

SN74AUP1G74

SCES644D -MARCH 2006-REVISED DECEMBER 2015

SN74AUP1G74 Low-Power Single Positive-Edge-Triggered D-Type Flip-Flop With Clear and Preset

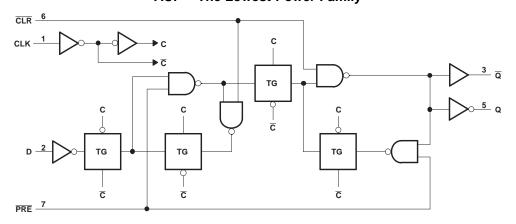
Features

- Available in the Texas Instruments NanoStar™
- Low Static-Power Consumption: $I_{CC} = 0.9 \mu A Maximum$
- Low Dynamic-Power Consumption: $C_{pd} = 5.5 \text{ pF Typical at } 3.3 \text{ V}$
- Low Input Capacitance: C_i = 1.5 pF Typical
- Low Noise Overshoot and Undershoot < 10% of V_{CC}
- I_{off} Supports Partial-Power-Down Mode Operation
- Schmitt-Trigger Action Allows Slow Input Transition and Better Switching Noise Immunity at the Input $(V_{hys} = 250 \text{ mV Typical at } 3.3 \text{ V})$
- Wide Operating V_{CC} Range of 0.8 V to 3.6 V
- Optimized for 3.3-V Operation
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal
- t_{pd} = 5 ns Maximum at 3.3 V
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Servers
- LED Displays
- **Network Switches**
- Telecom Infrastructure
- **Motor Drivers**
- I/O Expanders

3 Description


The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static- and dynamic-power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in increased battery life. This product also maintains excellent signal integrity (see the very low undershoot and overshoot characteristics shown in Figure 6).

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74AUP1G74YFP	DSBGA (8)	1.56 mm × 0.76 mm
SN74AUP1G74YZP	DSBGA (8)	1.86 mm × 0.89 mm
SN74AUP1G74DCU	VSSOP (8)	2.30 mm × 2.00 mm
SN74AUP1G74DQE	X2SON (8)	1.40 mm × 1.00 mm
SN74AUP1G74RSE	UQFN (8)	1.50 mm × 1.50 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

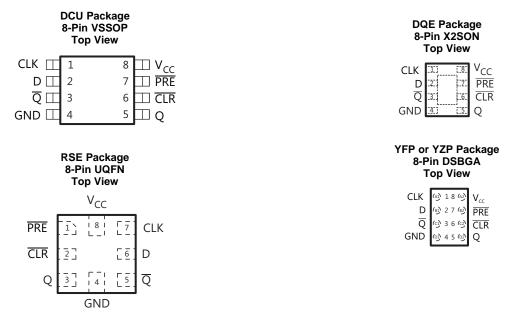
AUP - The Lowest-Power Family

Table of Contents

1	Features 1		7.2 Enable and Disable Times	14
2	Applications 1	8	Detailed Description	15
3	Description 1		8.1 Overview	15
4	Revision History2		8.2 Functional Block Diagram	15
5	Pin Configuration and Functions		8.3 Feature Description	15
6	Specifications		8.4 Device Functional Modes	15
•	6.1 Absolute Maximum Ratings	9	Application and Implementation	16
	6.2 ESD Ratings		9.1 Application Information	16
	6.3 Recommended Operating Conditions		9.2 Typical Power Button Circuit	16
	6.4 Thermal Information	10	Power Supply Recommendations	17
	6.5 Electrical Characteristics, T _A = 25°C	11	Layout	
	6.6 Electrical Characteristics, T _A = -40°C to +85°C 6		11.1 Layout Guidelines	
	6.7 Timing Requirements		11.2 Layout Example	
	6.8 Switching Characteristics, C ₁ = 5 pF	12	Device and Documentation Support	
	6.9 Switching Characteristics, C _L = 10 pF		12.1 Documentation Support	
	6.10 Switching Characteristics, C _L = 15 pF		12.2 Community Resources	
	6.11 Switching Characteristics, C _L = 30 pF		12.3 Trademarks	
	6.12 Operating Characteristics		12.4 Electrostatic Discharge Caution	18
	6.13 Typical Characteristics		12.5 Glossary	
7	Parameter Measurement Information	13	Mechanical, Packaging, and Orderable	
-	7.1 Propagation Delays, Setup and Hold Times, and Pulse Width)	-	Information	18

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision C (March 2010) to Revision D

Page

Submit Documentation Feedback

5 Pin Configuration and Functions

Pin Functions⁽¹⁾

		PIN			
NAME	VSSOP, X2SON	UQFN	DSBGA	I/O	DESCRIPTION
CLK	1	7	A1	I	Rising edge triggered clock signal input
CLR	6	2	C2	1	Clear, Active low
D	2	6	B1	1	Data input
GND	4	4	D1	_	Ground
PRE	7	1	B2	1	Preset, Active low
Q	5	3	D2	0	Output
Q	3	5	C1	0	Inverted output
V_{CC}	8	8	A2	_	Power supply

(1) See Mechanical, Packaging, and Orderable Information for dimensions.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	4.6	V
VI	Input voltage ⁽²⁾		-0.5	4.6	V
Vo	Voltage applied to any output in the high-impedance o	r power-off state ⁽²⁾	-0.5	4.6	V
Vo	Output voltage in the high or low state (2)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		– 50	mA
I _{OK}	Output clamp current	V _O < 0		– 50	mA
Io	Continuous output current			±20	mA
	Continuous current through V _{CC} or GND			±50	mA
TJ	Junction temperature			150	00
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		0.8	3.6	V
		V _{CC} = 0.8 V	V_{CC}		
V	Lligh level input valtage	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$	$0.7 \times V_{CC}$		V
VIH	nigh-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6		V
	Supply voltage High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2		
	Homeon High-level input voltage Low-level input voltage Input voltage Output voltage	$V_{CC} = 0.8 \text{ V}$		0	
M		$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$		$0.3 \times V_{CC}$	V
VIL		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		0.9	
V_{I}	Input voltage	·	0	3.6	V
Vo	Output voltage		0	V_{CC}	V
		$V_{CC} = 0.8 \text{ V}$		-20	μΑ
		V _{CC} = 1.1 V		-1.1	
	High lovel output ourrant	V _{CC} = 1.4 V		-1.7	
	nign-ievei output current	$V_{CC} = 1.65$		-1.9	mA
		$V_{CC} = 2.3 \text{ V}$		-3.1	
		$V_{CC} = 3 V$		-4	

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Recommended Operating Conditions⁽¹⁾ (continued)

			MIN MAX	UNIT
	Low-level output current	V _{CC} = 0.8 V	20	μΑ
		V _{CC} = 1.1 V	1.1	
I _{OL}	Low level output ourrent	$V_{CC} = 1.4 \text{ V}$	1.7	
	Low-level output current	V _{CC} = 1.65 V	1.9	mA
		V _{CC} = 2.3 V	3.1	
	Low-level output current $V_{CC} = 1.65 \text{ V}$ $V_{CC} = 2.3 \text{ V}$ $V_{CC} = 3 \text{ V}$	4		
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	200	ns/V
T _A	Operating free-air temperature	· · · · · · · · · · · · · · · · · · ·	-40 85	°C

6.4 Thermal Information

			SN74A	UP1G74		
THERMAL METRIC ⁽¹⁾		DCU (VSSOP)	DQE (X2SON)	RSE (UQFN)	YFP/YZP (DSBGA)	UNIT
		8 PINS	8 PINS	8 PINS	8 PINS	
R _{θJA} Junction-to	-ambient thermal resistance	227	261	253	102	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics, T_A = 25°C

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} - 0.1			
PARAMETER VOH VOL II A or B input Ioff ΔIoff ICC ΔICC Ci Co	$I_{OH} = -1.1 \text{ mA}$	1.1 V	0.7 × V _{CC}			
	$I_{OH} = -1.7 \text{ mA}$	1.4 V	1.11			
	$I_{OH} = -1.9 \text{ mA}$	1.65 V	1.32			V
VOH	$I_{OH} = -2.3 \text{ mA}$	221	2.05			V
	$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.9			
	$I_{OH} = -2.7 \text{ mA}$	2.1/	2.72			
	$I_{OH} = -4 \text{ mA}$	0.8 V to 3.6 V				
	I _{OL} = 20 μA	0.8 V to 3.6 V			0.1	
	I _{OL} = 1.1 mA	1.1 V			0.3 × V _{CC}	
	I _{OL} = 1.7 mA	1.4 V			0.31	
\/	I _{OL} = 1.9 mA	1.65 V			0.31	\ /
VOL	I _{OL} = 2.3 mA	0.0.1/			0.31	V
	I _{OL} = 3.1 mA	2.3 V			0.44	
	I _{OL} = 2.7 mA	2.1/			0.31	
V_{OL} $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{OL} = 4 mA	3 V			0.44	
I _I A or B input	$V_I = GND \text{ to } 3.6 \text{ V}$	0 V to 3.6 V			0.1	μΑ
l _{off}	V_I or $V_O = 0 V$ to 3.6 V	0 V			0.2	μΑ
ΔI_{off}	V_I or $V_O = 0 V$ to 3.6 V	0 V to 0.2 V			0.2	μA
Icc	$V_I = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_O = 0$	0.8 V to 3.6 V			0.5	μA
Δl _{CC}	$V_I = V_{CC} - 0.6 \ V^{(1)}, \ I_O = 0$	3.3 V			40	μΑ
	V V == CND	0 V		1.5		F
C _i	$V_I = V_{CC}$ or GND	3.6 V		1.5		p⊢
Co	V _O = GND	0 V		3		pF

(1) One input at V_{CC} – 0.6 V, other input at V_{CC} or GND

Submit Documentation Feedback

6.6 Electrical Characteristics, $T_A = -40$ °C to +85°C

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} - 0.1			
	I _{OH} = -1.1 mA	1.1 V	0.7 × V _{CC}			
PARAMETER Voh II A or B input Ioff	$I_{OH} = -1.7 \text{ mA}$	1.4 V	1.03			
	$I_{OH} = -1.9 \text{ mA}$	1.65 V	1.3			
VOH	$I_{OH} = -2.3 \text{ mA}$	0.0.1/	1.97			V
	$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.85			
	$I_{OH} = -2.7 \text{ mA}$	0.1/	2.67			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$V_{OH} \begin{tabular}{ll} $I_{OH} = -1.7 \text{ mA} & 1.4 \text{ V} & 1.03 \\ $I_{OH} = -1.9 \text{ mA} & 1.65 \text{ V} & 1.3 \\ $I_{OH} = -2.3 \text{ mA} & 2.3 \text{ V} & 1.97 \\ \hline $I_{OH} = -3.1 \text{ mA} & 2.3 \text{ V} & 1.85 \\ \hline $I_{OH} = -2.7 \text{ mA} & 3 \text{ V} & 2.67 \\ \hline $I_{OH} = -4 \text{ mA} & 2.55 \\ \hline $I_{OL} = 20 \text{ µA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 1.1 \text{ mA} & 1.1 \text{ V} \\ \hline $I_{OL} = 1.7 \text{ mA} & 1.4 \text{ V} \\ \hline $I_{OL} = 1.9 \text{ mA} & 1.65 \text{ V} \\ \hline $I_{OL} = 2.3 \text{ mA} & 2.3 \text{ V} \\ \hline $I_{OL} = 2.3 \text{ mA} & 2.3 \text{ V} \\ \hline $I_{OL} = 2.7 \text{ mA} & 3 \text{ V} \\ \hline $I_{OL} = 2.7 \text{ mA} & 3 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 3 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline $I_{OL} = 4 \text{ mA} & 0.8 \text{ V to } 3.6 \text{ V} \\ \hline I_{OL}	I _{OL} = 20 μA	0.8 V to 3.6 V			0.1	
	I _{OL} = 1.1 mA	1.1 V			0.3 × V _{CC}	
	I _{OL} = 1.7 mA	1.4 V			0.37	
	I _{OL} = 1.9 mA	1.65 V			0.35	
	I _{OL} = 2.3 mA	0.0.1/			0.33	V
	I _{OL} = 3.1 mA	2.3 V			0.45	
	I _{OL} = 2.7 mA	0.1/			0.33	
		0.45				
I _I A or B input	V _I = GND to 3.6 V	0 V to 3.6 V			0.5	μA
l _{off}	V_I or $V_O = 0$ V to 3.6 V	0 V			0.6	μΑ
$\Delta I_{ m off}$	V_I or $V_O = 0$ V to 3.6 V	0 V to 0.2 V			0.6	μΑ
-		0.8 V to 3.6 V			0.9	μΑ
Δl _{CC}	$V_I = V_{CC} - 0.6 V^{(1)}, I_O = 0$	3.3 V			50	μA
		0 V				F
A or B input off cc cc clcc	$v_1 = v_{CC}$ or GND	3.6 V				pF
C _o	$V_O = GND$	0 V				pF

⁽¹⁾ One input at V_{CC} – 0.6 V, other input at V_{CC} or GND

Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

6.7 Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

			V _{cc}	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			0.8 V		21		
			1.2 V ± 0.1 V			40	
:	Clock fraguancy		1.5 V ± 0.1 V			50	MHz
clock	Clock frequency		1.8 V ± 0.15 V			60	IVITZ
	PRE or CLR low Data high		2.5 V ± 0.2 V			90	
			$3.3 \text{ V} \pm 0.3 \text{ V}$			90	
			0.8 V		3.5		
			1.2 V ± 0.1 V	2			
		Cl K high or low	1.5 V ± 0.1 V	2			
		CLK night of low	1.8 V ± 0.15 V	2			
			2.5 V ± 0.2 V	2			
	Duda a dematica		3.3 V ± 0.3 V	2			
W	ruise duration		0.8 V		4.5		ns
			1.2 V ± 0.1 V	2			
			1.5 V ± 0.1 V	2		40 50 60 90 90 5	
		PRE or CLR low	1.8 V ± 0.15 V	2			
			2.5 V ± 0.2 V	2			
		3.3 V ± 0.3 V	2				
			0.8 V		3		
			1.2 V ± 0.1 V	1.3			
			1.5 V ± 0.1 V	1			
		Data high	1.8 V ± 0.15 V	1			
			2.5 V ± 0.2 V	0.5			
			3.3 V ± 0.3 V	0.5			
			0.8 V		1		
			1.2 V ± 0.1 V	1.2			
			1.5 V ± 0.1 V	1			
su	Setup time before CLK↑	Data low	1.8 V ± 0.15 V	1			ns
			2.5 V ± 0.2 V	1			
			3.3 V ± 0.3 V	1			
			0.8 V		1		
			1.2 V ± 0.1 V	0.5			
			1.5 V ± 0.1 V	0.5			
		PRE or CLR inactive	1.8 V ± 0.15 V	0.5			
			2.5 V ± 0.2 V	0.5			
			3.3 V ± 0.3 V	0.5			
		1	0.8 V		0		
			1.2 V ± 0.1 V	0			
			1.5 V ± 0.1 V	0			
	Hold time, data after CLK↑		1.8 V ± 0.15 V	0			ns
			2.5 V ± 0.2 V	0			
			3.3 V ± 0.3 V	0			

⁽¹⁾ Minimum and maximum values are for $T_A = -40^{\circ}C$ to +85°C (2) Typicals are for $T_A = 25^{\circ}C$

Copyright © 2006–2015, Texas Instruments Incorporated

Submit Documentation Feedback

6.8 Switching Characteristics, $C_L = 5 pF$

over recommended operating free-air temperature range, $C_L = 5 pF$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	TYP	MAX	UNIT	
			0.8 V	T _A = 25°C		60			
			1.2 V ± 0.1 V	T _A = 25°C		80			
			1.2 V ± 0.1 V	$T_A = -40$ °C to 85°C	60				
			1.5 V ± 0.1 V	T _A = 25°C		125			
			1.5 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	90				
ıax			1.8 V ± 0.15 V	T _A = 25°C		150		MH	
			1.0 1 2 0.10 1	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	120				
			2.5 V ± 0.2 V	$T_A = 25^{\circ}C$		180			
			2.5 V 1 0.2 V	$T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$	160				
max			3.3 V ± 0.3 V	T _A = 25°C		190			
			3.3 V ± 0.3 V	$T_A = -40$ °C to 85°C	180				
			0.8 V	T _A = 25°C		31			
			1.2 V ± 0.1 V	T _A = 25°C	2	10	20		
			1.2 V ± 0.1 V	$T_A = -40$ °C to 85°C	2.7		20.4		
			151/.011/	T _A = 25°C	2	6	12		
			1.5 V ± 0.1 V	$T_A = -40$ °C to 85°C	1.9		12.4		
		Q	4.0.1/ . 0.45.1/	T _A = 25°C	2	5	9		
		CLK	1.8 V ± 0.15 V	$T_A = -40$ °C to 85°C	1.4		9.5		
				T _A = 25°C	2	3	6		
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_A = -40$ °C to 85°C	1.1		6.2		
			3.3 V ± 0.3 V	T _A = 25°C	2	3	4		
	CLK -			$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1		4.7		
			0.8 V	T _A = 25°C		28			
			401/		T _A = 25°C	2	9	19	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2.4		19		
				T _A = 25°C	2	6	11		
			1.5 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.6		11.8		
		Q		T _A = 25°C	2	5	9	ns	
			1.8 V ± 0.15 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.3		9		
				T _A = 25°C	2	3	6		
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.1		6		
				T _A = 25°C	2	3	4		
			$3.3 \text{ V} \pm 0.3 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1		4.6		
			0.8 V	T _A = 25°C	•	26	1.0		
			0.0 .	T _A = 25°C	2	9	20		
			1.2 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2		20		
				T _A = 25°C	2	6	12		
			$1.5 \text{ V} \pm 0.1 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.5		13	ì	
	PRE or CLR	Q or Q		$T_A = 25^{\circ}C$	2	5	9		
	I ILL OI OLIX	Q 01 Q	1.8 V ± 0.15 V	$T_A = 25 \text{ C}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.3	3	10		
				$T_A = -40 \text{ C to 85 C}$ $T_A = 25^{\circ}\text{C}$	2	3	6		
			2.5 V ± 0.2 V			<u>ა</u>	7		
			-	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1	2			
		3.3 V ± 0.3 V	$3.3 \text{ V} \pm 0.3 \text{ V}$	T _A = 25°C	2	3	5		
				$T_A = -40^{\circ}C$ to $85^{\circ}C$	1		5		

Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

6.9 Switching Characteristics, $C_L = 10 pF$

over recommended operating free-air temperature range, $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	TYP	MAX	UNIT
			0.8 V	T _A = 25°C		46		
			1.2 V ± 0.1 V	T _A = 25°C		65		
			1.2 V ± 0.1 V	$T_A = -40$ °C to 85°C	50			
			1.5 V ± 0.1 V	T _A = 25°C		95		
			1.5 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	55			
ıax			1.8 V ± 0.15 V	T _A = 25°C		110		MHz
			1.0 V ± 0.13 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	60			
			2.5 V ± 0.2 V	T _A = 25°C		170		
			2.5 V 1 0.2 V	$T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$	130			
			3.3 V ± 0.3 V	T _A = 25°C		180		
			3.3 V ± 0.3 V	$T_A = -40$ °C to 85°C	160			
			0.8 V	T _A = 25°C		33		
			1.2 V ± 0.1 V	T _A = 25°C	2	10	22	
			1.2 V ± 0.1 V	$T_A = -40$ °C to 85°C	3.4		21.8	
		Q	151/.011/	$T_A = 25$ °C	2	7	13	
			1.5 V ± 0.1 V	$T_A = -40$ °C to 85°C	2.4		13.5	
			4.0.1/ . 0.45.1/	T _A = 25°C	2	6	10	
			1.8 V ± 0.15 V	$T_A = -40$ °C to 85°C	1.9		10.4	
			0.5.1/ 0.0.1/	T _A = 25°C	2	4	6	
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_A = -40$ °C to 85°C	1.5		7	
			221/ 221/	T _A = 25°C	2	3	5	
	0111		3.3 V ± 0.3 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.2		5.3	
	CLK		0.8 V	T _A = 25°C		30		
			401/ 041/	T _A = 25°C	2	10	20	-
			1.2 V ± 0.1 V	$T_A = -40$ °C to 85°C	3		20.3	
			4577.047	T _A = 25°C	2	7	12	
			1.5 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2.2		12.8	
		Q		T _A = 25°C	2	5	9	ns
			1.8 V ± 0.15 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.8		9.9	
				T _A = 25°C	2	4	6	
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.3		6.7	
				T _A = 25°C	2	3	5	
			$3.3 \text{ V} \pm 0.3 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.1		5.2	
			0.8 V	T _A = 25°C		29		
				T _A = 25°C	2	10	21	
			$1.2 \text{ V} \pm 0.1 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2		21.4	
				T _A = 25°C	2	7	13	
			1.5 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2		13.8	1
	PRE or CLR	Q or Q		T _A = 25°C	2	5	10	
			1.8 V ± 0.15 V	$T_A = -40$ °C to 85°C	2		10.8	
				T _A = 25°C	2	4	7	
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.5		7.4	
				T _A = 25°C	2	3	5	
			$3.3 \text{ V} \pm 0.3 \text{ V}$. A - 20 0			3	

6.10 Switching Characteristics, $C_L = 15 pF$

over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	TYP	MAX	UNIT
			0.8 V	T _A = 25°C		41		
			1.2 V ± 0.1 V	T _A = 25°C		75		
			1.2 V ± 0.1 V	$T_A = -40$ °C to 85°C	50			
			451/.041/	T _A = 25°C		95		
			1.5 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	55			
nax			4014 04514	T _A = 25°C		100		MHz
			1.8 V ± 0.15 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	60			
			0.51/ 0.01/	T _A = 25°C		150		
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_A = -40$ °C to 85°C	130			
				T _A = 25°C		200		
			$3.3 \text{ V} \pm 0.3 \text{ V}$	$T_A = -40$ °C to 85°C	160			
			0.8 V	T _A = 25°C		35		
				T _A = 25°C	2	12	23.1	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	4.1		23.2	
				T _A = 25°C	2	8	14.1	
		Q	1.5 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2.9		14.6	
				T _A = 25°C	2	6	10.7	
			1.8 V ± 0.15 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2.4		11.3	
				T _A = 25°C	2.4	4	7	
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_A = 23 \text{ C}$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$		4		
					1.9	4	7.6	
			3.3 V ± 0.3 V	T _A = 25°C	2	4	5.4	
	CLK		0.01/	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.6		5.9	İ
			0.8 V	T _A = 25°C		32		
			1.2 V ± 0.1 V	T _A = 25°C	2	11	21.8	
			1.5 V ± 0.1 V	$T_A = -40$ °C to 85°C	3.7		21.8	
				T _A = 25°C	2	7	13.5	
			1.8 V ± 0.15 V	$T_A = -40$ °C to 85°C	2.6		14	
pd		Q		$T_A = 25^{\circ}C$	2	6	10.4	ns
				$T_A = -40$ °C to 85°C	2.2		10.9	
			2.5 V ± 0.2 V	$T_A = 25^{\circ}C$	2	4	7.1	
			2.0 1 2 0.2 1	$T_A = -40$ °C to 85°C	1.7		7.5	
			3.3 V ± 0.3 V	$T_A = 25^{\circ}C$	2	3	5.4	
			3.5 V ± 0.5 V	$T_A = -40$ °C to 85°C	1.4		5.8	
			0.8 V	$T_A = 25^{\circ}C$		31		
			4.03/ - 0.43/	T _A = 25°C	2	11	23	
			$1.2 \text{ V} \pm 0.1 \text{ V}$	$T_A = -40$ °C to 85°C	2		22.9	
				T _A = 25°C	2	7	14	
			1.5 V ± 0.1 V	$T_A = -40$ °C to 85°C	2		14.9	1
	PRE or CLR	Q or Q		T _A = 25°C	2	6	11	
			1.8 V ± 0.15 V	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2		11.7	
				T _A = 25°C	2	4	7	
			$2.5 \text{ V} \pm 0.2 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2		8.1	-
				T _A = 25°C	2	4	6	
			$3.3 \text{ V} \pm 0.3 \text{ V}$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.5	•	6.4	

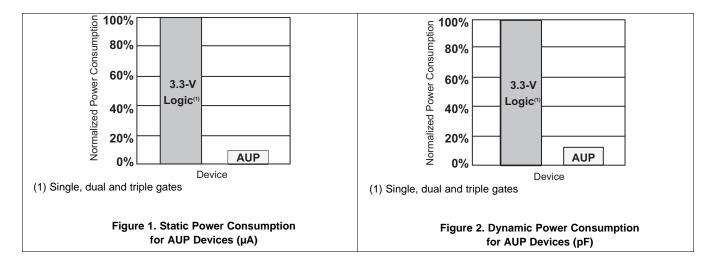
Submit Documentation Feedback

Copyright © 2006–2015, Texas Instruments Incorporated

6.11 Switching Characteristics, $C_L = 30 pF$

over recommended operating free-air temperature range, C_L = 30 pF (unless otherwise noted) (see Figure 3 and Figure 4)

		0.8 V	T _A = 25°C		21		
		1.2 V ± 0.1 V	T _A = 25°C		50		
		1.2 V ± 0.1 V	$T_A = -40$ °C to 85°C	40			
		1.5 V ± 0.1 V	T _A = 25°C		60		
		1.5 V ± 0.1 V	$T_A = -40$ °C to 85°C	50			
		191/.0151/	$T_A = 25$ °C		75		MHz
		1.6 V ± 0.15 V	$T_A = -40$ °C to 85°C	70			
		251/ . 021/	$T_A = 25$ °C		100		
		2.5 V ± 0.2 V	$T_A = -40$ °C to 85°C	90			
		221/ . 021/	T _A = 25°C		100		
		3.3 V ± 0.3 V	$T_A = -40$ °C to 85°C	90			
		0.8 V	T _A = 25°C		32		
		121/.011/	T _A = 25°C	3	14	27	
		1.2 V ± 0.1 V	$T_A = -40$ °C to 85°C	5.9		27	
		451/ . 041/	T _A = 25°C	3	10	17	
	Q	1.5 V ± 0.1 V	$T_A = -40$ °C to 85°C	4.4		17.2	
		4014 04514	T _A = 25°C	3	8	13	
		1.8 V ± 0.15 V	$T_A = -40$ °C to 85°C	3.6		13.4	
		25 // . 02 //	T _A = 25°C	3	6	9	
		2.5 V ± 0.2 V	$T_A = -40$ °C to 85°C	3		9.2	
		3.3 V ± 0.3 V	T _A = 25°C	3	5	7	
			$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	2.6		7.2	
CLK		0.8 V			40		
				3	13	26	
		1.2 V ± 0.1 V					
				3	9	16	
		1.5 V ± 0.1 V					
	Q				7		ns
		1.8 V ± 0.15 V					
					5		
		$2.5 \text{ V} \pm 0.2 \text{ V}$					
					5		
		$3.3 \text{ V} \pm 0.3 \text{ V}$					
		0.8 V		2. 1	38	7.2	
		0.0 .		3		26	
		1.2 V ± 0.1 V					
					9		
		$1.5 \text{ V} \pm 0.1 \text{ V}$					-
PRE or CLR	Q or Q				8		
	Q 01 Q	1.8 V ± 0.15 V			0		
	-				6		
		$2.5 \text{ V} \pm 0.2 \text{ V}$			U		-
	-				5		
		$3.3 \text{ V} \pm 0.3 \text{ V}$			5		
_	CLK PRE or CLR	CLK	$\begin{array}{c} & 1.2\text{V} \pm 0.1\text{V} \\ & 1.5\text{V} \pm 0.1\text{V} \\ & 2.5\text{V} \pm 0.2\text{V} \\ & 3.3\text{V} \pm 0.3\text{V} \\ & & \\ \hline & 0.8\text{V} \\ & & \\ \hline & 1.2\text{V} \pm 0.1\text{V} \\ & & \\ \hline & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ CLK = \begin{bmatrix} 1.8 \ V \pm 0.15 \ V \\ 2.5 \ V \pm 0.2 \ V \\ \hline 1.2 \ V \pm 0.2 \ V \\ \hline 1.2 \ V \pm 0.1 \ V \\ \hline 1.2 \ V \pm 0.1 \ V \\ \hline 1.3 \ V \pm 0.1 \ V \\ \hline 1.4 \ V \pm 0.1 \ V \\ \hline 1.5 \ V \pm 0.1 \ V \\ \hline 1.5 \ V \pm 0.1 \ V \\ \hline 1.5 \ V \pm 0.1 \ V \\ \hline 1.5 \ V \pm 0.1 \ V \\ \hline 1.5 \ V \pm 0.1 \ V \\ \hline 1.6 \ V \pm 0.1 \ V \\ \hline 1.7 \ V \pm 0.1 \ V \\ \hline 1.8 \ V \pm 0.15 \ V \\ \hline $	$ CLK = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ CLK = \begin{array}{c ccccccccccccccccccccccccccccccccccc$

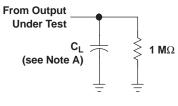


6.12 Operating Characteristics

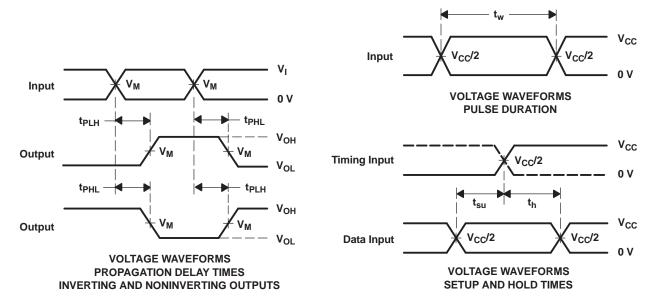
 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
			0.8 V	5.5	
		1.2 V ± 0.1 V	5.5		
		f = 10 MHz	1.5 V ± 0.1 V	5.5	pF
C_{pd}	Power dissipation capacitance		1.8 V ± 0.15 V	5.5	
			2.5 V ± 0.2 V	5.5	
			3.3 V ± 0.3 V	5.5	

6.13 Typical Characteristics


Submit Documentation Feedback

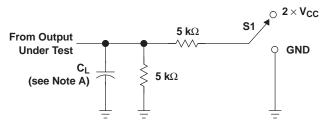
Copyright © 2006–2015, Texas Instruments Incorporated


7 Parameter Measurement Information

7.1 Propagation Delays, Setup and Hold Times, and Pulse Width)

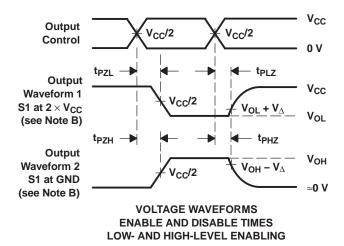
LOAD CIRCUIT

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V
C _L V _M	5, 10, 15, 30 pF V _{CC} /2 V _{CC}	5, 10, 15, 30 pF V _{CC} /2 V _{CC}	5, 10, 15, 30 pF V _{CC} /2 V _{CC}	5, 10, 15, 30 pF V _{CC} /2 V _{CC}	5, 10, 15, 30 pF V _{CC} /2 V _{CC}	5, 10, 15, 30 pF V _{CC} /2 V _{CC}


NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r/t_f = 3$ ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .
- E. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms


7.2 Enable and Disable Times

TEST	S1
t _{PLZ} /t _{PZL}	2×V _{CC}
t _{PHZ} /t _{PZH}	GND

LOAD CIRCUIT

	V _{CC} = 0.8 V	$V_{CC} = 0.8 \text{ V}$ $V_{CC} = 1.2 \text{ V}$ $\pm 0.1 \text{ V}$		V _{CC} = 1.8 V ± 0.15 V	V _{CC} = 2.5 V ± 0.2 V	V _{CC} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
$oldsymbol{V}_\Delta$	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

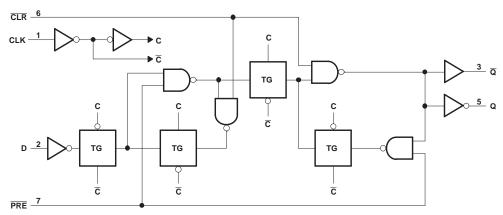
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r/t_f = 3 \text{ ns}$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview


This single positive-edge-triggered D-type flip-flop is designed for 0.8-V to 3.6-V V_{CC} operation.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs. When both the CLR and PRE inputs are set low, the CLR input will override the PRE input.

NanoStar package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

Pin numbers shown are for the DCU and DQE packages

8.3 Feature Description

This device is available in the Texas Instrument's NanoStar package. It has low static-power consumption of 0.9 uA maximum. It has low noise with overshoot and undershoot at less than ten percent of V_{CC} . It supports partial-power-down mode operation, which is specified by I_{off} . The Schmitt-trigger inputs allow for slow or noisy input signals. The device has a wide operating voltage range of 0.8 V to 3.6 V, and is optimized for 3.3 V. It has low propagation delay of 5 ns maximum at 3.3 V.

8.4 Device Functional Modes

Table 1 lists the functional modes of the SN74AUP1G74.

Table 1. Function Table

	INP	OUTPUTS			
PRE	CLR	CLK	D	Q	Q
L	Н	Х	Χ	Н	L
X	L	Χ	Χ	L	Н
Н	Н	↑	Н	Н	L
Н	Н	↑	L	L	Н
Н	Н	L	X	Q_0	\overline{Q}_0

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AUP1G74 can be used to control a power button input. Tying \overline{Q} to D will switch the output between high and low each time that a high signal is sent to CLK from the push button.

A low level at the preset (PRE) or clear (CLR) input sets or resets the outputs, regardless of the levels of the other inputs. When PRE and CLR are inactive (high), data at the data (D) input meeting the setup time requirements is transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not related directly to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs.

The resistor and capacitor at the $\overline{\text{CLR}}$ pin are optional. If they are not used, the $\overline{\text{CLR}}$ pin must be connected directly to V_{CC} to be inactive.

9.2 Typical Power Button Circuit

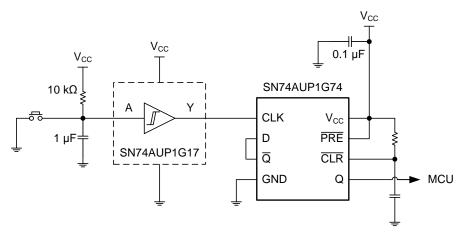
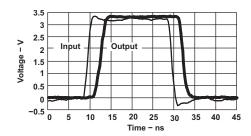


Figure 5. Device Power Button Circuit

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive but the high drive will also create faster edges into light loads so routing and load conditions must be considered to prevent ringing.


9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions:
 - For rise time and fall time specifications, see ($\Delta t/\Delta V$) in *Recommended Operating Conditions*.
 - For specified high and low levels, see (V_{IH} and V_{IL}) in Recommended Operating Conditions.
 - Inputs are overvoltage tolerant allowing them to go as high as 4.6 V at any valid V_{CC}.
- 2. Recommend Output Conditions:
 - Series resistors on the output may be used if the user desires to slow the output edge signal or limit the output current.

Typical Power Button Circuit (continued)

9.2.3 Application Curve

AUP1G08 data at $C_L = 15 pF$

Figure 6. Switching Characteristics at 25 MHz

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor, and if there are multiple V_{CC} pins, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power pin. It is ok to parallel multiple bypass caps to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs must not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient.

11.2 Layout Example

Figure 7. Layout Diagram

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

NanoStar, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

PACKAGE OPTION ADDENDUM

8-May-2017

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AUP1G74DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H74R	Samples
SN74AUP1G74DCURG4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H74R	Samples
SN74AUP1G74DQER	ACTIVE	X2SON	DQE	8	5000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	HS	Samples
SN74AUP1G74RSER	ACTIVE	UQFN	RSE	8	5000	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	HS	Samples
SN74AUP1G74YFPR	ACTIVE	DSBGA	YFP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HSN	Samples
SN74AUP1G74YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HSN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

8-May-2017

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

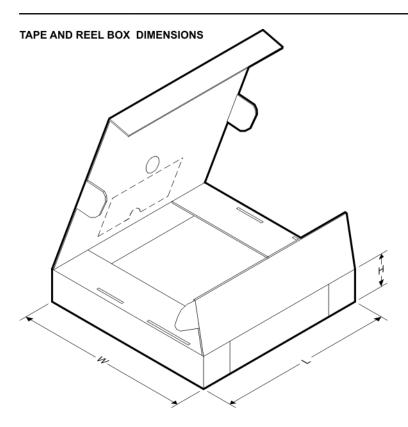
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

TAPE AND REEL INFORMATION

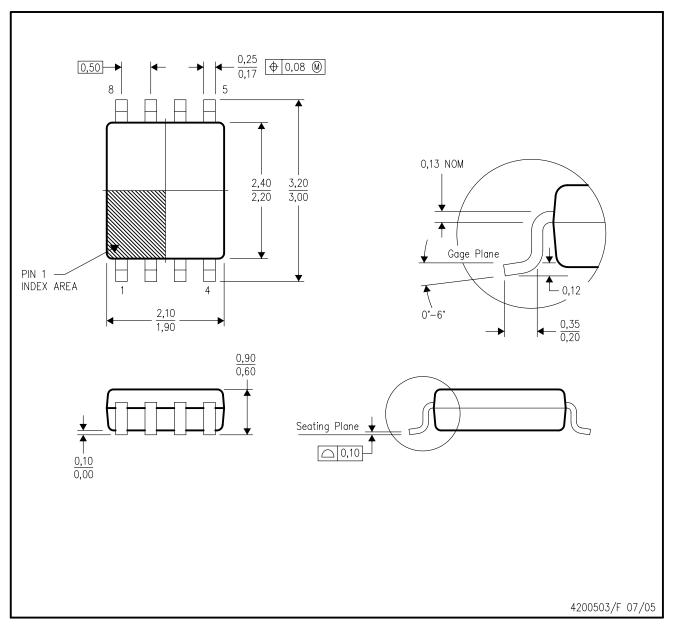
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All diffiensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1G74DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74AUP1G74DQER	X2SON	DQE	8	5000	180.0	8.4	1.2	1.6	0.55	4.0	8.0	Q1
SN74AUP1G74RSER	UQFN	RSE	8	5000	180.0	8.4	1.7	1.7	0.7	4.0	8.0	Q2
SN74AUP1G74YFPR	DSBGA	YFP	8	3000	178.0	9.2	0.9	1.75	0.6	4.0	8.0	Q1
SN74AUP1G74YZPR	DSBGA	YZP	8	3000	178.0	9.2	1.02	2.02	0.63	4.0	8.0	Q1

www.ti.com 3-Aug-2017

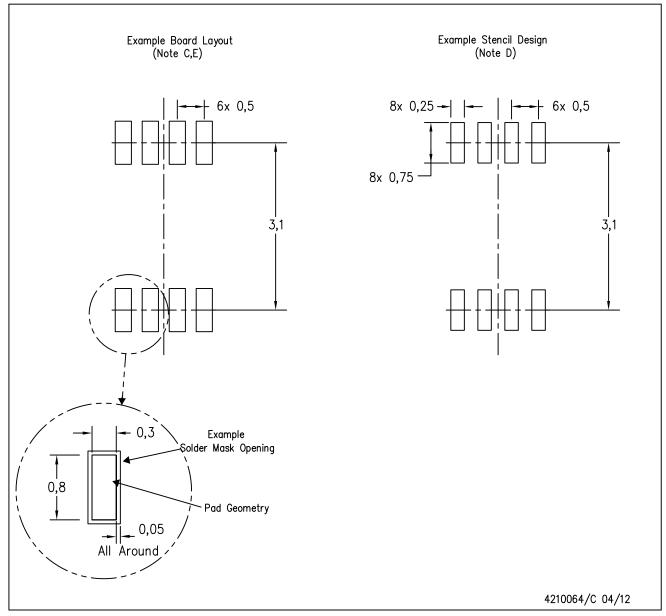


*All dimensions are nominal

7 til diritoriolorio aro mominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1G74DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74AUP1G74DQER	X2SON	DQE	8	5000	202.0	201.0	28.0
SN74AUP1G74RSER	UQFN	RSE	8	5000	202.0	201.0	28.0
SN74AUP1G74YFPR	DSBGA	YFP	8	3000	220.0	220.0	35.0
SN74AUP1G74YZPR	DSBGA	YZP	8	3000	220.0	220.0	35.0

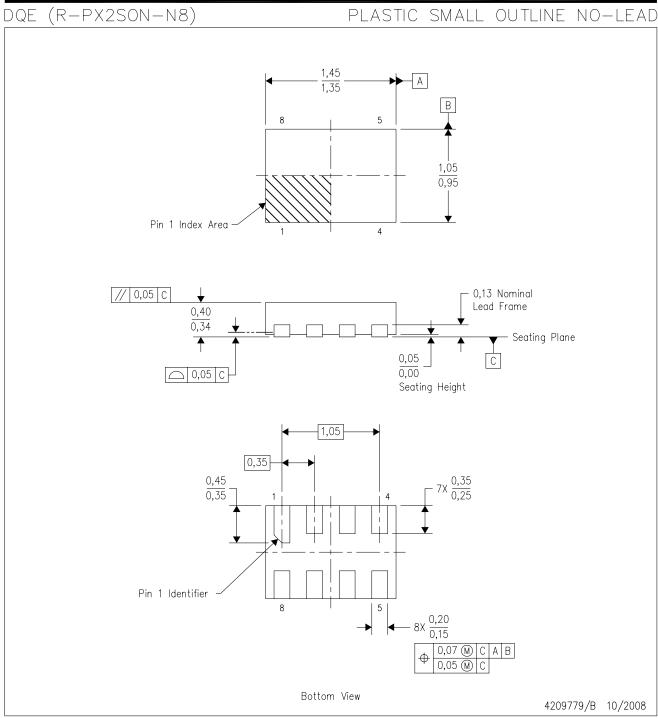
DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

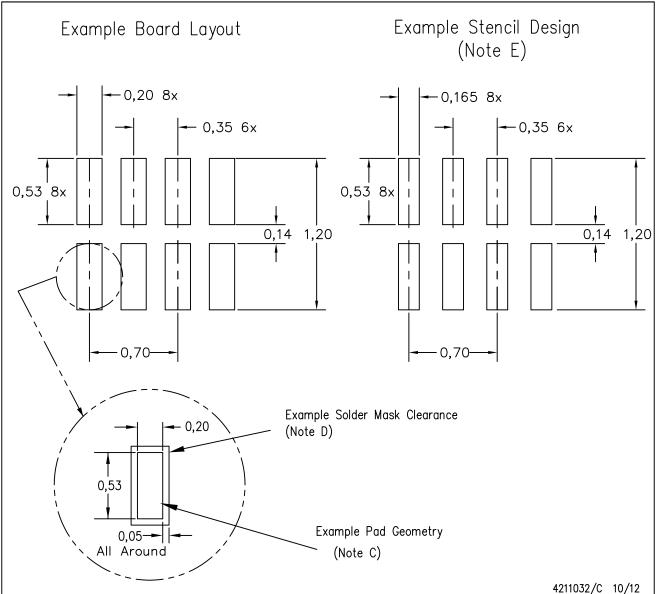
- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)


PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

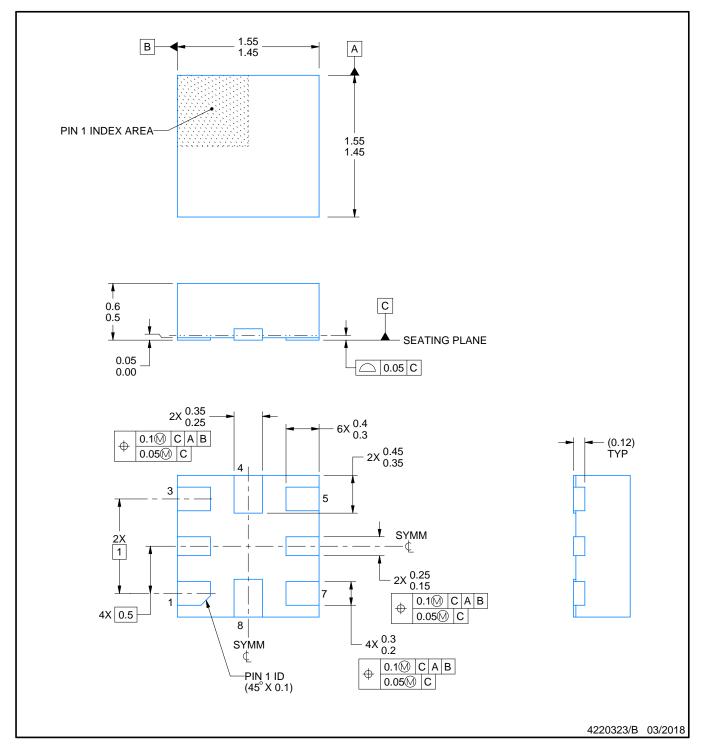
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
 C. SON (Small Outline No-Lead) package configuration.
 D. This package complies to JEDEC MO-287 variation X2EAF.

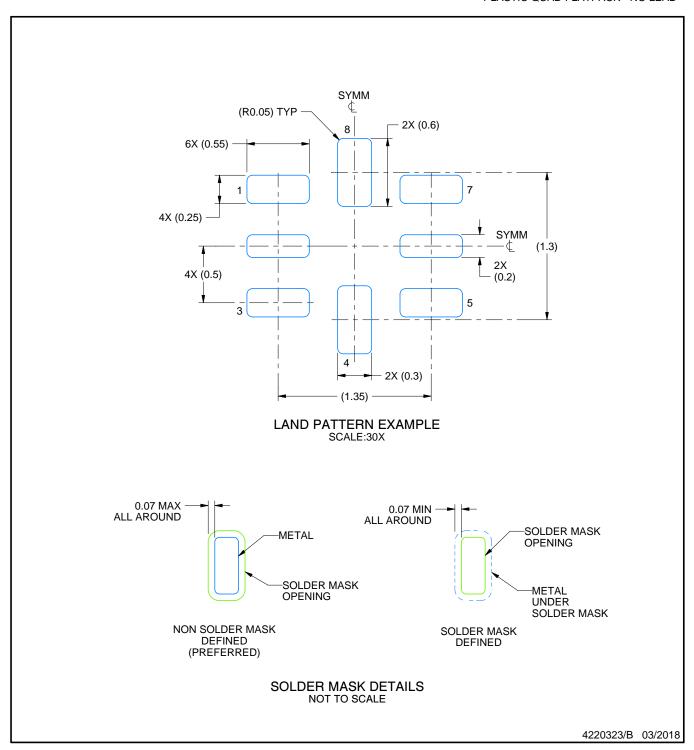
DQE (R-PX2SON-N8)

PLASTIC SMALL OUTLINE NO-LEAD


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Over—printing land for acceptable area ratio is not viable due to land width and bridging potential. Customer may further reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.
- H. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- I. Component placement force should be minimized to prevent excessive paste block deformation.

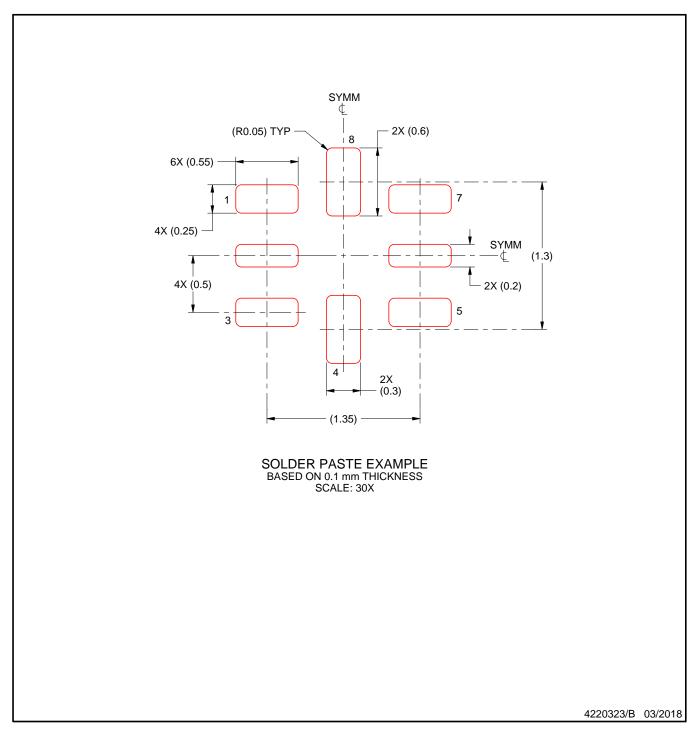
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

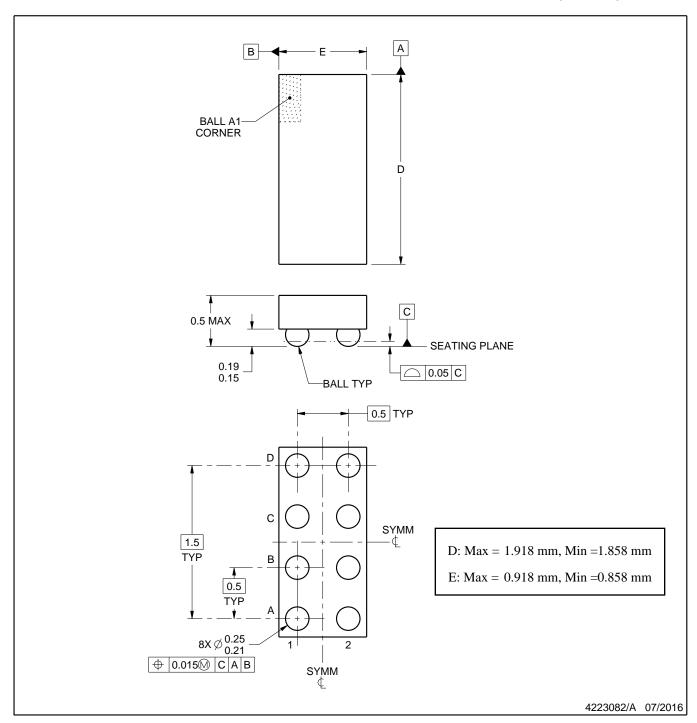
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

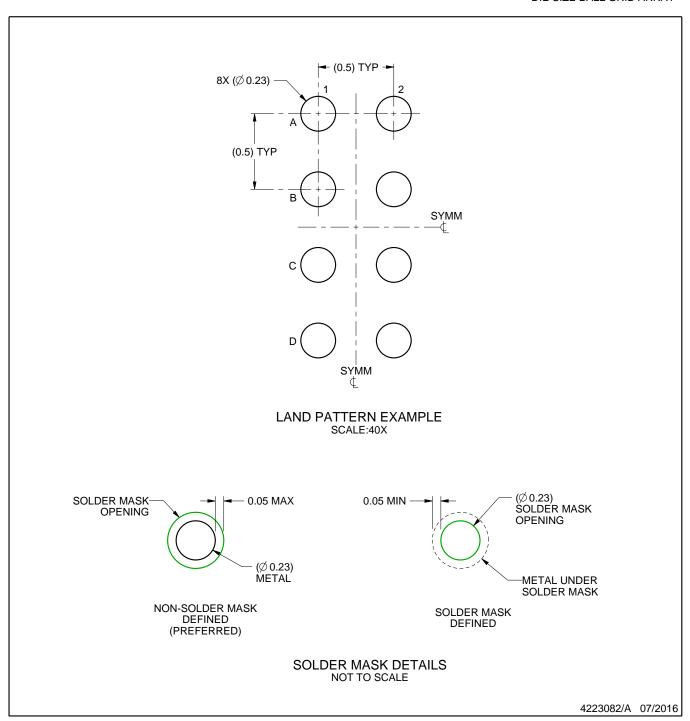
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

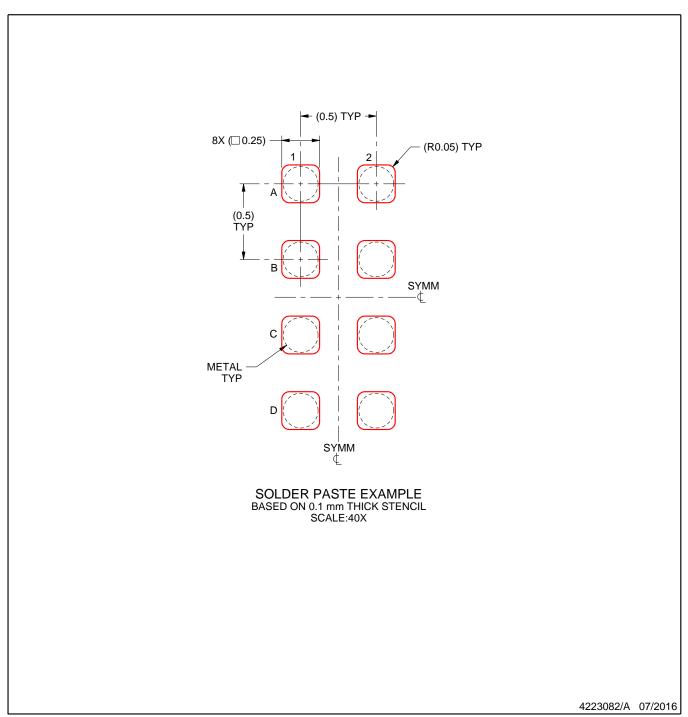
DIE SIZE BALL GRID ARRAY



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

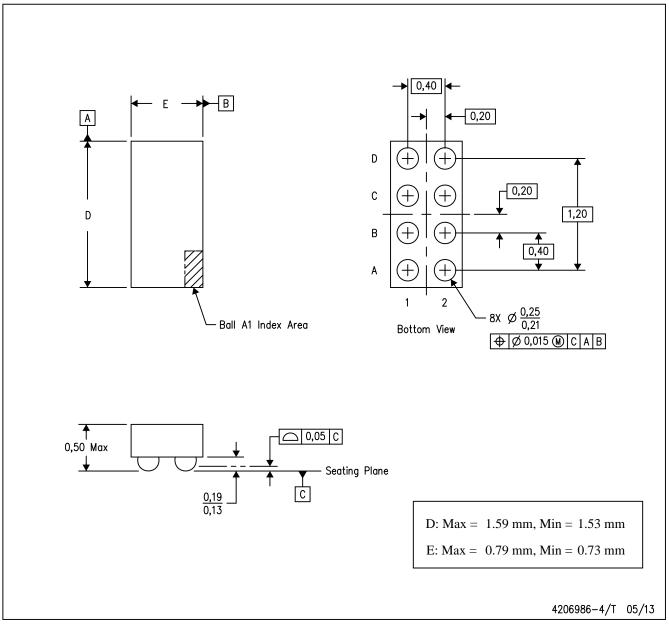
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

YFP (R-XBGA-N8)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.