NLAS1053

2:1 Mux/Demux Analog Switches

The NLAS1053 is an advanced CMOS analog switch fabricated with silicon gate CMOS technology. It achieves very high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. The device consists of a single 2:1 Mux/Demux (SPDT), similar to ON Semiconductor's NLAS4053 analog and digital voltages that may vary across the full power supply range (from V_{CC} to GND).

The inhibit and select input pins have over voltage protection that allows voltages above V_{CC} up to 7.0 V to be present without damage or disruption of operation of the part, regardless of the operating voltage.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=1 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Bandwidth, Improved Linearity, and Low RDS $_{\text {ON }}$
- INH Pin Allows a Both Channels ‘OFF' Condition (With a High)
- $\mathrm{RDS}_{\mathrm{ON}} \cong 25 \Omega$, Performance Very Similar to the NLAS4053
- Break Before Make Circuitry, Prevents Inadvertent Shorts
- Useful For Switching Video Frequencies Beyond 50 MHz
- Latchup Performance Exceeds 300 mA
- ESD Performance: $\mathrm{HBM}>2000 \mathrm{~V} ; \mathrm{MM}>200 \mathrm{~V}, \mathrm{CDM}>1500 \mathrm{~V}$
- Tiny US8 Package, Only 2.1 X 3.0 mm
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pin Assignment

FUNCTION TABLE

INH	Select	Ch 0	Ch $\mathbf{1}$
H	X	OFF	OFF
L	L	ON	OFF
L	H	OFF	ON

\qquad

ORDERING INFORMATION

Device	Package	Shipping †
NLAS1053USG	US8 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Positive DC Supply Voltage	V_{CC}	-0.5 to +7.0	V
Digital Input Voltage (Select and Inhibit)	$\mathrm{V}_{\text {IN }}$	$-0.5 \leq \mathrm{V}$ is $\leq+7.0$	V
Analog Output Voltage (V_{CH} or $\mathrm{V}_{\mathrm{COM}}$)	$\mathrm{V}_{\text {IS }}$	$-0.5 \leq \mathrm{V}$ is $\leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
DC Current, Into or Out of Any Pin	$\mathrm{l}_{\text {IK }}$	50	mA
Storage Temperature Range	TSTG	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature, 1 mm from Case for 10 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$
Junction Temperature under Bias	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	$\theta_{\text {JA }}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	P_{D}	250	mW
Moisture Sensitivity	MSL	Level 1	
Flammability Rating Oxygen Index: 30\% - 35\%	F_{R}	UL 94 V-0 @ 0.125 in	
	$\mathrm{V}_{\text {ESD }}$	$\begin{gathered} >2000 \\ 200 \\ \text { N/A } \end{gathered}$	V
Latchup Performance \quad Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	$\mathrm{I}_{\text {Latchup }}$	± 300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
Positive DC Supply Voltage	V_{CC}	2.0	5.5	V
Digital Input Voltage (Select and Inhibit)	V_{IN}	GND	5.5	V
Static or Dynamic Voltage Across an Off Switch	V_{IO}	GND	V_{CC}	V
Analog Input Voltage (CH, COM)	V_{IS}	GND	V_{CC}	V
Operating Temperature Range, All Package Types	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Time (Enable Input)	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0	100	$\mathrm{~ns} / \mathrm{V}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME

 TO 0.1\% BOND FAILURES| Junction
 Temperature ${ }^{\circ} \mathbf{C}$ | Time, Hours | Time, Years |
| :---: | :---: | :---: |
| 80 | $1,032,200$ | 117.8 |
| 90 | 419,300 | 47.9 |
| 100 | 178,700 | 20.4 |
| 110 | 79,600 | 9.4 |
| 120 | 37,000 | 4.2 |
| 130 | 17,800 | 2.0 |
| 140 | 8,900 | 1.0 |

Figure 2. Failure Rate versus Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Parameter	Condition	Symbol	V_{Cc}	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
Minimum High-Level Input Voltage, Select and Inhibit Inputs		V_{IH}	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 1.9 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 1.9 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 1.9 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V
Maximum Low-Level Input Voltage, Select and Inhibit Inputs		$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.6 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.6 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.6 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
Maximum Input Leakage Current, Select and Inhibit Inputs	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	1 N	0 V to 5.5 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Maximum Quiescent Supply Current	Select and Inhibit $=\mathrm{V}_{\text {CC }}$ or GND	I_{CC}	5.5	1.0	1.0	2.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Parameter	Condition	Symbol	V_{cc}	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	< $125^{\circ} \mathrm{C}$	
Maximum "ON" Resistance (Figures 17-23)	$\begin{aligned} & V_{I N}=V_{I L} \text { or } V_{I H} \\ & V_{I S}=G N D \text { to } V_{C C} \\ & I_{I N} \leq 10.0 \mathrm{~mA} \end{aligned}$	RON	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 40 \\ & 20 \\ & 16 \end{aligned}$	$\begin{aligned} & 85 \\ & 46 \\ & 28 \\ & 22 \end{aligned}$	$\begin{gathered} \hline 105 \\ 52 \\ 34 \\ 28 \end{gathered}$	Ω
ON Resistance Flatness (Figures 17-23)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IN}^{\mathrm{N}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1 \mathrm{~V}, 2 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \mathrm{R}_{\mathrm{FLAT}} \\ \text { (ON) } \end{gathered}$	4.5	4	4	5	Ω
ON Resistance Match Between Channels	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IN}_{\mathrm{N}} \leq 10.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CH} 1} \text { or } \mathrm{V}_{\mathrm{CH} 0}=3.5 \mathrm{~V} \end{aligned}$	$\Delta \mathrm{R}_{\mathrm{ON}}$ (ON)	4.5	2	2	3	Ω
CH1 or CH0 Off Leakage Current (Figure 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{CH} 1} \text { or } \mathrm{V}_{\mathrm{CHO}}=1.0 \mathrm{~V}_{\mathrm{COM}} 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{CHO}} \\ & \mathrm{I}_{\mathrm{CH} 1} \end{aligned}$	5.5	1	10	100	nA
COM ON Leakage Current (Figure 9)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{HH}}$ $\mathrm{V}_{\mathrm{CH} 1} 1.0 \mathrm{~V}$ or 4.5 V with $\mathrm{V}_{\mathrm{CH} 0}$ floating or $\mathrm{V}_{\mathrm{CH} 1} 1.0 \mathrm{~V}$ or 4.5 V with $\mathrm{V}_{\mathrm{CH} 1}$ floating $\mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V} \text { or } 4.5 \mathrm{~V}$	ICOM(ON)	5.5	1	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Parameter	Test Conditions	Symbol	V_{cc} (V)	Guaranteed Max Limit					$<125^{\circ} \mathrm{C}$		Unit
				-55 to $25^{\circ} \mathrm{C}$			$<85{ }^{\circ} \mathrm{C}$				
				Min	Typ*	Max	Min	Max	Min	Max	
Turn-On Time (Figures 12 and 13) INH to Output	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4 and 5)	t_{ON}	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} \hline 12 \\ 10 \\ 9 \\ 8 \end{gathered}$	2 2 1 1	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	ns
Turn-Off Time (Figures 12 and 13) INH to Output	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4 and 5)	tofF	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 5 \\ & 4 \\ & 3 \end{aligned}$	$\begin{gathered} \hline 12 \\ 10 \\ 9 \\ 8 \end{gathered}$	1 2 2 1 1	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	2 2 1 1	$\begin{aligned} & 15 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	ns
Transition Time (Channel Selection Time) (Figure) Select to Output	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures and)	$t_{\text {trans }}$	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 2 \\ & 2 \end{aligned}$	$\begin{gathered} 18 \\ 13 \\ 12 \\ 9 \end{gathered}$	$\begin{aligned} & 28 \\ & 21 \\ & 16 \\ & 14 \end{aligned}$	1 5 5 2 2	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	1 5 5 2 2	$\begin{aligned} & 30 \\ & 25 \\ & 20 \\ & 20 \end{aligned}$	ns
Minimum Break-Before-Make Time	$\begin{aligned} & V_{I S}=3.0 \mathrm{~V} \text { (Figure } 3 \text {) } \\ & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \end{aligned}$	$t_{\text {BBM }}$	2.5 3.0 4.5 5.5	1 1 1 1	12 11 6 5		1 1 1 1 1		1 1 1 1		ns
			Typical @ 25, VCC = 5.0 V								
Maximum Input Capacitance, Select/INH Input Analog I/O (switch off) Common I/O (switch off) Feedthrough (switch on)		CIN C_{NO} or C_{NC} Com $\mathrm{C}_{(\mathrm{ON})}$	$\begin{gathered} \hline 8 \\ 10 \\ 10 \\ 20 \end{gathered}$								pF

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Parameter	Condition	Symbol	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Typical	Unit
				$25^{\circ} \mathrm{C}$	
Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response (Figure 10)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	BW	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 170 \\ & 200 \\ & 200 \end{aligned}$	MHz
Maximum Feedthrough On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm} @ 100 \mathrm{kHz}$ to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\mathrm{V}_{\text {ONL }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-3 \\ & -3 \\ & -3 \end{aligned}$	dB
Off-Channel Isolation (Figure 10)	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 7)	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-93 \\ & -93 \\ & -93 \end{aligned}$	dB
Charge Injection Select Input to Common I/O (Figure 15)	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \mathrm{to} \\ & \mathrm{t}_{\mathrm{r}} \mathrm{If}_{\mathrm{f}}=3 \mathrm{nd}, \mathrm{~F}_{I S}=20 \mathrm{kHz} \\ & \mathrm{R}_{I S}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}} \pm \Delta \mathrm{V}_{\text {OUT }} \\ & \text { (Figure 8) } \end{aligned}$	Q	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
Total Harmonic Distortion THD + Noise (Figure 14)	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{RL}=\text { Rgen }=600 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=5.0 \mathrm{~V} \text { PP } \text { sine wave } \end{aligned}$	THD	5.5	0.1	\%

Figure 3. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{tofF}_{\mathrm{of}}$

NLAS1053

Figure 6. $\mathrm{t}_{\text {trans }}$ (Channel Selection Time)

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \mathrm{Log}\left(\frac{\mathrm{VOUT}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{VIN}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk
(On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 8. Charge Injection: (Q)

Figure 9. Switch Leakage versus Temperature

Figure 11. Phase versus Frequency

Figure 13. t_{ON} and $\mathrm{t}_{\text {OFF }}$ versus Temp

Figure 10. Bandwidth and Off-Channel Isolation

Figure 12. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ versus V_{CC} at $25^{\circ} \mathrm{C}$

Figure 14. Total Harmonic Distortion Plus Noise versus Frequency

Figure 15. Charge Injection versus COM Voltage

Figure 17. RoN versus $\mathrm{V}_{\mathrm{COM}}$ and $\mathrm{V}_{\mathrm{CC}}\left(@ 5^{\circ} \mathrm{C}\right.$

Figure 19. R_{ON} versus $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 16. I_{C} versus Temp, $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V} \& 5 \mathrm{~V}$

Figure 18. R_{ON} versus $\mathrm{V}_{\mathrm{COM}}$ and Temperature,
$\mathrm{V}_{\mathrm{Cc}} 2.0 \mathrm{~V}$

Figure 20. \mathbf{R}_{ON} versus $\mathrm{V}_{\mathrm{COM}}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 21. R_{ON} versus $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 22. R_{ON} versus $\mathrm{V}_{\text {COM }}$ and Temperature, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 23. R_{ON} versus $\mathrm{V}_{\text {COM }}$ and Temperature,

$$
\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}
$$

NLAS1053

PACKAGE DIMENSIONS

US8
US SUFFIX
CASE 493-02
ISSUE D

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSION OR GATE BURR. MOLD FLASH, PROTRUSION OR GATE BURR. MOLD
FLASH. PROTRUSION AND GATE BURR SHALL FLASH. PROTRUSION AND GATE BURR SH
NOT EXCEED $0.14 M M\left(0.0055^{\prime \prime}\right)$ PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.14 MM (0.0055") PER SIDE.
5. LEAD FINISH IS SOLDER PLATING WITH

THICKNESS OF 0.0076-0.0203MM (0.003-0.008").
. ALL TOLERANCE UNLESS OTHERWISE SPECIFIED $\pm 0.0508 \mathrm{MM}$ ($0.0002^{\prime \prime}$).

	MILLIMETERS		INCHES		
$\mathbf{D I M}$	MIN	MAX	MIN	MAX	
A	1.90	2.10	0.075	0.083	
B	2.20	2.40	0.087	0.094	
\mathbf{C}	0.60	0.90	0.024	0.035	
D	0.17	0.25	0.007	0.010	
F	0.20	0.35	0.008	0.014	
G	0.50	BSC	0.020 BSC		
\mathbf{H}	0.40	REF	0.016		REF
\mathbf{J}	0.10	0.18	0.004	0.007	
\mathbf{K}	0.00	0.10	0.000	0.004	
\mathbf{L}	3.00	3.20	0.118	0.128	
\mathbf{M}	$0{ }^{\circ}$	66°	$0{ }^{\circ}$	$6{ }^{\circ}$	
\mathbf{N}	$0{ }^{\circ}$	10°	$0{ }^{\circ}$	10°	
\mathbf{P}	0.23	0.34	0.010	0.013	
\mathbf{R}	0.23	0.33	0.009	0.013	
\mathbf{S}	0.37	0.47	0.015	0.019	
\mathbf{U}	0.60	0.80	0.024	0.031	
\mathbf{V}	0.12		BSC	0.005	BSC

DETAIL E
RECOMMENDED
SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:

