5 V Dual Differential PECL to TTL Translator

Description

The MC100ELT23 is a dual differential PECL to TTL translator. Because PECL (Positive ECL) levels are used, only +5 V and ground are required. The small outline 8-lead package and the dual gate design of the ELT23 makes it ideal for applications which require the translation of a clock and a data signal.

The PECL inputs are differential; therefore, the MC100ELT23 can accept any standard differential PECL input referenced from a V_{CC} of 5.0 V.

Features

- 3.5 ns Typical Propagation Delay
- 24 mA TTL Outputs
- Flow Through Pinouts
- The 100 Series Contains Temperature Compensation
- Operating Range $V_{CC} = 4.75 \text{ V}$ to 5.25 V with GND = 0 V
- Internal Input 50 KΩ Pulldown Resistors
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS*

SOIC-8 D SUFFIX CASE 751

TSSOP-8 DT SUFFIX CASE 948R

A = Assembly Location

= Wafer Lot

Y = Year

W = Work Week

■ = Pb–Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

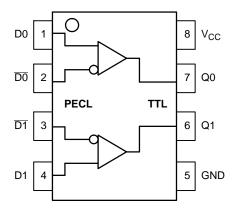


Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

Pin	Function
Qn	TTL Outputs
Dn, Dn	PECL Differential Inputs
V _{CC}	Positive Supply
GND	Ground

Table 2. ATTRIBUTES

Character	Characteristics				
Internal Input Pulldown Resistor	50 kΩ				
Internal Input Pullup Resistor	Internal Input Pullup Resistor				
ESD Protection	> 2 kV > 400 V				
Moisture Sensitivity, Indefinite Tim	ne Out of Drypack (Note 1)	Pb-Free Pkg			
	SOIC-8 TSSOP-8	Level 1 Level 3			
Flammability Rating	UL 94 V-0 @ 0.125 in				
Transistor Count	91 Devices				
Meets or exceeds JEDEC Spec E					

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Power Supply	GND = 0 V		7	V
VI	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	0 to 6	V
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θЈА	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 SOIC-8	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44 ± 5%	°C/W
T _{sol}	Wave Solder Pb-Free	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. PECL INPUT DC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}$; GND = 0.0 V (Note 2)

		-40°C		25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 3)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential) (Note 4)	2.2		5.0	2.2		5.0	2.2		5.0	V
I _{IH}	Input HIGH Current			255			175			175	μΑ
I₁∟	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 2. Input parameters vary 1:1 with $V_{CC}.\ V_{CC}$ can vary \pm 0.25 V.
- 3. TTL output $R_1 = 500 \Omega$ to GND.
- 4. V_{IHCMR} min varies 1:1 with GND, V_{IHCMR} max varies 1:1 with V_{CC}

Table 5. TTL OUTPUT DC CHARACTERISTICS $V_{CC} = 4.75 \text{ V}$ to 5.25 V; $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -3.0 \text{ mA}$	2.4		(Note 5)	V
V _{OL}	Output LOW Voltage	I _{OL} = 24 mA			0.5	V
Іссн	Power Supply Current			23	33	mA
I _{CCL}	Power Supply Current			26	36	mA
I _{OS}	Output Short Circuit Current		-150		-60	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

5. Max level is V_{CC} – 0.7 V by design.

Table 6. AC CHARACTERISTICS V_{CC}= 5.0 V; GND= 0.0 V (Note 6 and Note 7)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					100					MHz
t _{JITTER}	Random Clock Jitter (RMS)					35					ps
t _{PLH}	Propagation Delay @ 1.5 V	2.0		5.5	2.0		5.5	2.0		5.5	ns
t _{PHL}	Propagation Delay @ 1.5 V	2.0		5.5	2.0		5.5	2.0		5.5	ns
V _{PP}	Input Swing (Note 8)	200		1000	200		1000	200		1000	mV
t _r /t _f	Output Rise Time (10–90%) Output Fall Time (10–90%)					1.6 1.1					ns ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 6. V_{CC} can vary \pm 0.25 V.
- 7. TTL output $R_L = 500 \Omega$ to GND, and $C_L = 20 \text{ pF}$ to GND. Refer to Figure 2. 8. $V_{PP}(\text{min})$ is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of \approx 40.

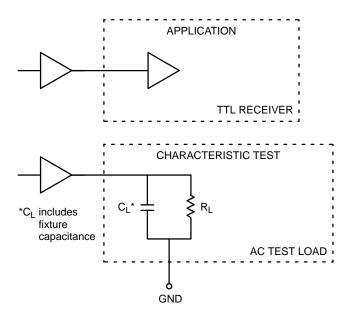


Figure 2. TTL Output Loading Used for Device Evaluation

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC100ELT23DG	SOIC-8 (Pb-Free)	98 Units / Rail		
MC100ELT23DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel		
MC100ELT23DTG	TSSOP-8 (Pb-Free)	100 Units / Rail		
MC100ELT23DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

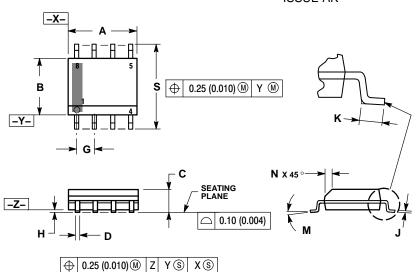
AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes


AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK**

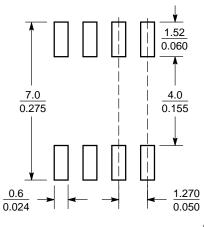
NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.

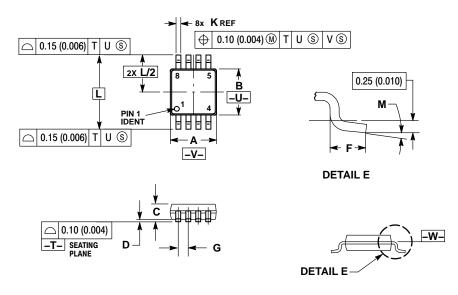

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.
- STANDARD IS 751-07.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MIN MAX		MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*



 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** CASE 948R-02 **ISSUE A**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
 - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- (U.000) FER 310E.

 DIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	MILLIMETERS INCHES		
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65	BSC	0.026	BSC
K	0.25	0.40	0.010	0.016
L	4.90	4.90 BSC		BSC
M	0 °	6°	0 °	6°

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the unare registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative