3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVERS/RECEIVERS
WITH ± 15-kV ESD PROTECTION
www.ti.com

FEATURES

- ESD Protection for RS-232 Bus Pins
- $\pm 15-k V$ Human-Body Model (HBM)
- ± 8-kV IEC 61000-4-2, Contact Discharge
- $\pm 15-k V$ IEC 61000-4-2, Air-Gap Discharge
- Meet or Exceed the Requirements of TIA/EIA-232-F and ITU v. 28 Standards
- Operate With 3-V to 5.5-V V Cc Supply
- Operate up to 1000 kbit/s
- Two Drivers and Two Receivers
- Low Standby Current . . . $1 \mu \mathrm{~A}$ Typ
- External Capacitors . . . $4 \times 0.1 \mu \mathrm{~F}$
- Accepts 5-V Logic Input With 3.3-V Supply

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

DESCRIPTION/ ORDERING INFORMATION

The SN65C3222E and SN75C3222E consist of two line drivers, two line receivers, and a dual charge-pump circuit with $\pm 15-\mathrm{kV}$ ESD protection pin to pin (serial-port connection pins, including GND).

The devices meet the requirements of TIA/EIA-232-F and provide the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single $3-\mathrm{V}$ to $5.5-\mathrm{V}$ supply. The devices operate at typical data signaling rates up to $1000 \mathrm{kbit} / \mathrm{s}$ and are improved drop-in replacements for industry-popular '3222 two-driver, two-receiver functions.

The SN65C3222E and SN75C3222E can be placed in the power-down mode by setting the power-down ($\overline{\text { PWRDOWN }}$) input low, which draws only $1 \mu \mathrm{~A}$ from the power supply. When the devices are powered down, the receivers remain active while the drivers are placed in the high-impedance state. Also, during power down, the onboard charge pump is disabled; $\mathrm{V}+$ is lowered to V_{C}, and V - is raised toward GND. Receiver outputs also can be placed in the high-impedance state by setting enable (EN) high.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	SOIC - DW	Tube of 25	SN75C3222EDW	75C3222E
		Reel of 2000	SN75C3222EDWR	
	SSOP - DB	Tube of 70	SN75C3222EDB	MY222E
		Reel of 2000	SN75C3222EDBR	
	TSSOP - PW	Tube of 70	SN75C3222EPW	MY222E
		Reel of 2000	SN75C3222EPWR	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - DW	Tube of 25	SN65C3222EDW	65C3222E
		Reel of 2000	SN65C3222EDWR	
	SSOP - DB	Tube of 70	SN65C3222EDB	MU222E
		Reel of 2000	SN65C3222EDBR	
	TSSOP - PW	Tube of 70	SN65C3222EPW	MU222E
		Reel of 2000	SN65C3222EPWR	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLES
Each Driver ${ }^{(1)}$

INPUTS		OUTPUT DOUT
DIN	PWRDOWN	
X	L	H
L	H	L
H	H	

(1) $\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant, $\mathrm{Z}=$ high impedance

Each Receiver ${ }^{(1)}$

| \| INPUTS | OUTPUT |
| :---: | :---: | :---: |
| ROUT | |

(1) $\mathrm{H}=$ high level, $\mathrm{L}=$ low level, $\mathrm{X}=$ irrelevant, $\mathrm{Z}=$ high impedance (off),
Open = input disconnected or connected driver off

Pin numbers are for the DB, DW, and PW packages.

Absolute Maximum Ratings ${ }^{(1)}$
over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$\mathrm{V}_{\text {cc }}$	Supply voltage range ${ }^{(2)}$		-0.3	6	V
V+	Positive-output supply voltage range ${ }^{(2)}$		-0.3	7	V
V -	Negative-output supply voltage range ${ }^{(2)}$		0.3	-7	V
$\mathrm{V}_{+}-\mathrm{V}_{-}$	Supply voltage difference ${ }^{(2)}$			13	V
V_{1}	Input voltage range	Driver (EN, PWRDOWN)	-0.3	6	V
		Receiver	-25	25	
V_{O}	Output voltage range	Driver	-13.2	13.2	V
		Receiver	-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
θ_{JA}	Package thermal impedance ${ }^{(3)(4)}$	DB package		70	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DW package		58	
		PW package		83	
		RHL package		TBD	
T_{J}	Operating virtual junction temperature			150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to network GND.
(3) Maximum power dissipation is a function of $T_{J}(\max), \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any allowable ambient temperature is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. Operating at the absolute maximum T_{J} of $150^{\circ} \mathrm{C}$ can affect reliability.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

