FAIRCHILD

SEMICONDUCTOR

74F823 9-Bit D-Type Flip-Flop

General Description

The 74F823 is a 9-bit buffered register. It features Clock Enable and Clear which are ideal for parity bus interfacing in high performance microprogramming systems.

Order Number	Package Number	Package Description
74F823SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F823SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Logic Symbols

Ordering Code:

Connection Diagram

		\cup	
OE -	1	_	24 – V _{CC}
D ₀ —	2		23 — 0 ₀
D ₁ —	3		22 0 1
D ₂ —	4		21 0 ₂
D3 —	5		20 - 0 ₃
D4 -	6		19 04
D ₅ —	7		18 — 0 ₅
D ₆ —	8		17 0 ₆
D7 -	9		16 0 ₇
D ₈ —	10		15 0 ₈
CLR -	11		14 — EN
GND —	12		13 — CP

April 1988

Revised October 2000

- Features
- 3-STATE outputs
 Clock Enable and Clear

© 2000 Fairchild Semiconductor Corporation DS009596

74F823

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ –D ₈ OE	Data Inputs	1.0/1.0	20 µA/–0.6 mA		
OE	Output Enable Input	1.0/1.0	20 µA/–0.6 mA		
CLR	Clear	1.0/1.0	20 µA/–0.6 mA		
СР	Clock Input	1.0/2.0	20 μA/–1.2 mA		
EN	Clock Enable	1.0/1.0	20 µA/–0.6 mA		
O ₀ –O ₈	3-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		

Functional Description

The 74F823 device consists of nine D-type edge-triggered flip-flops. It has 3-STATE true outputs and is organized in broadside pinning. The buffered Clock (CP) and buffered Output Enable (\overline{OE}) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the \overline{OE} LOW the contents of the flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops. In addition to the Clock and Output Enable pins, the 74F823 has Clear (CLR) and Clock Enable (\overline{EN}) pins.

When the $\overline{\text{CLR}}$ is LOW and the $\overline{\text{OE}}$ is LOW, the outputs are LOW. When $\overline{\text{CLR}}$ is HIGH, data can be entered into the flip-flops. When $\overline{\text{EN}}$ is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the $\overline{\text{EN}}$ is HIGH, the outputs do not change state regardless of the data or clock inputs transitions. This device is ideal for parity bus interfacing in high performance systems.

Fun	ction	Tab	le
I UII	ouon	IUN	10

	Inp	outs			Internal	Output	Function
OE	CLR	EN	СР	D	Q	0	Function
Н	Н	L	Н	Х	NC	Z	Hold
н	н	L	L	Х	NC	Z	Hold
н	н	Н	Х	Х	NC	Z	Hold
L	н	Н	Х	Х	NC	NC	Hold
н	L	Х	Х	Х	н	Z	Clear
L	L	Х	Х	Х	н	L	Clear
н	н	L	~	Н	н	Z	Load
н	н	L	~	Н	L	Z	Load
L	н	L	~	L	н	L	Data Available
L	н	L	~	Н	L	н	Data Available
L	н	L	н	Х	NC	NC	No Change in Data
L	н	L	L	Х	NC	NC	No Change in Data

L = LOW Voltage Level H = HIGH Voltage Level

X = Immaterial

Z = High Impedance

 $rac{1}{2}$ = LOW-to-HIGH Transition

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output -65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

74F823

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

in LOW State (Max)	twice the rated I_{OL} (mA)

Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4			v	Min	I _{OH} = -3 mA
		5% V _{CC}	2.7			v	IVIII	$I_{OH} = -1 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
I _{IH}	Input HIGH				5.0	A	Ман	V 0.7V
	Current				5.0	μA	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V
	Breakdown Test				7.0	μΑ	iviax	v _{IN} = 7.0v
ICEX	Output HIGH				50	۸	μA Max	V – V
	Leakage Current				50	μΛ	IVIAA	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded
I _{OD}	Output Leakage		3.75 μΑ 0.		0.0	V _{IOD} = 150 mV		
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded
ΙL	Input LOW				-0.6	mA	Max	$V_{IN} = 0.5V (\overline{OE}, \overline{CLR}, \overline{EN})$
	Current				-1.2	mA	Max	V _{IN} = 0.5V (CP)
I _{OZH}	Output Leakage Current				50	μA	Max	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current				-50	μA	Max	V _{OUT} = 0.5V
I _{OS}	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{ZZ}	Buss Drainage Test				500	μA	0.0V	V _{OUT} = 5.25V
I _{CCZ}	Power Supply Current			75	100	mA	Max	V _O = HIGH Z

DC Electrical Characteristics

74F823

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = -55^\circ V \text{ to } +125^\circ C$ $V_{CC} = +5.0 V$ $C_L = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	160		60		70		MHz
t _{PLH}	Propagation Delay	2.0	5.6	9.5	2.0	10.5	2.0	10.5	
t _{PHL}	CP to O _n	2.0	5.2	9.5	2.0	10.5	2.0	10.5	ns
t _{PHL}	Propagation Delay CLR to O _n	4.0	7.1	12.0	4.0	13.0	4.0	13.0	ns
t _{PZH}	Output Enable Time	2.0	5.8	10.5	2.0	13.0	2.0	11.5	
t _{PZL}	OE to On	2.0	5.5	10.5	2.0	13.0	2.0	11.5	
t _{PHZ}	Output Disable Time	1.5	2.9	7.0	1.0	7.5	1.5	7.5	ns
t _{PLZ}	OE to On	1.5	2.7	7.0	1.0	7.5	1.5	7.5	

AC Operating Requirements

		T _A = -	+25°C	T _A = -55°V	/ to +125°C	$T_A = 0^\circ C$	to +70°C	
Symbol	Parameter	V _{CC} =	+5.0V	$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		Units
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.5		4.0		3.0		
t _S (L)	D _n to CP	2.5		4.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	2.5		2.5		2.5		115
t _H (L)	D _n to CP	2.5		2.5		2.5		
t _S (H)	Setup Time, HIGH or LOW	4.5		5.0		5.0		
t _S (L)	EN to CP	2.5		3.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	2.0		3.0		2.0		115
t _H (L)	EN to CP	0		1.0		0		
t _W (H)	CP Pulse Width	5.0		6.0		6.0		ns
t _W (L)	HIGH or LOW	5.0		6.0		6.0		ns
t _W (L)	CLR Pulse Width, LOW	5.0		5.0		5.0		ns
t _{REC}	CLR Recovery Time	5.0		5.0		5.0		ns

