERING INFORMATION

The TLV7256 is a CMOS-type general-purpose dual comparator capable of single power-supply operation and using lower supply currents than the conventional bipolar comparators. Its push-pull output can connect directly to local ICs such as TTL and CMOS circuits.


ORDERING INFORMATION⁽¹⁾

T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP – DCT	Reel of 3000	TLV7256IDCTR	PREVIEW
–40°C to 85°C	550P - DC1	Reel of 250	TLV7256IDCTT	FREVIEW
	VSSOP – DDU	Reel of 3000	TLV7256IDDUR	YAUA

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Typical Application Circuit

Figure 1. Threshold Detector

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

5 2IN+

 V_{cc-}

 Π_4

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.5	7	V
V_{ID}	Differential input voltage				V
VI	Input voltage		V _{CC} -	V_{CC+}	V
I _O	Output current			±35	mA
а т	Thermal registeres, justice to $embient(2)$	DCT package		220	°C/W
θ_{JA}	Thermal resistance, juction to ambient ⁽²⁾	DDU package		227	C/W
Р	Dower dissipation	DCT package		250	m)//
P _D	Power dissipation	DDU package		200	mW
T _A	Operating free-air temperature range		-40	85	°C
T _{stg}	Storage temperature range		-55	125	°C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Package thermal impedance is calculated according to JESD 51-7.

Recommended Operating Conditions

		MIN	MAX	UNIT
V _{CC}	Supply voltage	1.8	5	V
T _A	Operating free-air temperature	-40	85	°C

Electrical Characteristics

 V_{CC+} = 5 V, V_{CC-} = GND, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT	
V			25°C		±2	±7		
V _{IO}	Input offset voltage		-40°C to 85°C			±8	mV	
I _{IO}	Input offset current		25°C		2		pА	
l _l	Input bias current		25°C		4		pА	
V _{CM}	Common-mode input voltage		25°C	0		V _{CC}	V	
CMRR	Common mode rejection ratio	$\Delta V_{CM} = 5 V$	25°C	48	65		dB	
CINIKK	Common-mode rejection ratio	$0 \le V_{CM} \le 5 V$	–40°C to 85°C	48			uБ	
		Output = High, V _{IN} = 5 V	25°C		37	51		
		Output = Low, $V_{IN} = 5 V$	25°C		40	60	μΑ	
		Output = High, V _{IN} = 5 V	_40°C to 85°C			61		
I _{CC} Supply current	Supply surrent	Output = Low, $V_{IN} = 5 V$	-40 C 10 65 C			70		
	Supply current	Output = High, V_{IN} = 2.5 V	25°C		20	32		
		Output = Low, V_{IN} = 2.5 V	25°C		26	42		
		Output = High, V_{IN} = 2.5 V	–40°C to 85°C			40		
		Output = Low, V_{IN} = 2.5 V	-40°C 10 85°C			53		
A _{VD}	Voltage gain	$V_D = 3 V, 1 V \le V_{OUT} \le 4 V$	25°C		88		dB	
	Sink current	V 05V	25°C	25	33			
Isink	Sink current	V _{OL} = 0.5 V	–40°C to 85°C	20			mA	
	Source current		25°C	30	35		m۸	
source	Source current	V _{OH} = 4.5 V	–40°C to 85°C	25			mA	
		1 – 5 mA	25°C		0.07	0.12	V	
V _{OL}	Low-level output voltage	$I_{sink} = 5 \text{ mA}$	-40°C to 85°C			0.20	V	
v		1 5 m 4	25°C	4.9	4.93		V	
V _{OH}	High-level output voltage	I _{source} = 5 mA	-40°C to 85°C	4.85			V	

TLV7256 **DUAL COMPARATOR**

SLCS147A-OCTOBER 2006-REVISED JANUARY 2007

Electrical Characteristics

 V_{CC+} = 2.7 V, V_{CC-} = GND, T_{A} = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNI
			25°C		±2	±8	
V _{IO}	Input offset voltage		–40°C to 85°C			±9	mV
I _{IO}	Input offset current		25°C		2		pА
l _l	Input bias current		25°C		4		pА
V _{CM}	Common-mode input voltage		25°C	0		V_{CC}	V
	Common mode sole stice setie	$\Delta V_{CM} = 2.7 V$	25°C	42	57		-10
CMRR	Common-mode rejection ratio	$0 \le V_{CM} \le 2.7 \text{ V}$	–40°C to 85°C	42			dB
		Output = High, V_{IN} = 2.7 V	2500		30	55	
		Output = Low, V_{IN} = 2.7 V	25°C		36	55	μΑ
		Output = High, V_{IN} = 2.7 V	–40°C to 85°C			65	
CC Supply current	Current automat	Output = Low, V_{IN} = 2.7 V	-40°C 10 85°C			65	
	Supply current	Output = High, V _{IN} = 1.35 V	2500		30	48	
		Output = Low, V_{IN} = 1.35 V	25°C		35	55	
		Output = High, V _{IN} = 1.35 V	40%C to 95%C			55	
		Output = Low, V_{IN} = 1.35 V	–40°C to 85°C			65	
A _{VD}	Voltage gain	V_{D} = 1.7 V, 0.5 V $\leq V_{OUT} \leq$ 2.2 V	25°C		88		dB
	Ciale aumont		25°C	13	18		
sink	Sink current	V _{OL} = 0.5 V	–40°C to 85°C	11			mA
	Source ourrest	N 22N	25°C	15	20		~ ^
source	Source current	V _{OH} = 2.2 V	–40°C to 85°C	13			mA
			25°C		0.11	0.16	V
/ _{OL}	Low-level output voltage	$I_{sink} = 5 \text{ mA}$	–40°C to 85°C			0.19	v
,		L 5 m/	25°C	2.54	2.60		V
V _{ОН}	High-level output voltage	I _{source} = 5 mA	–40°C to 85°C	2.45			v

Electrical Characteristics

 V_{CC+} = 1.8 V, V_{CC-} = GND, T_{A} = 25°C (unless otherwise noted)

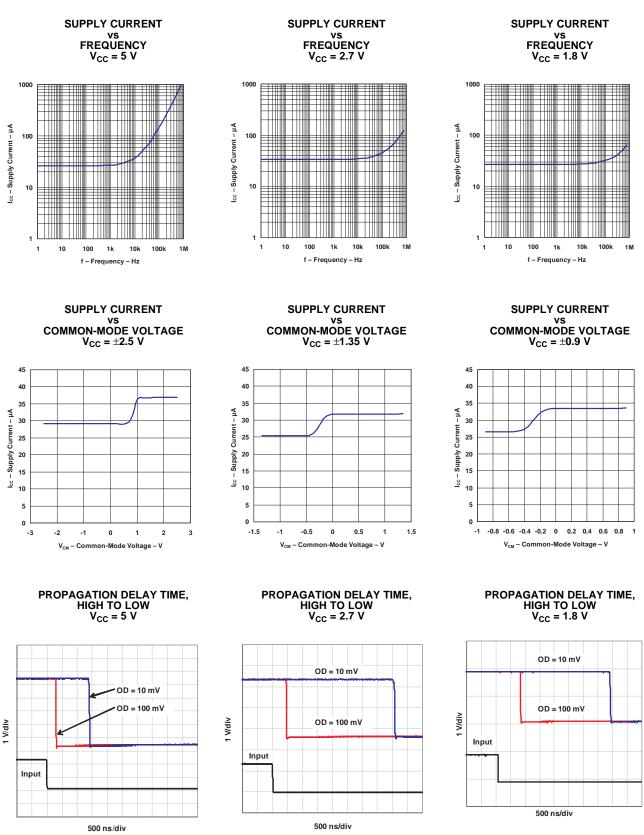
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
V	Input offect voltage		25°C		±2	±8	m) (
V _{IO}	Input offset voltage		–40°C to 85°C			±9	mV
I _{IO}	Input offset current		25°C		2		pА
l _l	Input bias current		25°C		4		pА
V _{CM}	Common-mode input voltage		25°C	0		$V_{CC} - 0.3$	V
CMRR	Common mode rejection ratio	$\Delta V_{CM} = 5 V$	25°C	40	55		dB
CINKK	Common-mode rejection ratio	$0 \le V_{CM} \le 5 V$	–40°C to 85°C	40			uБ
		Output = High, V_{IN} = 1.8 V	= 1.8 V		30	55	
		Output = Low, V _{IN} = 1.8 V	25°C		33	47	μΑ
		Output = High, V _{IN} = 1.8 V	–40°C to 85°C			60	
CC Supply current	Current current	Output = Low, V _{IN} = 1.8 V	-40°C 10 85°C			51	
	Supply current	Output = High, $V_{IN} = 0.9 V$	2500		20	32	
		Output = Low, $V_{IN} = 0.9 V$	25°C		25	37	
		Output = High, V _{IN} = 0.9 V	4000 to 0500			34	
		Output = Low, $V_{IN} = 0.9 V$	–40°C to 85°C			40	I
A _{VD}	Voltage gain	V_{D} = 1.1 V, 0.4 V $\leq V_{OUT} \leq 1.5$ V	25°C		88		dB
	Cink ourrent	V 0.5.V	25°C	6	9		
I _{sink}	Sink current	V _{OL} = 0.5 V	–40°C to 85°C	5			mA
	Source current		25°C	5	9		mA
source	Source current	V _{OH} = 2.2 V	–40°C to 85°C	4			ШA
\ <i>\</i>	Low lovel output voltoge		25°C		0.2	0.34	V
V _{OL}	Low-level output voltage	I _{sink} = 5 mA	–40°C to 85°C			0.39	v
	Lish lovel output veltage	L 5 mA	25°C	1.3	1.6		V
V _{ОН}	nigh-level output voltage	gh-level output voltage I _{source} = 5 mA		1.2			V

TLV7256 DUAL COMPARATOR

SLCS147A-OCTOBER 2006-REVISED JANUARY 2007

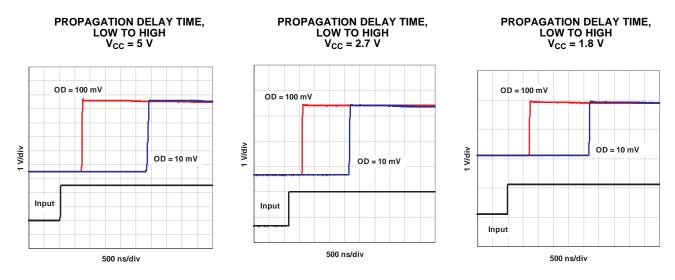
Switching Characteristics

 V_{CC+} = 5 V, V_{CC-} = GND, T_A = 25°C (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	TYP	UNIT
	Propagation dology time (turn on)	Overdrive = 100 mV		ns
t _{PLH}	Propagation delay time (turn on) TTL step input		500	
	Propagation dology time (turn off)	Overdrive = 100 mV	250	20
^t PHL	Propagation delay time (turn off)	TTL step input	380	ns
t _{TLH}	Pospono timo	Overdrive = 100 mV	60	20
t _{THL}	Response time		8	ns

Switching Characteristics

 V_{CC+} = 3 V, V_{CC-} = GND, T_{A} = 25°C (unless otherwise noted)


PARAMETER		TEST CONDITIONS	TYP	UNIT
t _{PLH}	Propagation delay time (turn on)	Overdrive = 100 mV	550	ns
t _{PHL}	Propagation delay time (turn off)	Overdrive = 100 mV	250	ns
t _{TLH}	Decements time		30	
t _{THL}	Response time	Overdrive = 100 mV	8	ns

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLV7256IDDUR	ACTIVE	VSSOP	DDU	8	3000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	YAUA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

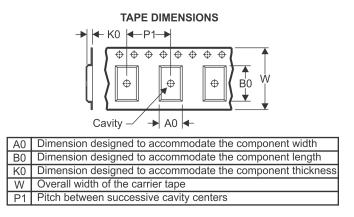
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

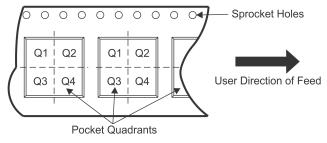
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

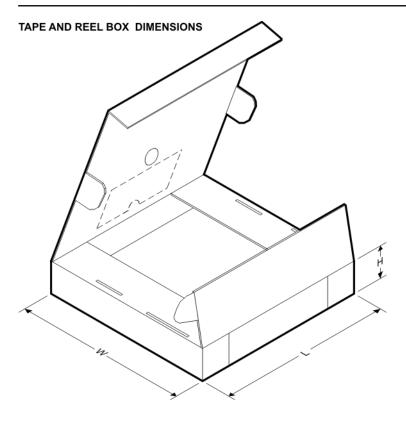
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

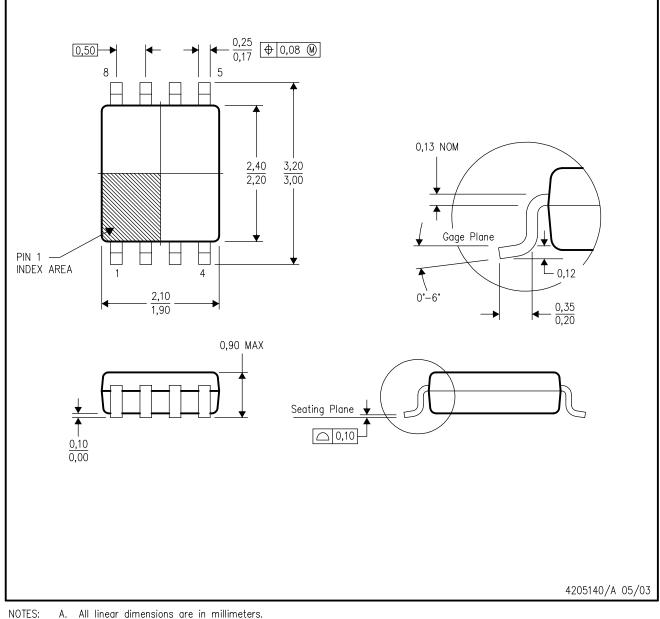

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV7256IDDUR	VSSOP	DDU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

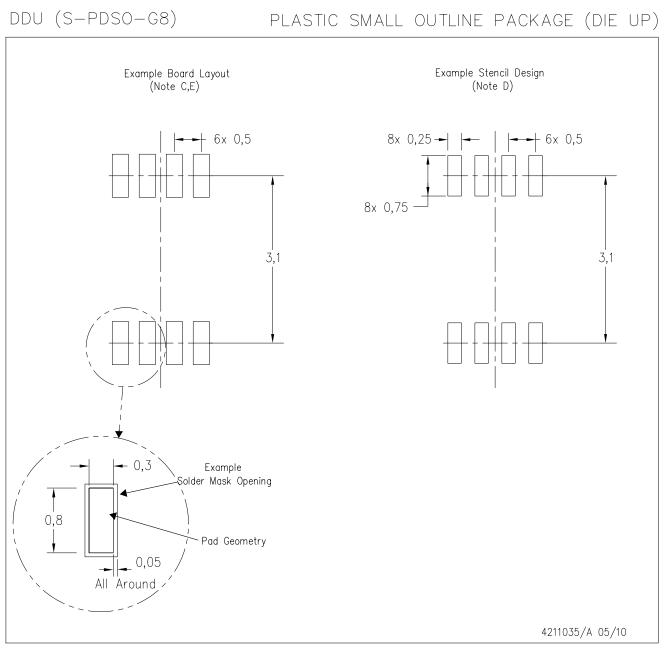
25-Sep-2019



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV7256IDDUR	VSSOP	DDU	8	3000	202.0	201.0	28.0

DDU (R-PDSO-G8)


PLASTIC SMALL-OUTLINE PACKAGE

Α. All linear dimensions are in millimeters.

- Β. This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion. C.
- D. Falls within JEDEC MO-187 variation CA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated