

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

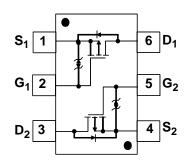
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

October 2008

FDY1002PZ Dual P-Channel (–1.5 V) Specified PowerTrench[®] MOSFET –20 V, –0.83 A, 0.5 Ω

Features

- Max $r_{DS(on)} = 0.5 \Omega$ at $V_{GS} = -4.5 V$, $I_D = -0.83 A$
- Max $r_{DS(on)} = 0.7 \Omega$ at $V_{GS} = -2.5 V$, $I_D = -0.70 A$
- Max $r_{DS(on)} = 1.2 \Omega$ at $V_{GS} = -1.8 V$, $I_D = -0.43 A$
- Max $r_{DS(on)}$ = 1.8 Ω at V_{GS} = -1.5 V, I_D = -0.36 A
- HBM ESD protection level = 1400 V (Note 3)
- RoHS Compliant


General Description

This Dual P-Channel MOSFET has been designed using Fairchild Semiconductor's advanced Power Trench process to optimize the $r_{DS(on)}@V_{GS} = -1.5$ V.

Application

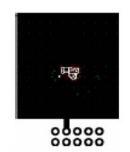
Li-Ion Battery Pack

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage		-20	V	
V _{GS}	Gate to Source Voltage		±8	V	
	Drain Current -Continuous	(Note 1a)	-0.83	•	
1 _D	-Pulsed		-1.0	— A	
D	Power Dissipation	(Note 1a)	0.625		
P _D	Power Dissipation	(Note 1b)	0.446		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	200	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	280	C/VV

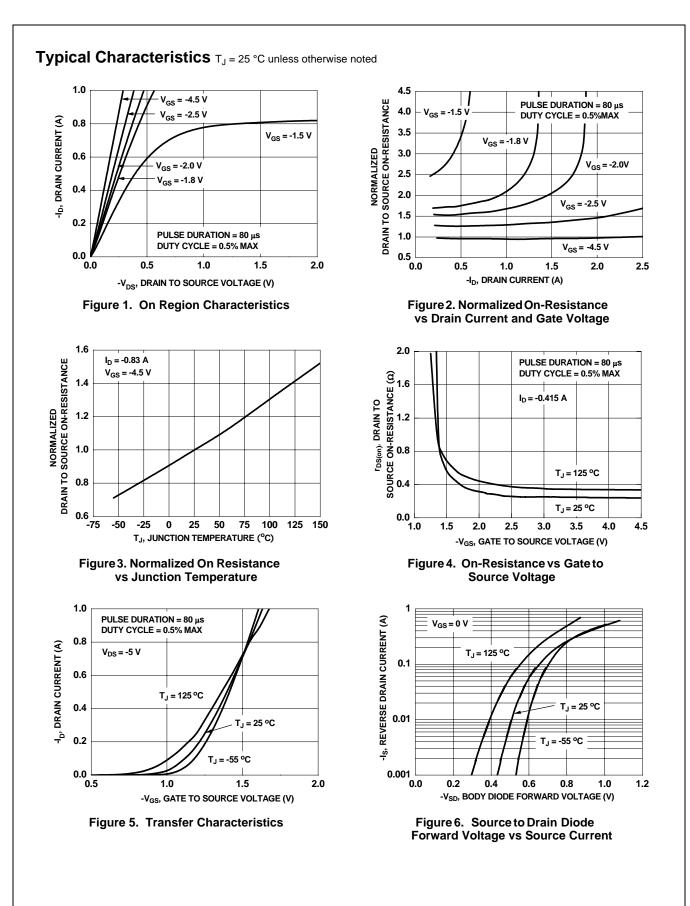

Package Marking and Ordering Information

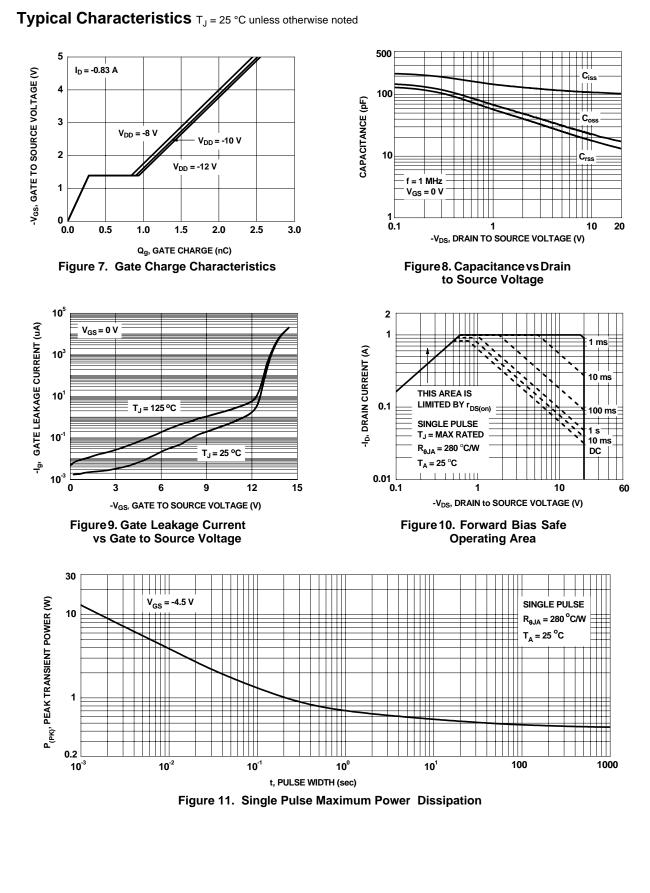
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
G	FDY1002PZ	SC89-6	7 "	8 mm	3000 units

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	/mbol	Parameter	Test Conditions	Min	Тур	Max	Units
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Charac	teristics					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ss	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V	-20			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		-11		mV/°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Gate to Source Leakage Current	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Charac	teristics (Note 2)			·	·	
$ \begin{array}{c c c c c c c c c } \hline \Delta V_{GS}(m) & \hline \Delta T_J & \hline \hline \Delta T_J & \hline \hline \Delta T_J & \hline \hline \Box T_J & \hline \hline \Box T_J & \hline \hline \Box T_J & \hline \hline T$, , ,	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-0.4	-0.7	-1.0	V
$r_{DS(on)} \qquad \begin{array}{ c c c } Static Drain to Source On-Resistance & \hline V_{GS} = -2.5 \ V, \ I_D = -0.70 \ A & 0.36 & 0.1 \\ \hline V_{GS} = -1.8 \ V, \ I_D = -0.43 \ A & 0.47 & 1.1 \\ \hline V_{GS} = -1.5 \ V, \ I_D = -0.36 \ A & 0.62 & 1.4 \\ \hline V_{GS} = -4.5 \ V, \ I_D = -0.33 \ A, & 0.39 & 0.8 \\ \hline V_{GS} = -4.5 \ V, \ I_D = -0.83 \ A, & 2 & 0.39 & 0.8 \\ \hline P_{FS} & Forward Transconductance & V_{DD} = -5 \ V, \ I_D = -0.83 \ A & 2 & 0.39 & 0.8 \\ \hline P_{SS} & Output Capacitance & V_{DD} = -5 \ V, \ I_D = -0.83 \ A & 2 & 0.39 & 0.8 \\ \hline C_{rss} & Output Capacitance & V_{DS} = -10 \ V, \ V_{GS} = 0 \ V, & 23 & 38 & 0.0 & 0.39 & 0.8 \\ \hline C_{rss} & Reverse Transfer Capacitance & V_{DS} = -10 \ V, \ V_{GS} = 0 \ V, & 23 & 38 & 0.3 & 0.8 \\ \hline Switching Characteristics (Note 2) & & & & & & & & & & & & & & & & & & $	S(th)	•			3		mV/°C
$r_{DS(on)} \qquad \begin{array}{ c c c } Static Drain to Source On-Resistance & \hline V_{GS} = -2.5 \ V, \ I_D = -0.70 \ A & 0.36 & 0.1 \\ \hline V_{GS} = -1.8 \ V, \ I_D = -0.43 \ A & 0.47 & 1.1 \\ \hline V_{GS} = -1.5 \ V, \ I_D = -0.36 \ A & 0.62 & 1.4 \\ \hline V_{GS} = -4.5 \ V, \ I_D = -0.33 \ A, & 0.39 & 0.8 \\ \hline V_{GS} = -4.5 \ V, \ I_D = -0.83 \ A, & 2 & 0.39 & 0.8 \\ \hline P_{FS} & Forward Transconductance & V_{DD} = -5 \ V, \ I_D = -0.83 \ A & 2 & 0.39 & 0.8 \\ \hline P_{SS} & Output Capacitance & V_{DD} = -5 \ V, \ I_D = -0.83 \ A & 2 & 0.39 & 0.8 \\ \hline C_{rss} & Output Capacitance & V_{DS} = -10 \ V, \ V_{GS} = 0 \ V, & 23 & 38 & 0.0 & 0.39 & 0.8 \\ \hline C_{rss} & Reverse Transfer Capacitance & V_{DS} = -10 \ V, \ V_{GS} = 0 \ V, & 23 & 38 & 0.3 & 0.8 \\ \hline Switching Characteristics (Note 2) & & & & & & & & & & & & & & & & & & $	•	;	$V_{GS} = -4.5 \text{ V}, I_{D} = -0.83 \text{ A}$		0.28	0.5	Ω
IndicationStatic Drain to Source On-Resistance $V_{GS} = -1.5 \text{ V}, I_D = -0.36 \text{ A}$ 0.62 1.4 $V_{GS} = -4.5 \text{ V}, I_D = -0.83 \text{ A}, T_J = 125 °C0.390.8g_{FS}Forward TransconductanceV_{DD} = -5 \text{ V}, I_D = -0.83 \text{ A}2Dynamic CharacteristicsC_{iss}Input CapacitanceV_{DD} = -5 \text{ V}, I_D = -0.83 \text{ A}2C_{oss}Output CapacitanceV_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}10013C_{oss}Output CapacitanceV_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}1830Switching Characteristics (Note 2)f = 1 \text{ MHz}1830t_{d(on)}Turn-On Delay TimeV_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}2.910t_{d(off)}Turn-Off Delay TimeV_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega2333t_{q}Total Gate ChargeV_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}2.23.6Q_{g}Total Gate ChargeV_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}0.30.30.3Q_{gd}Gate to Drain "Miller" ChargeV_{CS} = -4.5 \text{ V}0.60.6Drain-Source Diode Characteristics and Maximum RatingI_SMaximum Continuous Drain-Source Diode Forward Current-0.4$					0.36	0.7	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Static Drain to Source On-Resistance	$V_{GS} = -1.8 \text{ V}, \text{ I}_{D} = -0.43 \text{ A}$		0.47	1.2	
T_J = 125 °C0.390.8 g_{FS} Forward Transconductance $V_{DD} = -5 V$, $I_D = -0.83 A$ 2Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = -10 V$, $V_{GS} = 0 V$, $f = 1 MHz$ 10013 C_{oss} Output Capacitance $V_{DS} = -10 V$, $V_{GS} = 0 V$, $f = 1 MHz$ 1830Switching Characteristics (Note 2) $t_{d(on)}$ Turn-On Delay Time $t_{d(off)}$ $V_{DD} = -10 V$, $I_D = -0.83 A$ 2.9100 $t_{d(off)}$ Turn-Off Delay Time 	on)	Static Drain to Source On-Resistance	$V_{GS} = -1.5 \text{ V}, I_D = -0.36 \text{ A}$		0.62	1.8	
g_{FS} Forward Transconductance $V_{DD} = -5 \text{ V}, I_D = -0.83 \text{ A}$ 2Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ 10013 C_{oss} Output Capacitance $f = 1 \text{ MHz}$ 1830 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 1830Switching Characteristics (Note 2) $t_{d(on)}$ Turn-On Delay Time $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.910 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ 2337 t_r Fall Time132232 Q_g Total Gate Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.910 Q_g Total Gate Charge $V_{OD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.910 Q_g Total Gate Charge $V_{OD} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ 2337 Q_g Gate to Source Charge $V_{OD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 0.32.23. Q_{gd} Gate to Drain "Miller" Charge $V_{OD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 0.30.30.3 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = -4.5 \text{ V}$ 0.60.60.6Drain-Source Diode Characteristics and Maximum Rating I_S Maximum Continuous Drain-Source Diode Forward Current-0.4			$V_{GS} = -4.5 \text{ V}, I_D = -0.83 \text{ A},$		0.39	0.85	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Forward Transconductance			2		S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	amic C	haracteristics					
C_{oss} Output Capacitance $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ 2335 C_{rss} Reverse Transfer Capacitance $f = 1 \text{ MHz}$ 1830Switching Characteristics (Note 2) $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.910 $t_{d(off)}$ Turn-On Delay Time $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.910 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ 2337 t_f Fall Time1323 Q_g Total Gate Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 0.3 Q_{gs} Gate to Source Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 0.3 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = -4.5 \text{ V}$ 0.6Drain-Source Diode Characteristics and Maximum Rating I_S Maximum Continuous Drain-Source Diode Forward Current-0.4					100	135	pF
CrssReverse Transfer Capacitance1830Switching Characteristics (Note 2) $t_{d(on)}$ Turn-On Delay Time 3.5 10 t_r Rise Time $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.910 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ 2337 t_r Fall Time1323 Q_g Total Gate Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 0.32.2 Q_{gs} Gate to Source Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 0.30.3 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = -4.5 \text{ V}$ 0.60.6Drain-Source Diode Characteristics and Maximum Rating I_S Maximum Continuous Drain-Source Diode Forward Current-0.4		Output Capacitance			23	35	pF
$t_{d(on)}$ Turn-On Delay Time3.510 t_r Rise Time $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.910 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ 2337 t_f Fall Time132323 Q_g Total Gate Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.23.3 Q_{gs} Gate to Source Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 0.32.2 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = -4.5 \text{ V}$ 0.60.6Drain-Source Diode Characteristics and Maximum Rating I_S Maximum Continuous Drain-Source Diode Forward Current-0.4		Reverse Transfer Capacitance			18	30	pF
$t_{d(on)}$ Turn-On Delay Time3.510 t_r Rise Time $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.910 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ 2337 t_f Fall Time132323 Q_g Total Gate Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 2.23.3 Q_{gs} Gate to Source Charge $V_{DD} = -10 \text{ V}, I_D = -0.83 \text{ A}$ 0.32.2 Q_{gd} Gate to Drain "Miller" Charge $V_{GS} = -4.5 \text{ V}$ 0.60.6Drain-Source Diode Characteristics and Maximum Rating I_S Maximum Continuous Drain-Source Diode Forward Current-0.4	tching	Characteristics (Note 2)					
trRise Time $V_{DD} = -10 \ V, \ I_D = -0.83 \ A$ 2.910 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = -4.5 \ V, \ R_{GEN} = 6 \ \Omega$ 2337 t_f Fall Time1323 Q_g Total Gate Charge $V_{DD} = -10 \ V, \ I_D = -0.83 \ A$ 2.23. Q_{gs} Gate to Source Charge $V_{GS} = -4.5 \ V$ 0.30.3 Q_{gd} Gate to Drain "Miller" Charge0.60.60.6Drain-Source Diode Characteristics and Maximum Rating I_S Maximum Continuous Drain-Source Diode Forward Current-0.9	-				3.5	10	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,	Rise Time			2.9	10	ns
t_f Fall Time 13 23 Q_g Total Gate Charge $Q_{DD} = -10 \text{ V}, \text{ I}_D = -0.83 \text{ A}$ 2.2 3. Q_{gd} Gate to Source Charge $V_{GS} = -4.5 \text{ V}$ 0.3 0.3 Q_{gd} Gate to Drain "Miller" Charge 0.6 0.6 Drain-Source Diode Characteristics and Maximum Rating I_S Maximum Continuous Drain-Source Diode Forward Current -0.4)	Turn-Off Delay Time			23	37	ns
Q _{gs} Gate to Source Charge V _{DD} = -10 V, I _D = -0.83 A 0.3 Q _{gd} Gate to Drain "Miller" Charge V _{GS} = -4.5 V 0.6 Drain-Source Diode Characteristics and Maximum Rating Is Maximum Continuous Drain-Source Diode Forward Current -0.4		Fall Time			13	23	ns
Q _{gs} Gate to Source Charge V _{DD} = -10 V, I _D = -0.83 A 0.3 Q _{gd} Gate to Drain "Miller" Charge V _{GS} = -4.5 V 0.6 Drain-Source Diode Characteristics and Maximum Rating Is Maximum Continuous Drain-Source Diode Forward Current -0.4		Total Gate Charge			2.2	3.1	nC
Q _{gd} Gate to Drain "Miller" Charge 0.6 Drain-Source Diode Characteristics and Maximum Rating 1 I _S Maximum Continuous Drain-Source Diode Forward Current -0.4		Gate to Source Charge			0.3		nC
Is Maximum Continuous Drain-Source Diode Forward Current -0.4		Gate to Drain "Miller" Charge			0.6		nC
I _S Maximum Continuous Drain-Source Diode Forward Current -0.4	in-Sou	rce Diode Characteristics and M	Maximum Rating		<u>I</u>	<u>I</u>	1
3			-			-0.52	Α
					-1.0	-1.2	V
t Reverse Recovery Time 18 31			$-I_F = -0.83 \text{ A, } dI_F/dt = 100 \text{ A/}\mu\text{s}$			31	ns
$l_{r} = -0.83 \text{ A} \text{ d}_{r}/\text{d}_{r} = 100 \text{ A/us}$					-	10	nC

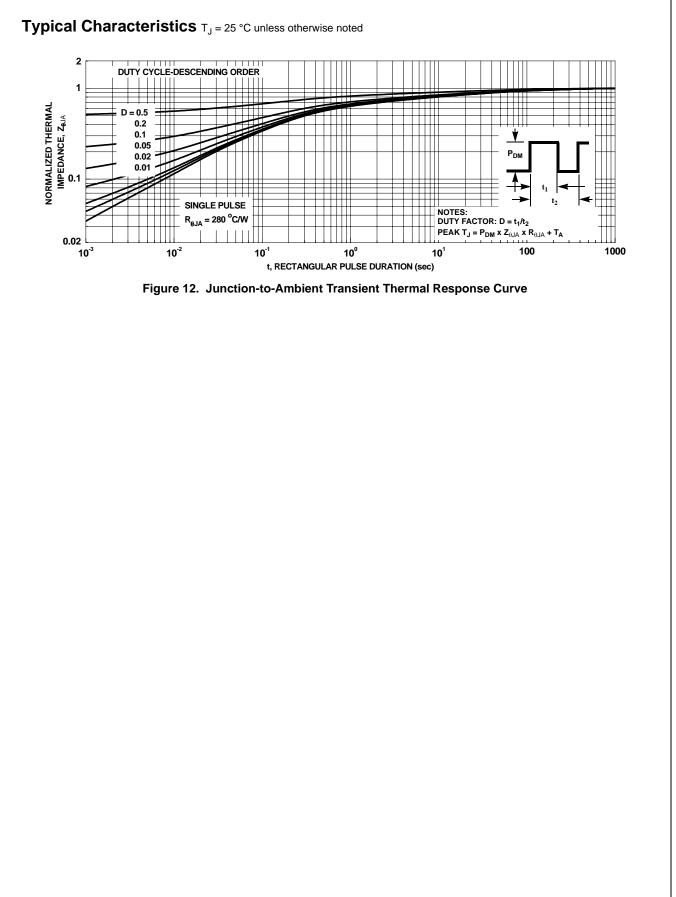
Notes:

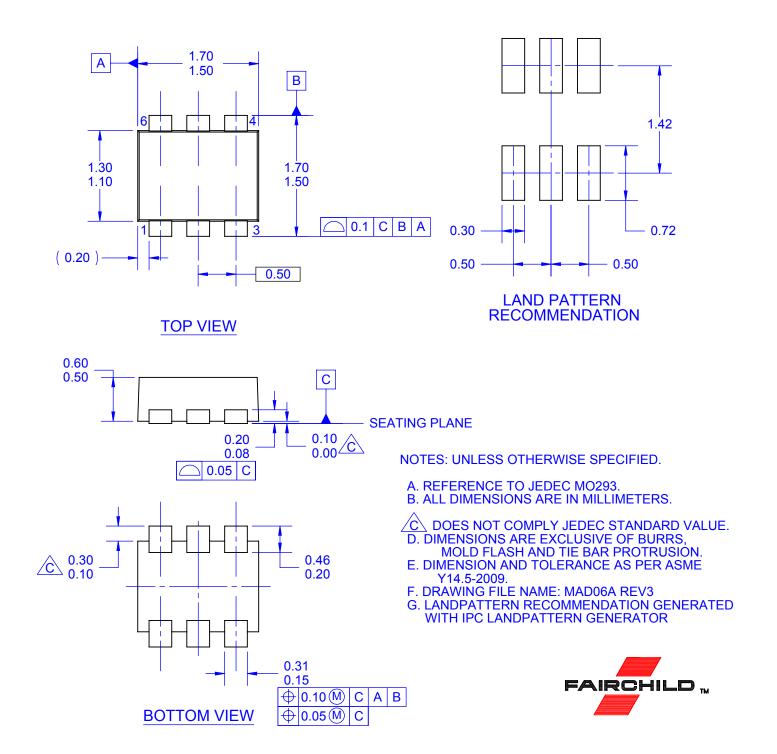
1. R_{0,A} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0,JA} is determined by the user's board design.




a) 200 °C/W when mounted on a 1 in² pad of 2 oz copper.

b) 280 °C/W when mounted on a minimum pad of 2 oz copper.




Pulse Test : Pulse Width < 300 us, Duty Cycle < 2.0%
The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

FDY1002PZ Dual P-Channel (–1.5 V) Specified PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: <u>FDY1002PZ</u>