

Is Now Part of

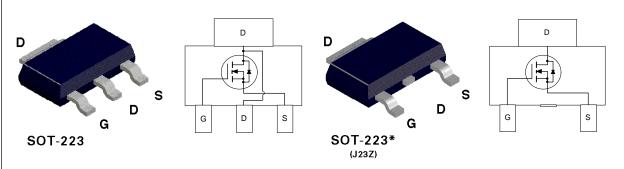
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild <a href="general-regarding-numbers-n

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

NDT014L


N-Channel Logic Level Enhancement Mode Field Effect Transistor

General Description

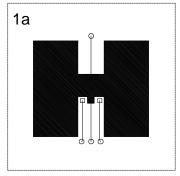
These N-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as DC motor control and DC/DC conversion where fast switching, low in-line power loss, and resistance to transients are needed.

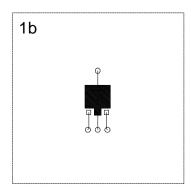
Features

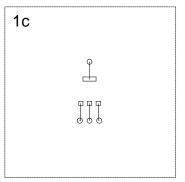
- = 2.8 A, 60 V. $R_{\rm DS(ON)} = 0.2~\Omega$ @ $V_{\rm GS} = 4.5~{\rm V}$ $R_{\rm DS(ON)} = 0.16~\Omega$ @ $V_{\rm GS} = 10~{\rm V}$.
- High density cell design for extremely low R_{DS(ON)}.
- High power and current handling capability in a widely used surface mount package.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDT014L	Units
V _{DSS}	Drain-Source Voltage		60	V
V _{GSS}	Gate-Source Voltage		± 20	V
I _D	Drain Current - Continuous	(Note 1a)	± 2.8	A
	- Pulsed		± 10	
P _D	Maximum Power Dissipation	(Note 1a)	3	W
		(Note 1b)	1.3	
		(Note 1c)	1.1	
T_J, T_{STG}	Operating and Storage Temperature F	Range	-65 to 150	°C
THERMA	L CHARACTERISTICS			_
R _{OJA}	Thermal Resistance, Junction-to-Amb	pient (Note 1a)	42	°C/W
R _{ØJC}	Thermal Resistance, Junction-to-Case	e (Note 1)	12	°C/W


Symbol	Parameter	Conditions	Min	Тур	Max	Units	
OFF CHA	RACTERISTICS					•	•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$				V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 60 V, V _{GS} = 0 V				25	μΑ
			$T_J = 55^{\circ}C$			250	μΑ
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	·			100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAR	ACTERISTICS (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		1	1.5	3	V
			T _J = 125°C	8.0	1.1	2	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, I_{D} = 2.8 \text{ A}$			0.17	0.2	Ω
				0.22	0.36		
		$V_{GS} = 10 \text{ V}, I_{D} = 3.4 \text{ A}$			0.12		0.16
I _{D(on)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$	$V_{GS} = 4.5 V$, $V_{DS} = 5 V$				Α
		$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$		10			
G _{FS}	Forward Transconductance	$V_{GS} = 5 \text{ V}, I_{D} = 2.8 \text{ A}$			4.2		S
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V},$					pF
C _{oss}	Output Capacitance	f = 1.0 MHz			70		pF
C _{rss}	Reverse Transfer Capacitance				27		pF
SWITCHIN	NG CHARACTERISTICS (Note 2)						
$\mathbf{t}_{D(on)}$	Turn - On Delay Time	$V_{DD} = 30 \text{ V}, I_{D} = 3 \text{ A},$			6	12	ns
t,	Turn - On Rise Time	$V_{GEN} = 10 \text{ V}, R_{GEN} = 12 \Omega$			14	25	ns
$\mathbf{t}_{D(off)}$	Turn - Off Delay Time				15	28	ns
t,	Turn - Off Fall Time				10	18	ns
Q_g	Total Gate Charge	$V_{DS} = 10 \text{ V},$			3.6	5	nC
Q_{gs}	Gate-Source Charge	$I_D = 2.8 \text{ A}, V_{GS} = 4.5 \text{ V}$			0.8		nC
Q_{gd}	Gate-Drain Charge				1.4		nC


Electrical Characteristics (T _A = 25°C unless otherwise noted)										
Symbol	Parameter Conditions Min Typ Max									
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS										
Is	Maximum Continuous Drain-Source Diod			2.3	Α					
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.3 A (Note 2)		0.85	1.3	V				
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_F = 2.3 \text{ A } dI_F/dt = 100 \text{ A/}\mu\text{s}$			140	ns				


Notes:

- Notes:
 1. $P_D(t) = \frac{T_J T_A}{R_{BJA}(t)} = \frac{T_J T_A}{R_{BJC} + R_{BCA}(t)} = I_D^2(t) \times R_{DS(ON) \oplus T_J} R_{\text{Bu}A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\text{Bu}S}$ is guaranteed by design while R_{BCA} is defined by users. For general reference: Applications on 4.5"x5" FR-4 PCB under still air environment, typical R_{BA} is found to be:

 a. 42"C/W with 1 in² of 2 oz copper mounting pad.
 b. 95"C/W with 0.066 in² of 2 oz copper mounting pad.
 c. 110"C/W with 0.0123 in² of 2 oz copper mounting pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

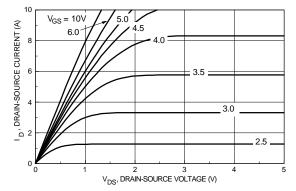


Figure 1. On-Region Characteristics.

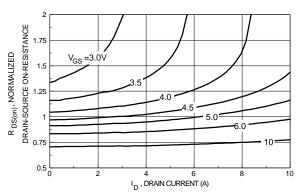


Figure 2. On-Resistance Variation with Gate Voltage and Drain Current.

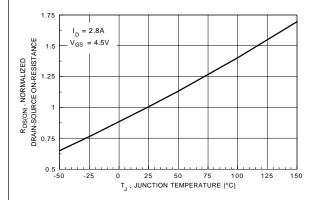


Figure 3. On-Resistance Variation with Temperature.

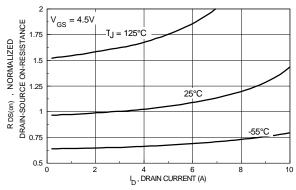


Figure 4. On-Resistance Variation with Drain Current and Temperature.

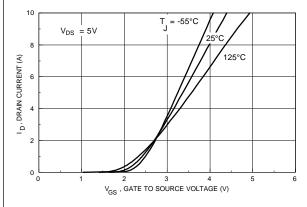


Figure 5. Transfer Characteristics.

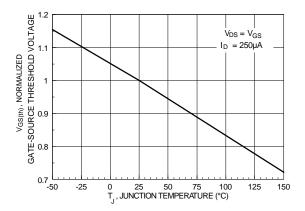


Figure 6. Gate Threshold Variation with Temperature.

Typical Electrical Characteristics

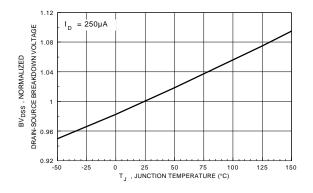


Figure 7. Breakdown Voltage Variation with Temperature.

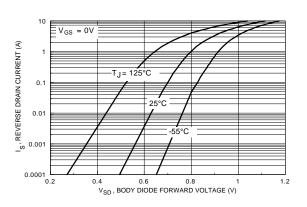


Figure 8. Body Diode Forward Voltage Variation with Current and Temperature.

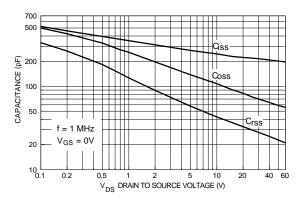


Figure 9. Capacitance Characteristics.

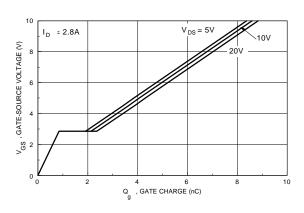


Figure 10. Gate Charge Characteristics.