See Figure 5

				MIN	NOM	MAX	UNIT
	Supply voltage		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	3	3.3	3.6	
	Supply votage		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	4.5	5	5.5	
	Driver and control high-level input voltage	DIN EN PWRDOW	$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	2			
V_{IH}	Driver and control hign-level input voltage	DIN, EN, PWRDOW	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	2.4			
	Driver and control low-level input voltage	DIN, EN, PWRDOWN				0.8	V
V_{1}	Driver and control input voltage	DIN, EN, PWRDOWN		0		5.5	V
V_{1}	Receiver input voltage			-25		25	V
			SN75C3222E	0		70	
A	Operating free-air temperature		SN65C3222E	-40		85	${ }^{\circ}$

(1) Test conditions are $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Electrical Characteristics ${ }^{(1)}$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{(2)}$	MAX	UNIT
	Input leakage current (EN, PWRDOWN)			± 0.01	± 1	$\mu \mathrm{A}$
Icc	Supply current	No load, PWRDOWN at $\mathrm{V}_{\text {CC }}$		0.3	1	mA
	Supply current (powered off)	No load, PWRDOWN at GND		1	10	$\mu \mathrm{A}$

(1) Test conditions are $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
(2) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DRIVER SECTION

Electrical Characteristics ${ }^{(1)}$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

PARAMETER		TEST CONDITIONS		MIN	TYP ${ }^{(2)}$	MAX	$\begin{gathered} \hline \text { UNIT } \\ \hline \mathrm{V} \end{gathered}$
V_{OH}	High-level output voltage	DOUT at $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to GND,	DIN = GND	5	5.4		
V_{OL}	Low-level output voltage	DOUT at $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to GND,	$\mathrm{DIN}=\mathrm{V}_{\mathrm{CC}}$	-5	-5.4		V
I_{H}	High-level input current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$			± 0.01	± 1	$\mu \mathrm{A}$
I_{LL}	Low-level input current	V_{1} at GND			± 0.01	± 1	$\mu \mathrm{A}$
los	Short-circuit output current ${ }^{(3)}$	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		± 35	± 60	mA
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$					
r_{0}	Output resistance	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{+}$, and $\mathrm{V}-=0 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}= \pm 2 \mathrm{~V}$	300	10M		Ω
	Output leakage current	$\overline{\text { PWRDOWN }}=$ GND	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}= \pm 12 \mathrm{~V} \end{aligned}$			± 25	$\mu \mathrm{A}$
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$			± 25	

(1) Test conditions are $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
(2) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Switching Characteristics ${ }^{(1)}$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS		MIN	TYP ${ }^{(2)}$	MAX	UNIT
	Maximum data rate (See Figure 1)	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text {, }$ One DOUT switching	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$	250			kbit/s
			$\mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}, \quad \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 4.5 V	1000			
			$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \quad \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	1000			
$\mathrm{t}_{\text {sk(p) }}$	Pulse skew ${ }^{(3)}$	$C_{L}=150 \mathrm{pF}$ to $2500 \mathrm{pF}, \quad \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega, \quad$ See Figure 2		300			ns
SR(tr)	Slew rate, transition region (see Figure 1]	$\mathrm{R}_{\mathrm{L}}=7 \mathrm{k} \Omega$,	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ to 1000 pF	8		90	V/us
		$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$	12		60	
			$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ to 250 pF	24		150	

(1) Test conditions are $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
(2) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) Pulse skew is defined as $\left|t_{\text {PLH }}-t_{\text {PHL }}\right|$ of each channel of the same device.

WITH $\pm 15-k V$ ESD PROTECTION

RECEIVER SECTION

Electrical Characteristics ${ }^{(1)}$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

PARAMETER		TEST CONDITIONS	MIN	TYP ${ }^{(2)}$	MAX	UNIT
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	$\mathrm{V}_{C C}-0.6$	$\mathrm{V}_{C C}-0.1$		V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IT }+}$	Positive-going input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		1.5	2.4	V
		$\mathrm{V}_{C C}=5 \mathrm{~V}$		1.8	2.4	
$V_{\text {IT- }}$	Negative-going input threshold voltage	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	0.6	1.2		V
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	0.8	1.5		
$\mathrm{V}_{\text {hys }}$	Input hysteresis ($\mathrm{V}_{\text {IT+ }}-\mathrm{V}_{\text {IT-}}$)			0.3		V
$\mathrm{I}_{\text {Oz }}$	Output leakage current	$\mathrm{EN}=1$		± 0.05	± 10	$\mu \mathrm{A}$
r_{i}	Input resistance	$\mathrm{V}_{1}= \pm 3 \mathrm{~V}$ to $\pm 25 \mathrm{~V}$	3	5	7	$\mathrm{k} \Omega$

(1) Test conditions are $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
(2) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics ${ }^{(1)}$

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TYP ${ }^{(2)}$	UNIT	
$\mathrm{t}_{\text {PLH }}$	Propagation delay time, low- to high-level output	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$, See Figure 3	300	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay time, high- to low-level output	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$, See Figure 3	300	ns
t_{en}	Output enable time	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$, See Figure 4	200	ns
$\mathrm{t}_{\text {dis }}$	Output disable time	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$, See Figure 4	200	ns
$\mathrm{t}_{\mathrm{sk}(\mathrm{p})}$	Pulse skew ${ }^{(3)}$	See Figure 3	300	ns

(1) Test conditions are $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
(2) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) Pulse skew is defined as $\left|t_{\text {PLH }}-t_{\text {PHL }}\right|$ of each channel of the same device.

PARAMETER MEASUREMENT INFORMATION

A. $\quad C_{L}$ includes probe and jig capacitance.
B. The pulse generator has the following characteristics: $\mathrm{PRR}=250 \mathrm{kbit} / \mathrm{s}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$.

Figure 1. Driver Slew Rate

Figure 2. Driver Pulse Skew

A. $\quad C_{L}$ includes probe and jig capacitance.
B. The pulse generator has the following characteristics: $Z_{O}=50 \Omega, 50 \%$ duty cycle, $\mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$.

Figure 3. Receiver Propagation Delay Times WITH $\pm 15-k V$ ESD PROTECTION
sLLS725A-JUNE 2006-REVISED JULY 2006

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 4. Receiver Enable and Disable Times

APPLICATION INFORMATION

\dagger C3 can be connected to V_{CC} or GND.
NOTES: A. Resistor values shown are nominal.
B. NC - No internal connection
C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

$\mathrm{V}_{\text {CC }}$ vs CAPACITOR VALUES		
$\mathrm{V}_{\text {CC }}$	C1	C2, C3, and C4
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$
$5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$0.047 \mu \mathrm{~F}$	$0.33 \mu \mathrm{~F}$
3 V to 5.5 V	$0.1 \mu \mathrm{~F}$	$0.47 \mu \mathrm{~F}$

Figure 5. Typical Operating Circuit and Capacitor Values

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN65C3222EDB	ACTIVE	SSOP	DB	20	70	$\begin{aligned} & \text { Green (RoHS } \\ & \& \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{aligned}$	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MU222E	Samples
SN65C3222EDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MU222E	Samples
SN65C3222EDW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65C3222E	Samples
SN65C3222EDWR	ACTIVE	soic	DW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65C3222E	Samples
SN65C3222EPW	ACtive	TSSOP	PW	20	70	$\begin{gathered} \text { Green (RoHS } \\ \& \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MU222E	Samples
SN65C3222EPWR	ACTIVE	TSSOP	PW	20	2000	$\begin{aligned} & \text { Green (RoHS } \\ & \& \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{aligned}$	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MU222E	Samples
SN65C3222EPWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MU222E	Samples
SN75C3222EPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	MY222E	Samples
SN75C3222EPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-1-260C-UNLIM	0 to 70	MY222E	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN65C3222EDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN65C3222EDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN65C3222EPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1
SN75C3222EPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65C3222EDBR	SSOP	DB	20	2000	367.0	367.0	38.0
SN65C3222EDWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN65C3222EPWR	TSSOP	PW	20	2000	367.0	367.0	38.0
SN75C3222EPWR	TSSOP	PW	20	2000	367.0	367.0	38.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-150.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G20)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed 0,15 each side
D Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

$P W$ (R-PDSO-G20)	PLASTIC SMALL OUTLINE
Example Board Layout	Based on a stencil thickness of .127 mm (.005inch).

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