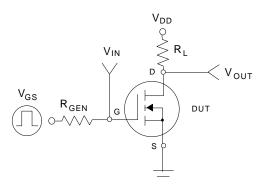


Figure 11. Switching Test Circuit.

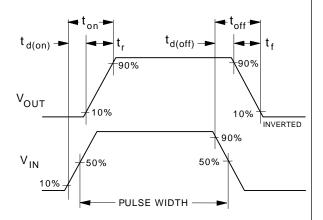
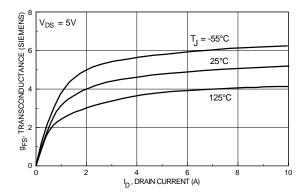
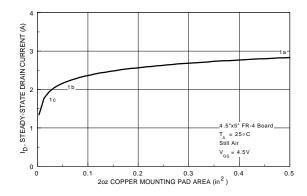



Figure 12. Switching Waveforms.


Typical Thermal Characteristics

3.5 STEADY-STATE POWER DISSIPATION (W) 3 T_A = 25° C Still Air 0.4 0.8 20z COPPER MOUNTING PAD AREA (in ²)

Figure 13. Transconductance Variation with Drain **Current and Temperature.**

Figure 14. SOT-223 Maximum Steady- State **Power Dissipation versus Copper** Mounting Pad Area.

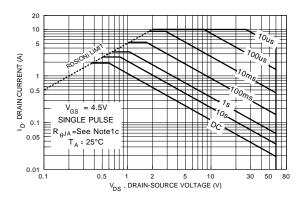
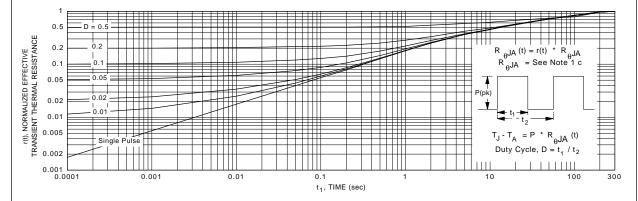
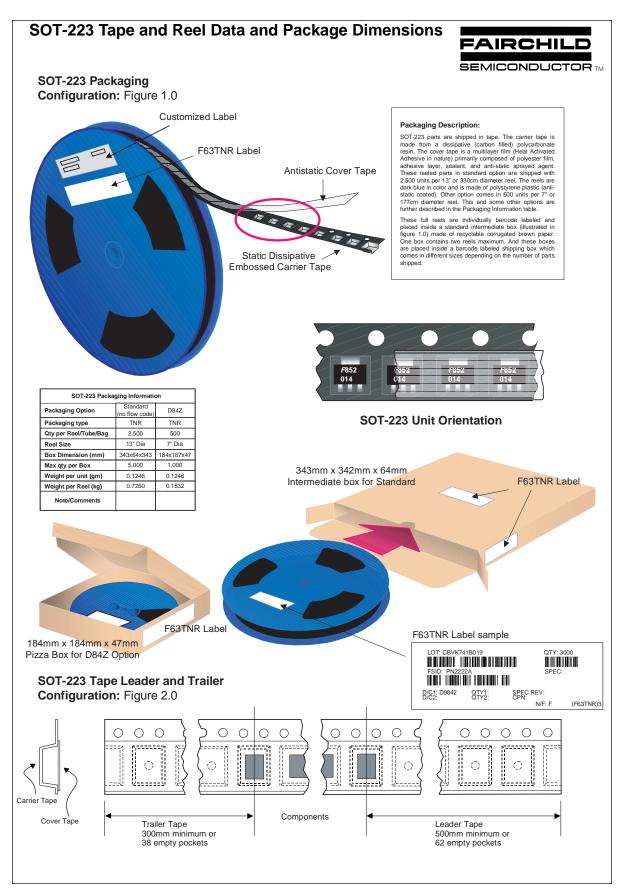
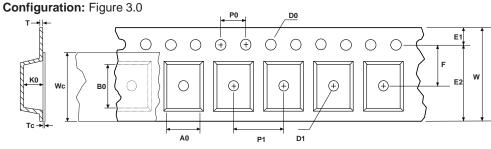


Figure 15. Maximum Steady- State Drain **Current versus Copper Mounting Pad** Area.

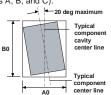
Figure 16. Maximum Safe Operating Area.


Figure 17. Typical Transient Thermal Impedance Curve.

Remark: Thermal characterization performed under the conditions of Note 1c. Should better thermal design employs, R_{eux} will be lower and reach thermal equivalent sooner.

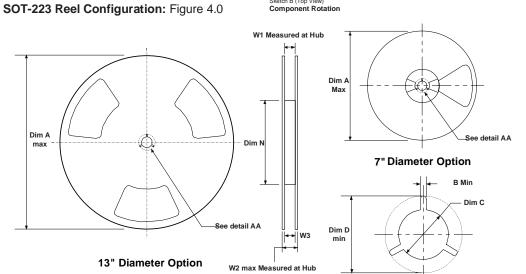
SOT-223 Embossed Carrier Tape


User Direction of Feed	
	$\overline{}$

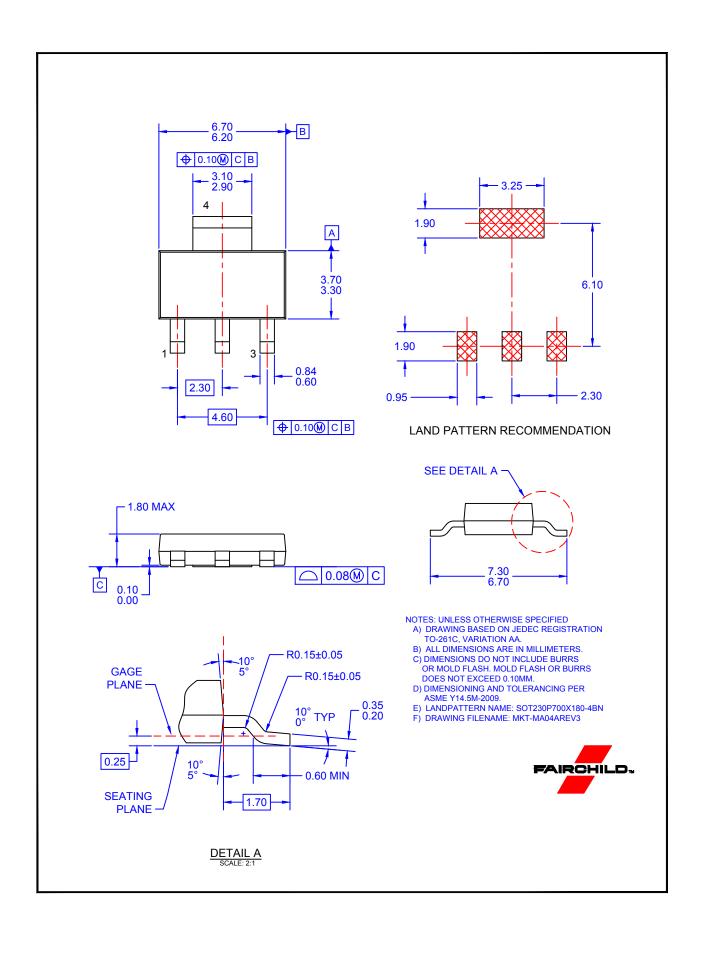
Dimensions are in millimeter														
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
SOT-223 (12mm)	6.83 +/-0.10	7.42 +/-0.10	12.0 +/-0.3	1.55 +/-0.05	1.50 +/-0.10	1.75 +/-0.10	10.25 min	5.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	1.88 +/-0.10	0.292 +/- 0.0130	9.5 +/-0.025	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation



Sketch B (Top View)
Component Rotation



Sketch C (Top View)
Component lateral movement

DETAIL AA

	Dimensions are in inches and millimeters											
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)			
12mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	5.906 150	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4			
12mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	7.00 178	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4			

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: