

dsPIC33FJXXXGPX06/X08/X10 Data Sheet

High-Performance,

16-Bit Digital Signal Controllers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

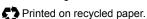
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

High-Performance, 16-Bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)

High-Performance DSC CPU:

- · Modified Harvard architecture
- · C compiler optimized instruction set
- · 16-bit wide data path
- · 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- · 83 base instructions: mostly 1 word/1 cycle
- Sixteen 16-bit General Purpose Registers
- Two 40-bit accumulators:
 - With rounding and saturation options
- Flexible and powerful addressing modes:
- Indirect, Modulo and Bit-Reversed
- · Software stack
- 16 x 16 fractional/integer multiply operations
- 32/16 and 16/16 divide operations
- Single-cycle multiply and accumulate:
- Accumulator write back for DSP operations
- Dual data fetch
- Up to ±16-bit shifts for up to 40-bit data

Direct Memory Access (DMA):

- 8-channel hardware DMA:
- 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- · Most peripherals support DMA

Interrupt Controller:

- 5-cycle latency
- Up to 63 available interrupt sources
- Up to five external interrupts
- Seven programmable priority levels
- · Five processor exceptions

Digital I/O:

- · Up to 85 programmable digital I/O pins
- · Wake-up/Interrupt-on-Change on up to 24 pins
- Output pins can drive from 3.0V to 3.6V
- All digital input pins are 5V tolerant
- 4 mA sink on all I/O pins

On-Chip Flash and SRAM:

- · Flash program memory, up to 256 Kbytes
- Data SRAM, up to 30 Kbytes (includes 2 Kbytes of DMA RAM):

System Management:

- Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated PLL
 - Extremely low jitter PLL
- Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep and Doze modes with fast wake-up

Timers/Capture/Compare/PWM:

- Timer/Counters, up to nine 16-bit timers:
 - Can pair up to make four 32-bit timers
 - 1 timer runs as Real-Time Clock with external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to eight channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to eight channels):
 - Single or Dual 16-Bit Compare mode
 - 16-bit Glitchless PWM mode

Communication Modules:

- · 3-wire SPI (up to two modules):
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C[™] (up to two modules):
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA® encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Data Converter Interface (DCI) module:
 - Codec interface
 - Supports I²S and AC'97 protocols
 - Up to 16-bit data words, up to 16 words per frame
 - 4-word deep TX and RX buffers
- Enhanced CAN (ECAN[™] module) 2.0B active (up to 2 modules):
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet[™] addressing support

Analog-to-Digital Converters (ADCs):

- · Up to two ADC modules in a device
- 10-bit, 1.1 Msps or 12-bit, 500 ksps conversion:
 - Two, four or eight simultaneous samples
 - Up to 32 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Conversion possible in Sleep mode
 - ±1 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity

CMOS Flash Technology:

- · Low-power, high-speed Flash technology
- Fully static design
- 3.3V (±10%) operating voltage
- Industrial temperature
- Low-power consumption

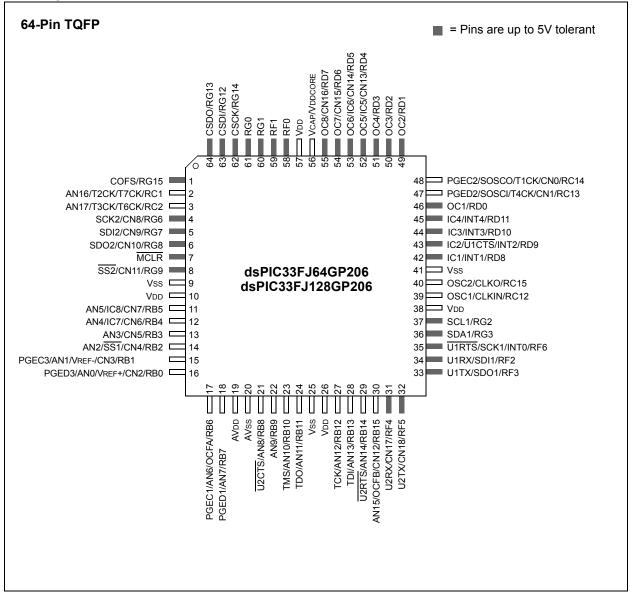
Packaging:

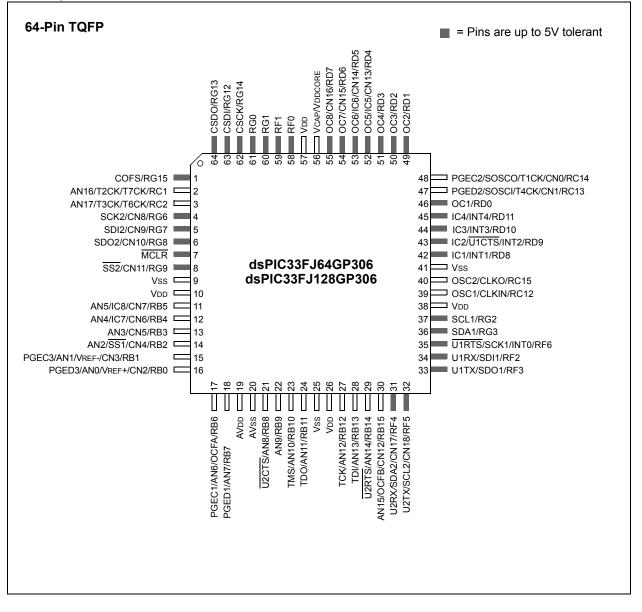
- 100-pin TQFP (14x14x1 mm and 12x12x1 mm)
- 80-pin TQFP (12x12x1 mm)
- 64-pin TQFP (10x10x1 mm)

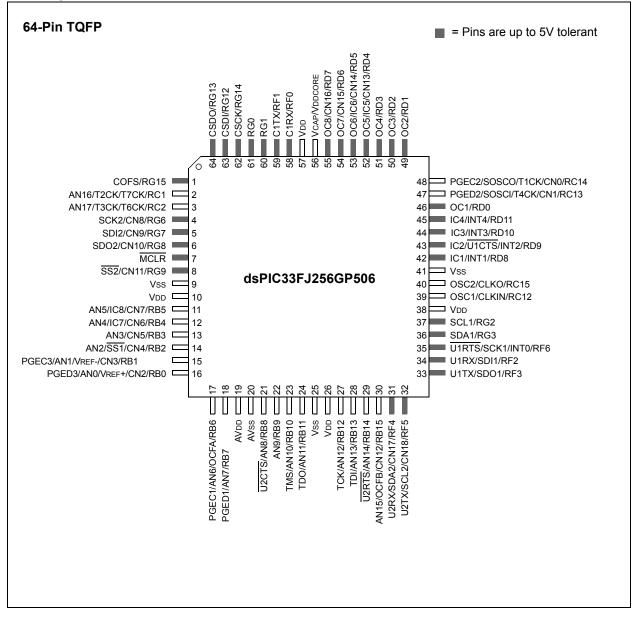
Note: See the device variant tables for exact peripheral features per device.

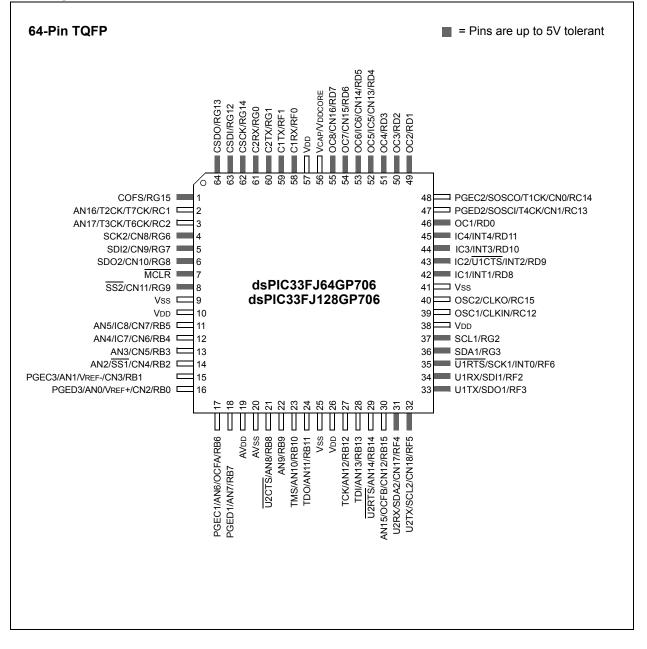
dsPIC33F PRODUCT FAMILIES

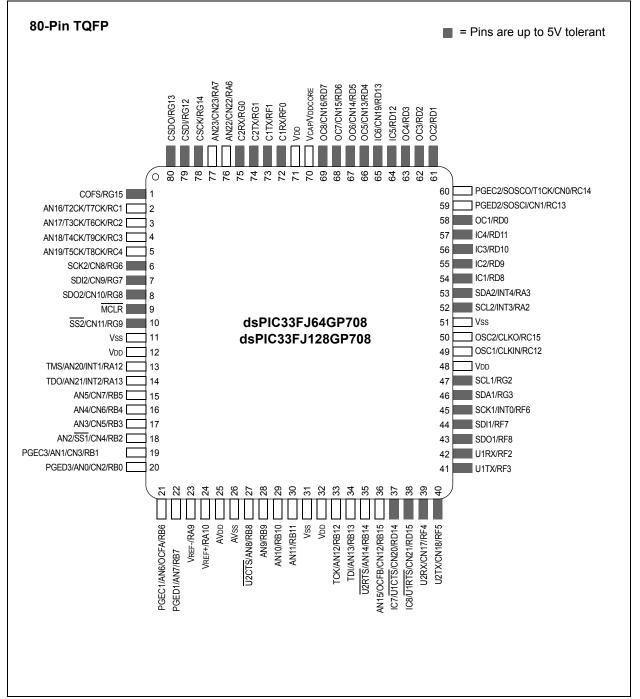
The dsPIC33F General Purpose Family of devices are ideal for a wide variety of 16-bit MCU embedded applications. The controllers with codec interfaces are well-suited for speech and audio processing applications. The device names, pin counts, memory sizes and peripheral availability of each family are listed below, followed by their pinout diagrams.

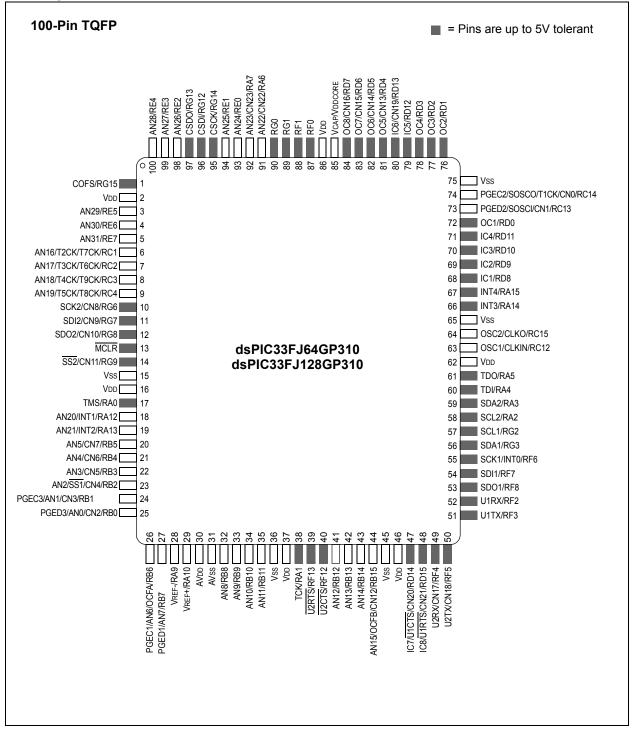

dsPIC33F	General	Purpose	Family	^v Controllers
----------	---------	---------	--------	--------------------------

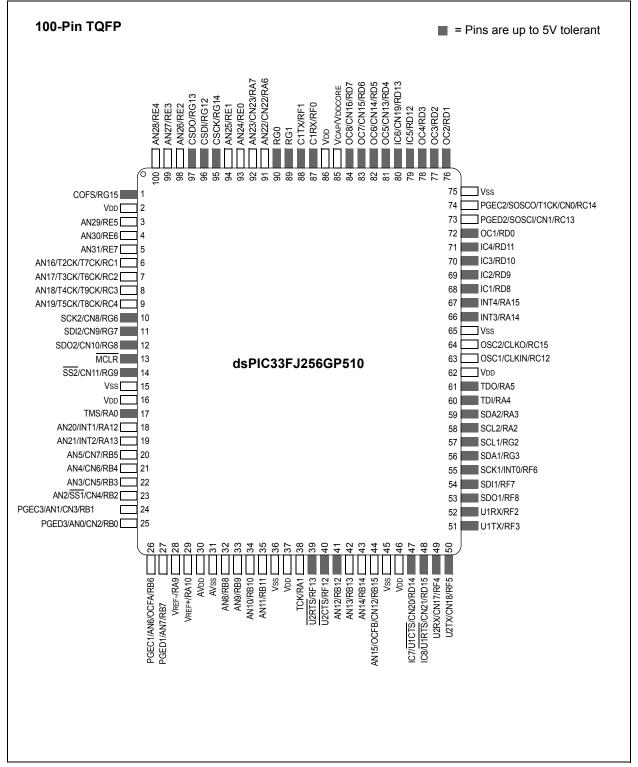

Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	16-bit Timer	Input Capture	Output Compare Std. PWM	Codec Interface	ADC	UART	SPI	I²C™	Enhanced CAN™	I/O Pins (Max) ⁽²⁾	Packages
dsPIC33FJ64GP206	64	64	8	9	8	8	1	1 ADC, 18 ch	2	2	1	0	53	PT
dsPIC33FJ64GP306	64	64	16	9	8	8	1	1 ADC, 18 ch	2	2	2	0	53	PT
dsPIC33FJ64GP310	100	64	16	9	8	8	1	1 ADC, 32 ch	2	2	2	0	85	PF, PT
dsPIC33FJ64GP706	64	64	16	9	8	8	1	2 ADC, 18 ch	2	2	2	2	53	PT
dsPIC33FJ64GP708	80	64	16	9	8	8	1	2 ADC, 24 ch	2	2	2	2	69	PT
dsPIC33FJ64GP710	100	64	16	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT
dsPIC33FJ128GP206	64	128	8	9	8	8	1	1 ADC, 18 ch	2	2	1	0	53	PT
dsPIC33FJ128GP306	64	128	16	9	8	8	1	1 ADC, 18 ch	2	2	2	0	53	PT
dsPIC33FJ128GP310	100	128	16	9	8	8	1	1 ADC, 32 ch	2	2	2	0	85	PF, PT
dsPIC33FJ128GP706	64	128	16	9	8	8	1	2 ADC, 18 ch	2	2	2	2	53	PT
dsPIC33FJ128GP708	80	128	16	9	8	8	1	2 ADC, 24 ch	2	2	2	2	69	PT
dsPIC33FJ128GP710	100	128	16	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT
dsPIC33FJ256GP506	64	256	16	9	8	8	1	1 ADC, 18 ch	2	2	2	1	53	PT
dsPIC33FJ256GP510	100	256	16	9	8	8	1	1 ADC, 32 ch	2	2	2	1	85	PF, PT
dsPIC33FJ256GP710	100	256	30	9	8	8	1	2 ADC, 32 ch	2	2	2	2	85	PF, PT


Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.


2: Maximum I/O pin count includes pins shared by the peripheral functions.


Pin Diagrams





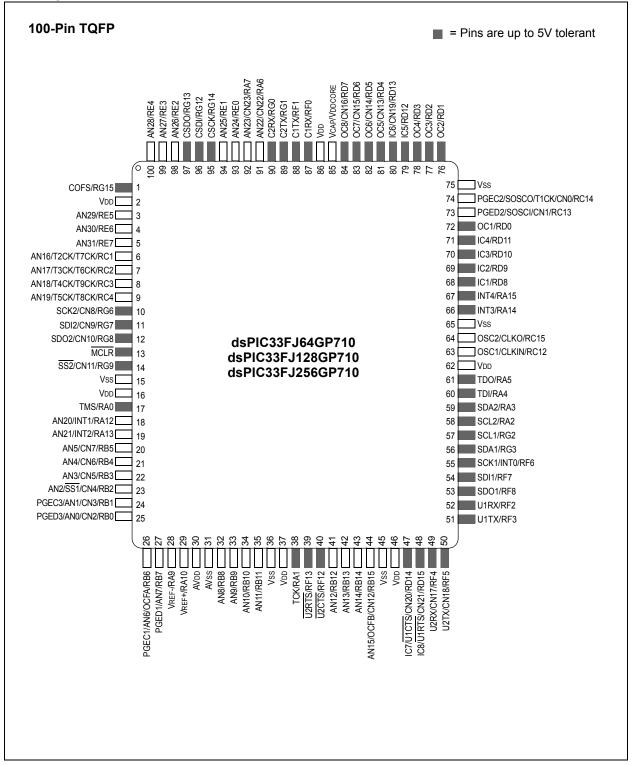


Table of Contents

dsPIC	33F Product Families	3
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	17
3.0	CPU	
4.0	Memory Organization	33
5.0	Flash Program Memory	71
6.0	Reset	77
7.0	Interrupt Controller	81
8.0	Direct Memory Access (DMA)	. 127
9.0	Oscillator Configuration	. 137
10.0	Power-Saving Features	. 147
11.0	I/O Ports	. 155
12.0	Timer1	
13.0	Timer2/3, Timer6/7 and Timer8/9	. 159
14.0	Input Capture	. 165
15.0	Output Compare	
16.0	Serial Peripheral Interface (SPI)	. 171
17.0	Inter-Integrated Circuit [™] (I ² C [™])	
18.0	Universal Asynchronous Receiver Transmitter (UART)	
	Enhanced CAN (ECAN™) Module	
	Data Converter Interface (DCI) Module	
	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
22.0	Special Features	
23.0	Instruction Set Summary	
24.0	Development Support	
	Electrical Characteristics	
	Packaging Information	
	ndix A: Revision History	
	Aicrochip Web Site	
	mer Change Notification Service	
	mer Support	
	er Response	
Produ	Ict Identification System	. 319

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

· Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

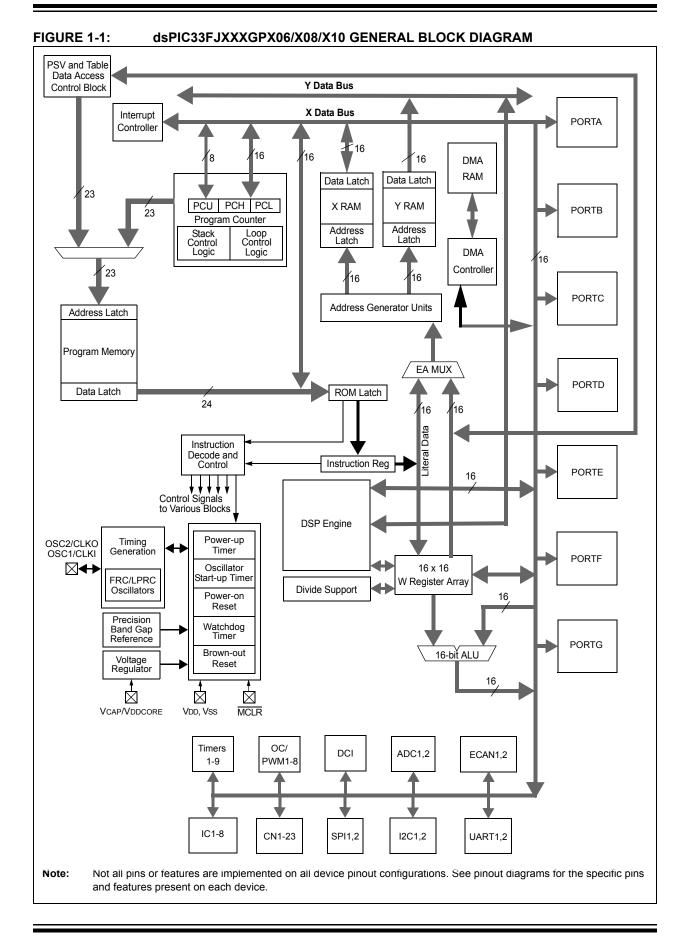
Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

This document contains device specific information for the following devices:


- dsPIC33FJ64GP206
- dsPIC33FJ64GP306
- dsPIC33FJ64GP310
- dsPIC33FJ64GP706
- dsPIC33FJ64GP708
- dsPIC33FJ64GP710
- dsPIC33FJ128GP206
- dsPIC33FJ128GP306
- dsPIC33FJ128GP310
- dsPIC33FJ128GP706
- dsPIC33FJ128GP708
- dsPIC33FJ128GP710
- dsPIC33FJ256GP506
- dsPIC33FJ256GP510
- dsPIC33FJ256GP710

The dsPIC33FJXXXGPX06/X08/X10 General Purpose Family of device includes devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes). This feature makes the family suitable for a wide variety of high-performance digital signal control applications. The device is pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows for easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application.

The dsPIC33FJXXXGPX06/X08/X10 device family employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control.

The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together provide the dsPIC33FJXXXGPX06/X08/X10 Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33FJXXXGPX06/X08/X10 devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33FJXXXGPX06/X08/X10 devices.

Figure 1-1 illustrates a general block diagram of the various core and peripheral modules in the dsPIC33FJXXXGPX06/X08/X10 family of devices. Table 1-1 provides the functions of the various pins illustrated in the pinout diagrams.

Pin Name	Pin Type	Buffer Type	Description
AN0-AN31		Analog	Analog input channels.
AVDD	Р	P	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	Ground reference for analog modules.
CLKI CLKO	I O		External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
COFS	I/O	ST	Data Converter Interface frame synchronization pin.
CSCK	I/O	ST	Data Converter Interface serial clock input/output pin.
CSDI	1	ST	Data Converter Interface serial data input pin.
CSDO	0	_	Data Converter Interface serial data output pin.
C1RX	I	ST	ECAN1 bus receive pin.
C1TX	0		ECAN1 bus transmit pin.
C2RX	1	ST	ECAN2 bus receive pin.
C2TX	0	_	ECAN2 bus transmit pin.
PGED1	I/O	ST	Data I/O pin for programming/debugging communication channel 1.
PGEC1	1	ST	Clock input pin for programming/debugging communication channel 1.
PGED2	I/O	ST	Data I/O pin for programming/debugging communication channel 2.
PGEC2		ST	Clock input pin for programming/debugging communication channel 2.
PGED3	I/O	ST	Data I/O pin for programming/debugging communication channel 3.
PGEC3	1	ST	Clock input pin for programming/debugging communication channel 3.
IC1-IC8	I	ST	Capture inputs 1 through 8.
INT0	1	ST	External interrupt 0.
INT1	i	ST	External interrupt 1.
INT2	1	ST	External interrupt 2.
INT3	i	ST	External interrupt 3.
INT4	i	ST	External interrupt 4.
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
OCFA	1	ST	Compare Fault A input (for Compare Channels 1, 2, 3 and 4).
OCFB		ST	Compare Fault B input (for Compare Channels 5, 6, 7 and 8).
OC1-OC8	Ö	_	Compare outputs 1 through 8.
OSC1		ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode;
OSC2	I/O	_	CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
RA0-RA7	I/O	ST	PORTA is a bidirectional I/O port.
RA9-RA10	I/O	ST	
RA12-RA15	I/O	ST	
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.
RC1-RC4	I/O	ST	PORTC is a bidirectional I/O port.
RC12-RC15	1/O	ST	
RD0-RD15	1/O	ST	PORTD is a bidirectional I/O port.
RE0-RE7	1/O	ST	PORTE is a bidirectional I/O port.
RF0-RF8	1/O	ST	PORTF is a bidirectional I/O port.
RF0-RF8 RF12-RF13	1/O 1/O	ST	
Legend: CMC	DS = CMO	S compatible	e input or output; Analog = Analog input; P = Power
-			with CMOS levels: O = Output: I = Input

IADLE I-I. FINOUI I/O DESCRIFTIONS	TABLE 1-1:	PINOUT I/O DESCRIPTIONS
------------------------------------	------------	--------------------------------

ST = Schmitt Trigger input with CMOS levels;

O = Output; I = Input

TABLE 1-1:	Pin	Buffer					
Pin Name	Туре	Туре	Description				
RG0-RG3	I/O	ST	PORTG is a bidirectional I/O port.				
RG6-RG9	I/O	ST					
RG12-RG15	I/O	ST					
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.				
SDI1	I I	ST	SPI1 data in.				
SDO1	0		SPI1 data out.				
SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.				
SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.				
SDI2	I I	ST	SPI2 data in.				
SDO2	0		SPI2 data out.				
SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.				
SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	Synchronous serial data input/output for I2C1.				
SCL2	I/O	ST	Synchronous serial clock input/output for I2C2.				
SDA2	I/O	ST	Synchronous serial data input/output for I2C2.				
SOSCI	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.				
SOSCO	0	—	32.768 kHz low-power oscillator crystal output.				
TMS	I	ST	JTAG Test mode select pin.				
ТСК	I I	ST	JTAG test clock input pin.				
TDI	I	ST	JTAG test data input pin.				
TDO	0	—	JTAG test data output pin.				
T1CK	I	ST	Timer1 external clock input.				
T2CK	I	ST	Timer2 external clock input.				
T3CK	I	ST	Timer3 external clock input.				
T4CK	I	ST	Timer4 external clock input.				
T5CK	I	ST	Timer5 external clock input.				
T6CK	I	ST	Timer6 external clock input.				
T7CK	I	ST	Timer7 external clock input.				
T8CK	I	ST	Timer8 external clock input.				
T9CK		ST	Timer9 external clock input.				
U1CTS	I	ST	UART1 clear to send.				
U1RTS	0	—	UART1 ready to send.				
U1RX	I	ST	UART1 receive.				
U1TX	0	—	UART1 transmit.				
U2CTS	I	ST	UART2 clear to send.				
U2RTS	0	_	UART2 ready to send.				
U2RX	I	ST	UART2 receive.				
U2TX	0	—	UART2 transmit.				
Vdd	Р		Positive supply for peripheral logic and I/O pins.				
VCAP/VDDCORE	Р	—	CPU logic filter capacitor connection.				
Vss	Р	_	Ground reference for logic and I/O pins.				
VREF+	I	Analog	Analog voltage reference (high) input.				
Vref-	I	Analog	Analog voltage reference (low) input.				
Legend: CMO	S = CMO	S compatible	e input or output; Analog = Analog input; P = Power				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;

Analog = Analog input; P = Power O = Output;

I = Input

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "*dsPIC33F Family Reference Manual*", which is available from the Microchip website (www.microchip.com).

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJXXXGPX06/X08/X10 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")

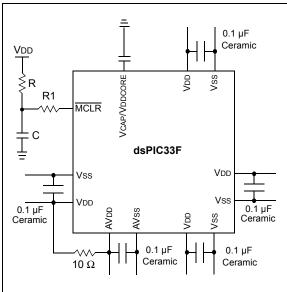
- VCAP/VDDCORE (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mus	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe	rence	source.			


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

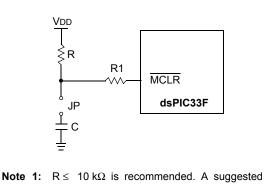
2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 25.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 22.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:


- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

ote 1: $R \le 10 \text{ k}\Omega$ is recommended. A suggested starting value is $10 \text{ k}\Omega$. Ensure that the MCLR pin VIH and VIL specifications are met.

2.5 ICSP Pins

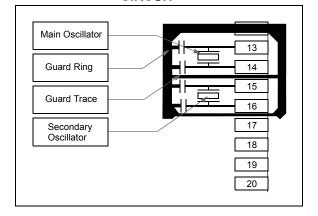
The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.

- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB[®] ICD 2" (poster) DS51265
- *"MPLAB[®] ICD 2 Design Advisory"* DS51566
- "Using MPLAB[®] ICD 3 In-Circuit Debugger" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- *"MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide"* DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: S

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG and ADPCFG2 registers.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

3.0 CPU

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2. "CPU"** (DS70204) in the *"dsPIC33F Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJXXXGPX06/X08/X10 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The dsPIC33FJXXXGPX06/X08/X10 instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJXXXGPX06/X08/X10 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1. The programmer's model for the dsPIC33FJXXXGPX06/X08/X10 is shown in Figure 3-2.

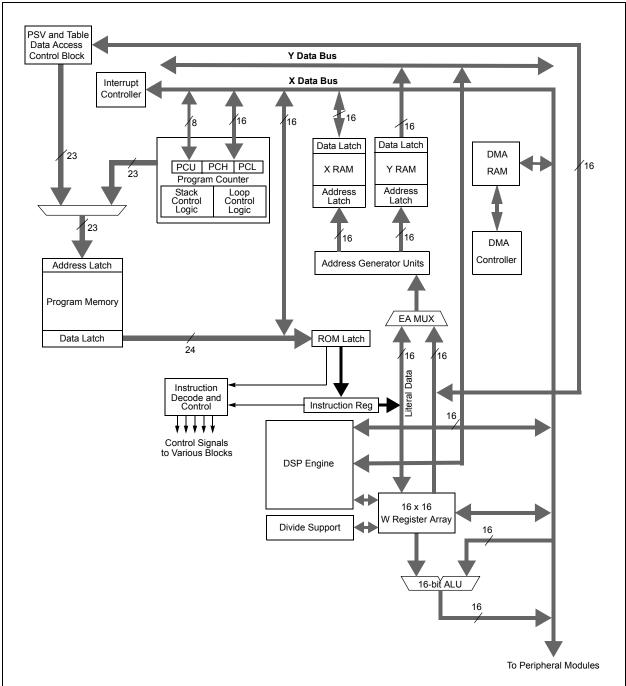
3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

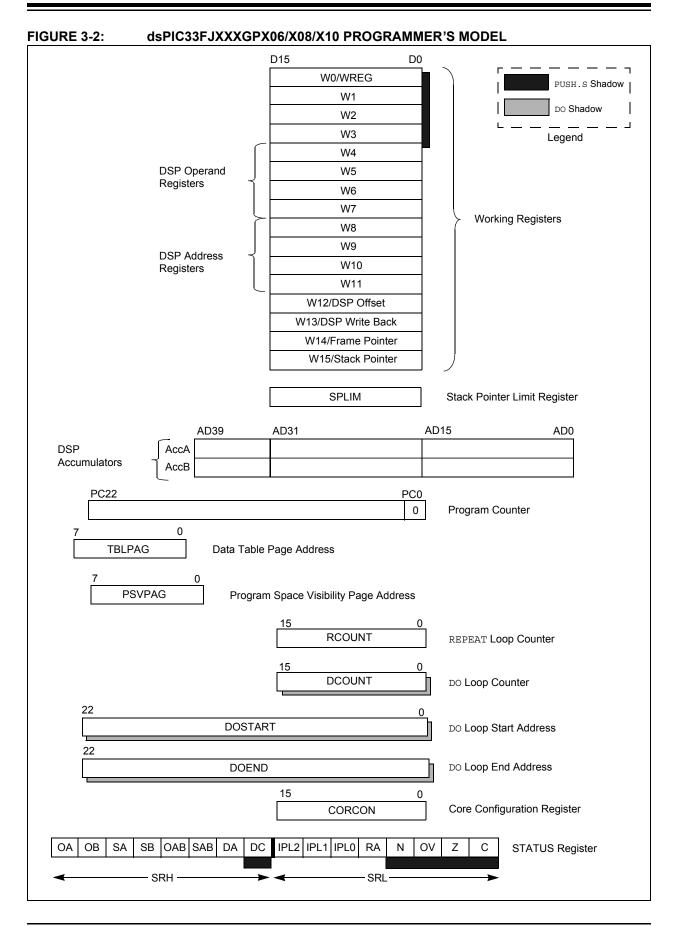
Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

3.2 DSP Engine Overview


The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value, up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features


The dsPIC33FJXXXGPX06/X08/X10 features a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJXXXGPX06/X08/X10 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit, left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJXXXGPX06/X08/X10 CPU CORE BLOCK DIAGRAM

3.4 CPU Control Registers

CPU control registers include:

- SR: CPU STATUS REGISTER
- CORCON: CORE CONTROL REGISTER

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0			
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC			
bit 15							bit 8			
(0)	(0)	(0)								
R/W-0 ⁽²⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С			
bit 7							bit C			
Legend:										
C = Clear only	' bit	R = Readable	e bit	U = Unimpler	mented bit, read	as '0'				
S = Set only b		W = Writable		-n = Value at						
'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown					
bit 15	OA: Accumu	lator A Overflow	v Status bit							
		ator A overflowe								
		ator A has not c								
bit 14		lator B Overflow								
		ator B overflowe ator B has not c								
bit 13	SA: Accumul	ator A Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾						
	1 = Accumula	ator A is saturat ator A is not sat	ed or has be		some time					
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾						
	1 = Accumula	ator B is saturat ator B is not sat	ed or has be		some time					
bit 11		DB Combined A)verflow Status	hit					
		ators A or B have			5.C					
	0 = Neither A	ccumulators A	or B have ov	erflowed						
bit 10	SAB: SA SB Combined Accumulator 'Sticky' Status bit									
	 1 = Accumulators A or B are saturated or have been saturated at some time in the past 0 = Neither Accumulator A or B are saturated 									
	Note: ⊤	his bit may be i	ead or cleare	ed (not set). Cle	aring this bit wil	I clear SA and	SB.			
bit 9	DA: DO Loop	Active bit								
	1 = DO loop in progress									
	•	not in progress								

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 8	DC: MCU ALU Half Carry/Borrow bit
	1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred
	 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude which causes the sign bit to change state.
	 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	This bit may be read or cleared (not set).
2:	The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0					
			US	EDT ⁽¹⁾		DL<2:0>						
bit 15							bit					
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0					
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF					
bit 7		•			•		bit					
Legend:		C = Clear onl	y bit									
R = Readabl	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set						
0' = Bit is cle	ared	ʻx = Bit is unk	nown	U = Unimple	mented bit, rea	d as '0'						
bit 15-13	Unimplemen	ted: Read as '	0'									
bit 12	US: DSP Mul	tiply Unsigned	Signed Control	ol bit								
	0	ne multiplies a	U U									
bit 11	-	ne multiplies a	-	,;;+(1)								
				f current loop if	eration							
	0 = No effect	0	•	·								
bit 10-8		Loop Nesting	Level Status b	its								
	111 = 7 DO lo	ops active										
	•											
	001 = 1 DO lo											
L:1 7	000 = 0 DO lo	-	L.L. L.14									
bit 7		Saturation Ena Itor A saturatio										
		itor A saturatio										
bit 6	SATB: AccB	Saturation Ena	ble bit									
		tor B saturatio										
bit 5		tor B saturatio		uno Saturation	Enable bit							
DIL D	SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data space write saturation enabled											
		ce write satura										
bit 4	ACCSAT: Acc	cumulator Satu	iration Mode S	Select bit								
		ration (super s	,									
L:1 0		ration (normal		-:+ 0(2)								
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU interrupt priority level is greater than 7											
bit 2	PSV: Progran	 0 = CPU interrupt priority level is 7 or less PSV: Program Space Visibility in Data Space Enable bit 										
	1 = Program space visible in data space											
		space not visib		ce								
bit 1		ng Mode Selec		l								
	· ·	onventional) ro (convergent) ı	•									
bit 0		Fractional Mul	-									
		ode enabled fo										
	O = Eractional	I mode enable	d for DSP mul	tinly one								

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

Note 1: This bit will always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJXXXGPX06/X08/X10 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR</u> register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "*dsPIC30F/33F Programmer's Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJXXXGPX06/X08/X10 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

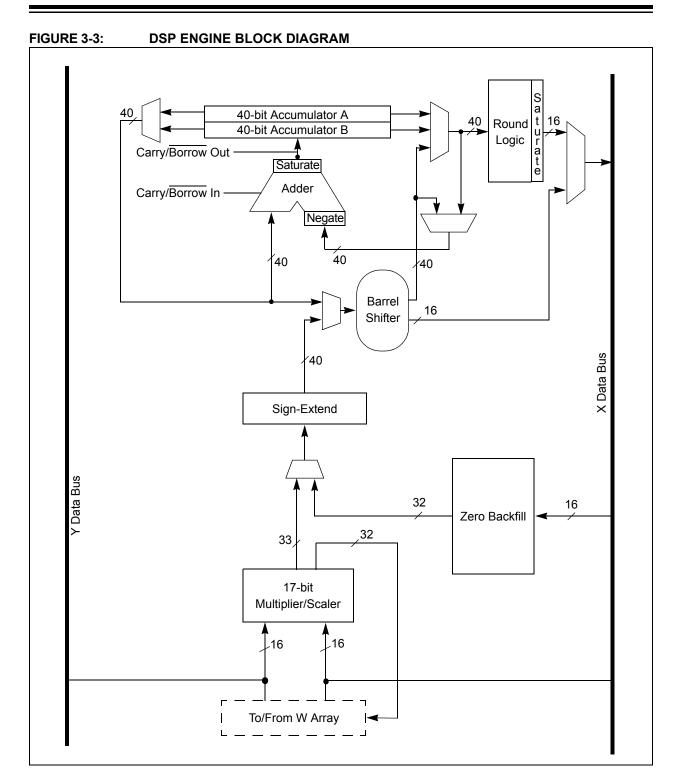
The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJXXXGPX06/X08/X10 is a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG.


The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below:

- 1. Fractional or integer DSP multiply (IF).
- 2. Signed or unsigned DSP multiply (US).
- 3. Conventional or convergent rounding (RND).
- 4. Automatic saturation on/off for AccA (SATA).
- 5. Automatic saturation on/off for AccB (SATB).
- 6. Automatic saturation on/off for writes to data memory (SATDW).
- 7. Accumulator Saturation mode selection (ACCSAT).

Table 3-1 provides a summary of DSP instructions. A block diagram of the DSP engine is shown in Figure 3-3.

SUMMARY								
Instruction	Algebraic Operation	ACC Write Back						
CLR	A = 0	Yes						
ED	$A = (x - y)^2$	No						
EDAC	$A = A + (x - y)^2$	No						
MAC	A = A + (x * y)	Yes						
MAC	$A = A + x^2$	No						
MOVSAC	No change in A	Yes						
MPY	A = x * y	No						
MPY	$A = x^2$	No						
MPY.N	A = -x * y	No						
MSC	A = A - x * y	Yes						

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. Generally speaking, the range of an N-bit two's complement integer is -2^{N-1} to 2^{N-1} - 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518×10^{-5} . In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661×10^{-10} .

The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or word sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented), whereas in the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits have been provided to support saturation and overflow; they are:

- 1. OA:
 - AccA overflowed into guard bits
- 2. OB:

AccB overflowed into guard bits

3. SA:

AccA saturated (bit 31 overflow and saturation) or

AccA overflowed into guard bits and saturated (bit 39 overflow and saturation)

4. SB:

AccB saturated (bit 31 overflow and saturation) or

AccB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- 5. OAB:
 - Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to **Section 7.0 "Interrupt Controller"**) are set. This allows the user to take immediate action, for example, to correct system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and, thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators.

The device supports three Saturation and Overflow modes:

1. Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF), or maximally negative 9.31 value (0x800000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations).

- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF), or maximally negative 1.31 value (0x008000000), into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set).
- 3. Bit 39 Catastrophic Overflow:

The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.2.2 Accumulator 'Write Back'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.2.3 Round Logic

The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is '1', ACCxH is incremented. If it is '0', ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.2.4 "Data Space Write Saturation"**). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly, For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.3 BARREL SHIFTER

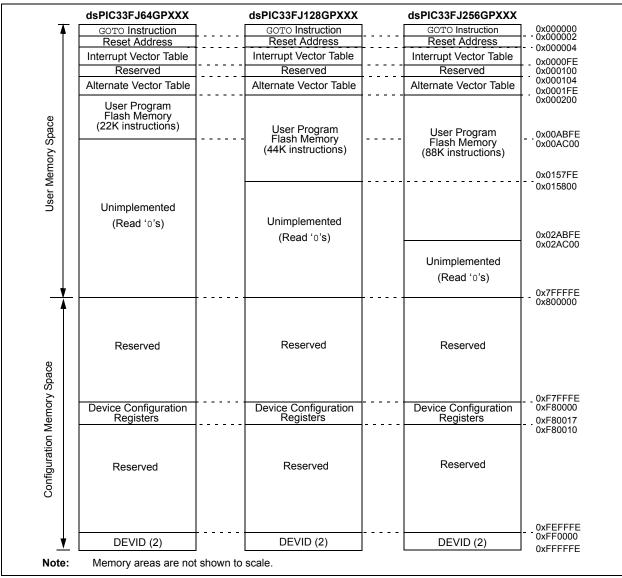
The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts, and between bit positions 0 to 16 for left shifts.

NOTES:

4.0 MEMORY ORGANIZATION


Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) and Section 4. "Program Memory" (DS70203) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

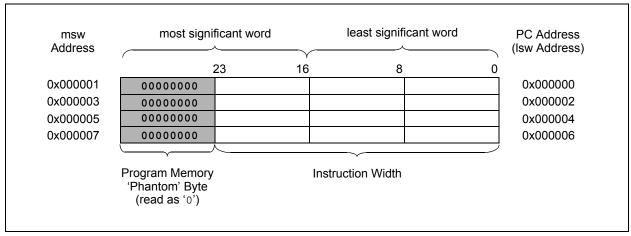
4.1 Program Address Space

The program address memory space of the dsPIC33FJXXXGPX06/X08/X10 devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXGPX06/X08/X10 of devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY FOR dsPIC33FJXXXGPX06/X08/X10 DEVICES

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJXXXGPX06/X08/X10 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJXXXGPX06/X08/X10 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table**".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33FJXXXGPX06/X08/X10 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

dsPIC33FJXXXGPX06/X08/X10 devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

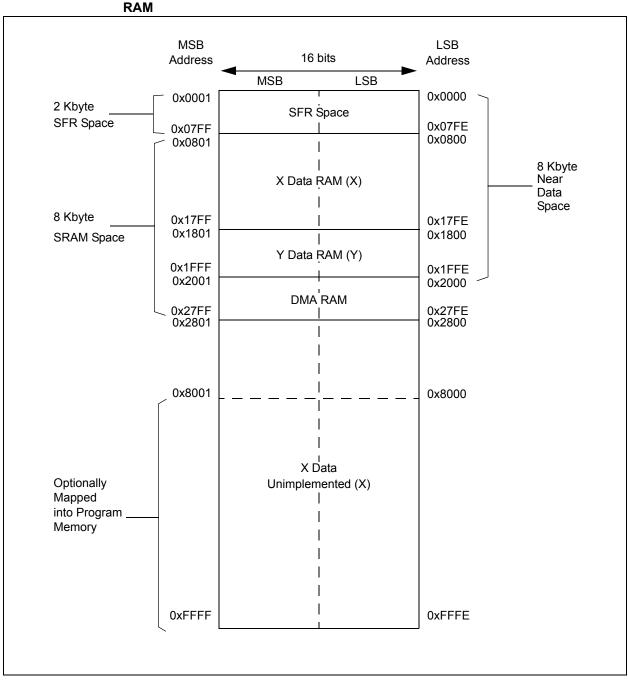
To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJXXXGPX06/X08/X10 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

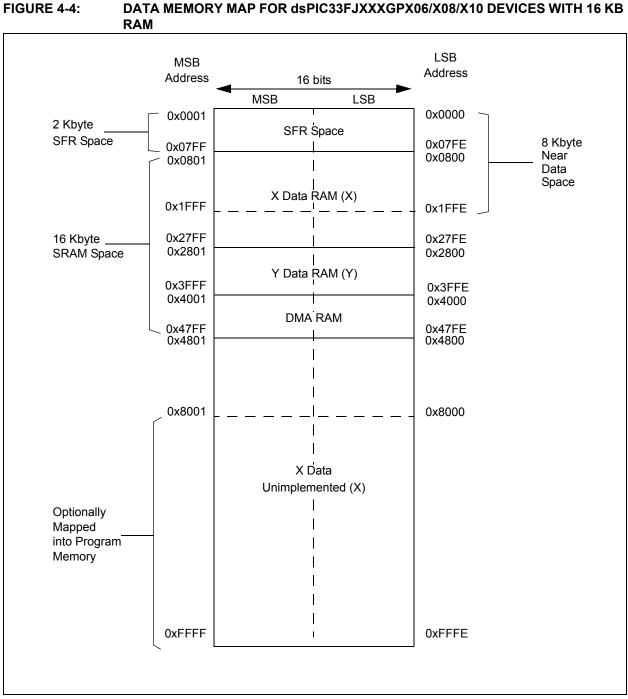
All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE


The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXGPX06/X08/X10 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A complete listing of implemented SFRs, including their addresses, is shown in Table 4-1 through Table 4-34.


Note: The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

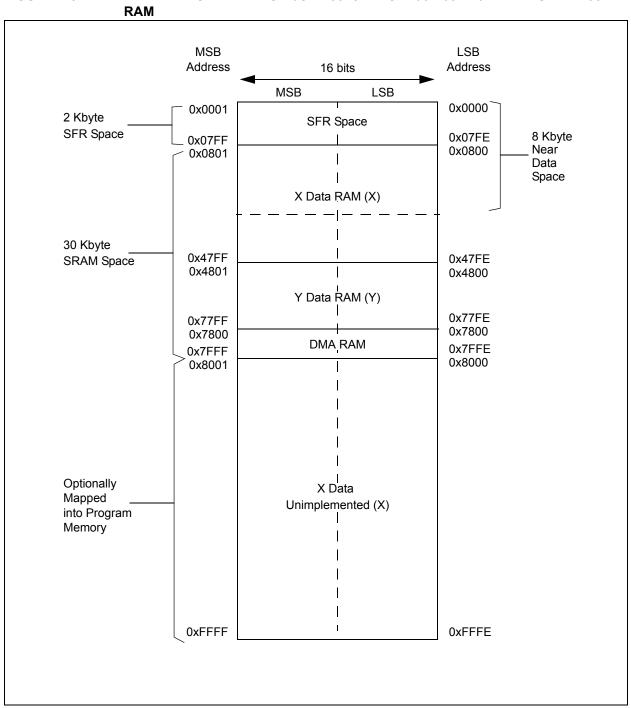

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06/X08/X10 DEVICES WITH 8 KBS RAM

DATA MEMORY MAP FOR dsPIC33FJXXXGPX06/X08/X10 DEVICES WITH 16 KB

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXGPX06/X08/X10 DEVICES WITH 30 KB

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJXXXGPX06/X08/X10 device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory locations is part of Y data RAM and is in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	0008								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014								Working Re	gister 10								0000
WREG11	0016								Working Re	gister 11								0000
WREG12	0018								Working Re	gister 12								0000
WREG13	001A								Working Re	gister 13								0000
WREG14	001C								Working Re	gister 14								0000
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Sta	ck Pointer Li	mit Register								XXXX
ACCAL	0022							Accum	ulator A Low	Word Regi	ster							0000
ACCAH	0024							Accum	ulator A Higł	n Word Regi	ster							0000
ACCAU	0026							Accumu	lator A Uppe	er Word Reg	ister							0000
ACCBL	0028							Accum	ulator B Low	Word Regi	ster							0000
ACCBH	002A							Accum	ulator B Higł	n Word Regi	ster							0000
ACCBU	002C							Accumu	lator B Uppe	er Word Reg	ister							0000
PCL	002E							Program	n Counter Lo	w Word Reg	gister							0000
PCH	0030	_	_	_	_	_		_	_			Progra	m Counter I	-ligh Byte R	egister			0000
TBLPAG	0032	_	_				_	_	—			Table F	Page Addres	s Pointer F	legister			0000
PSVPAG	0034	_	_				_	_	—		Progra	am Memory	Visibility Pa	age Addres	s Pointer R	egister		0000
RCOUNT	0036							Repe	eat Loop Cou	inter Registe	er							XXXX
DCOUNT	0038								DCOUNT	<15:0>								XXXX
DOSTARTL	003A							DOS	TARTL<15:	1>							0	XXXX
DOSTARTH	003C	_	—	—	_	—		—	_	—	—			DOSTAF	TH<5:0>			00xx
DOENDL	003E							DO	ENDL<15:1	>							0	XXXX
DOENDH	0040	_	—	—	_	—		—	_	—	—			DOE	NDH			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	_	_	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	—		BWN	1<3:0>			YWM	<3:0>			XWM	<3:0>	•	0000
XMODSRT	0048)	KS<15:1>	•							0	XXXX
XMODEND	004A)	KE<15:1>								1	XXXX
YMODSRT	004C							`	YS<15:1>								0	XXXX
YMODEND	004E							`	YE<15:1>								1	XXXX

DS70286C-page 40

dsPIC33FJXXXGPX06/X08/X10

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

				XB<14:0> Disable Interrupts Counter Register														
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XBREV	0050	BREN							2	XB<14:0>								xxxx
DISICNT	0052	_	_						Disable	e Interrupts	Counter R	egister						xxxx
BSRAM	0750	_	_	_	_	_	_	—	_	—	_	_	_	_	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	_	—	_	_	—	—	—	—	_	_	-	_	IW_SSR	IR_SSR	RL_SSR	0000
1			Divisi	and the second second	and a stand of the			and the second second	a tea se da a te									

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX10 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_		_	_	_	_	_	_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A		_	-	_	—	_	_	_	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX08 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—			_		—			_	—	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_					—			_	—	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXGPX06 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	_	_	CN21IE	CN20IE	-	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	_	_	_	_	—	_	_	-		CN21PUE	CN20PUE	_	CN18PUE	CN17PUE	CN16PUE	0000

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

Name Adar Bit 1 Bit 1 Bit 1 Bit 7 Bit 7	IADLE 4	+-J.		INNUF I		NOLLLI	KEGISI			-			-	-					
INTCON2 0082 ALTIVT DISI — Intep			Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0 0084 — DMA1IF AD1F UITXJF UIRXIF SPI1FF SPI1FF T3JF T2JF OC2F IC2JF DMA0IF T1JF OC1IF IC1IF INT0FF 0001F IFS1 0086 UZRXIF INT2JF TSF T4JF OC4JF OC3FF IC0GFF IC0JFF INT3JF INT3JF INT3JF INT3JF CNIFF - MA2CIF SIZCJFF INT3JF SIZCJFF INT3J	INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	-		_	-	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IFS0	0084	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS3 008A — — DMASIF DCIF DCIF D — C2IF C2RXIF INTAIF INT3F T9IF T8IF MI2C2IF SIZCIF T7IF 0000 IFS4 008C — — — — — — — — C2IF C1TXIF C1TXIF DMA7F DMA0IF — UZEF UIEF I 0000 IEC0 0094 — DMA1E AD11E UITXIE SPI1E SPI1E T3IE T2IE OC2IE IC2IE IAMAIE CAIE IC3IE IAMAIE OMA0IE — M2C1E SIZCIF T0IE 0000 ICTXE DMA0IE T1IE C1IE ICTXIE IAMAIE IIIE C1IE ICTXIE IAMAIE	IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IFS2	0088	T6IF	DMA4IF	_	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IFS3	008A	—	—	DMA5IF	DCIIF	DCIEIF	_	_	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IFS4	008C	—	_		_	_	_	_		C2TXIF	C1TXIF	DMA7IF	DMA6IF	—	U2EIF	U1EIF	_	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC0	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE		MI2C1IE	SI2C1IE	0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC2	0098	T6IE	DMA4IE	_	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IEC3	009A	_	_	DMA5IE	DCIIE	DCIEIE	_	_	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IEC4	009C	—	_		_	_	_	_		C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	_	0000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC0	00A4	—		T1IP<2:0>	>	_	ļ	OC1IP<2:0)>			IC1IP<2:0>		—	II	NT0IP<2:0>	•	4444
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC1	00A6	—		T2IP<2:0>	>	_	٦	OC2IP<2:0)>			IC2IP<2:0>		—	D	MA0IP<2:0	>	4444
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC2	00A8	—	ι	J1RXIP<2:(0>	_	:	SPI1IP<2:()>		:	SPI1EIP<2:0	>	—		T3IP<2:0>		4444
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC3	00AA	—	_		—	_	Ľ	MA1IP<2:	0>			AD1IP<2:0>	•	—	U	1TXIP<2:0	>	0444
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC4	00AC	—		CNIP<2:0	>	_		_				MI2C1IP<2:0)>	—	S	2C1IP<2:0	>	4044
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC5	00AE	—		IC8IP<2:03	>	_		IC7IP<2:0	>			AD2IP<2:0>	•	—	I	NT1IP<2:0>	>	4444
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC6	00B0	—		T4IP<2:0>	>	—		OC4IP<2:0)>	—		OC3IP<2:0>	>	—	D	MA2IP<2:0	>	4444
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC7	00B2	—	ι	J2TXIP<2:()>	_	L	J2RXIP<2:	0>			INT2IP<2:0	>	—		T5IP<2:0>		4444
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC8	00B4	—		C1IP<2:0>	>	—	C	C1RXIP<2:	0>	—		SPI2IP<2:0	>	—	SI	PI2EIP<2:0	>	4444
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC9	00B6	—		IC5IP<2:0	>	—		IC4IP<2:0	>	—		IC3IP<2:0>		—	D	MA3IP<2:0	>	4444
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC10	00B8	—		OC7IP<2:0	>	_		OC6IP<2:0)>	_		OC5IP<2:0>	>	—		C6IP<2:0>		4444
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC11	00BA	—		T6IP<2:0>	`	_	C	MA4IP<2:	0>	_	_	_	—	—	C)C8IP<2:0>	•	4404
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC12	00BC	—		T8IP<2:0>	`	_	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	—		T7IP<2:0>		4444
IPC15 00C2 - - - - - DMA5IP<2:0> - DCIIP<2:0> 004 IPC16 00C4 - - - - - 014 0	IPC13	00BE	_	C	2RXIP<2:	0>	_	I	NT4IP<2:()>	—		INT3IP<2:0>	>	_		T9IP<2:0>		4444
IPC16 00C4 - - - U2EIP<2:0> - U1EIP<2:0> - - - 044 IPC17 00C6 - C2TXIP<2:0> - C1TXIP<2:0> - DMA7IP<2:0> - DMA6IP<2:0> 444	IPC14	00C0	—	[DCIEIP<2:0)>	_				_	_	_	_	_		C2IP<2:0>		4004
IPC17 00C6 — C2TXIP<2:0> — C1TXIP<2:0> — DMA6IP<2:0> 444	IPC15	00C2	—	—	—	—	—	_	—	_	_		DMA5IP<2:0	>	_	[OCIIP<2:0>		0044
	IPC16	00C4		_	—		_		U2EIP<2:0)>	_		U1EIP<2:0>	•	_	—	—	_	0440
INTTREG 00E0 ILR<3:0> - VECNUM<6:0> 0000	IPC17	00C6		(C2TXIP<2:0)>	_	(C1TXIP<2:	0>	_		DMA7IP<2:0	>	_	D	MA6IP<2:0	>	4444
	INTTREG	00E0		_	—			ILR<	3:0>		_			VE	CNUM<6:0>				0000

TABLE 4	4 -0.			STER N	IAF													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102									Register 1								FFFF
T1CON	0104	TON	—	TSIDL	_	—	_	_	—	_	TGATE	TCKP	S<1:0>	—	TSYNC	TCS	—	0000
TMR2	0106		1						Timer2	Register								xxxx
TMR3HLD	0108						Tim	ner3 Holding	Register (fo	r 32-bit time	r operations of	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_		_	_	_		TGATE	TCKP	S<1:0>	T32	—	TCS		0000
T3CON	0112	TON	—	TSIDL	_	_		-	_		TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR4	0114		•	•					Timer4	Register	•			•	•		•	xxxx
TMR5HLD	0116		Timer5 Holding Register (for 32-bit operations only)															xxxx
TMR5	0118																xxxx	
PR4	011A		Timer5 Register Period Register 4														FFFF	
PR5	011C		Timer5 Register														FFFF	
T4CON	011E	TON	_	TSIDL	—	—	_	_	_	_	TGATE	TCKP	S<1:0>	T32	—	TCS		0000
T5CON	0120	TON	_	TSIDL	—	_	_	_	_	—	TGATE	TCKP	S<1:0>	—	—	TCS		0000
TMR6	0122								Timer6	Register								xxxx
TMR7HLD	0124							Timer7 Hold	ing Register	(for 32-bit o	perations only	/)						xxxx
TMR7	0126								Timer7	Register								xxxx
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7								FFFF
T6CON	012C	TON	—	TSIDL	-	_			—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T7CON	012E	TON	—	TSIDL					—		TGATE	TCKP	S<1:0>	—	—	TCS	_	0000
TMR8	0130								Timer8	Register								xxxx
TMR9HLD	0132							Timer9 Hold	ing Register	(for 32-bit o	perations only	/)						xxxx
TMR9	0134								Timer9	Register								xxxx
PR8	0136								Period F	Register 8								FFFF
PR9	0138								Period F	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T9CON	013C	TON	—	TSIDL	—	_	—	—	—	—	TGATE	TCKP	S<1:0>	_	-	TCS	—	0000

TABLE 4-6: TIMER REGISTER MAP

TABLE 4-7: INPUT CAPTURE REGISTER MAI

SFR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
Addr	2.11.10		2	2.1.12	2	2.1.10	2	2.00		2	2		2.00		2	2	Resets
0140								Input 1 Ca	pture Regist	er							xxxx
0142	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
0144								Input 2 Ca	pture Regist	er							xxxx
0146	_	_	ICSIDL	_	_	ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0000											
0148								Input 3 Ca	pture Regist	er							xxxx
014A	_	_	ICSIDL	_	_		_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		0000		
014C								Input 4 Ca	pture Regist	er							xxxx
014E	_	_	ICSIDL	_	_		_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
0150								Input 5 Ca	pture Regist	er							xxxx
0152	_	_	ICSIDL	_	_		_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
0154								Input 6 Ca	pture Regist	er							xxxx
0156	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
0158								Input 7 Ca	pture Regist	er							XXXX
015A	_	_	ICSIDL	—	_	—											
015C								Input 8 Ca	pture Regist	er							xxxx
015E	_	_	ICSIDL	—	_	—	_	_	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
	0142 0144 0146 0148 014A 014C 014C 014C 014C 0150 0152 0154 0156 0158 015A 015C 015E	0142 — 0144 — 0146 — 0148 — 0144 — 0145 — 0146 — 0147 — 0148 — 0149 — 0140 — 0141 — 0142 — 0150 — 0152 — 0154 — 0155 — 0158 — 0155 — 0155 —	0142 — — 0144 — — 0146 — — 0148 — — 0144 — — 0145 — — 0146 — — 0147 — — 0148 — — 0147 — — 0148 — — 0140 — — 0141 — — 0142 — — 0150 — — 0152 — — 0154 — — 0155 — — 0158 — — 0152 — —	0142 — — ICSIDL 0144 — — ICSIDL 0146 — — ICSIDL 0148 — — ICSIDL 0148 — — ICSIDL 0144 — — ICSIDL 0148 — — ICSIDL 0144 — — ICSIDL 0144 — — ICSIDL 0144 — — ICSIDL 0142 — — ICSIDL 0150 — — ICSIDL 0154 — — ICSIDL 0158 — — ICSIDL 015A — — ICSIDL 015C — — ICSIDL	0142 — — ICSIDL — 0144 — — ICSIDL — 0146 — — ICSIDL — 0148 — — ICSIDL — 0148 — — ICSIDL — 0144 — — ICSIDL — 0144 — — ICSIDL — 0144 — — ICSIDL — 0146 — — ICSIDL — 0146 — — ICSIDL — 0147 — — ICSIDL — 0150 — — ICSIDL — 0154 — — ICSIDL — 0158 — — ICSIDL — 0156 — — ICSIDL — 0157 — — ICSIDL — 0158 — — ICSIDL —	0142 — — ICSIDL — — 0144 — — ICSIDL — — 0146 — — ICSIDL — — 0148 — — ICSIDL — — 0148 — — ICSIDL — — 0144 — — ICSIDL — — 0144 — — ICSIDL — — 0144 — — ICSIDL — — 0145 — — ICSIDL — — 0155 — — ICSIDL — — 0156 — — ICSIDL — — 0158 — — ICSIDL — — 0156 — — ICSIDL — — 0157 — — ICSIDL — — 0156 — — ICSIDL — — 0156 — — ICSIDL — —	0142 — — ICSIDL — — — 0144 0146 — — ICSIDL — — 0148 0144 0144 0145 0146 0147 0148 0148 0144 0144 0145 0146 0147 0148 0148 0140 0141 0142 0142 0144 0145 0156 0158 0158 0158 0150 0156 0157 0158 0158 0150 0158 0156	0142 — — ICSIDL — — — — 0144 — — ICSIDL — — — — 0146 — — ICSIDL — — — — 0148 — — ICSIDL — — — — 0148 — — ICSIDL — — — — 0144 — — ICSIDL — — — — 0148 — — ICSIDL — — — — 0144 — — ICSIDL — — — — 0144 — — ICSIDL — — — — 0145 — — ICSIDL — — — — 0154 — — ICSIDL — — — — 0155 — — ICSIDL — — — — 0156 — — ICSIDL — — — — 0156 — — ICSIDL — — — — 0155 —	0142 — — ICSIDL — — — Input 2 Ca 0144 — — ICSIDL — — — — Input 2 Ca 0146 — — ICSIDL — — — — — — — — — — — — — — — … <	0142 — — — — — Input 2 Capture Regist 0144 Input 2 Capture Regist Input 2 Capture Regist Input 3 Capture Regist 0146 — — — — — — Input 3 Capture Regist 0148 Input 3 Capture Regist Input 3 Capture Regist Input 4 Capture Regist 0144 — — ICSIDL — — — — ICTMR 0148 — — ICSIDL — — — — ICTMR 0144 — — ICSIDL — — — — ICTMR 0145 — — — — — Input 5 Capture Regist 0150 — — — — — — ICTMR 0151 — — — — — — ICTMR 0154 — — — — — — ICTMR 0155	0142 — ICSIDL — — — — ICTMR ICI< 0144 Input 2 Capture Register Input 2 Capture Register Input 2 Capture Register ICI<	0142 — — — — — ICTMR ICI<1:0> 0144 Input 2 Capture Register Input 2 Capture Register ICI<1:0> 0146 — — ICSIDL — — — — ICI ICI<1:0> 0146 — — ICSIDL — — — — ICI ICI<1:0> 0148 — — ICSIDL — — — — ICI ICI<1:0> 0148 — — ICSIDL — — — — ICI ICI<1:0> 0147 — — ICSIDL — — — — ICI ICI ICI ICI ID Input 4 Capture Register ICI ICI ICI ICI ICI ID ID	0142 — — — — — — ICTMR ICI<1:0> ICOV 0144 Input 2 Capture Register Input 2 Capture Register ICI ICOV ICOV 0146 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV 0148 — — — — — — ICI ICI ICI ICOV 0148 — — ICSIDL — — — — ICI ICI ICOV 0144 — — ICSIDL — — — — ICI ICI ICOV 0144 — — ICSIDL — — — ICI ICI ICOV ICOV 0142 — ICSIDL — — — ICI ICI ICOV Input 5 Capture Register 0155 — — ICSIDL — — — <	0142 — — — — — — ICTMR ICI<1:0> ICOV ICBNE 0144 Input 2 Capture Register Input 2 Capture Register ICI<1:0> ICOV ICBNE 0146 — — ICSIDL — — — — ICI ICI ICOV ICBNE 0146 — — ICSIDL — — — — ICI ICI ICOV ICBNE 0148 Input 3 Capture Register ICI<1:0> ICOV ICBNE Input 4 Capture Register ICI ICOV ICBNE 0142 — — — — — ICI ICI ICOV ICBNE 0142 — — — — ICTMR ICI<1:0> ICOV ICBNE 0142 — — — — ICTMR ICI<1:0> ICOV ICBNE 0150 Input 5 Capture Register Input 6 Capture Register ICOV ICBNE	0142 — — — — ICTMR ICI+1:0> ICOV ICBNE 0144 Input 2 Capture Register Input 2 Capture Register ICI+1:0> ICOV ICBNE 0146 — — ICSIDL — — — ICIMR ICI+1:0> ICOV ICBNE 0148 Input 3 Capture Register Input 3 Capture Register ICI+1:0> ICOV ICBNE 0140 — — — — ICIMR ICI+1:0> ICOV ICBNE 0141 — — ICSIDL — — — ICIMR ICI+1:0> ICOV ICBNE 0142 — — — — ICIMR ICI+1:0> ICOV ICBNE 0142 — — — — ICIMR ICI+1:0> ICOV ICBNE 0144 — ICSIDL — — — ICIMR ICI+1:0> ICOV ICBNE 0150 ICSIDL <t< td=""><td>0142 — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0144 — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0144 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0146 — — ICSIDL — — — — ICIMR ICI<1:0> ICOV ICBNE ICM<<2:0> 0147 — — ICSIDL — — — — ICI ICI ICOV ICBNE ICM<<2:0> 0147 — ICSIDL — — — ICI ICI ICOV ICBNE ICM<<2:0> 0146 — ICSIDL — — — ICI ICI ICI ICOV ICBNE ICM<<2:0> 0150 ICSIDL — — —</td></t<> <td>0142 — — — — — ICTMR ICI ICOV ICBNE ICM<2:0> 0144 — — Input 2 Capture Register ICI ICOV ICBNE ICM<2:0> 0146 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0148 — — Input 3 Capture Register ICI ICOV ICBNE ICM<2:0> 0148 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0144 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0140 — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0150 — — — — — ICTMR ICI<1:0> ICOV ICBNE</td>	0142 — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0144 — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0144 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0146 — — ICSIDL — — — — ICIMR ICI<1:0> ICOV ICBNE ICM<<2:0> 0147 — — ICSIDL — — — — ICI ICI ICOV ICBNE ICM<<2:0> 0147 — ICSIDL — — — ICI ICI ICOV ICBNE ICM<<2:0> 0146 — ICSIDL — — — ICI ICI ICI ICOV ICBNE ICM<<2:0> 0150 ICSIDL — — —	0142 — — — — — ICTMR ICI ICOV ICBNE ICM<2:0> 0144 — — Input 2 Capture Register ICI ICOV ICBNE ICM<2:0> 0146 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0148 — — Input 3 Capture Register ICI ICOV ICBNE ICM<2:0> 0148 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0144 — — ICSIDL — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0140 — — — — — ICTMR ICI<1:0> ICOV ICBNE ICM<2:0> 0150 — — — — — ICTMR ICI<1:0> ICOV ICBNE

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJXXXGPX06/X08/X10

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Ou	put Compai	re 1 Second	ary Register							xxxx
OC1R	0182		OCCNEL OUTput Output Compare 2 Secondary Register OUtput Compare 2 Register OUTput Compare 2 Register OUtput Compare 2 Register OCTSEL OCM<2:0> OUTput Compare 3 Secondary Register OUtput Compare 3 Register OUtput Compare 3 Register OUTput Compare 3 Register OUtput Compare 3 Register OCTSEL OCM<2:0> OUTput Compare 4 Secondary Register OUtput Compare 4 Secondary Register OCTSEL OCM<2:0> Output Compare 4 Secondary Register Output Compare 4 Register OUtput Compare 4 Register OCTSEL OCM<2:0> OUTput Compare 5 Secondary Register OUtput Compare 5 Register OUtput Compare 5 Register OUtput Compare 5 Register															xxxx
OC1CON	0184	_		OCSIDL	_	_	_	_	—				OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186		•		•	•	•	Ou	put Compar	e 2 Second	ary Register		•	•				xxxx
OC2R	0188								Output Co	ompare 2 Re	egister							xxxx
OC2CON	018A	_	—	OCSIDL	_	_	—	—	—	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Ou	put Compar	e 3 Second	ary Register							xxxx
OC3R	018E																	xxxx
OC3CON	0190	_	—	OCSIDL	_	_	—	_	_	—	—	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192		Output Compare 4 Secondary Register															xxxx
OC4R	0194																	xxxx
OC4CON	0196	_	—	OCSIDL	—	—	—		—	_	—	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC5RS	0198							Ou	tput Compai	re 5 Second	ary Register							xxxx
OC5R	019A								Output Co	ompare 5 Re	egister							xxxx
OC5CON	019C	_	—	OCSIDL	—	—	—		—		—		OCFLT	OCTSEL		OCM<2:0>		0000
OC6RS	019E							Ou	tput Compai	re 6 Second	ary Register							xxxx
OC6R	01A0								Output Co	ompare 6 Re	egister							xxxx
OC6CON	01A2	_	_	OCSIDL	_	_	—		_	_	—		OCFLT	OCTSEL		OCM<2:0>		0000
OC7RS	01A4							Ou	tput Compai	re 7 Second	ary Register							xxxx
OC7R	01A6								Output Co	ompare 7 Re	egister							xxxx
OC7CON	01A8			OCSIDL	—	_	—	_	—		_		OCFLT	OCTSEL		OCM<2:0>		0000
OC8RS	01AA							Out	put Compar	e 8 Second	ary Register							xxxx
OC8R	01AC								Output Co	ompare 8 Re	egister							xxxx
OC8CON	01AE	—	—	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000

TABLE 4-9: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
I2C1RCV	0200	_	_	_	_	_		_	_				Receive	Register				0000		
I2C1TRN	0202	_	_	_	_	_	_	_	_				Transmit	Register				OOFF		
I2C1BRG	0204	_	_	_	_	_	_	_				Baud Rat	e Generato	r Register				0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000		
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000		
I2C1ADD	020A	—	_	—	—	_		Address Register												
I2C1MSK	020C	—	_	—	—	_		Address Register Address Mask Register												

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-10: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
I2C2RCV	0210	_	_	_	_	_		_	_				Receive	Register				0000			
I2C2TRN	0212	_	_	_	—	_		—	—		Receive Register Transmit Register										
I2C2BRG	0214	_	_	_	—	_		—													
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000			
I2C2STAT	0218	ACKSTAT	TRSTAT	_	—	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000			
I2C2ADD	021A		_	_	—	_	I					0000									
I2C2MSK	021C	_		_	_	_						0000									

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	-	-	_	_	_	_				UART ⁻	Fransmit Re	gister				xxxx
U1RXREG	0226	_	-	-	_	_	_	_				UART	Receive Reo	gister				0000
U1BRG	0228							Bau	d Rate Ger	nerator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART	Transmit Re	egister				xxxx
U2RXREG	0236	_	_	_	_	_	_	_				UART	Receive Re	egister				0000
U2BRG	0238							Bauc	l Rate Gen	erator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	-	SPISIDL	_	—	—	_	—	_	SPIROV	_		—	_	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	mit and Re	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	—	SPISIDL	—	—	—	—	—	—	SPIROV	—	—	—	_	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268							SPI2 Tran	smit and Re	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2009 Microchip Technology Inc.

TABLE 4-15: ADC1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Data	Buffer 0								xxxx
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	—	AD12B	FOR	VI<1:0>	:	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	١	/CFG<2:0>	•	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_		S	AMC<4:0>						ADCS	6<7:0>				0000
AD1CHS123	0326	_	_	_	_	_	CH123N	NB<1:0>	CH123SB	_	_	_	_	_	CH123N	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_			CI	H0SB<4:0>	>		CH0NA		—		(CH0SA<4:()>		0000
AD1PCFGH ⁽¹⁾	032A	PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26	PCFG25	PCFG24	PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16	0000
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSH(1)	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_			_		_	—	_		_	_	_	_	[DMABL<2:0)>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Not all ANx inputs are available on all devices. See the device pin diagrams for available ANx inputs.

TABLE 4-16: ADC2 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF0	0340								ADC Data	Buffer 0								xxxx
AD2CON1	0360	ADON	—	ADSIDL	ADDMABM		AD12B	FOR	M<1:0>	;	SSRC<2:0	>	_	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	Ņ	VCFG<2:0>	>	_	_	CSCNA	CHP	S<1:0>	BUFS			SMPI	<3:0>		BUFM	ALTS	0000
AD2CON3	0364	ADRC	—	_		S	AMC<4:0>						ADC	S<7:0>				0000
AD2CHS123	0366	—	_	—	_		CH123N	IB<1:0>	CH123SB	_	_	_	_	—	CH123N	NA<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB	_	—	_		CH0S	B<3:0>		CH0NA	_	_	_		CH0S	A<3:0>		0000
Reserved	036A	—	_	—	_	_	_	_	_	_	_	_	_	—	—	_	_	0000
AD2PCFGL	036C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
Reserved	036E	—	_	—	_	_	—	_	_	_	_	_	_	—	_	_	_	0000
AD2CSSL	0370	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0372	_	_	—	_	_	—	_	_	_	_	—	_	_	[DMABL<2:	0>	0000

TABLE 4-17: DMA REGISTER MAP

		-		-	-	-	-	-				-						All		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets		
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW		_	_	_		AMOD	E<1:0>	—	_	MODE	<1:0>	0000		
DMA0REQ	0382	FORCE	_	—		—	_	—		—			I	RQSEL<6:0	>			0000		
DMA0STA	0384								S	STA<15:0>								0000		
DMA0STB	0386								S	STB<15:0>								0000		
DMA0PAD	0388				-				P	AD<15:0>								0000		
DMA0CNT	038A	—	—	_	—	—	_					CN	<9:0>					0000		
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000		
DMA1REQ	038E	FORCE	—	—	—	—	_	—	—	—			I	RQSEL<6:0	>			0000		
DMA1STA	0390								S	STA<15:0>								0000		
DMA1STB	0392								S	TB<15:0>								0000		
DMA1PAD	0394								P	AD<15:0>								0000		
DMA1CNT	0396	_	_	_	—	_						CN	<9:0>					0000		
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW		—	—	—	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000		
DMA2REQ	039A	FORCE	-	_	_	_	_	IRQSEL<6:0>												
DMA2STA	039C		ORCE — — — — — — — — IRQSEL<6:0> STA<15:0> STB<15:0>															0000		
DMA2STB	039E		STA<15:0> STB<15:0>															0000		
DMA2PAD	03A0																	0000		
DMA2CNT	03A2	_	_	_	_	—	_					CN	<9:0>					0000		
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	—	AMOD	E<1:0>	_	_	MODE	<1:0>	0000		
DMA3REQ	03A6	FORCE	_	_	_	—	_	_	_	_			I	RQSEL<6:0	>			0000		
DMA3STA	03A8								S	STA<15:0>								0000		
DMA3STB	03AA								S	TB<15:0>								0000		
DMA3PAD	03AC								P	AD<15:0>								0000		
DMA3CNT	03AE	_	_	_	_	—	_					CN	<9:0>					0000		
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000		
DMA4REQ	03B2	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000		
DMA4STA	03B4				•			•	S	TA<15:0>	•							0000		
DMA4STB	03B6								S	TB<15:0>								0000		
DMA4PAD	03B8								P	AD<15:0>								0000		
DMA4CNT	03BA	_	_	_	—	—	—					CN	<9:0>					0000		
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	_	—	—	_	AMOD	E<1:0>	—	—	MODE	<1:0>	0000		
DMA5REQ	03BE	FORCE	_	—	—	—	—	_	_	_		0000								
DMA5STA	03C0								STA<15:0>											
DMA5STB	03C2								S	TB<15:0>								0000		
DMA5PAD	03C4								P	AD<15:0>								0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70286C-page 50

TABLE 4	-17:	DMA	REGIS	TER M	AP (CO	NTINUE	D)	, , , , , , , , , , , , , , , , , , , ,			T	1		1		n				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset		
DMA5CNT	03C6		—	—	_	_	—					CN1	<9:0>					0000		
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000		
DMA6REQ	03CA	FORCE	_	_	_		_			_		•		RQSEL<6:0	>			0000		
DMA6STA	03CC								S	TA<15:0>								0000		
DMA6STB	03CE					STB<15:0> PAD<15:0>														
DMA6PAD	03D0					PAD<15:0>														
DMA6CNT	03D2	_	—	_	_	PAD<15:0>														
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	—			_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000		
DMA7REQ	03D6	FORCE	—	_	_	_	—		_	-		•	I	RQSEL<6:0	>			0000		
DMA7STA	03D8		•	•	•	•	•		S	TA<15:0>	•							0000		
DMA7STB	03DA								S	TB<15:0>								0000		
DMA7PAD	03DC								P	AD<15:0>								0000		
DMA7CNT	03DE	_	—	—	_	_	—					CN1	<9:0>					0000		
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000		
DMACS1	03E2	—	—	_	_		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000		
DSADR	03E4								DS	ADR<15:0>							•	0000		
Logond:		nimalama	ntod rood	aa fa' Daa		o shown in	havadaaim													

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

RXFUL17 RXFUL16

RXOVF17 RXOVF16

TX0PRI<1:0>

TX2PRI<1:0>

TX4PRI<1:0>

TX6PRI<1:0>

RXOVF0

RXOVF1

0000

0000

0000

0000

0000

0000

XXXX

XXXX

XXXX

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 1	0 Bit	9 Bit 8	Bit 7	Bit	6 Bit	5 Bit	l Bit	3 Bit 2	2 Bit 1	Bit 0	All Resets
C1CTRL1	0400	—	_	CSIDL	ABAT	_		REQOP<	:2:0>	C	PMODE	<2:0>	_	CANC	AP —	-	WIN	0480
C1CTRL2	0402	_	—	_	_	_		_	_	_	_	_	-		DNCNT<4	:0>		0000
C1VEC	0404	_	—	_			FILHIT<4	:0>		_				ICODE<	3:0>			0000
C1FCTRL	0406		DMABS<2:	0>	—	—	-	-	—	-	_	_	-		FSA<4:0	>		0000
C1FIFO	0408	_	_			FE	P<5:0>			_	_			FN	RB<5:0>			0000
C1INTF	040A	_	_	ТХВО	TXBP	RXBF	Y TXW	R RXW	AR EWAR	N IVRIF	WAK	IF ERI	RIF —	FIFC	IF RBO\	IF RBIF	- TBIF	0000
C1INTE	040C	—	—	_	_	—	-	_	—	IVRIE	WAK	IE ERF	RIE —	FIFC	IE RBOV	IE RBIE	E TBIE	0000
C1EC	040E				TERR	TERRCNT<7:0> RERRCNT<7:												0000
C1CFG1	0410	_	_	—	_	—	-	—	—	SJV	/<1:0>			BF	RP<5:0>			0000
C1CFG2	0412	_	WAKFIL		—	—		SEG2PH	<2:0>	SEG2PHT	S SAM	N	SEG1PH	<2:0>		PRSEG<	2:0>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN1	3 FLTEN1	2 FLTEN	11 FLTEN	110 FLTE	N9 FLTEN	8 FLTEN7	FLTE	N6 FLTE	EN5 FLTEI	N4 FLTE	N3 FLTEI	12 FLTEN	N1 FLTEN0	FFFF
C1FMSKSEL1	0418	F7MS	SK<1:0>	F6M	ISK<1:0>	F5I	//SK<1:0>	F4	MSK<1:0>	F3MS	K<1:0>	F:	2MSK<1:0>	F1	MSK<1:0>	FOM	ISK<1:0>	0000
C1FMSKSEL2	041A	F15M	SK<1:0>	F14N	/ISK<1:0>	F13	MSK<1:0>	F12	2MSK<1:0>	F11M	SK<1:0>	F1	0MSK<1:0>	F9	MSK<1:0>	F8N	ISK<1:0>	0000
Legend: -		•			Iues are sho			N = 0 F	OR dsP	IC33FJX)	(XGP5	606/510	/706/708	8/710 D	EVICES	ONLY		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
					See definition when WIN = x													
	0400- 041E							See	definition	when WIN = 3	5							

C1TR45CON C1TR67CON C1RXD C1TXD

C1RXFUL2

C1RXOVF1

C1RXOVF2

C1TR01CON

C1TR23CON

0422

0428

042A

0430

0432

0434

0436

0440

0442

RXFUL31

RXOVF15

RXOVF31

TXEN1

TXEN3

TXEN5

TXEN7

RXFUL30

RXOVF14

RXOVF30

TXABT1

TXABT3

TXABT5

TXABT7

RXFUL29

RXOVF13

RXOVF29

TXLARB1

TXLARB3

TXLARB5

TXLARB7

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

RXFUL28

RXOVF12

TXERR1

TXERR3

TXERR5

TXERR7

RXFUL27

RXOVF11

RXOVF28 RXOVF27 RXOVF26

TXREQ1

TXREQ3

TXREQ5

TXREQ7

RXFUL26

RXOVF10

RTREN1

RTREN3

RTREN5

RTREN7

RXFUL25

RXOVF9

RXOVF25 RXOVF24

TX1PRI<1:0>

TX3PRI<1:0>

TX5PRI<1:0>

TX7PRI<1:0>

RXFUL24

RXOVF8

RXFUL23

RXOVF7

RXOVF23

TXEN0

TXEN2

TXEN4

TXEN6

Received Data Word

Transmit Data Word

RXFUL22

RXOVF6

RXOVF22

TXABAT0

TXABAT2

TXABAT4

TXABAT6

RXFUL21

RXOVF5

RXOVF2

TXLARB0

TXLARB2

TXLARB4

TXLARB6

RXFUL20

RXOVF4

RXOVF20

TXERR0

TXERR2

TXERR4

TXERR6

RXFUL19

RXOVF3

RXOVF19

TXREQ0

TXREQ2

TXREQ4

TXREQ6

RXFUL18

RXOVF2

RXOVF18

RTREN0

RTREN2

RTREN4

RTREN6

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See definit	ion when W	/IN = x							
C1BUFPNT1	0420		F3BP	<3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BP	<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11BF	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15BF	P<3:0>			F14B	P<3:0>			F13BF	P<3:0>			F12BF	<3:0>		0000
C1RXM0SID	0430				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF0EID	0442				EID<	15:8>							EID<	7:0>				xxxx
C1RXF1SID	0444				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF1EID	0446				EID<	15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	10:3>					SID<2:0>		—	EXIDE		EID<'	17:16>	xxxx
C1RXF6EID	045A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	10:3>					SID<2:0>		—	EXIDE		EID<'	17:16>	xxxx
C1RXF7EID	045E				EID<	15:8>							EID<	7:0>		•		xxxx
C1RXF8SID	0460				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx
C1RXF8EID	0462				EID<	15:8>							EID<	7:0>		•		xxxx
C1RXF9SID	0464				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx
C1RXF9EID	0466				EID<	15:8>							EID<	7:0>		•		xxxx
C1RXF10SID	0468				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<'	17:16>	xxxx
C1RXF10EID	046A				EID<	15:8>							EID<	7:0>				xxxx

TABLE 4-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 FOR dsPIC33FJXXXGP506/510/706/708/710 DEVICES ONLY (CONTINUED)

																	1	- /
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF11EID	046E				EID<	15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF12EID	0472				EID<	15:8>							EID<	7:0>				xxxx
C1RXF13SID	0474				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF14EID	047A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	15:8>							EID<	7:0>				xxxx

1: E	CAN2 R	EGISTE	RMAP	WHEN C	2CTRL	1.WIN =	0 OR 1	FOR	dsPIC33F	JXXXC	/P706	/08//1	0 DEVIC	JES ON	ILY		
Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0500	_	_	CSIDL	ABAT	_	RI	EQOP<2:0	>	OPM	/ODE<2:0)>	_	CANCAP	—	—	WIN	0480
0502	_	_	_	_	_	_	_	_	_	_	_		C	NCNT<4:0)>		0000
0504	_	_	_		FI	LHIT<4:0>			_				ICODE<6:0)>			0000
0506	C	MABS<2:0>	>	_	—	—	_	_	_	_	_			FSA<4:0>			0000
0508	_	_			FBP<5	:0>			_	_			FNRE	3<5:0>			0000
050A	_	-	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
050C	_	-	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
050E				TERRCN	Γ<7:0>							RERRC	NT<7:0>				0000
0510	_	_	_	_	_	_	_	_	SJW<1	1:0>			BRP	<5:0>			0000
0512	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	SE	EG1PH<2	:0>	Р	RSEG<2:)>	0000
0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
0518	F7MS	<1:0>	F6MSI	<<1:0>	F5MSł	<1:0>	F4MSł	< <1:0>	F3MSK<	<1:0>	F2MSH	<1:0>	F1MS	<<1:0>	F0MS	K<1:0>	0000
051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSł	<<1:0>	F8MS	K<1:0>	0000
	Addr 0500 0502 0504 0508 0508 0508 0502 0502 0512 0514 0518	Addr Bit 15 0500 0502 0504 0505 0506 0507 0508 0506 0507 0508 0509 05010 0512 0514 FLTEN15 0518 F7MSH <td>Addr Bit 15 Bit 14 0500 0502 0504 0505 0506 0507 0508 0506 0507 0508 0504 0505 0506 0507 0508 0509 0510 0512 WAKFIL 0518 F7MSK-t1:0> </td> <td>Addr Bit 15 Bit 14 Bit 13 0500 CSIDL 0502 0504 0506 0506 0508 0506 0507 0506 0507 0508 0508 0508 0506 0510 0512 WAKFIL 0514 FLTEN15 FLTEN14 FLTEN13 0518 F7MS+ F6MSH F6MSH</td> <td>Addr Bit 15 Bit 14 Bit 13 Bit 12 0500 CSIDL ABAT 0502 0504 0506 0506 0506 0508 0508 0508 0508 0504 0505 0506 0510 0512 WAKFIL 0514 FLTEN15 FLTEN14</td> <td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0500 — — CSIDL ABAT — 0502 — — CSIDL ABAT — 0502 — — — — — 0504 — — — — — 0506 — — — — — 0506 — — — — — 0508 — — TXBO TXBP RXBP 0506 — — — — — 0506 — — — — — 0506 — — — — — — 0510 — … …</td> <td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0500 — — CSIDL ABAT — RI 0502 — — CSIDL ABAT — RI 0502 — — — — — — RI 0504 — — — — — — — — — 0506 DMABS<2:0> — — — — — — — — — — — — — — — — — — …</td> <td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0500 CSIDL ABAT REQOP<2:0</td> 0502 CSIDL ABAT REQOP<2:0	Addr Bit 15 Bit 14 0500 0502 0504 0505 0506 0507 0508 0506 0507 0508 0504 0505 0506 0507 0508 0509 0510 0512 WAKFIL 0518 F7MSK-t1:0>	Addr Bit 15 Bit 14 Bit 13 0500 CSIDL 0502 0504 0506 0506 0508 0506 0507 0506 0507 0508 0508 0508 0506 0510 0512 WAKFIL 0514 FLTEN15 FLTEN14 FLTEN13 0518 F7MS+ F6MSH F6MSH	Addr Bit 15 Bit 14 Bit 13 Bit 12 0500 CSIDL ABAT 0502 0504 0506 0506 0506 0508 0508 0508 0508 0504 0505 0506 0510 0512 WAKFIL 0514 FLTEN15 FLTEN14	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0500 — — CSIDL ABAT — 0502 — — CSIDL ABAT — 0502 — — — — — 0504 — — — — — 0506 — — — — — 0506 — — — — — 0508 — — TXBO TXBP RXBP 0506 — — — — — 0506 — — — — — 0506 — — — — — — 0510 — … …	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0500 — — CSIDL ABAT — RI 0502 — — CSIDL ABAT — RI 0502 — — — — — — RI 0504 — — — — — — — — — 0506 DMABS<2:0> — — — — — — — — — — — — — — — — — — …	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0500 CSIDL ABAT REQOP<2:0	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0500 CSIDL ABAT REQOP<2:0> 0502 0504 0504 0506 DMABS<2:0> 0508 TXBO TXBP RXBP TXWAR RXWAR EWARN 0506	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0500 CSIDL ABAT $\mathbb{R} \in QOP<2:0>$ OPM 0502 0504 0506 DMABS<2:0> 0508 TXBO TXBP RXBP TXWAR EWARN IVRIF 0506 0508 TXBO TXBP RXBP TXWAR EWARN IVRIF 0500 IVRIE 05010 SUG SEG2PHTS 0510	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60500CSIDLABAT $\mathbb{R} \in QOP<2:0>$ $OPMODE<2:0$ 050205040506 $\mathbb{D}MABS<2:0>$ 0508TXBOTXBPRXBPTXWARRXWAREWARNIVRIFWAKIF05060508TXBOTXBPRXBPTXWARRXWAREWARNIVRIFWAKIF05000510SUV<1:0>SAM0512WAKFILSEG2PHTSSAM0514FLTEN15FLTEN14FLTEN13FLTEN12FLTEN10FLTEN3FLTEN7FLTEN60518F7MSK<1:0>F6MSK<1:0>F5MSK<1:0>F4MSK<1:0>F3MSK<1:0>F3MSK<1:0>	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 50500CSIDLABAT $\mathbb{R} \in QOP<2:0>$ $OPM\cupDE<2:0>$ 0502050405040506 $\mathbb{D}MABS<2:0>$ 0508TXBOTXBPRXBPTXWARRXWAREWARNIVRIFWAKIFERRIF050605060508TXBOTXBPRXBPTXWARRXWAREWARNIVRIFWAKIFERRIF05060510SEG2PHSSAMSI0512WAKFILSEG2PHTSSAMSI0514FLTEN15FLTEN14FLTEN13FLTEN12FLTEN10FLTEN9FLTEN8FLTEN7FLTEN6FLTEN50518F7MSKF6MSK<1:0>F5MSK<1:0>F4MSK<1:0>F3M	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 40500CSIDLABAT $\mathbb{R} \in \mathbb{Q} \cap \mathbb{P}^2: \mathbb{O}^{>}$ $O \cap \mathbb{D} \cup \mathbb{D} \mathbb{P}^2: \mathbb{O}^{>}$ $ -$ <td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 30500CSIDLABAT$\mathbb{R} \in QP < 2:0 >$$OP \lor DE < 2:0 >$CANCAP0502CANCAP0504COPCOP0504CODE<</td> CODE0506 $\bigcirc MABS < 2:0 >$ CODE05080508TXBOTXBPRXBPTXWARRXWAREWARNIVRIFWAKIFERRIFFIFOIF0504FIFOIF0504FIFOIF0505FIFOIF0506IVRIEWAKIFERRIFFIFOIF0507SJWSEG2PHSAMSEG1PHSEG2PH0508SJWSEG2PHSAM </td <td>AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 20500CSIDLABAT$\mathbb{R} \subseteq OP \le 2:0>$$OP \boxtimes U = 2:0>$CANCAP0502CANCAP0504DNCNT<4:C</td> 0506 $\mathbb{D} ABS<2:0>$ DNCNT<4:C	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 30500CSIDLABAT $\mathbb{R} \in QP < 2:0 >$ $OP \lor DE < 2:0 >$ CANCAP0502CANCAP0504COPCOP0504CODE<	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 20500CSIDLABAT $\mathbb{R} \subseteq OP \le 2:0>$ $OP \boxtimes U = 2:0>$ CANCAP0502CANCAP0504DNCNT<4:C	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 10500CSIDLABAT $\mathbb{R} \in QP < 2:0 >$ $OP \cup DE < 2:0 >$ CANCAP0502CANCAP0504DNCNT<4:0>0506 $\mathbb{V}ABS < 2:0 >$ DNCNT<4:0>0508FIRA<4:0>0508FIRA<4:0>0508FIRA<4:0>0508FIRA<5:0>FIRA<5:0>0508TXBOTXBPRXBPTXWARRXWAREWARNIVRIFWAKIFERRIFFIFOIFRBOVIFRBF0500IVRIEWAKIFERRIFFIFOIFRBOVIFRBF0500IVRIFWAKIFERRIFFIFOIFRBOVIFRBF0500<	AddrBit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 00500CSIDLABAT $\mathbb{R} \equiv QOP<2:0>$ OPMOE<2:0>CANCAPWIN0502DNCNT<4:0>WIN0502DNCNT<4:0>UNN0504DNCNT<4:0>UNN0506DMABS<2:0>EXACAPNENT0508FSA<4:0>0508FSAFSA0508TXB0TXBPRXBPTXWARRXWAREWARNIVRIFWAKIFERRIF-FIFOIFRBOVIFRBIFTBIF0500IVRIFWAKIFERRIF-FIFOIFRBOVIFRBIFTBIF0502IVRIFWAKIFERRIF-FIFOIFRBOVIFRBIFTBIF0502

TABLE 4-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR dsPIC33FJXXXGP706/708/710 DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR dsPIC33FJXXXGP706/708/710 DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	definition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	XOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF3 RXOVF2 RXOVF1 R XOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RX														0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF18													RXOVF16	0000
C2TR01CON	0530	TXEN1	X31 XX0VF30 XX0VF29 XX0VF28 XX0VF27 XX0VF26 XX0VF26 XX0VF25 XX0VF24 XX0VF23 XX0VF22 XX0VF21 XX0VF20 XX0VF19 XX0VF18 XX0VF17 XX 11 TX TX														RI<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C2RXD	0540								Recieved [Data Word								xxxx
C2TXD	0542								Transmit D	ata Word								xxxx

© 2009 Microchip Technology Inc.

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXGP706/708/710 DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500							See	e definition	when WIN	= x				•			
	- 051E																	
C2BUFPNT1	0520		F3BF	P<3:0>			F2BP	<3:0>			F1BF	><3:0>			F0BF	P<3:0>		0000
C2BUFPNT2	0522		F7BF	P<3:0>			F6BP	<3:0>			F5BF	><3:0>			F4BF	P<3:0>		0000
C2BUFPNT3	0524		F11BI	P<3:0>			F10BF	P<3:0>			F9BF	P<3:0>			F8BF	P<3:0>		0000
C2BUFPNT4	0526		F15BI	P<3:0>			F14BF	P<3:0>			F13BI	P<3:0>			F12BI	P<3:0>		0000
C2RXM0SID	0530				SID<	10:3>					SID<2:0>			MIDE	_	EID<	7:16>	xxxx
C2RXM0EID	0532				EID<	15:8>							EID	<7:0>				xxxx
C2RXM1SID	0534				SID<	10:3>					SID<2:0>			MIDE	_	EID<	7:16>	xxxx
C2RXM1EID	0536				EID<	15:8>							EID	<7:0>				xxxx
C2RXM2SID	0538				SID<	10:3>					SID<2:0>		_	MIDE	_	EID<	7:16>	xxxx
C2RXM2EID	053A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF0SID	0540				SID<	10:3>					SID<2:0>			EXIDE		EID<'	7:16>	xxxx
C2RXF0EID	0542				EID<	15:8>							EID	<7:0>				xxxx
C2RXF1SID	0544				SID<	10:3>					SID<2:0>			EXIDE		EID<	7:16>	xxxx
C2RXF1EID	0546				EID<	15:8>							EID	<7:0>				xxxx
C2RXF2SID	0548				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	7:16>	xxxx
C2RXF2EID	054A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF3SID	054C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	7:16>	xxxx
C2RXF3EID	054E				EID<	15:8>							EID	<7:0>				xxxx
C2RXF4SID	0550				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	7:16>	xxxx
C2RXF4EID	0552					15:8>							EID	<7:0>		r		xxxx
C2RXF5SID	0554					10:3>					SID<2:0>			EXIDE		EID<'	7:16>	xxxx
C2RXF5EID	0556					15:8>							EID	<7:0>		1		xxxx
C2RXF6SID	0558					10:3>					SID<2:0>			EXIDE		EID<'	7:16>	XXXX
C2RXF6EID	055A					15:8>							EID	<7:0>		1		XXXX
C2RXF7SID	055C					10:3>					SID<2:0>			EXIDE	—	EID<'	7:16>	xxxx
C2RXF7EID	055E					15:8>							EID	<7:0>				xxxx
C2RXF8SID	0560				-	10:3>					SID<2:0>			EXIDE	—	EID<1	7:16>	xxxx
C2RXF8EID	0562					15:8>					015 0 5		EID	<7:0>			= 10	xxxx
C2RXF9SID	0564				SID<						SID<2:0>			EXIDE	—	EID<1	/:16>	XXXX
C2RXF9EID	0566					15:8>							EID	<7:0>			7.40	XXXX
C2RXF10SID	0568			— = unimple	SID<					l	SID<2:0>		—	EXIDE	—	EID<'	/:16>	XXXX

dsPIC33FJXXXGPX06/X08/X10

IABLE 4-2		ECANZ	REGIS					IN – I F	OK USI	-103353	AAAGP	100/100		EVICES		CONTIN	IUED)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF10EID	056A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF11SID	056C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C2RXF11EID	056E				EID<	15:8>							EID	<7:0>				xxxx
C2RXF12SID	0570				SID<	10:3>					SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx
C2RXF12EID	0572				EID<	15:8>							EID	<7:0>				xxxx
C2RXF13SID	0574				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF13EID	0576				EID<	15:8>							EID	<7:0>				xxxx
C2RXF14SID	0578				SID<	10:3>					SID<2:0>			EXIDE	_	EID<1	7:16>	xxxx
C2RXF14EID	057A				EID<	15:8>							EID	<7:0>				xxxx
C2RXF15SID	057C				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF15EID	057E				EID<	15:8>							EID	<7:0>		•		xxxx

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR dsPIC33FJXXXGP706/708/710 DEVICES ONLY (CONTINUED)

TABLE 4-24: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
DCICON1	0280	DCIEN	—	DCISIDL	—	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST		_	_	COFSM1	COFSM0	0000 0000 0000 0000
DCICON2	0282	—	—	_	—	BLEN1	BLEN0	_		COFSO	G<3:0>		_		٧	VS<3:0>		0000 0000 0000 0000
DCICON3	0284	_	_	_	_						BCG<1	1:0>						0000 0000 0000 0000
DCISTAT	0286	_	_	_	_	SLOT3	SLOT2	SLOT1	SLOT0	_	_	-	—	ROV	RFUL	TUNF	TMPTY	0000 0000 0000 0000
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	1 TSE10 TSE9 TSE8 TSE7 TSE6 TSE5 TSE4 TSE3 TSE2 TSE1 TSE0 000											0000 0000 0000 0000
RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11											0000 0000 0000 0000	
RXBUF0	0290							Receive E	Buffer #0 D	ata Regis	ster							0000 0000 0000 0000
RXBUF1	0292							Receive E	Buffer #1 D	ata Regis	ster							0000 0000 0000 0000
RXBUF2	0294							Receive E	Buffer #2 D	ata Regis	ster							0000 0000 0000 0000
RXBUF3	0296							Receive E	Buffer #3 D	ata Regis	ster							0000 0000 0000 0000
TXBUF0	0298							Transmit E	Buffer #0 D	ata Regi	ster							0000 0000 0000 0000
TXBUF1	029A							Transmit E	Buffer #1 D	ata Regi	ster							0000 0000 0000 0000
TXBUF2	029C							Transmit I	Buffer #2 D	ata Regi	ster							0000 0000 0000 0000
TXBUF3	029E							Transmit I	Buffer #3 D	ata Regi	ster							0000 0000 0000 0000

 Legend:
 — = unimplemented, read as '0'.

 Note
 1:
 Refer to the "dsPIC33F Family Reference Manual" for descriptions of register bit fields.

TABLE 4-25: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	TRISA13	TRISA12	_	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	F6FF
PORTA	02C2	RA15	RA14	RA13	RA12	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	LATA15	LATA14	LATA13	LATA12	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA ⁽²⁾	06C0	ODCA15	ODCA14		_	_	_	_	_	_	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Legend:

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-26: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	_	_	-	—	—	_	TRISC4	TRISC3	TRISC2	TRISC1	—	F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	-	-	_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	-	-	_	_	_	_	LATC4	LATC3	LATC2	LATC1	_	XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-28: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTE REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	—	-	—	—	—	_	-	-	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
PORTE	02DA	_	_	_	_	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	02DC	_	_	_	_	_	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	_	-	TRISF13	TRISF12	_	_	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	_	_	RF13	RF12	—	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	_	-	LATF13	LATF12	_	-	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	06DE	_	-	ODCF13	ODCF12	_	-	_	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-31: PORTG REGISTER MAP⁽¹⁾

1	ile Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
-	rrisg	02E4	TRISG15	TRISG14	TRISG13	TRISG12			TRISG9	TRISG8	TRISG7	TRISG6	_		TRISG3	TRISG2	TRISG1	TRISG0	F3CF
1	PORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
1	_ATG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
(DDCG	06E4	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-32: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	—	—	—	_	—	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{XXXX} (1)
OSCCON	0742	_	(COSC<2:0>	>	_	1	NOSC<2:0	>	CLKLOCK	_	LOCK	-	CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI	I	DOZE<2:0>	>	DOZEN	FI	RCDIV<2:0						ŀ	PLLPRE<4:	0>		3040
PLLFBD	0746		_	—	—	—	_					F	PLLDIV<8:0	>				0030
OSCTUN	0748		_	—	_	—	_	_	- <u> </u>								0000	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-33: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	-	_	_	—	-	ERASE	_	-	NVMOP<3:0>		0000 (1)		
NVMKEY	0766	—			_	-	—	_					NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

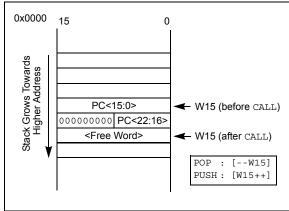
Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-34: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_		DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	_	_	_	_	_	_	_	-	_	_	I2C2MD	AD2MD	0000

4.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJXXXGPX06/X08/X10 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 4-6: CALL STACK FRAME

4.2.8 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes in Table 4-35 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The 3-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (i.e., the addressing mode can only be register direct) which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the EA.
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-35: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the Addressing
	mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared between both source and
	destination (but typically only used by
	one).

In summary, the following Addressing modes are supported by move and accumulator instructions:

- Register Direct
- · Register Indirect
- Register Indirect Post-modified
- · Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note:	Not	all	instructions	support	all	the
	Addr	essii	ng modes give	en above. I	ndivi	dual
	instr	uctio	ns may suppo	ort differen	t sub	sets
	of th	ese /	Addressing mo	odes.		

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the data pointers through register indirect tables.

The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU and W10 and W11 will always be directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset
	Addressir	ng mode i	s only	available	for W9
	(in X spac	ce) and W	/11 (in	Y space).	

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- · Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing

can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can only be configured to operate in one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

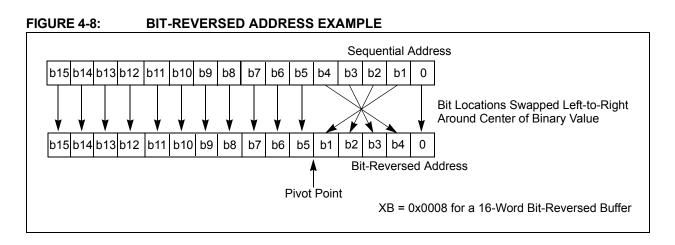
The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing).
- 2. The BREN bit is set in the XBREV register.
- 3. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment.

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.


XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word sized data writes. It will not function for any other addressing mode or for byte sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. In the event that the user attempts
	to do so, Bit-Reversed Addressing will
	assume priority when active for the X
	WAGU and X WAGU Modulo Addressing
	will be disabled. However, Modulo
	Addressing will continue to function in the X
	RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

		Norm	al Addres	s			Bit-Rev	ersed Ad	dress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJXXXGPX06/X08/X10 architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJXXXGPX06/X08/X10 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

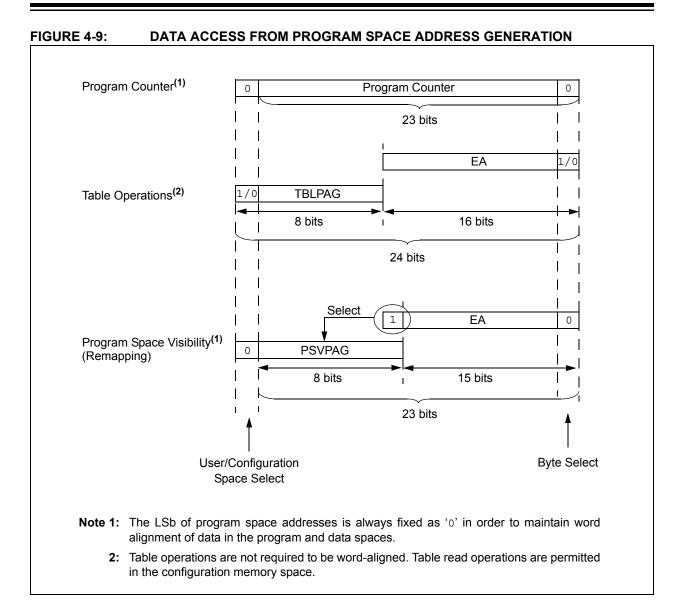

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-37 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

TABLE 4-37: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0 PC<22:1>							
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xxxx xxxx xxxx					
	Configuration	TBLPAG<7:0> Data EA<15:0>							
		1xxx xxxx xxxx xxxx xxxx xxxx							
Program Space Visibility	User	0	PSVPAG<	7:0> Data EA<14:0> ⁽¹⁾					
(Block Remap/Read)		0	xxxx xxx						

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

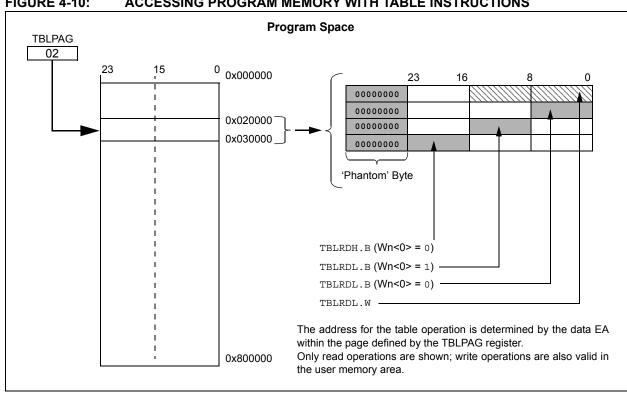
DATA ACCESS FROM PROGRAM 4.6.2 MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, it 1. maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).


In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS FIGURE 4-10:

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

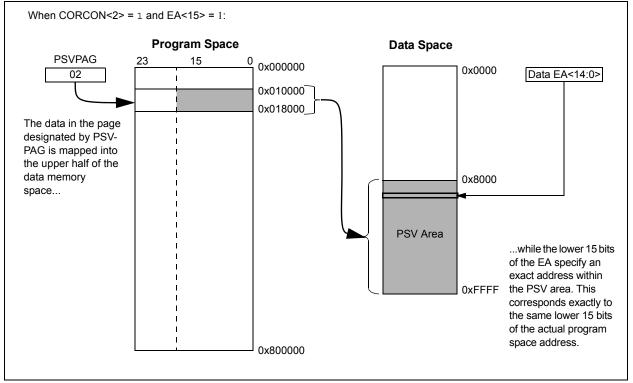
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

NOTES:

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- 1. In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP) 2.

ICSP allows a dsPIC33FJXXXGPX06/X08/X10 device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then

program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 **Table Instructions and Flash** Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

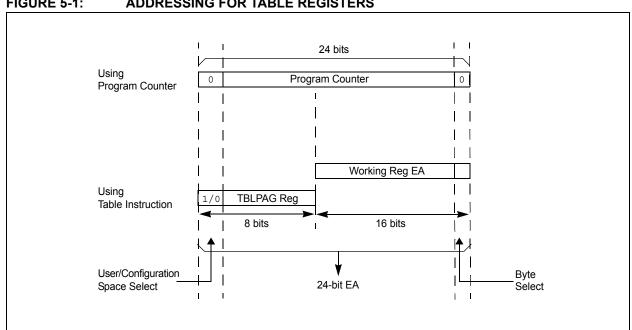


FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

The dsPIC33FJXXXGPX06/X08/X10 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 25-12 illustrates typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 25-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +85°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.02) \times (1 - 0.00375)} = 1.48 ms$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.02) \times (1 - 0.00375)} = 1.54 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory:

- NVMCON: Flash Memory Control Register
- NVMKEY: Non-Volatile Memory Key Register

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-2) is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

Legend: R = Readable bit -n = Value at POI bit 15 V bit 14 V bit 14 V bit 13 V 1 0	R VR: Write Co = Initiates a cleared b = Program VREN: Write = Enable Fl = Inhibit Fla	a Flash memory y hardware ond or erase operation	y program or ce operation tion is compl	ʻ0' = Bit is clea r erase operatio	nented bit, reac ared n. The operatio	x = Bit is unkr		
U-0 	ERASE R WR: Write Co = Initiates a cleared b = Program WREN: Write = Enable Fl = Inhibit Fla	— SO = Settable W = Writable t '1' = Bit is set ntrol bit a Flash memory y hardware ond or erase operat Enable bit lash program/e	only bit bit y program or ce operation tion is compl	U = Unimplen '0' = Bit is clea r erase operatio is complete	NVMOF nented bit, read ared n. The operatio	9<3:0> ⁽²⁾ I as '0' x = Bit is unkr	R/W-0 ⁽¹⁾ bit	
	ERASE R WR: Write Co = Initiates a cleared b = Program WREN: Write = Enable Fl = Inhibit Fla	— SO = Settable W = Writable t '1' = Bit is set ntrol bit a Flash memory y hardware ond or erase operat Enable bit lash program/e	only bit bit y program or ce operation tion is compl	U = Unimplen '0' = Bit is clea r erase operatio is complete	NVMOF nented bit, read ared n. The operatio	9<3:0> ⁽²⁾ I as '0' x = Bit is unkr	bit	
	ERASE R WR: Write Co = Initiates a cleared b = Program WREN: Write = Enable Fl = Inhibit Fla	— SO = Settable W = Writable t '1' = Bit is set ntrol bit a Flash memory y hardware ond or erase operat Enable bit lash program/e	only bit bit y program or ce operation tion is compl	U = Unimplen '0' = Bit is clea r erase operatio is complete	NVMOF nented bit, read ared n. The operatio	9<3:0> ⁽²⁾ I as '0' x = Bit is unkr	bit	
R = Readable bit -n = Value at POI bit 15 V bit 14 V bit 14 1 0 bit 13 V 1	t R VR: Write Co = Initiates a cleared b = Program VREN: Write = Enable Fl = Inhibit Fla	W = Writable k '1' = Bit is set ontrol bit a Flash memory y hardware ond or erase operat Enable bit lash program/e	y program or ce operation tion is compl	'0' = Bit is clea r erase operatio is complete	nented bit, reac ared n. The operatio	l as '0' x = Bit is unkr	nown	
Legend: R = Readable bit -n = Value at POI bit 15 V bit 14 V bit 14 1 0 bit 13 V 1 0	R VR: Write Co = Initiates a cleared b = Program VREN: Write = Enable Fl = Inhibit Fla	W = Writable k '1' = Bit is set ontrol bit a Flash memory y hardware ond or erase operat Enable bit lash program/e	y program or ce operation tion is compl	'0' = Bit is clea r erase operatio is complete	ared n. The operatio	x = Bit is unkr	nown	
R = Readable bit -n = Value at POI bit 15 V bit 14 V bit 14 1 0 bit 13 V 1	R VR: Write Co = Initiates a cleared b = Program VREN: Write = Enable Fl = Inhibit Fla	W = Writable k '1' = Bit is set ontrol bit a Flash memory y hardware ond or erase operat Enable bit lash program/e	y program or ce operation tion is compl	'0' = Bit is clea r erase operatio is complete	ared n. The operatio	x = Bit is unkr		
-n = Value at POI bit 15 V bit 14 V bit 14 1 0 bit 13 V 1	R VR: Write Co = Initiates a cleared b = Program VREN: Write = Enable Fl = Inhibit Fla	'1' = Bit is set introl bit a Flash memory y hardware ond or erase operat Enable bit lash program/e	y program or ce operation tion is compl	'0' = Bit is clea r erase operatio is complete	ared n. The operatio	x = Bit is unkr		
1 bit 14 bit 13 0 0	 VR: Write Co Initiates a cleared b Program VREN: Write Enable Fl Inhibit Flat 	ntrol bit a Flash memory y hardware ond or erase operat Enable bit lash program/e	ce operation tion is compl	r erase operatio is complete	n. The operatio			
1 bit 14 V 1 0 bit 13 V 1	 Initiates a cleared b Program VREN: Write Enable Fl Inhibit Fla 	a Flash memory y hardware ond or erase operat Enable bit lash program/e	ce operation tion is compl	is complete		on is self-timed	and the bit i	
1 bit 14 bit 13 0 0	 Initiates a cleared b Program VREN: Write Enable Fl Inhibit Fla 	a Flash memory y hardware ond or erase operat Enable bit lash program/e	ce operation tion is compl	is complete		on is self-timed	and the bit i	
0 bit 14 V 1 0 bit 13 V 1	cleared b = Program VREN: Write = Enable Fl = Inhibit Fla	y hardware ond or erase opera Enable bit lash program/e	ce operation tion is compl	is complete		on is self-timed	and the bit	
bit 14 V 1 0 bit 13 V 1 0	 Program VREN: Write Enable Flate Inhibit Flate 	or erase operation Enable bit lash program/e	tion is compl					
bit 14 V 1 0 bit 13 V 1 0	VREN: Write = Enable Fl = Inhibit Fla	Enable bit lash program/e						
1 0 bit 13 V 1 0	= Enable Fl = Inhibit Fla	lash program/e	rase operatio					
0 bit 13 V 1 0) = Inhibit Fla			ons				
bit 13 V 1								
0		e Sequence Er	ror Flag bit					
	. = An improj	per program or	erase seque	ence attempt or	termination has	s occurred (bit i	s set	
		cally on any set						
hit 10 7		-		pleted normally				
	-	ted: Read as 'o						
		e/Program Ena			0			
				d by NVMOP<3 ified by NVMOP				
		ted: Read as '0	-					
	•	NVM Operati		. _s (2)				
	f ERASE = 1:			.0				
		<u>.</u> ory bulk erase c	peration					
	110 = Reser							
		General Segm						
		Secure Segme	ent					
	1011 = Reserved 0011 = No operation							
		bry page erase	operation					
	0001 = No op							
0	0000 = Erase	a single Config	guration regi	ster byte				
	f ERASE = 0:							
	.111 = No op							
	1110 = Reserved 1101 = No operation							
	101 – No op							
	.011 = Reser							
		ory word progra	m operation					
	010 = No op		oporation					
		ory row progran am a single Co		egister byte				

2: All other combinations of NVMOP<3:0> are unimplemented.

REGISTER 5-2: NVMKEY: NON-VOLATILE MEMORY KEY REGISTER

bit 7			NVMKE	Y<7:0>			bit 0
			NVMKE	:Y<7:0>			
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
bit 15							bit 8
—	_	—	—			—	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

Legend:	SO = Settable only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMKEY<7:0>: Key Register (Write Only) bits

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write #0x55 to NVMKEY.
 - c) Write #0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming operation:	S
	MOV	#0x4001, W0	;
	MOV	W0, NVMCON	; Initialize NVMCON
;	Set up a poi	nter to the first program memory	y location to be written
;	program memo	ry selected, and writes enabled	
	MOV	#0x0000, W0	;
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	; An example program memory address
;	Perform the	TBLWT instructions to write the	latches
;	0th_program_	word	
	MOV	#LOW_WORD_0, W2	;
	MOV	#HIGH_BYTE_0, W3	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	1st_program_	word	
	MOV	#LOW_WORD_1, W2	;
	MOV	#HIGH_BYTE_1, W3	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	2nd_program	_word	
	MOV	#LOW_WORD_2, W2	i
	MOV	#HIGH_BYTE_2, W3	i
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
	•		
	•		
	•		
;	63rd_program	_word	
	MOV	#LOW_WORD_31, W2	i
	MOV	#HIGH_BYTE_31, W3	i
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI		; Block all interrupts with priority <7 ; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

6.0 RESET

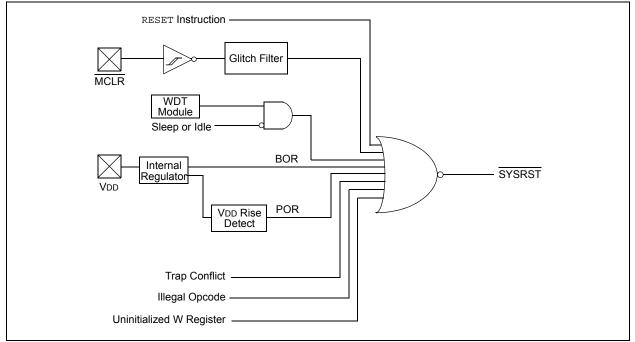
Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode and Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.


Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1). A POR will clear all bits, except for the POR bit (RCON<0>), that are set. The user can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAPR	IOPUWR	_	_	_		—	VREGS
pit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	1 = A Trap Co	Reset Flag bit onflict Reset has		d			
bit 14	IOPUWR: Ille 1 = An illega Address	gal Opcode or l I opcode detec Pointer caused	Jninitialized \ tion, an illeg a Reset	W Access Rese gal address mo Reset has not oc	de or uninitiali	zed W registe	er used as a
bit 13-9	Unimplemen	ted: Read as 'o	,				
bit 8	1 = Voltage r	age Regulator S egulator is activ egulator goes ir	e during Slee	•	ер		
bit 7	EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred 0 = A Master Clear (pin) Reset has not occurred						
bit 6	1 = A reset	re Reset (Instru instruction has l instruction has	been execute	ed			
bit 5	SWDTEN: So 1 = WDT is e 0 = WDT is d		Disable of WI	DT bit ⁽²⁾			
bit 4	1 = WDT time	hdog Timer Tim e-out has occurr e-out has not oc	ed	t			
bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode						
bit 2	IDLE: Wake-up from Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode						
bit 1	 0 = Device was not in Idle mode BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred 						
bit 0	1 = A Power-	on Reset Flag b on Reset has or on Reset has no	ccurred				

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Flag Bit	Setting Event	Clearing Event		
TRAPR (RCON<15>)	Trap conflict event	POR, BOR		
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR		
EXTR (RCON<7>)	MCLR Reset	POR		
SWR (RCON<6>)	RESET instruction	POR, BOR		
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR		
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR		
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR		
BOR (RCON<1>)	BOR, POR	—		
POR (RCON<0>)	POR	-		

TABLE 6-1:RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

TABLE 6-2:OSCILLATOR SELECTION VSTYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are <u>summarized</u> in Table 6-3. The system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
POR	EC, FRC, LPRC	TPOR + TSTARTUP + TRST	—		1, 2, 3
	ECPLL, FRCPLL	TPOR + TSTARTUP + TRST	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	TOST + TLOCK	TFSCM	1, 2, 3, 4, 5, 6
BOR	EC, FRC, LPRC	TSTARTUP + TRST	—	_	3
	ECPLL, FRCPLL	TSTARTUP + TRST	TLOCK	TFSCM	3, 5, 6
	XT, HS, SOSC	TSTARTUP + TRST	Tost	TFSCM	3, 4, 6
	XTPLL, HSPLL	TSTARTUP + TRST	TOST + TLOCK	TFSCM	3, 4, 5, 6
MCLR	Any Clock	Trst	—	_	3
WDT	Any Clock	Trst	—	_	3
Software	Any Clock	Trst	—	—	3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	—	3
Trap Conflict	Any Clock	Trst	—	—	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

- **2:** TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.
- 3: TRST = Internal state Reset time (20 µs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5**: TLOCK = PLL lock time (20 μs nominal).
- **6**: TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- · The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 6**. "Interrupts" (DS70184) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJXXXGPX06/X08/X10 CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- 7 user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of 8 nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this priority is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

dsPIC33FJXXXGPX06/X08/X10 devices implement up to 67 unique interrupts and 5 nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJXXXGPX06/X08/X10 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. The user programs a GOTO instruction at the Reset address which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1:	dsPIC33FJXXXGPX06/X08/X10 INTERRUPT VECTOR TABLE

1		٦	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
ity	Interrupt Vector 54	0x000080	
lioi	~		
Ē	~		
dei	~		
Decreasing Natural Order Priority	Interrupt Vector 116	0x0000FC	
ral	Interrupt Vector 117	0x0000FE	_
atu	Reserved	0x000100	
Ž	Reserved	0x000102	
ing	Reserved		
as	Oscillator Fail Trap Vector		
cre	Address Error Trap Vector		
De	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		7
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	, , , , , , , , , , , , , , , , , , ,
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		
	Interrupt Vector 116		-
	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
Note 1: Se	e Table 7-1 for the list of impleme	ented interrupt	vectors.

ABLE 7-1:	INTERRUP	T VECTORS		
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Compare 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – ADC 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – ADC 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

TABLE 7-1:		PT VECTORS (CO	NTINUED)			
Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source		
54	46	0x000070	0x000170	DMA4 – DMA Channel 4		
55	47	0x000072	0x000172	T6 – Timer6		
56	48	0x000074	0x000174	T7 – Timer7		
57	49	0x000076	0x000176	SI2C2 – I2C2 Slave Events		
58	50	0x000078	0x000178	MI2C2 – I2C2 Master Events		
59	51	0x00007A	0x00017A	T8 – Timer8		
60	52	0x00007C	0x00017C	T9 – Timer9		
61	53	0x00007E	0x00017E	INT3 – External Interrupt 3		
62	54	0x000080	0x000180	INT4 – External Interrupt 4		
63	55	0x000082	0x000182	C2RX – ECAN2 Receive Data Ready		
64	56	0x000084	0x000184	C2 – ECAN2 Event		
65	57	0x000086	0x000186	Reserved		
66	58	0x000088	0x000188	Reserved		
67	59	0x00008A	0x00018A	DCIE – DCI Error		
68	60	0x00008C	0x00018C	DCID – DCI Transfer Done		
69	61	0x00008E	0x00018E	DMA5 – DMA Channel 5		
70	62	0x000090	0x000190	Reserved		
71	63	0x000092	0x000192	Reserved		
72	64	0x000094	0x000194	Reserved		
73	65	0x000096	0x000196	U1E – UART1 Error		
74	66	0x000098	0x000198	U2E – UART2 Error		
75	67	0x00009A	0x00019A	Reserved		
76	68	0x00009C	0x00019C	DMA6 – DMA Channel 6		
77	69	0x00009E	0x00019E	DMA7 – DMA Channel 7		
78	70	0x0000A0	0x0001A0	C1TX – ECAN1 Transmit Data Request		
79	71	0x0000A2	0x0001A2	C2TX – ECAN2 Transmit Data Request		
80-125	72-117	0x0000A4-0x0000 FE	0x0001A4-0x0001 FE	Reserved		

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

TABLE 7-2: TRAP VECTORS

Vector Number	IVT Address	AIVT Address	Trap Source
0	0x000004	0x000104	Reserved
1	0x00006	0x000106	Oscillator Failure
2	0x00008	0x000108	Address Error
3	0x0000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	DMA Error Trap
6	0x000010	0x000110	Reserved
7	0x000012	0x000112	Reserved

7.3 Interrupt Control and Status Registers

dsPIC33FJXXXGPX06/X08/X10 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS4
- IEC0 through IEC4
- IPC0 through IPC17
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a Status bit, which is set by the respective peripherals or external signal and is cleared via software.

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32, in the following pages.

REGISTER 7	-1: SR: C	PU STATUS F	REGISTER ⁽¹)			
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:							
C = Clear only bit R = Readable		bit	U = Unimpler	mented bit, read	1 as '0'		

141

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

- 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1: "SR: CPU STATUS REGISTER".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
r							
Legend: C		C = Clear only bit					
R = Readable bit		W = Writable bit		-n = Value at POR		'1' = Bit is set	

bit 3

0' = Bit is cleared

IPL3: CPU Interrupt Priority Level Status bit 3(2)

'x = Bit is unknown

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2: "CORCON: CORE CONTROL REGISTER".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U = Unimplemented bit, read as '0'

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR	DIVOERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL				
bit 7				/ . <u>_</u>	•••••		bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
bit 15	NSTDIS: Inte	rrupt Nesting D	isable bit							
	1 = Interrupt r	nesting is disab	led							
	0 = Interrupt r	nesting is enab	led							
bit 14		cumulator A O		-						
		caused by ove not caused by								
bit 13	OVBERR: Ac	cumulator B O	verflow Trap F	lag bit						
		caused by ove not caused by								
bit 12	-	-		Overflow Trap F	lag bit					
	1 = Trap was	caused by cata	astrophic over	flow of Accumu	lator A					
bit 11	-	= Trap was not caused by catastrophic overflow of Accumulator A OVBERR: Accumulator B Catastrophic Overflow Trap Flag bit								
				flow of Accumu						
bit 10	 0 = Trap was not caused by catastrophic overflow of Accumulator B OVATE: Accumulator A Overflow Trap Enable bit 									
		flow of Accum								
bit 9		umulator B Ove	erflow Trap En	able bit						
	•	= Trap overflow of Accumulator B								
bit 8	COVTE: Catastrophic Overflow Trap Enable bit									
	1 = Trap on c 0 = Trap disa		erflow of Accur	mulator A or B	enabled					
bit 7	-	Shift Accumula	itor Error Statu	ıs bit						
				ilid accumulato invalid accumu						
bit 6	DIV0ERR: Arithmetic Error Status bit									
		r trap was caus r trap was not o	-	-						
bit 5		DMA Controller	-	-						
		troller error trap troller error trap								
bit 4		rithmetic Error								

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	 O = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 7	-4: INTCC	N2: INTERF		ROL REGIST	ER 2				
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	—	_	_		_	—		
bit 15			·				bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 14 bit 13-5 bit 4 bit 3	ALTIVT: Enable Alternate Interrupt Vector Table bit 1 = Use alternate vector table 0 = Use standard (default) vector table DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active Unimplemented: Read as '0' INT4EP: External Interrupt 4 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge INT3EP: External Interrupt 3 Edge Detect Polarity Select bit 1 = Interrupt on negative edge								
bit 2	1 = Interrupt of	ernal Interrupt on negative ec on positive edg	lge	Polarity Select	t bit				
bit 1	1 = Interrupt of	ernal Interrupt on negative ec on positive edg	lge	Polarity Select	t bit				
bit 0	1 = Interrupt	ernal Interrupt on negative ec on positive ed	lge	Polarity Select	t bit				

REGISTER	7-5: IFS0:	INTERRUPT	FLAG STAT	US REGISTE	R 0						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IF	OC2IF	IC2IF	DMA01IF	T1IF	OC1IF	IC1IF	INTOIF				
bit 7	002li	10211	Division in		00111	10111	bit 0				
Legend:											
R = Readabl	e bit	W = Writable	e bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 15	Unimpleme	nted: Read as	ʻ0'								
bit 14			Data Transfer C	omplete Interr	upt Flag Status	bit					
		request has o									
bit 13	•	request has n		unt Flog Statu	- hit						
ωιιο		request has o	Complete Interr	upi riay Status	5 UIL						
bit 12		 Interrupt request has not occurred U1TXIF: UART1 Transmitter Interrupt Flag Status bit 									
	1 = Interrupt	request has o	ccurred								
	-	request has n									
oit 11		U1RXIF: UART1 Receiver Interrupt Flag Status bit									
	•	1 = Interrupt request has occurred									
bit 10	-	 Interrupt request has not occurred SPI1IF: SPI1 Event Interrupt Flag Status bit 									
		request has o	-	nt							
		request has n									
bit 9	SPI1EIF: SP	SPI1EIF: SPI1 Fault Interrupt Flag Status bit									
		1 = Interrupt request has occurred									
	-	request has n									
bit 8		T3IF: Timer3 Interrupt Flag Status bit									
	•	1 = Interrupt request has occurred									
bit 7	-	 Interrupt request has not occurred T2IF: Timer2 Interrupt Flag Status bit 									
	•	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 6	OC2IF: Outp	out Compare C	hannel 2 Interru	upt Flag Status	bit						
		request has o									
	-	request has n		-							
bit 5	•	•	nel 2 Interrupt F	lag Status bit							
	•	request has or request has no									
bit 4	-	-	Data Transfer	Complete Inter	rupt Flag Statu	ıs bit					
		request has o									
	0 = Interrupt	request has n	ot occurred								
bit 3	T1IF: Timer1	I Interrupt Flag	Status bit								
	•	request has o									
	0 = Interrupt	request has n	or occurred								

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 0 INTOIF: External Interrupt 0 Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

REGISTER	7-6: IFS1: I	NTERRUPT	FLAG STAT	US REGISTI	ER 1						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA21IF				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
IC8IF	IC7IF	AD2IF	INT1IF	CNIF		MI2C1IF	SI2C1IF				
bit 7	10711	7,821		ortin		WIL20 HI	bit 0				
Lonordi											
Legend: R = Readabl	e hit	W = Writable	hit	II = I Inimpler	mented bit, rea	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
					arcu						
bit 15	U2TXIF: UAF	RT2 Transmitte	r Interrupt Fla	g Status bit							
		request has oc									
h :+ 4 4	•	request has no									
bit 14		RT2 Receiver li request has oc		Status Dit							
		request has no									
bit 13	INT2IF: Exter	mal Interrupt 2	Flag Status b	it							
		request has oc request has no									
bit 12	•	Interrupt Flag									
		request has oc									
	0 = Interrupt i	request has no	t occurred								
bit 11		Interrupt Flag									
		request has oc request has no									
bit 10	OC4IF: Output	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit						
		request has oc request has no									
bit 9	•	•		upt Flag Status	s bit						
		request has oc request has no									
bit 8	-	-		Complete Inte	rrupt Flag Statu	ıs bit					
		DMA21IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred									
L : (- 7	•	request has no									
bit 7	•	Capture Chann request has oc	•	Flag Status bit							
		request has oc									
bit 6	IC7IF: Input C	Capture Chann	el 7 Interrupt	Flag Status bit							
		request has oc request has no									
bit 5	AD2IF: ADC2	2 Conversion C	omplete Inter	rupt Flag Statu	s bit						
		request has oc									
h:+ 4	-	request has no		:1							
bit 4		nal Interrupt 1 request has oc	-	IL							
		request has oc									
	·										

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 CNIF: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 7	'-7: IFS2:	INTERRUPT	FLAG STAT	US REGIS	TER	2					
R/W-0	R/W-0	U-0	R/W-0	R/W-0		R/W-0		R/W-0	R/W-0		
T6IF	DMA4IF		OC8IF	OC7IF		OC6IF		OC5IF	IC6IF		
bit 15									bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		R/W-0		R/W-0	R/W-0		
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF		C1RXIF		SPI2IF	SPI2EIF		
bit 7		1	1						bit 0		
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpl	eme	ented bit, read	d as	· 'O'			
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is c	lear	ed	Х	= Bit is unkr	nown		
bit 15	TCIE: Timore	Interrupt Flog	Statua hit								
bit 15		Interrupt Flag request has or									
		request has no									
bit 14	DMA4IF: DM	IA Channel 4 E	Data Transfer C	complete Inte	errup	t Flag Status	bit				
	•	request has or request has no									
bit 13		ited: Read as									
bit 12	•		hannel 8 Interri	int Flag Stat	us h	it					
		request has or		apt i lag otat	u3 b						
		request has no									
bit 11	OC7IF: Outp	ut Compare C	hannel 7 Interri	upt Flag Stat	us b	it					
	•	request has or									
bit 10	•	request has no	hannel 6 Interri	int Flag Stat	us h	it					
	-	request has or		apt i lag Otat	u3 D						
		request has no									
bit 9	OC5IF: Outp	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit									
		request has or									
hit Q	•	request has no		Tag Status b	:4						
bit 8		request has or	nel 6 Interrupt F	-lag Status b	IL						
		request has no									
bit 7	IC5IF: Input (Capture Chanr	nel 5 Interrupt F	lag Status b	it						
		request has or									
hit 6	•	request has no		lag Statua b	;+						
bit 6	-	request has or	nel 4 Interrupt F	-lag Status D	IL						
	•	request has no									
bit 5	IC3IF: Input (Capture Chanr	nel 3 Interrupt F	-lag Status b	it						
	•	request has or									
1.11.4	-	request has no									
bit 4			Data Transfer C	complete inte	errup	t Flag Status	DI				
		request has or request has no									
bit 3		•	pt Flag Status	bit							
	1 = Interrupt	request has or	curred								
	0 = Interrupt	request has no	ot occurred								

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

REGISTER 7	7-8: IFS3:	INTERRUPT	FLAG STAT	US REGIS	TEF	23		
U-0	U-0	R/W-0	R/W-0	R/W-0		U-0	U-0	R/W-0
—	—	DMA5IF	DCIIF	DCIEIF		—	—	C2IF
bit 15								bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		R/W-0	R/W-0	R/W-0
C2RXIF	INT4IF	INT3IF	T9IF	T8IF		MI2C2IF	SI2C2IF	T7IF
bit 7								bit C
Legend:								
R = Readable	bit	W = Writable	e bit	U = Unimpl	leme	ented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is c	lear	ed	x = Bit is unkn	iown
bit 15-14	Unimplemer	nted: Read as	'O'					
bit 13	-	IA Channel 5 [Complete Inte	errup	t Flag Status	bit	
	1 = Interrupt	request has or request has no	curred	·	•	Ū		
bit 12	•	Event Interrupt						
	1 = Interrupt	request has o	curred					
bit 11	•	request has no Error Interrupt		it				
	1 = Interrupt	request has or request has no	ccurred					
bit 10-9	-	nted: Read as						
bit 8	-	2 Event Interru		bit				
	1 = Interrupt	request has or request has no	curred					
bit 7	-	AN2 Receive [errunt Elao S	tatu	s hit		
		request has of	-	chupt hug c	nutu.	5 51		
	0 = Interrupt	request has no	ot occurred					
bit 6		rnal Interrupt 4	-	it				
		request has or request has no						
bit 5	INT3IF: Exte	rnal Interrupt 3	Flag Status b	it				
		request has or request has no						
bit 4	-	Interrupt Flag						
		request has or request has no						
bit 3	-	Interrupt Flag						
	1 = Interrupt	request has or request has no	ccurred					
bit 2		C2 Master Eve		ag Status bit				
	1 = Interrupt	request has or	curred	·				
	0 = Interrupt	request has no	ot occurred					
bit 1	SI2C2IF: 12C	2 Slave Event	s Interrupt Flag	g Status bit				
	•	request has or						
h # 0	-	request has no						
bit 0		Interrupt Flag request has or						
		request has or						

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	_	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	—
bit 7							bit 0

Legend:				
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	•	ECAN2 Transmit Data Reque	est Interrupt Flag Status bit	
	1 = Inter	rupt request has occurred rupt request has not occurred		
bit 6	C1TXIF:	ECAN1 Transmit Data Reque	est Interrupt Flag Status bit	
		rupt request has occurred rupt request has not occurred	I	
bit 5	DMA7IF	: DMA Channel 7 Data Transf	fer Complete Interrupt Flag S	tatus bit
		rupt request has occurred rupt request has not occurred	I	
bit 4	1 = Inter	: DMA Channel 6 Data Transf rupt request has occurred rupt request has not occurred		tatus bit
bit 3		mented: Read as '0'		
bit 2		JART2 Error Interrupt Flag Sta	atus bit	
		rupt request has occurred rupt request has not occurred	I	
bit 1	U1EIF։ Լ	JART1 Error Interrupt Flag St	atus bit	
		rupt request has occurred rupt request has not occurred	I	
bit 0	Unimple	emented: Read as '0'		

11.0										
U-0	R/W-0 R/W-0	R/W-0	R/W-0		R/W-0		R/W-0	R/W-0		
 bit 15	DMA1IE AD1IE	U1TXIE	U1RXIE		SPI1IE		SPI1EIE	T3IE bit 8		
								DILC		
R/W-0	R/W-0 R/W-0	R/W-0	R/W-0		R/W-0		R/W-0	R/W-0		
T2IE	- 1	DMA0IE	T1IE		OC1IE		IC1IE	INT0IE		
bit 7								bit (
Legend:										
R = Readable	e bit W = Writable bit		U = Unimple	emer	nted bit, rea	ad a	is '0'			
-n = Value at	POR '1' = Bit is set		'0' = Bit is c	leare	ed	>	<pre>c = Bit is unkn</pre>	own		
L:4 / F	Unimplemented: Deed op (o)									
bit 15	Unimplemented: Read as '0'	Transform			En abla bii					
bit 14	DMA1IE: DMA Channel 1 Data 1 = Interrupt request enabled	Transfer C	omplete inte	rrupt	Enable bit					
	0 = Interrupt request not enable	ed								
bit 13	AD1IE: ADC1 Conversion Com		upt Enable b	it						
	1 = Interrupt request enabled									
	0 = Interrupt request not enable									
bit 12	U1TXIE: UART1 Transmitter In	terrupt Ena	ble bit							
	1 = Interrupt request enabled0 = Interrupt request not enable)d								
bit 11	U1RXIE: UART1 Receiver Inter	rupt Enable	e bit							
	1 = Interrupt request enabled	d								
bit 10	 0 = Interrupt request not enable SPI1IE: SPI1 Event Interrupt Er 									
	1 = Interrupt request enabled									
	0 = Interrupt request not enable	ed								
bit 9	SPI1EIE: SPI1 Error Interrupt Enable bit									
	1 = Interrupt request enabled									
	0 = Interrupt request not enable									
bit 8	T3IE: Timer3 Interrupt Enable b	lit								
	 1 = Interrupt request enabled 0 = Interrupt request not enable 	ed								
bit 7	T2IE: Timer2 Interrupt Enable b									
	1 = Interrupt request enabled									
	0 = Interrupt request not enable									
bit 6	OC2IE: Output Compare Chan	nel 2 Interru	upt Enable bi	t						
	 1 = Interrupt request enabled 0 = Interrupt request not enable 	h								
bit 5	IC2IE: Input Capture Channel 2		nable bit							
	1 = Interrupt request enabled									
	0 = Interrupt request not enable	ed .								
bit 4	DMA0IE: DMA Channel 0 Data	Transfer C	omplete Inte	rrupt	Enable bit					
	 1 = Interrupt request enabled 0 = Interrupt request not enable 	ed								
bit 3	T1IE: Timer1 Interrupt Enable b									

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE			
bit 15		·					bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
IC8IE	IC7IE	AD2IE	INT1IE	CNIE	_	MI2C1IE	SI2C1IE			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	U2TXIE: UAR	RT2 Transmitte	r Interrupt Ena	able bit						
		equest enable equest not ena								
bit 14	1 = Interrupt r	RT2 Receiver I request enable request not ena	d	le bit						
bit 13	1 = Interrupt r	nal Interrupt 2 equest enable equest not ena	d							
bit 12	1 = Interrupt r	Interrupt Enab equest enable equest not ena	d							
bit 11	T4IE: Timer4 1 = Interrupt r	Interrupt Enab equest enable	le bit d							
bit 10	OC4IE: Output 1 = Interrupt r	equest not ena ut Compare Ch equest enable	annel 4 Interr d	upt Enable bit						
bit 9	OC3IE: Output 1 = Interrupt r	equest not ena ut Compare Ch equest enable equest not ena	annel 3 Interr d	rupt Enable bit						
bit 8	DMA2IE: DM 1 = Interrupt r	•	ata Transfer (d	Complete Interr	upt Enable bit					
bit 7	IC8IE: Input C	Capture Chann request enable	el 8 Interrupt	Enable bit						
bit 6	0 = Interrupt r	equest not enable Capture Chann	abled	Enable bit						
	1 = Interrupt r	equest enable equest not ena	d							
bit 5	1 = Interrupt r	equest enable	d	rupt Enable bit						
bit 4	-	equest not ena nal Interrupt 1	Enable bit							

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 CNIE: Input Change Notification Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER	7-12: IEC2:	INTERRUPT	ENABLE CO	ONTROL RE	GISTER 2		
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T6IE	DMA4IE	—	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE
bit 7							bit
Legend:							
R = Readabl	e hit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unki	าดพท
			•	o Bitloolo			
bit 15	T6IE: Timer6	Interrupt Enat	ole bit				
		request enable					
	0 = Interrupt	request not en	abled				
bit 14	DMA4IE: DM	IA Channel 4 E	ata Transfer C	complete Interr	rupt Enable bit		
		request enable					
	-	request not en					
bit 13	-	ted: Read as					
bit 12	•	ut Compare Cl		upt Enable bit			
		request enable request not en					
bit 11	•	ut Compare Cl		upt Enable bit			
	1 = Interrupt	request enable request not en	ed				
bit 10	OC6IE: Outp	ut Compare Cl	nannel 6 Interro	upt Enable bit			
		request enable request not en					
bit 9	OC5IE: Outp	ut Compare Cl	nannel 5 Interro	upt Enable bit			
		request enable request not en					
bit 8	IC6IE: Input (Capture Chanr	el 6 Interrupt E	Enable bit			
		request enable request not en					
bit 7	IC5IE: Input (Capture Chanr	el 5 Interrupt E	Enable bit			
		request enable					
		request not en					
bit 6	•	Capture Chanr	•	nable bit			
		request enable request not en					
bit 5	•	Capture Chanr		Enable bit			
		request enable					
		request not en					
bit 4	DMA3IE: DM	IA Channel 3 E	ata Transfer C	complete Interr	rupt Enable bit		
		request enable					
	-	request not en					
bit 3		1 Event Interru	-				
		request enable request not en					

_ _

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2 (CONTINUED)

- bit 2 C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 1 SPI2IE: SPI2 Event Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3											
U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0				
—	_	DMA5IE	DCIIE	DCIEIE	_	—	C2IE				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE				
bit 7		INTOL	TOL	TOL	WIZOZIE	OIZOZIL	bit C				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-14	Unimplomon	ted: Read as '	o'								
bit 13	-			Complete Inter	rupt Enable bit						
bit 15	1 = Interrupt r	request enable request not ena	d		iupt Enable bit						
bit 12	•	vent Interrupt E									
		equest enable									
bit 11	•	request not ena Error Interrupt									
		request enable									
		request not enable									
bit 10-9	Unimplemen	ted: Read as '	0'								
bit 8	C2IE: ECAN2	2 Event Interrup	ot Enable bit								
		request enable request not ena									
bit 7	C2RXIE: ECA	AN2 Receive D	ata Ready Int	errupt Enable	bit						
		request enable									
h # 0	•	request not ena									
bit 6		nal Interrupt 4 request enable									
	•	request not ena									
bit 5	INT3IE: Exter	mal Interrupt 3	Enable bit								
		request enable request not ena									
bit 4	T9IE: Timer9	Interrupt Enab	le bit								
		request enable									
hit 2	-	request not ena									
bit 3		Interrupt Enab request enable									
		request not ena									
bit 2	MI2C2IE: 12C	2 Master Even	its Interrupt E	nable bit							
		request enable request not ena									
bit 1	SI2C2IE: 12C	2 Slave Events	Interrupt Ena	able bit							
		equest enable									
	-	request not ena									
bit 0		Interrupt Enab									
		request enable request not ena									

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			_			—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	—
bit 7							bit 0

Legend:										
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit,	read as '0'						
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-8	Unimple	Unimplemented: Read as '0'								
bit 7	C2TXIE: ECAN2 Transmit Data Request Interrupt Enable bit									
		 1 = Interrupt request enabled 0 = Interrupt request not enabled 								
bit 6	C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit									
		 1 = Interrupt request enabled 0 = Interrupt request not enabled 								
bit 5	DMA7IE: DMA Channel 7 Data Transfer Complete Enable Status bit									
		rrupt request enabled rrupt request not enabled								
bit 4	DMA6IE: DMA Channel 6 Data Transfer Complete Enable Status bit									
		rrupt request enabled rrupt request not enabled								
bit 3	Unimple	emented: Read as '0'								
bit 2	U2EIE:	UART2 Error Interrupt Enable	bit							
		rrupt request enabled rrupt request not enabled								
bit 1	U1EIE:	UART1 Error Interrupt Enable	bit							
	1 = Inter	1 = Interrupt request enabled								
	0 = Inter	rrupt request not enabled								
bit 0	Unimple	emented: Read as '0'								

REGISTER	7-15: IPC0	: INTERRUPT I	PRIORITY		EGISTER 0				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		T1IP<2:0>				OC1IP<2:0>			
bit 15							bit		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		IC1IP<2:0>	-	_		INT0IP<2:0>	-		
bit 7							bit		
Legend:									
R = Readable bit		W = Writable t	oit	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 15	Unimplemented: Read as '0'								
bit 14-12	T1IP<2:0>: Timer1 Interrupt Priority bits								
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>								
	•								
	•								
	001 = Interrupt is priority 1 000 = Interrupt source is disabled								
bit 11	Unimplemented: Read as '0'								
bit 10-8	OC1IP<2:0 >: Output Compare Channel 1 Interrupt Priority bits								
	111 = Interrupt is priority 7 (highest priority interrupt)								
	•								
	•								
	• 001 = Interrupt is priority 1								
	000 = Interrupt source is disabled								
bit 7	Unimplemented: Read as '0'								
bit 6-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits								
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>								
	•								
	•								
		rupt is priority 1 rupt source is disa	abled						
bit 3		ented: Read as 'o							
bit 2-0	INT0IP<2:0>: External Interrupt 0 Priority bits								
	111 = Interrupt is priority 7 (highest priority interrupt)								
	•								
	•								
	001 = Interr	rupt is priority 1							

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

— bit 15										
bit 15		T2IP<2:0>		—		OC2IP<2:0>				
							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		IC2IP<2:0>		—		DMA0IP<2:0>				
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	Unimpleme	nted: Read as 'o)'							
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits							
	111 = Interrupt is priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interru	upt is priority 1								
		upt source is disa								
bit 11	Unimpleme	nted: Read as 'o)'							
bit 10-8	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits									
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•									
	•									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 7		nted: Read as 'o								
bit 6-4	IC2IP<2:0>:	Input Capture C	hannel 2 Inte	rrupt Priority b	its					
		upt is priority 7 (ł								
	•									
	•									
	• 001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 3		nted: Read as 'o								
bit 2-0	-	D>: DMA Channe		sfer Complete	Interrunt Prio	rity hite				
511 2-0		upt is priority 7 (h		-		They bits				
	•			,						
	•									
	•	unt in priority 4								
		upt is priority 1 upt source is disa	abled							

REGISTER	7-17: IPC2	: INTERRUPT	PRIORITY	CONTROL R	EGISTER 2						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		U1RXIP<2:0>				SPI1IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		SPI1EIP<2:0>		_		T3IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, re	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15	Unimpleme	ented: Read as 'o)'								
bit 14-12	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits										
	111 = Inter	rupt is priority 7 (I	nighest priori	ty interrupt)							
	•										
	•										
	001 = Inter	001 = Interrupt is priority 1									
	000 = Inter	rupt source is dis	abled								
bit 11	Unimplemented: Read as '0'										
bit 10-8		SPI1IP<2:0>: SPI1 Event Interrupt Priority bits									
	111 = Inter	rupt is priority 7 (I	nighest priori	ty interrupt)							
	•										
	•										
		rupt is priority 1 rupt source is dis	abled								
bit 7		ented: Read as '									
bit 6-4	-	:0>: SPI1 Error Ir		ity bits							
		rupt is priority 7 (I	-	•							
	•		c								
	•										
	• 001 = Inter	rupt is priority 1									
		rupt source is dis	abled								
bit 3	Unimpleme	ented: Read as 'o	י)								
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits								
	111 = Inter	rupt is priority 7 (I	nighest priori	ty interrupt)							
	•										
	•										
	001 = Inter	rupt is priority 1									
		rupt source is dis	مامام								

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3	REGISTER 7-18:
--	-----------------------

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
_	_	—				DMA1IP<2:0>						
pit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
0-0	R/W-1	AD1IP<2:0>	R/VV-U	0-0	FV/VV-1	U1TXIP<2:0>	R/W-U					
 bit 7		AD 11F \2.02		—		011XIF<2.02	bit 0					
							Dit C					
_egend:												
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
oit 15-11	Unimplemen	ted: Read as 'd)'									
oit 10-8	DMA1IP<2:0	>: DMA Channe	el 1 Data Tra	nsfer Complete	Interrupt Prior	rity bits						
	111 = Interru	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
	•											
	•											
	• • • 001 = Interru	pt is priority 1										
	• • 001 = Interru 000 = Interru	pt is priority 1 pt source is disa	abled									
oit 7	000 = Interru											
bit 7 bit 6-4	000 = Interru Unimplemen	pt source is disa)'	e Interrupt Prio	rity bits							
	000 = Interru Unimplemen AD1IP<2:0>:	pt source is disanted: Read as 'o)' sion Complete		rity bits							
	000 = Interru Unimplemen AD1IP<2:0>:	pt source is disa ited: Read as 'o ADC1 Convers)' sion Complete		rity bits							
	000 = Interru Unimplemen AD1IP<2:0>:	pt source is disa ited: Read as 'o ADC1 Convers)' sion Complete		rity bits							
	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • •	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (h)' sion Complete		rity bits							
	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (h	₎ ' sion Completi nighest priorit		rity bits							
bit 6-4	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru 001 = Interru 000 = Interru	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (h pt is priority 1	_o ' sion Complete nighest priorit abled		rity bits							
bit 6-4 bit 3	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (h pt is priority 1 pt source is disa	_o ' sion Completa nighest priorit abled	y interrupt)	rity bits							
bit 6-4 bit 3	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ited: Read as 'control ADC1 Converse pt is priority 7 (h pt is priority 1 pt source is disa ited: Read as 'control)' sion Complete nighest priorit abled 5' smitter Interru	ny interrupt)	rity bits							
bit 6-4 bit 3	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (f pt is priority 1 pt source is disa ited: Read as 'o •: UART1 Trans)' sion Complete nighest priorit abled 5' smitter Interru	ny interrupt)	rity bits							
	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ited: Read as 'o ADC1 Convers pt is priority 7 (f pt is priority 1 pt source is disa ited: Read as 'o •: UART1 Trans)' sion Complete nighest priorit abled 5' smitter Interru	ny interrupt)	rity bits							
bit 6-4 bit 3	000 = Interru Unimplemen AD1IP<2:0>: 111 = Interru • • 001 = Interru 000 = Interru Unimplemen U1TXIP<2:0>	pt source is disa ited: Read as 'co ADC1 Convers pt is priority 7 (h pt is priority 1 pt source is disa ited: Read as 'co >: UART1 Trans pt is priority 7 (h)' sion Complete nighest priorit abled 5' smitter Interru	ny interrupt)	rity bits							

- CNIP<2:0> - - - - bit 15 bit bit bit bit U-0 R/W-1 R/W-0 U-0 R/W-1 R/W-0 R/W-0 - MI2C1IP<2:0> - SI2C1IP<2:0> bit Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 111 = Interrupt is priority 7 (highest priority bits bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) </th <th>U-0</th> <th>R/W-1</th> <th>R/W-0</th> <th>R/W-0</th> <th>U-0</th> <th>U-0</th> <th>U-0</th> <th>U-0</th>	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
bit 15 bit U-0 R/W-1 R/W-0 U-0 R/W-1 R/W-0 R/W-0 - MI2C1IP<2:0> - SI2C1IP<2:0> bit Legend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit - 9 Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' Dit Size1P 2: Size1P bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 	_		-	1011 0		_		_			
 MI2C1IP<2:0>	bit 15		01111 2.0					l bit 8			
 MI2C1IP<2:0>											
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	U-0	R/W-1		R/W-0	U-0	R/W-1		R/W-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)			MI2C1IP<2:0>		—		SI2C1IP<2:0>				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' x = Bit is unknown bit 15 Unimplemented: Read as '0' x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 	bit 7							bit (
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11-7 Unimplemented: Read as '0' bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 1 000 = Interrupt is priority 7 (highest priority interrupt) . .	Legend:										
bit 15 Unimplemented: Read as '0' bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'				
bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>		-									
 interrupt is priority 1 interrupt source is disabled interrupt source is disabled interrupt source is disabled interrupt is priority 7 (highest priority interrupt) interrupt is priority 1 interrupt source is disabled interrupt is priority 7 (highest priority interrupt) interrupt is priority 1 	bit 14-12										
<pre>000 = Interrupt source is disabled bit 11-7 Unimplemented: Read as '0' bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>		111 = Interrupt is priority 7 (highest priority interrupt)									
<pre>000 = Interrupt source is disabled bit 11-7 Unimplemented: Read as '0' bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • • • • • • • • • • • • • •</pre>											
<pre>000 = Interrupt source is disabled bit 11-7 Unimplemented: Read as '0' bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • • • • • • • • • • • • • •</pre>		•									
 bit 11-7 Unimplemented: Read as '0' bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) <											
bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	hit 11_7										
<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>		-			rupt Drigrity bits	_					
 . .	DIL 0-4										
<pre>000 = Interrupt source is disabled Unimplemented: Read as '0' bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>		<pre>111 = Interrupt is priority / (nignest priority interrupt)</pre>									
<pre>000 = Interrupt source is disabled Unimplemented: Read as '0' bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>		•									
<pre>000 = Interrupt source is disabled Unimplemented: Read as '0' bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>		•									
bit 3 Unimplemented: Read as '0' bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • •											
bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>	bit 3	Unimpleme	ented: Read as '	כ'							
• • • • • • • • • • • • • • • • • • • •	bit 2-0	-									
		111 = Interr	upt is priority 7 (highest priori	ty interrupt)						
		•									
		•									
		•	una la mulante d								
				abled							

REGISTER (-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5	REGISTER 7-20:	IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		IC8IP<2:0>		_		IC7IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		AD2IP<2:0>		—		INT1IP<2:0>					
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable I	bit	U = Unimpler	mented bit, rea	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	Unimpleme	nted: Read as 'o	כי								
bit 14-12	IC8IP<2:0>:	IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits									
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)									
	•	•									
	•	•									
		upt is priority 1									
		upt source is disa									
bit 11	-	nted: Read as 'o									
bit 10-8	IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits										
	 111 = Interrupt is priority 7 (highest priority interrupt) • 										
	•										
	•										
		upt is priority 1 upt source is disa	ahlad								
bit 7		nted: Read as '									
bit 6-4	-	ADC2 Convers		e Interrunt Prio	rity bits						
		upt is priority 7 (I		-							
	•		0 1	, ,							
	•										
	• 001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 3		nted: Read as '									
bit 2-0	-	External Interr		bits							
5112 0		upt is priority 7 (I									
	•		0	,							
	•										
	• 001 = Intern	upt is priority 1									
	000 = Interr	· · · · · · · · · · · · · · · · · · ·									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		T4IP<2:0>				OC4IP<2:0>				
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
0-0	R/W-1	OC3IP<2:0>	R/W-U	0-0	R/W-I	DMA2IP<2:0>	R/W-U			
 bit 7		00311 \2.02					bit			
Legend:										
R = Readab	le bit	W = Writable b	bit	U = Unimple	mented bit, rea	ad as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
bit 15	-	ented: Read as 'o								
bit 14-12		Timer4 Interrupt	•							
	111 = Interr	upt is priority 7 (h	nighest priori	ity interrupt)						
	•									
	•									
	001 = Interr	upt is priority 1								
		upt source is disa	abled							
bit 11	Unimpleme	nted: Read as 'o)'							
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits									
	111 = Interr	upt is priority 7 (h	nighest priori	ity interrupt)						
	•									
	•									
	• 001 = Interr	upt is priority 1								
		upt is phoney if	abled							
bit 7		ented: Read as 'o								
bit 6-4	-	: Output Compa		3 Interrunt Prio	rity bits					
		upt is priority 7 (h		•	ity bito					
	•		iigheot phon	ity interrupt)						
	•									
	•									
		upt is priority 1 upt source is disa	abled							
hit 2		ented: Read as '0								
bit 3	-			mafar Camplet	Latern at Drie	with a latita				
bit 2-0		0>: DMA Channe		-	e interrupt Prid	ority dits				
		upt is priority 7 (h	iignest priori	ity interrupt)						
	•									
		upt is priority 1 upt source is disa								

REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		U2TXIP<2:0>				U2RXIP<2:0>						
bit 15							bit					
	D 444 4	D 444 0	D 444 0		D 444 4	D # 44 0	D #44 0					
U-0	R/W-1		R/W-0	U-0	R/W-1	R/W-0	R/W-0					
 bit 7		INT2IP<2:0>		_		T5IP<2:0>	bit					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own					
bit 15	Unimpleme	nted: Read as '	כי									
bit 14-12		>: UART2 Trans										
	111 = Interr •	 111 = Interrupt is priority 7 (highest priority interrupt) • 										
	•	•										
	•	untin priority d										
		upt is priority 1 upt source is dis	abled									
bit 11		nted: Read as '										
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits											
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	•											
	•											
	001 = Interr	upt is priority 1										
	000 = Interr	upt source is dis	abled									
bit 7	-	nted: Read as '										
bit 6-4		: External Interr										
	111 = Interr	upt is priority 7 (I	nighest priorit	y interrupt)								
	•											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 3		ented: Read as '										
bit 2-0	-	Timer5 Interrupt										
		upt is priority 7 (I	•	v interrupt)								
	•	apt is priority i (i	inglineet priorit	<i>y</i>								
	•											
	• 001 = Interr	upt is priority 1										
	001 III.0II											

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		C1IP<2:0>		_		C1RXIP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	R/ W- I	SPI2IP<2:0>	R/W-0		N/W-1	SPI2EIP<2:0>	R/W-U				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, re	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 15	Unimpleme	ented: Read as 'o)'								
bit 14-12	C1IP<2:0>: ECAN1 Event Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interr	upt is priority 1									
	000 = Interr	rupt source is disa	abled								
bit 11	Unimpleme	ented: Read as 'o)'								
bit 10-8	C1RXIP<2:	0>: ECAN1 Rece	ive Data Re	ady Interrupt Pr	iority bits						
	111 = Interr	rupt is priority 7 (h	nighest priori	ity interrupt)							
	•										
	•										
		upt is priority 1									
		upt source is disa									
bit 7	Unimpleme	ented: Read as 'o)'								
bit 6-4		SPI2IP<2:0>: SPI2 Event Interrupt Priority bits									
	111 = Interr	rupt is priority 7 (h	nighest priori	ity interrupt)							
	•										
	•										
		upt is priority 1									
	000 = Interr	upt source is disa	abled								
bit 3	-	ented: Read as 'o									
bit 2-0		0>: SPI2 Error In	•	•							
	111 = Interr	rupt is priority 7 (h	nighest priori	ity interrupt)							
	•										
	•										
		upt is priority 1									
		upt source is disa									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		IC5IP<2:0>		—		IC4IP<2:0>						
oit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		IC3IP<2:0>		_		DMA3IP<2:0>						
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable b	pit	U = Unimpler	mented bit, rea	ad as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
bit 15	Unimpleme	nted: Read as '0)'									
bit 14-12		Input Capture C			its							
	•	 111 = Interrupt is priority 7 (highest priority interrupt) • 										
	•	•										
	•											
		upt is priority 1 upt source is disa	abled									
bit 11		nted: Read as '0										
oit 10-8	IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is priority 1											
		upt source is disa	abled									
bit 7	Unimpleme	nted: Read as '0)'									
bit 6-4		Input Capture C			its							
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)								
	•											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
bit 3	Unimpleme	nted: Read as 'o)'									
bit 2-0	DMA3IP<2:	0>: DMA Channe	el 3 Data Tra	nsfer Complete	Interrupt Price	rity bits						
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)								
	•											
	•											
		upt is priority 1										
	000 = Interr											

REGISTER	7-25: IPC1	0: INTERRUPT	PRIORITY	CONTROL	REGISTER 1	0					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		OC7IP<2:0>		—		OC6IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		OC5IP<2:0>				IC6IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	Unimpleme	nted: Read as 'o)'								
bit 14-12	OC7IP<2:0>	OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits									
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)									
	•										
	•										
	001 = Interr	upt is priority 1									
		upt source is dis	abled								
bit 11	Unimpleme	nted: Read as 'o)'								
bit 10-8	OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits										
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
	•										
	•										
		001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 7		nted: Read as '									
bit 6-4	-	Output Compa		5 Interrunt Prio	rity hits						
		upt is priority 7 (I		-	inty bito						
	•		ing noor priori	ty monapty							
	•										
	•										
		upt is priority 1 upt source is dis	abled								
bit 3		nted: Read as '									
bit 2-0	-	Input Capture C		errunt Priority h	nite						
511 2 0		upt is priority 7 (I			5113						
	•		gricer priori								
	•										
	•	unt in mul-site of									
		upt is priority 1 upt source is dis	abled								
	uuu – men										

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		T6IP<2:0>		_		DMA4IP<2:0>						
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
—	—	_	—	—		OC8IP<2:0>						
bit 7							bit (
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown					
bit 15	Unimplemen	Unimplemented: Read as '0'										
bit 14-12	T6IP<2:0>: Timer6 Interrupt Priority bits											
	111 = Interru	pt is priority 7 (I	nighest priority	y interrupt)								
	•											
	•											
		pt is priority 1 pt source is dis	abled									
bit 11	Unimplemen	ited: Read as 'o)'									
bit 10-8	DMA4IP<2:0	>: DMA Chann	el 4 Data Trar	nsfer Complete	Interrupt Prior	ity bits						
	DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interru	pt is priority 1										
		pt source is dis	abled									
bit 7-3	Unimplemen	ted: Read as ')'									
bit 2-0	OC8IP<2:0>:	: Output Compa	re Channel 8	Interrupt Prior	ity bits							
	111 = Interru	pt is priority 7 (I	nighest priority	y interrupt)								
	•											
	•											
	001 = Interru	pt is priority 1	• 001 = Interrupt is priority 1									

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		T8IP<2:0>		_		MI2C2IP<2:0>					
bit 15	·			·			bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		SI2C2IP<2:0>				T7IP<2:0>					
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 15	Unimplem	ented: Read as 'o)'								
bit 14-12	T8IP<2:0>: Timer8 Interrupt Priority bits										
	111 = Inte	rrupt is priority 7 (I	nighest priori	ity interrupt)							
	•										
	•										
		rrupt is priority 1									
		rrupt source is disa									
bit 11	-	Unimplemented: Read as '0'									
bit 10-8	MI2C2IP<2:0>: I2C2 Master Events Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	111 = Inte	rrupt is priority 7 (ł	nighest priori	ity interrupt)							
	•										
		001 = Interrupt is priority 1									
		rrupt source is disa									
bit 7	-	ented: Read as 'o									
bit 6-4		2:0>: I2C2 Slave E									
	111 = Inte	rrupt is priority 7 (I	highest priori	ity interrupt)							
	•										
	•										
		rrupt is priority 1									
L:1 0		rrupt source is disa									
bit 3	-	ented: Read as 'o									
bit 2-0		: Timer7 Interrupt	-	ity interrent)							
	⊥⊥⊥ = inte •	rrupt is priority 7 (ł	lignest prior	ity interrupt)							
	•										
	•										
		rrupt is priority 1	ablad								
	000 = Inte	rrupt source is disa	abled								

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		C2RXIP<2:0>				INT4IP<2:0>						
pit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		INT3IP<2:0>				T9IP<2:0>						
bit 7	·						bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown					
							-					
bit 15	Unimplemer	nted: Read as '	0'									
bit 14-12	Unimplemented: Read as '0' C2RXIP<2:0>: ECAN2 Receive Data Ready Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•		•									
	•											
	• 001 = Interru	pt is priority 1										
		ipt source is dis	abled									
bit 11		Unimplemented: Read as '0'										
bit 10-8	INT4IP<2:0>: External Interrupt 4 Priority bits											
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	•											
	•											
	• 001 = Interrupt is priority 1											
		000 = Interrupt source is disabled										
bit 7	Unimplemer	nted: Read as 'o	0'									
bit 6-4	INT3IP<2:0>	: External Interr	upt 3 Priority	bits								
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)										
	•											
	•											
	001 = Interru	pt is priority 1										
		pt source is dis	abled									
bit 3	Unimplemer	nted: Read as '	0'									
oit 2-0	T9IP<2:0>: ⊺	Fimer9 Interrupt	Priority bits									
	111 = Interru	upt is priority 7 (I	highest priori	y interrupt)								
	•											
	•											
	001 = Interru	pt is priority 1										
		ipt source is dis										

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
		DCIEIP<2:0>		—	_	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
_			—	—		C2IP<2:0>		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	U = Unimpler	mented bit, rea	id as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 15 bit 14-12 bit 11-3 bit 2-0	DCIEIP<2:0> 111 = Interru	Unimplemented: Read as '0' DCIEIP<2:0>: DCI Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • • • • • • • •						
		pt is priority 1 pt source is dis	abled					

REGISTER	R 7-30: IPC15:				REGISTER 15		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	—	—	—
bit 15	bit 15						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		DMA5IP<2:0>				DCIIP<2:0>	
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
bit 15-7	Unimplemen	ted: Read as '	0'				
bit 6-4	DMA5IP<2:0	>: DMA Chann	el 5 Data Trar	nsfer Complete	Interrupt Priorit	y bits	
	111 = Interru	pt is priority 7 (highest priority	y interrupt)			
	•						
	•						
	•						
	001 = Interru 000 = Interru	pt is priority 1 pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	DCIIP<2:0>:	DCI Event Inte	rrupt Priority b	oits			
				· · · · · · · · · · · · · · · · · · ·			

111 = Interrupt is priority 7 (highest priority interrupt)

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U1EIP<2:0>	REGISTER	7-31: IPC16	: INTERRUP1		CONTROL	REGISTER 1	6					
bit 15 bit 15 bit 15 bit 15 bit 15 bit 15 bit 7 bit 15 bit 10-8 U2EIP<2:0> 0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 7 bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 1 000 = Interrupt is priority 7 (highest priority interrupt) i f 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) i c c c c c c c c c c c c c c c c c c c	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U1EIP<2:0>		—	—	_	—		U2EIP<2:0>					
ulter ulter bit 7 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 15-11 Unimplemented: Read as '0' bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 . .001 = Interrupt source is disabled . bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits .111 = Interrupt is priority 7 (highest priority interrupt) 	bit 15							bit 8				
ulter ulter bit 7 ulter Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 15-11 Unimplemented: Read as '0' bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 . . .001 = Interrupt source is disabled 	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	_		U1EIP<2:0>		_	_	_	_				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' test is unknown x = Bit is unknown bit 15-11 Unimplemented: Read as '0' test is unknown x = Bit is unknown bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) . . 001 = Interrupt is priority 1 000 = Interrupt source is disabled . . bit 7 Unimplemented: Read as '0' . . . bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits . . 111 = Interrupt is priority 7 (highest priority interrupt) <td>bit 7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>bit (</td>	bit 7							bit (
In a Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown x = Bit is	Legend:											
bit 15-11 Unimplemented: Read as '0' bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
bit 10-8 U2EIP<2:0>: UART2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	leared x = Bit is unknown							
<pre>000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>	bit 10-8	111 = Interru • •	pt is priority 7 (l	•	•							
bit 6-4 U1EIP<2:0>: UART1 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • • • • • • • •												
<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>	bit 7	Unimplemen	ited: Read as 'o	0'								
·	bit 6-4	111 = Interru • • 001 = Interru	pt is priority 7 (I pt is priority 1	highest priori	•							
	bit 3-0											

REGISTER 7-31: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

REGISTER 7-32: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		C2TXIP<2:0>		—		C1TXIP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		DMA7IP<2:0>	1011 0			DMA6IP<2:0>						
bit 7		2.0				2.0	bit					
Legend:												
R = Readab	le bit	W = Writable I	bit	U = Unimple	mented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
L:1 4 F			.,									
bit 15	Unimplemented: Read as '0'											
bit 14-12	C2TXIP<2:0>: ECAN2 Transmit Data Request Interrupt Priority bits											
	 111 = Interrupt is priority 7 (highest priority interrupt) • 											
	•											
	•											
		rupt is priority 1										
	000 = Inter	rupt source is disa	abled									
bit 11	Unimplemented: Read as '0'											
bit 10-8	C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits											
	111 = Inter	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>										
	• 001 = Interrupt is priority 1											
	000 = Interrupt source is disabled											
bit 7		ented: Read as 'o										
bit 6-4	DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits											
		111 = Interrupt is priority 7 (highest priority interrupt)										
	•	•										
	•											
	•											
	•	nuntin nuinuite d										
		rupt is priority 1	abled									
hit 3	000 = Inter	rupt source is disa										
	000 = Inter Unimpleme	rupt source is dis ented: Read as 'o)'	nofor Complete		ik , bita						
	000 = Inter Unimpleme DMA6IP<2:	rupt source is dis ented: Read as 'o :0>: DMA Channe	o' el 6 Data Tra	-	Interrupt Prior	ity bits						
bit 3 bit 2-0	000 = Inter Unimpleme DMA6IP<2:	rupt source is dis ented: Read as 'o	o' el 6 Data Tra	-	Interrupt Prior	ity bits						
	000 = Inter Unimpleme DMA6IP<2:	rupt source is dis ented: Read as 'o :0>: DMA Channe	o' el 6 Data Tra	-	e Interrupt Prior	ity bits						
	000 = Inter Unimpleme DMA6IP<2:	rupt source is dis ented: Read as 'o :0>: DMA Channe	o' el 6 Data Tra	-	e Interrupt Prior	ity bits						
	000 = Inten Unimpleme DMA6IP<2: 111 = Inten	rupt source is dis ented: Read as 'o :0>: DMA Channe	_{)'} el 6 Data Tra highest priori	-	Interrupt Prior	ity bits						

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
0-0	0-0		0-0	11-0		<3:0>	11-0				
		_			ILN	< 3.0>	L:1 0				
bit 15							bit 8				
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
—				VECNUM<6:0	>						
bit 7	·						bit 0				
Legend:											
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-12	Unimplemer	nted: Read as 'o	,								
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits										
	1111 = CPU Interrupt Priority Level is 15										
	•	•									
	•										
	0001 = CPU	Interrupt Priority	/ Level is 1								
		Interrupt Priority									
bit 7	Unimplemer	nted: Read as 'o	,								
bit 6-0	VECNUM<6:	:0>: Vector Num	ber of Pendii	ng Interrupt bits							
	0111111 = Interrupt Vector pending is number 135										
	•		C C								
	•										
	•	nterrupt Vector p									

0000001 = Interrupt Vector pending is number 9 0000000 = Interrupt Vector pending is number 8

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are									
	initialized, such that all user interrup									
	sources are assigned to priority level 4.									

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR and initialize the IVT with the correct vector address will depend on the programming language (i.e., C or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

NOTES:

8.0 DIRECT MEMORY ACCESS (DMA)

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70182) in the "dsPIC33F Family Reference Manual", which is available the Microchip from web site (www.microchip.com).

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

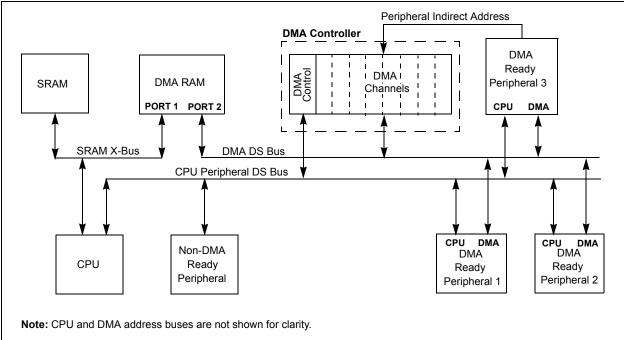
The dsPIC33FJXXXGPX06/X08/X10 peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1: PERIPHERALS WITH DMA SUPPORT

Peripheral	IRQ Number
INTO	0
Input Capture 1	1
Input Capture 2	5
Output Compare 1	2
Output Compare 2	6
Timer2	7
Timer3	8
SPI1	10
SPI2	33
UART1 Reception	11
UART1 Transmission	12
UART2 Reception	30
UART2 Transmission	31
ADC1	13
ADC2	21
DCI	60
ECAN1 Reception	34
ECAN1 Transmission	70
ECAN2 Reception	55
ECAN2 Transmission	71

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.


The DMA controller supports the following features:

- · Word or byte sized data transfers.
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral.
- Indirect Addressing of DMA RAM locations with or without automatic post-increment.
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral.
- One-Shot Block Transfers Terminating DMA transfer after one block transfer.
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete.
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately.
- Automatic or manual initiation of block transfers
- Each channel can select from 20 possible sources of data sources or destinations.

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

^{© 2009} Microchip Technology Inc.

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
CHEN	SIZE	DIR	HALF	NULLW	_		_			
oit 15	·					•	bit			
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
_	_	-	E<1:0>	_	_	MODE				
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	CHEN: Chan									
	1 = Channel e 0 = Channel e									
bit 14		ansfer Size bi	t							
	1 = Byte									
	0 = Word									
bit 13				ation bus select						
				to peripheral ad o DMA RAM ad						
bit 12	HALF: Early Block Transfer Complete Interrupt Select bit									
				ipt when half of ipt when all of th						
bit 11		Data Peripher								
		write to periph			write (DIR bit ı	must also be cle	ar)			
bit 10-6	-	ted: Read as '	0'							
bit 5-4	AMODE<1:0	>: DMA Chann	el Operating I	Mode Select bit	S					
	11 = Reserve	-								
		ral Indirect Add	•							
		Indirect witho								
bit 3-2		ted: Read as '								
bit 1-0	-			ode Select bits						
					ansfer from/to e	each DMA RAM	buffer)			
	10 = Continue	ous, Ping-Pong	g modes enab	led						
		ot, Ping-Pong								
		ous, Ping-Pong	y modes ulsat	Jieu						

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

REGISTER 8-2: DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0						
—	IRQSEL6 ⁽²⁾	IRQSEL5 ⁽²⁾	IRQSEL4 ⁽²⁾	IRQSEL3 ⁽²⁾	IRQSEL2 ⁽²⁾	IRQSEL1 ⁽²⁾	IRQSEL0 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **FORCE:** Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 Unimplemented: Read as '0'

- bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾ 0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ
 - **Note 1:** The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Please see Table 8-1 for a complete listing of IRQ numbers for all interrupt sources.

REGISTER 8-3: DMAxSTA: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER A

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

REGISTER 8-4: DMAxSTB: DMA CHANNEL x RAM START ADDRESS OFFSET REGISTER B

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB	<15:8>			
bit 15							bit 8
DAMO	DAMO	D/// 0	DAMA	DAMO		DAVA	DAVO
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	3<7:0>			
bit 7							bit 0
ſ							
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown

bit 15-0 STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)

REGISTER 8-5: DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	_	—	CNT<	9:8> (2)
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	:7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is		x = Bit is unkr	nown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

REGISTER 8	-/: DMAC	S0: DMA CO	NIKOLLER	STATUS RE	GISTER 0		
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 15							bit
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0
bit 7							bit
Legend:		C = Clear onl	v bit				
R = Readable	bit	W = Writable	-	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15 bit 14	1 = Write colli 0 = No write c	nannel 7 Periph ision detected collision detecte nannel 6 Periph	ed	-			
	0 = No write o	ision detected collision detected					
bit 13	1 = Write colli	annel 5 Periph ision detected collision detecte		lision Flag bit			
bit 12	1 = Write colli	nannel 4 Periph ision detected collision detecte		lision Flag bit			
bit 11	1 = Write colli	nannel 3 Periph ision detected collision detecte		lision Flag bit			
bit 10	1 = Write colli	nannel 2 Periph ision detected collision detecte		lision Flag bit			
bit 9	1 = Write colli	nannel 1 Periph ision detected collision detecte		lision Flag bit			
bit 8	1 = Write colli	nannel 0 Periph ision detected collision detecte		lision Flag bit			
bit 7	1 = Write colli	nannel 7 DMA I ision detected collision detecte		llision Flag bit			
bit 6	1 = Write colli	nannel 6 DMA I ision detected collision detecte		llision Flag bit			
bit 5	1 = Write colli	nannel 5 DMA I ision detected collision detecte		llision Flag bit			
bit 4	1 = Write colli	nannel 4 DMA I ision detected collision detecte		llision Flag bit			

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected

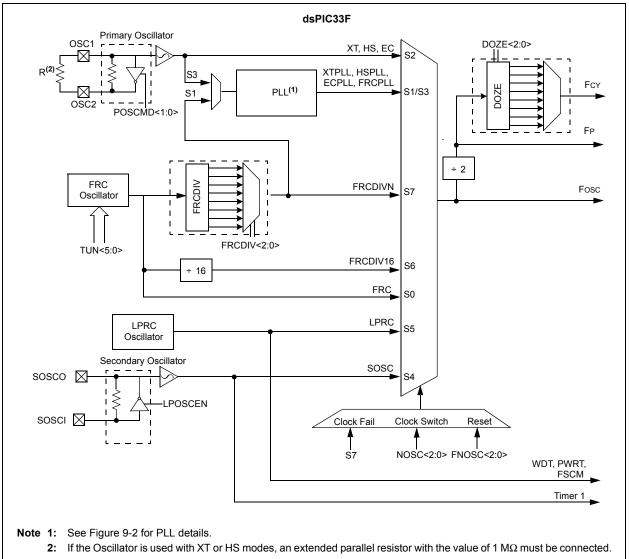
0 = No write collision detected

REGISTER 8	3-8: DMAC	CS1: DMA CC	NTROLLER	STATUS R	EGISTER 1						
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1				
	—	LSTCH<3:0>									
bit 15							bit 8				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cl		x = Bit is unkr	nown				
bit 15-12	Unimpleme	nted: Read as '	0'								
bit 11-8	LSTCH<3:0>	>: Last DMA Ch	annel Active b	oits							
		MA transfer ha	s occurred sin	ce system Re	eset						
	1110-1000 =	= Reserved data transfer w	as by DMA Ch	annel 7							
	0101 = Last	0110 = Last data transfer was by DMA Channel 6 0101 = Last data transfer was by DMA Channel 5									
		0100 = Last data transfer was by DMA Channel 4 0011 = Last data transfer was by DMA Channel 3									
		data transfer w									
	0001 = Last	data transfer w	as by DMA Ch	annel 1							
		data transfer w	-								
bit 7		nnel 7 Ping-Po	-	s Flag bit							
		B register sele									
bit 6		nnel 6 Ping-Po		s Flag bit							
		B register sele	-	·							
		A register select									
bit 5		nnel 5 Ping-Po	-	s Flag bit							
		B register sele									
bit 4		nnel 4 Ping-Pol		s Flag bit							
		B register sele	-								
	0 = DMA4ST	A register select	cted								
bit 3		nnel 3 Ping-Po	-	s Flag bit							
		TB register selection TA register selection									
bit 2		-		s Elan hit							
bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit 1 = DMA2STB register selected										
		A register selec									
bit 1	PPST1: Cha	nnel 1 Ping-Po	ng Mode Statu	s Flag bit							
		B register sele									
L H 0		A register sele		- F lear 1.11							
bit 0		nnel 0 Ping-Po	-	s Flag bit							
		TB register selection TA register selection									

REGISTER 8-9:	DSA	DR: MOST RECE		A RAM ADDRES	S		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD)R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAI	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemen	ited bit, re	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleare	d	x = Bit is unknown	

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Oscillator**" (DS70186) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 oscillator system provides:

 Various external and internal oscillator options as clock sources

- An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: dsPIC33FJXXXGPX06/X08/X10 OSCILLATOR SYSTEM DIAGRAM

9.1 CPU Clocking System

There are seven system clock options provided by the dsPIC33FJXXXGPX06/X08/X10:

- FRC Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- · Primary Oscillator with PLL
- · Secondary (LP) Oscillator
- LPRC Oscillator
- FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- 1. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 2. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 3. EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 22.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJXXXGPX06/X08/X10 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

$FCY = \frac{FOSC}{2}$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

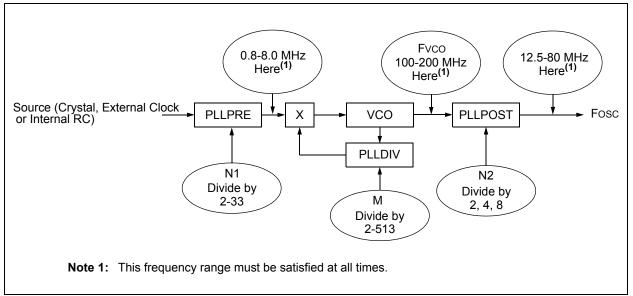
For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

 $FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$

XT WITH PLL MODE

EXAMPLE


 $F_{CY} = \frac{F_{OSC}}{2} = \frac{1}{2} \left(\frac{1000000 \cdot 32}{2 \cdot 2} \right) = 40 \text{ MIPS}$

EQUATION 9-3:

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz range needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: dsPIC33FJXXXGPX06/X08/X10 PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	-
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	-
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER ⁽¹⁾										
U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y			
—		COSC<2:0>		—		NOSC<2:0> ⁽²⁾				
bit 15							bit			
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0			
CLKLOCK	_	LOCK	_	CF		LPOSCEN	OSWEN			
bit 7							bit			
Legend:		y = Value set f	rom Configu	ration bits on P	OR					
Legend:y = Value set from Configuration bits on PORR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15	Unimplemer	nted: Read as '0	,							
bit 14-12	-	Current Oscilla		bits (read-only	()					
5		C oscillator (FR		· · · (· · · · ·)	,					
	001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC)									
	011 = Primary oscillator (XT, HS, EC) with PLL									
		dary oscillator (
	101 = Low-Power RC oscillator (LPRC)									
		C oscillator (FR								
		C oscillator (FR	-	e-by-n						
bit 11	Unimplemented: Read as '0'									
bit 10-8		New Oscillator		s ⁽²⁾						
	000 = Fast RC oscillator (FRC)									
	001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC)									
		ry oscillator (XT,								
		dary oscillator (\$		IFLL						
		ower RC oscilla								
		C oscillator (FR	```	e-bv-16						
		C oscillator (FR								
bit 7		Clock Lock Enat		,						
	1 = If (FCKSM0 = 1), then clock and PLL configurations are locked									
	If (FCKSM0 = 0), then clock and PLL configurations may be modified 0 = Clock and PLL selections are not locked, configurations may be modified									
				ked, configurat	ions may be n	nodified				
bit 6	Unimplemented: Read as '0'									
bit 5		_ock Status bit (ı	• /							
		s that PLL is in lo s that PLL is out				L is disabled				
bit 4	Unimplemented: Read as '0'									
bit 3	CF: Clock Fa	ail Detect bit (rea	d/clear by ap	oplication)						
	1 = FSCM has detected clock failure									
	0 = FSCM h	as not detected	clock failure							
bit 2	Unimplemer	nted: Read as 'o	3							
		gister require an <i>y Reference Ma</i>				"Oscillator" (DS	70186) in †			

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator

bit 0 OSWEN: Oscillator Switch Enable bit

- 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
- 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator"** (DS70186) in the *"dsPIC33F Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
ROI	FX/W-0	DOZE<2:0>	FX/ VV- I	DOZEN ⁽¹⁾	N/W-0	FRCDIV<2:0>	N/W-0		
bit 15		DOZL~2.02		DOZEN			bit		
							bit		
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PLLP	OST<1:0>	_			PLLPRE<4:0>				
bit 7							bit		
Legend:		-	-	ration bits on Po	OR				
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is		x = Bit is unkno	own		
L:1 4 5									
bit 15		er on Interrupt bi		d the process	r clock/poriphe	eral clock ratio is	sot to 1.1		
		ts have no effect					361 10 1.1		
bit 14-12	DOZE<2:0>	: Processor Cloo	k Reduction	Select bits					
	000 = Fcy/1								
	001 = FCY/2								
	010 = FCY/4 011 = FCY/8								
	100 = FCY/1	· /							
	101 = FCY/3								
	110 = FCY/6 111 = FCY/1								
bit 11		-	o hit(1)						
	DOZEN: DOZE Mode Enable bit ⁽¹⁾ 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks								
		or clock/periphe							
bit 10-8	FRCDIV<2:0	>: Internal Fast	RC Oscillato	or Postscaler bit	S				
		000 = FRC divide by 1 (default) 001 = FRC divide by 2							
	001 = FRC 0 010 = FRC 0								
	011 = FRC 0								
	100 = FRC c								
	101 = FRC (110 = FRC (-							
		divide by 256							
bit 7-6		-	Output Divide	er Select bits (al	so denoted as	'N2', PLL postsc	aler)		
	00 = Output/					•	·		
	01 = Output/								
	10 = Reserv 11 = Output/								
bit 5	•		ר י						
bit 4-0	Unimplemented: Read as '0' PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as 'N1', PLL prescaler)								
		ut/2 (default)				····,· p·····	,		
	00001 = Inp								
	•								
	•								

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

REGISTER 9-	-3: PLLF	BD: PLL FEE	DBACK DI	VISOR REGIS	TER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾
	_	—	_	—	_	—	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLE)IV<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unk		known		

bit 15-9 Unimplemented: Read as '0'

bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

```
000000000 = 2

00000001 = 3

000000010 = 4

.

.

000110000 = 50 (default)

.

.

11111111 = 513
```

REGISTER 9-4:

OSCTUN: FRC OSCILLATOR TUNING REGISTER

	0001						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—			_	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			TUN≪	<5:0> ⁽¹⁾		
bit 7							bit C
Legend:	1. 1.9						
R = Readab		W = Writable I	DIT		nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 15-6	Unimplomor	ted: Read as 'o	· ·				
	-						
oit 5-0		RC Oscillator T enter frequency))) NU-)			
		enter frequency					
	•		11.2070 (0.	20 111 12)			
	•						
	•						
	000001 = Ce	enter frequency	+ 0.375% (7.	40 MHz)			
		enter frequency					
	111111 = C e	enter frequency	- 0.375% (7.3	345 MHz)			
	•						
	- 100001 - Co	enter frequency	11 625% /6	52 MHz)			
		enter frequency					
				,			

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, dsPIC33FJXXXGPX06/X08/X10 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 22.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

NOTES:

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9.
 "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJXXXGPX06/X08/X10 devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

dsPIC33FJXXXGPX06/X08/X10 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

dsPIC33FJXXXGPX06/X08/X10 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled.
- Any form of device Reset.
- A WDT time-out.

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE PWRSAV #IDLE MODE ; Put the device into SLEEP mode ; Put the device into IDLE mode

10.2.2 IDLE MODE

Idle mode has these features:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLK-DIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLK-DIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

It is also possible to use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLK-DIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is now placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled via the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is only enabled if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of 1 instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of 1 instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD		—	DCIMD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15		⁻⁵ Module Disal					
		nodule is disable nodule is enable					
bit 14		4 Module Disa					
bit i i		nodule is disable					
	-	nodule is enable					
bit 13	T3MD: Timer	3 Module Disa	ble bit				
		nodule is disable					
		nodule is enable					
bit 12	_	2 Module Disa					
	-	odule is disable odule is enable					
bit 11		1 Module Disal					
	-	nodule is disable					
	-	odule is enable					
bit 10-9	Unimplemer	nted: Read as '	0'				
bit 8	DCIMD: DCI	Module Disable	e bit				
		ule is disabled ule is enabled					
bit 7	I2C1MD: I ² C	1 Module Disat	ole bit				
		dule is disabled dule is enabled					
bit 6	U2MD: UAR	T2 Module Disa	ble bit				
	1 = UART2 n	nodule is disabl	ed				
	0 = UART2 n	nodule is enable	ed				
bit 5	U1MD: UAR	T1 Module Disa	ible bit				
	-	nodule is disabl nodule is enabl					
bit 4		I2 Module Disa					
~	1 = SPI2 mo	dule is disabled					
bit 3		I1 Module Disa	ble bit				
		dule is disabled					
	0 = SPI1 mo	dule is enabled					
bit 2	C2MD: ECA	N2 Module Disa	able bit				
	-	nodule is disab					
	0 = ECAN2 n	nodule is enabl	ed				

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 C1MD: ECAN2 Module Disable bit
 - 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled

REGISTER	10-2: PMD2	2: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 2	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	IC8MD: Input	Capture 8 Mod	lule Disable bit	t			
		oture 8 module oture 8 module					
bit 14	IC7MD: Input	Capture 7 Mod	dule Disable bit	t			
		oture 7 module oture 7 module					
bit 13	IC6MD: Input	Capture 6 Mod	dule Disable bit	t			
		oture 6 module oture 6 module					
bit 12	IC5MD: Input	Capture 5 Mod	dule Disable bit	t			
		oture 5 module oture 5 module					
bit 11	IC4MD: Input	Capture 4 Mod	dule Disable bit	t			
		oture 4 module oture 4 module					
bit 10	IC3MD: Input	Capture 3 Mod	dule Disable bit	t			
		oture 3 module oture 3 module					
bit 9	IC2MD: Input	Capture 2 Mod	dule Disable bit	t			
		oture 2 module oture 2 module					
bit 8	IC1MD: Input	Capture 1 Mod	dule Disable bit	t			
		oture 1 module oture 1 module					
bit 7	OC8MD: Out	put Compare 8	Module Disabl	e bit			
		ompare 8 modu ompare 8 modu					
bit 6	OC7MD: Out	put Compare 4	Module Disabl	e bit			
	1 = Output Co	ompare 7 modu ompare 7 modu	ile is disabled				
bit 5		put Compare 6		e bit			
	1 = Output Co	ompare 6 modu ompare 6 modu	ile is disabled				
bit 4	OC5MD: Out	, put Compare 5 ompare 5 modu ompare 5 modu	Module Disabl Ile is disabled	e bit			

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled0 = Output Compare 1 module is enabled

REGISTER	10-3: PMD	3: PERIPHER	AL MODUL	E DISABLE C	ONTROL R	EGISTER 3	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T9MD	T8MD	T7MD	T6MD			—	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	0-0	0-0	0-0		0-0	I2C2MD	AD2MD
bit 7						IZOZIND	bit
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14 bit 13 bit 12	0 = Timer9 m T8MD: Timer 1 = Timer8 m 0 = Timer8 m T7MD: Timer 1 = Timer7 m 0 = Timer7 m T6MD: Timer	odule is disable odule is enable 8 Module Disat odule is disable odule is enable 7 Module Disat odule is disable odule is enable 6 Module Disat odule is disable	ed ole bit ed ole bit ed ed ed ole bit				
bit 11-2 bit 1	Unimplemen	odule is enable ited: Read as ' 2 Module Disat	כ'				
bit 0	1 = I2C2 mod 0 = I2C2 mod AD2MD: AD2 1 = AD2 mod	2 Module Disat dule is disabled dule is enabled 2 Module Disab ule is disabled ule is enabled					

NOTES:

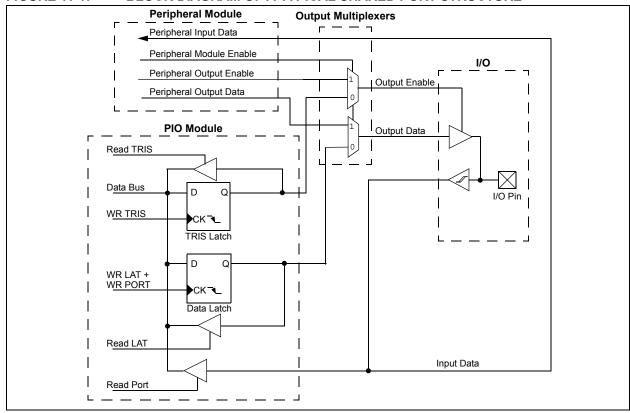
11.0 I/O PORTS

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.


All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

Note: The voltage on a digital input pin can be between -0.3V to 5.6V.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2009 Microchip Technology Inc.

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See **"Pin Diagrams"** for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The use of the ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the ADC port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	In devices with two ADC modules, if the
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0 MOV W0, TRISBB NOP btss PORTB, #13

; Configure PORTB<15:8> as inputs ; and PORTB<7:0> as outputs ; Delay 1 cycle ; Next Instruction

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJXXXGPX06/X08/X10 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the weak pull-up enable (CNxPUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

12.0 TIMER1

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11.** "**Timers**" (DS70205) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Timer1 also supports these features:

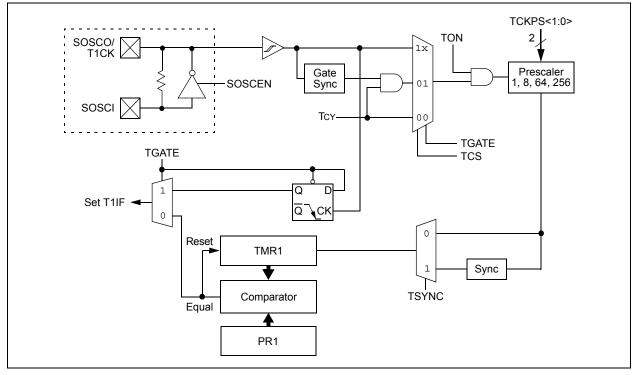

- Timer gate operation
- · Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER	12-1: T1CO	N: TIMER1 C	ONTROL R	EGISTER						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	_	TSIDL	_	—	_	—	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
_	TGATE		S<1:0>	_	TSYNC	TCS	_			
bit 7			-				bit (
Legend:										
R = Readabl	lo hit	W = Writable	bit	II – Unimplo	mented bit, read	d ac (0)				
				-						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
bit 15	TON: Timer1	On bit								
	1 = Starts 16									
	0 = Stops 16									
bit 14	-	nted: Read as '								
bit 13	-	in Idle Mode bi								
		nue module ope module operat			dle mode					
bit 12-7		nted: Read as '								
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit									
	When T1CS	= 1:								
	This bit is ign	nored.								
	When T1CS = 0:									
	 = Gated time accumulation enabled 0 = Gated time accumulation disabled 									
bit 5-4	TCKPS<1:0>: Timer1 Input Clock Prescale Select bits									
	11 = 1:256 10 = 1:64									
	01 = 1:8									
	00 = 1:1									
bit 3	Unimplemer	nted: Read as '	0'							
bit 2	TSYNC: Time	er1 External Cl	ock Input Syr	hchronization S	elect bit					
	When TCS =	: 1:								
		nize external clo								
	-	ynchronize exte	ernal clock inp	but						
	When TCS = This bit is ign									
bit 1	-	Clock Source	Select bit							
-		clock from pin		rising edge)						
hit 0			o'							
bit 0	Unimplemen	nted: Read as '	U							

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11.** "**Timers**" (DS70205) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- · Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

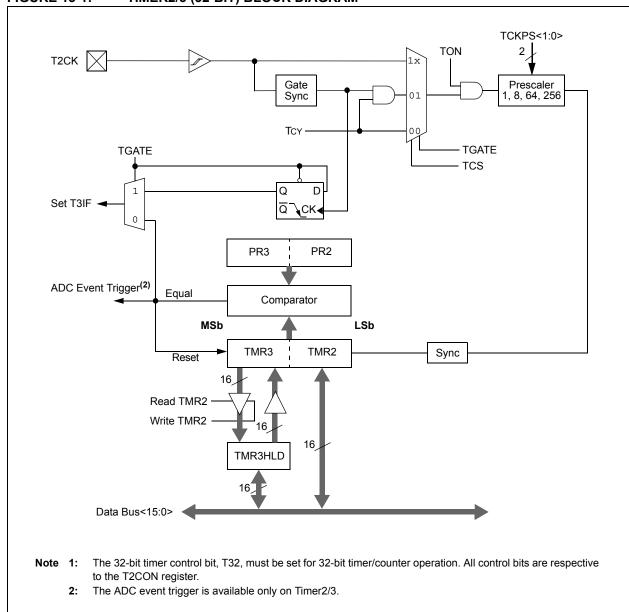
Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

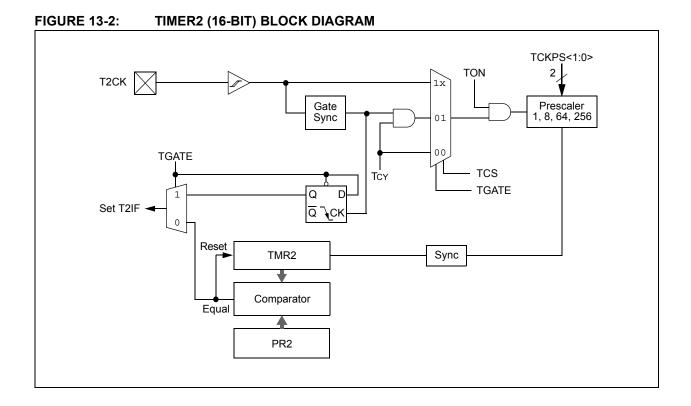
Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.


The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contains the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contains the least significant word.

To configure any of the timers for individual 16-bit operation:


- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

FIGURE 13-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM⁽¹⁾

© 2009 Microchip Technology Inc.

REGISTER	13-1: TxCO	N (T2CON, T	4CON, T6C	ON OR T8COI	N) CONTROI	REGISTER	
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	<u> </u>	TSIDL	—		—	—	
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	TGATE		S<1:0>	T32	_	TCS ⁽¹⁾	_
bit 7	·						bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timerx						
	When T32 = 1 = Starts 32						
	$1 = 3 \tan 3 32$ $0 = 3 \tan 3 32$						
	When T32 =	0:					
	1 = Starts 16						
	0 = Stops 16						
bit 14	•	nted: Read as '					
bit 13	•	in Idle Mode bi					
		nue module ope module operat		device enters Idl ode	e mode		
bit 12-7	Unimplemer	nted: Read as '	0'				
bit 6	TGATE: Time	erx Gated Time	Accumulatio	n Enable bit			
	When TCS =						
	This bit is ign						
	When TCS =		a anablad				
		ne accumulation					
bit 5-4	TCKPS<1:0>	>: Timerx Input	Clock Presca	ale Select bits			
	11 = 1:256						
	10 = 1:64						
	01 = 1:8						
bit 3	00 = 1:1 T32 · 32-bit T	imer Mode Sele	act hit				
DIL D		nd Timery form		oit timer			
		nd Timery act a	•				
bit 2		nted: Read as '					
bit 1		Clock Source S					
		clock from pin		rising edge)			
	0 = Internal c						
bit 0	Unimplemer	nted: Read as '	o'				

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 1	13-2: TyCON	I (T3CON, T	5CON, T7C	ON OR T9CO	N) CONTRO	L REGISTER	
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾		TSIDL ⁽²⁾	—	—	_	—	_
bit 15		•					bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS	<1:0> ⁽¹⁾	—	—	TCS ^(1,3)	—
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	TON: Timery	On bit ⁽¹⁾					
	1 = Starts 16-						
	0 = Stops 16-	•	_				
bit 14	-	ted: Read as '					
bit 13	•	n Idle Mode bit					
		ue module ope module operat		device enters Id ode	le mode		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	TGATE: Time	ry Gated Time	Accumulatio	n Enable bit ⁽¹⁾			
	When TCS = This bit is igno						
		<u>o:</u> e accumulatior e accumulatior					
bit 5-4				ale Select bits ⁽¹⁾			
	11 = 1:256	. Innere input					
	10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3-2	-	ted: Read as '					
bit 1		Clock Source S		riging odes)			
	1 = External c 0 = Internal cl	lock from pin ∃ ock (Fc⋎)	IYUN (ON THE	nsing eage)			
	Unimplemen						

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

functions are set through T2CON.

NOTES:

14.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJXXXGPX06/X08/X10 devices support up to eight input capture channels.

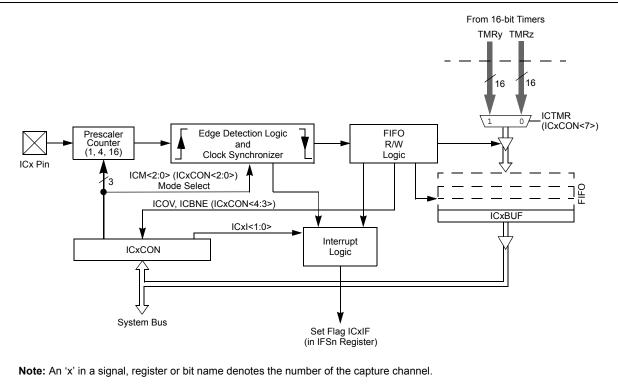
The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

Simple Capture Event modes 1. -Capture timer value on every falling edge of input at ICx pin

FIGURE 14-1:

-Capture timer value on every rising edge of input at ICx pin

INPUT CAPTURE BLOCK DIAGRAM


- Capture timer value on every edge (rising and 2. falling)
- 3. Prescaler Capture Event modes
 - -Capture timer value on every 4th rising edge of input at ICx pin
 - -Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- · Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- · Input capture can also be used to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to 1 (ICI < 1:0 > = 0.0).

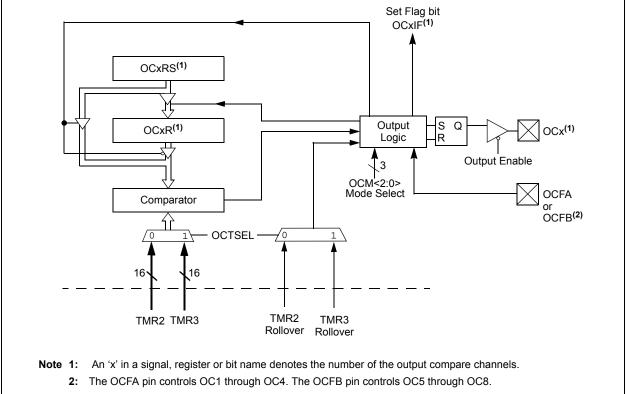
14.1 Input Capture Registers

REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
—		ICSIDL				_	—			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0			
ICTMR ⁽¹⁾	ICI<	<1:0>	ICOV	ICBNE		ICM<2:0>				
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15-14	Unimplemen	nted: Read as '	0'							
bit 13	ICSIDL: Inpu	t Capture Mod	ule Stop in Idle	e Control bit						
		ture module wi								
				operate in CPU	Idle mode					
bit 12-8	•	nted: Read as								
bit 7		t Capture Time								
		ntents are capt ntents are capt	•							
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits									
	10 = Interrup 01 = Interrup	t on every four t on every third t on every seco t on every capt	capture even	t						
bit 4	-) bit (read-only)						
	1 = Input cap	ture overflow c capture overflo	ccurred	, , , , , , , , , , , , , , , , , , , ,						
bit 3	ICBNE: Input	t Capture Buffe	r Empty Statu	s bit (read-only)					
				ast one more c	apture value c	an be read				
		ture buffer is e								
bit 2-0		put Capture M								
	(Risin 110 = Unuse 101 = Captur 100 = Captur 011 = Captur 010 = Captur 001 = Captur	g edge detect of d (module disa re mode, every re mode, every re mode, every re mode, every re mode, every re mode, every :0> bits do not	only, all other o bled) 16th rising edg 4th rising edge rising edge falling edge edge (rising a control interru	control bits are lge le	not applicable	eep or Idle mode .)	2			

Note 1: Timer selections may vary. Refer to the device data sheet for details.

15.0 OUTPUT COMPARE


Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) in the "dsPIC33F Family Reference Manual",, which is available on the Microchip web site (www.microchip.com).

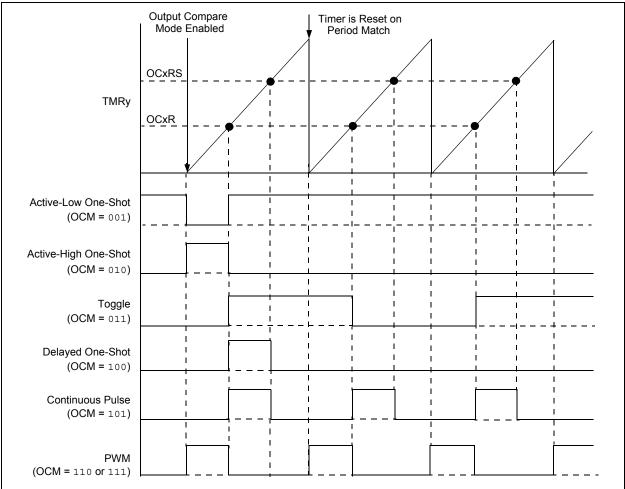
The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user


TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note:	See Section 13. "Output Compare"
	(DS70209) in the "dsPIC33F Family Ref-
	erence Manual" for OCxR and OCxRS
	register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active-Low One-Shot	0	OCx rising edge
010	Active-High One-Shot	1	OCx falling edge
011	Toggle	Current output is maintained	OCx rising and falling edge
100	Delayed One-Shot	0	OCx falling edge
101	Continuous Pulse	0	OCx falling edge
110	PWM without Fault Protection	'0', if OCxR is zero'1', if OCxR is non-zero	No interrupt
111	PWM with Fault Protection	'0', if OCxR is zero'1', if OCxR is non-zero	OCFA falling edge for OC1 to OC4

FIGURE 15-2: OUTPUT COMPARE OPERATION

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

bit 15							bit 8
—	—	OCSIDL	—	_	—	—	—
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

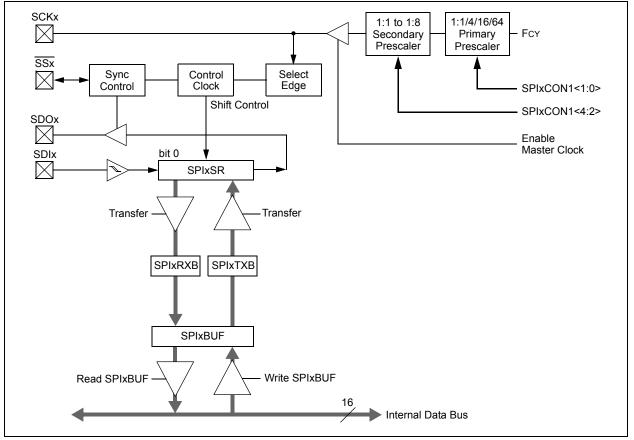
bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Compare x
	0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulses on OCx pin
	011 = Compare event toggles OCx pin
	010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

NOTES:

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

This data sheet summarizes the features Note: of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F Family Reference Manual", which is available the Microchip from web site (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, ADC, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].


Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
SPIEN	_	SPISIDL	_	—	—	—	_					
bit 15				·			bit 8					
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0					
0-0	SPIROV	0-0	0-0	0-0	0-0	SPITBF	SPIRBF					
 bit 7	SFIROV	—	—			SFILDE	bit (
Legend:		C = Clearable	bit									
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
hit 15		Enchla hit										
bit 15		SPIEN: SPIx Enable bit										
	 1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins 0 = Disables module 											
bit 14	Unimplemen	ted: Read as 'd)'									
bit 13	SPISIDL: Stop in Idle Mode bit											
		ue module oper module operati		device enters Id ode	lle mode							
bit 12-7	Unimplemen	ted: Read as 'd)'									
bit 6	SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the											
	previous data in the SPIxBUF register 0 = No overflow has occurred											
bit 5-2	Unimplemen	ted: Read as 'd)'									
bit 1	-	SPITBF: SPIx Transmit Buffer Full Status bit										
		1 = Transmit not yet started, SPIxTXB is full										
		0 = Transmit started, SPIxTXB is empty										
	Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.											
bit 0	-	x Receive Buffe										
		complete, SPIxF		-								
	0 = Receive is	s not complete,	SPIxRXB is									
				transfers data f			/D					
	Automatically	cleared in hard	iware when o	core reads SPIX	COF location,	reading SPIxRX	D.					

REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER	16-2: SPIxC	ON1: SPIx C	ONTROL RE	GISTER 1						
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
bit 15		·				·	bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	2)	PPRE-	<1:0> ⁽²⁾			
bit 7						1	bit			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	Unimplemen	nted: Read as '	0'							
bit 12	DISSCK: Dis	able SCKx pin	bit (SPI Maste	r modes only)						
		SPI clock is disa SPI clock is ena		tions as I/O						
bit 11	DISSDO: Dis	DISSDO: Disable SDOx pin bit								
		n is not used by n is controlled b		unctions as I/C)					
bit 10	MODE16: Wo	MODE16: Word/Byte Communication Select bit								
		ication is word- ication is byte-								
bit 9	SMP: SPIx D	SMP: SPIx Data Input Sample Phase bit								
	0 = Input data <u>Slave mode:</u> SMP must be	a sampled at e a sampled at m e cleared when	iddle of data o SPIx is used i	utput time						
bit 8		CKE: SPIx Clock Edge Select bit ⁽¹⁾								
					clock state to Id					
bit 7		SSEN: Slave Select Enable bit (Slave mode) ⁽³⁾								
		used for Slave not used by mo		olled by port fu	unction					
bit 6	CKP: Clock Polarity Select bit									
		for clock is a h for clock is a l								
bit 5	MSTEN: Master Mode Enable bit									
	1 = Master m 0 = Slave mo									
	The CKE bit is no		ramed SPI mo	des. The user	should progran	n this bit to 'o' f	or the Frame			
	SPI modes (FRM	-								
2: L	Do not set both P	minary and Se	condary presca	alers to a value	e of 1:1.					

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** This bit must be cleared when FRMEN = 1.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

REGISTER 1	16-3: SPIxC	ON2: SPIx C	ONTROL R	EGISTER 2							
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL	_	—	_	_	_				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0				
—	—	_		—		FRMDLY					
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own				
bit 15	FRMEN: Fran	FRMEN: Framed SPIx Support bit									
	1 = Framed S	1 = Framed SPIx support enabled (\overline{SSx} pin used as frame sync pulse input/output)									
	0 = Framed S	SPIx support dis	sabled								
bit 14	SPIFSD: Fran	SPIFSD: Frame Sync Pulse Direction Control bit									
		nc pulse input (nc pulse output	· /								
bit 13	FRMPOL: Fra	ame Sync Puls	e Polarity bit								
	1 = Frame sy	nc pulse is acti	ve-high								
	0 = Frame sy	nc pulse is acti	ve-low								
bit 12-2	Unimplemen	ted: Read as '	0'								
bit 1	FRMDLY: Fra	ame Sync Pulse	e Edge Selec	t bit							
	1 = Frame sy	nc pulse coinci	des with first	bit clock							
		nc pulse prece									
bit 0	Unimplemen	ted: This bit m	ust not be se	t to '1' by the u	ser application						

NOTES:

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. Circuit™ "Inter-Integrated (l²C[™])" (DS70195) in the "dsPIC33F Family Reference Manual", which is available the Microchip from web site (www.microchip.com).

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The dsPIC33FJXXXGPX06/X08/X10 devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly.

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7 or 10-bit address

For details about the communication sequence in each of these modes, please refer to the "*dsPIC33F Family Reference Manual*".

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation.

The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

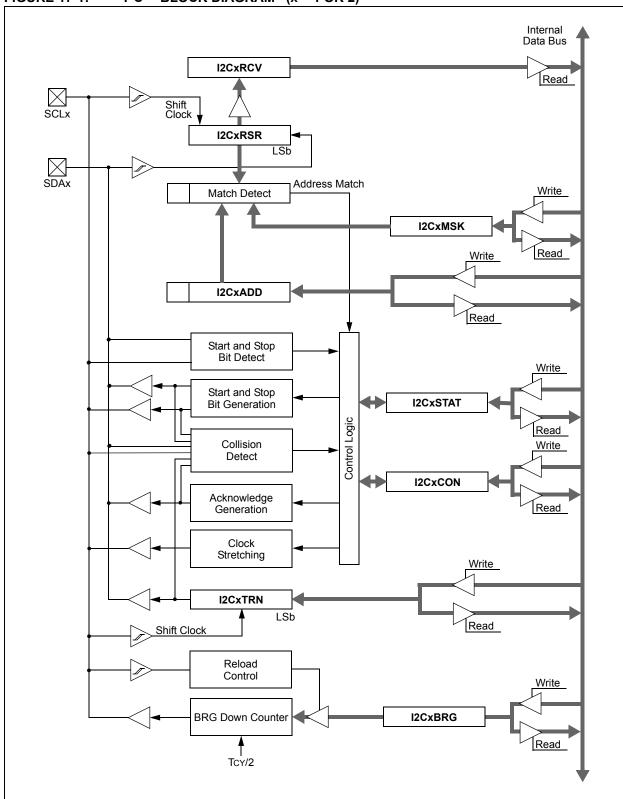


FIGURE 17-1: I^2C^{TM} BLOCK DIAGRAM (x = 1 OR 2)

REGISTER 17-1: I2C	xCON: I2Cx	CONTROL F	REGISTER
--------------------	------------	-----------	----------

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0 HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 I2CEN: I2Cx Enable bit 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module. All I ² C pins are controlled by port functions bit 14 Unimplemented: Read as '0' bit 13 I2CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1:	Legend:		U = Unimplemented bit	t, read as '0'						
bit 15 I2CEN: I2Cx Enable bit 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module. All I ² C pins are controlled by port functions bit 14 Unimplemented: Read as '0' bit 13 I2CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1: Bit is RW (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. If STREN = 0: Bit is R/S (i.e., software may only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address 1 = I2CxADD is a 7-bit slave address 0 = I2CxADD is a 7-bit slave address 0 = I2CxADD is a 7-bit slave address<	R = Readable bit		W = Writable bit	HS = Set in hardware	HC = Cleared in hardware					
1 = Enables the I2Cx module. All I ² C pins are controlled by port functions bit 14 Unimplemented: Read as 'o' bit 13 I2CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software may write 'o' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10W: 10-bit Slave Address bit 1 = I2CxADD is a 1-bit slave address 0 = IPMI mode disabled bit 3 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 4 CEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable I/O pin thresholds 1 = Enable I/O pin thresholds bit 11 ECXADD is a 1-bit slave address bit 3 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification<	-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module. All I ² C pins are controlled by port functions bit 14 Unimplemented: Read as 'o' bit 13 I2CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Release SCLx clock 1 = Release Clock (w (clock stretch)) If STREN = 1: Bit is R/W (i.e., software may write 'o' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 1-bit slave address 0 = IDSSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control disabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable										
 bit 14 Unimplemented: Read as '0' bit 13 I2CSIDL: Stop in Idle Mode bit Discontinue module operation in Idle mode Continue module operation in Idle mode Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I²C slave) Release SCLx clock Hold SCLx clock low (clock stretch) If STREN = 1: Bit is RW (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit I = IPMI mode is enabled; all addresses Acknowledged IPMI mode is enabled; all addresses Acknowledged IPMI mode is albere address I = ICXADD is a 10-bit slave address I = ICXADD is a 10-bit slave address I = Slew rate control disabled I = Enable I/O pin thresholds compliant with SMBus specification	bit 15									
bit 13 I2CSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters an Idle mode 0 = Continue module operation in Idle mode bit 12 SCLREL: SCLX Release Control bit (when operating as I ² C slave) 1 = Release SCLX clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1: Bit is RW (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is RV'S (i.e., software may only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address 0 = I2CxADD is a 7-bit slave address 0 = I2CxADD is a 7-bit slave address 1 = Slew rate control disabled 0 = Slew rate control disabled 0 = Slew rate control disabled 0 = Slew rate control disabled 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 TREN. SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching										
 a Discontinue module operation when device enters an Idle mode a Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I²C slave) a Release SCLx clock b Hold SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit a IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit	bit 14	Unimpler	Unimplemented: Read as '0'							
 o = Continue module operation in Idle mode bit 12 SCLREL: SCLx Release Control bit (when operating as I²C slave) = Release SCLx clock o = Hold SCLx clock low (clock stretch) If STREN = 1:	bit 13	I2CSIDL:	Stop in Idle Mode bit							
1 = Release SCLx clock 0 = Hold SCLx clock low (clock stretch) If STREN = 1: Bit is R/W (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = IPMI mode disabled bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control disabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable //O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled 0 bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the										
 a Hold SCLx clock low (clock stretch) If STREN = 1: Bit is RW (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control disabled 0 = Slew rate control disabled 0 = Slew rate control bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input Levels bit 1 = Enable I/O pin thresholds bit 7 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 	bit 12	SCLREL:	SCLx Release Control bit (when operating as I ² C slave)						
Bit is R/W (i.e., software may write 'o' to initiate stretch and write '1' to release clock). Hardware at beginning of slave transmission. Hardware clear at end of slave reception. If STREN = 0: Bit is R/S (i.e., software may only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address 0 = I2CxADD is a 7-bit slave address 0 = I2CxADD is a 7-bit slave address 0 = Slew rate control disabled 0 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enabl				h)						
Bit is R/S (i.e., software may only write '1' to release clock). Hardware clear at beginning of slave transmission. bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit 1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address 0 = I2CxADD is a 7-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control anabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching		Bit is R/W at beginn	Bit is R/W (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware clea							
1 = IPMI mode is enabled; all addresses Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching		Bit is R/S	(i.e., software may only writ	e ʻ1' to release clock). Hardwar	e clear at beginning of slave					
0 = IPMI mode disabled bit 10 A10M: 10-bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching	bit 11	IPMIEN:	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit							
1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching				ses Acknowledged						
0 = I2CxADD is a 7-bit slave address bit 9 DISSLW: Disable Slew Rate Control bit 1 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching	bit 10	A10M: 10	A10M: 10-bit Slave Address bit							
 1 = Slew rate control disabled 0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 		_		S						
0 = Slew rate control enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I ² C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching	bit 9	DISSLW:	Disable Slew Rate Control I	bit						
 1 = Enable I/O pin thresholds compliant with SMBus specification 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 										
 0 = Disable SMBus input thresholds bit 7 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled	bit 8	SMEN: S	MBus Input Levels bit							
 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 				ant with SMBus specification						
(module is enabled for reception) 0 = General call address disabled bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching	bit 7	GCEN: G	eneral Call Enable bit (wher	n operating as I ² C slave)						
bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching		(mod	ule is enabled for reception)		2CxRSR					
Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching	bit 6			oit (when operating as I ² C slave	2)					
1 = Enable software or receive clock stretching					,					
0 = Disable software or receive clock stretching			-							
		0 = Disab	le software or receive clock	stretching						

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC	
ACKSTAT	TRSTAT	0-0	0-0	0-0	BCL	GCSTAT	ADD10	
bit 15	INSTAT	—	_	_	DOL	GCSTAT	bit 8	
							Dit t	
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC	
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	
bit 7	-	. –		1			bit (
Legend:		U = Unimpler	mented bit, rea	ad as 'O'		C = Clear only	bit	
R = Readable	e bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardwa	are set/cleared	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 15	(when operat 1 = NACK rec 0 = ACK rece	cknowledge St ing as I ² C mas ceived from slav sived from slav t or clear at end	ter, applicable ve e		nsmit operation)		
bit 14	TRSTAT: Tran 1 = Master tra 0 = Master tra	nsmit Status bi ansmit is in pro ansmit is not in	t (when opera gress (8 bits - progress	ting as I ² C ma + ACK)		to master trans	·	
bit 13-11	Unimplemen	ted: Read as	0'					
bit 10	BCL: Master	Bus Collision I	Detect bit					
	0 = No collisio	lision has beer on t at detection o		-	peration			
bit 9		neral Call Statu						
	0 = General o	call address wa call address wa when address	is not received		ss. Hardware o	clear at Stop det	ection.	
bit 8	ADD10: 10-B	Bit Address Sta	tus bit					
	0 = 10-bit add	dress was mate dress was not i t at match of 2r	matched	ched 10-bit ad	dress. Hardwa	re clear at Stop	detection.	
bit 7	IWCOL: Write	e Collision Det	ect bit			-		
	0 = No collisio	on			ause the I ² C mo			
bit 6	I2COV: Rece	ive Overflow F	lag bit					
	0 = No overflo	ow		-	till holding the			
bit 5		lardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). _A: Data/Address bit (when operating as I ² C slave)						
	1 = Indicates 0 = Indicates	that the last by that the last by	/te received w /te received w	as data as device add	ress by reception of	slave byte.		
bit 4	P: Stop bit							
	1 = Indicates 0 = Stop bit w	that a Stop bit		ected last				

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as l^2C slave)
	1 = Read - indicates data transfer is output from slave 0 = Write - indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 1	7-3: I2CxN	ISK: I2Cx SL	AVE MODE		MASK REGIS	TER	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
			_		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

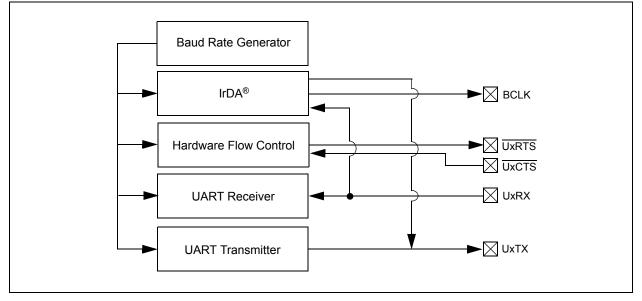
NOTES:

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJXXXGPX06/X08/X10 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8 or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits

- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator with 16-bit Prescaler
- Baud rates ranging from 1 Mbps to 15 bps at 16x mode at 40 MIPS
- Baud rates ranging from 4 Mbps to 61 bps at 4x mode at 40 MIPS
- 4-deep First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART is shown in Figure 18-1. The UART module consists of the key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UART SIMPLIFIED BLOCK DIAGRAM

- **Note 1:** Both UART1 and UART2 can trigger a DMA data transfer. If U1TX, U1RX, U2TX or U2RX is selected as a DMA IRQ source, a DMA transfer occurs when the U1TXIF, U1RXIF, U2TXIF or U2RXIF bit gets set as a result of a UART1 or UART2 transmission or reception.
 - 2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>		
bit 15			•				bit 8		
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL		
bit 7							bit		
Logondu		HC = Hardwa	ra algorad						
Legend: R = Readable	hit	W = Writable		II – Unimplo	mented bit, read				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN		
bit 15	UARTEN: UA	ARTx Enable bi	t(1)						
				e controlled by	UARTx as defi	ned by UEN<1	:0>		
					y port latches; U				
bit 14	Unimplemen	ted: Read as '	0'						
bit 13	USIDL: Stop	in Idle Mode bi	t						
		nue module ope module opera			dle mode				
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾								
	1 = $IrDA^{(R)}$ encoder and decoder enabled 0 = $IrDA^{(R)}$ encoder and decoder disabled								
L:1 44				:1					
bit 11		le Selection for bin in Simplex n		It					
		oin in Flow Con							
bit 10	Unimplemen	ted: Read as '	0'						
bit 9-8	UEN<1:0>: U	UEN<1:0>: UARTx Enable bits							
	11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches								
	10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used								
	01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by								
	port latcl						oned by		
bit 7	WAKE: Wake	e-up on Start bi	t Detect During	g Sleep Mode	Enable bit				
	1 = UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared								
	in hardware on following rising edge								
hit C	0 = No wake	•	Mada Calaat	h it					
bit 6		ARTx Loopback		DIL					
	 1 = Enable Loopback mode 0 = Loopback mode is disabled 								
bit 5	•	o-Baud Enable							
	1 = Enable b		urement on th		eter - requires re	ception of a S	ync field (55ł		
		e measuremen							
	efer to Section habling the UAR				Family Referenc	ce <i>Manual"</i> for i	nformation		

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 1	8-2: UxSTA	A: UARTx STA	TUS AND	CONTROL R	EGISTER		
R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit C
Logondi							
Legend:	. L. 14	HC = Hardwar			mented bit mee		
R = Readable		W = Writable k	DIT	-	mented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 15,13	 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is 						ansmit
bit 14		one character o		ansmit buller)			
	UTXINV: Transmit Polarity Inversion bit If IREN = 0: 1 = UxTX Idle state is '0' 0 = UxTX Idle state is '1' If IREN = 1: 1 = IrDA [®] encoded UxTX Idle state is '1' 0 = IrDA [®] encoded UxTX Idle state is '0'						
bit 12		ted: Read as 'o					
bit 11	-	ansmit Break bit					
	1 = Send Syn cleared b 0 = Sync Bre	nc Break on new by hardware upo eak transmissior	t transmission on completion n disabled or	n	llowed by twelve	e '0' bits, follow	ed by Stop bit
bit 10	 UTXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port 						
bit 9	1 = Transmit	smit Buffer Full buffer is full buffer is not ful			er can be writte	n	
bit 8	1 = Transmit		empty and t	ransmit buffer is			as completed
bit 7-6	 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed 0 = Transmit Shift Register is not empty, a transmission is in progress or queued URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters 						

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for transmit operation.

NOTES:

19.0 ENHANCED CAN (ECAN™) MODULE

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

19.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJXXXGPX06/X08/X10 devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier)
 acceptance filters
- 3 full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source

- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

19.2 Frame Types

The CAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

• Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).

• Extended Data Frame:

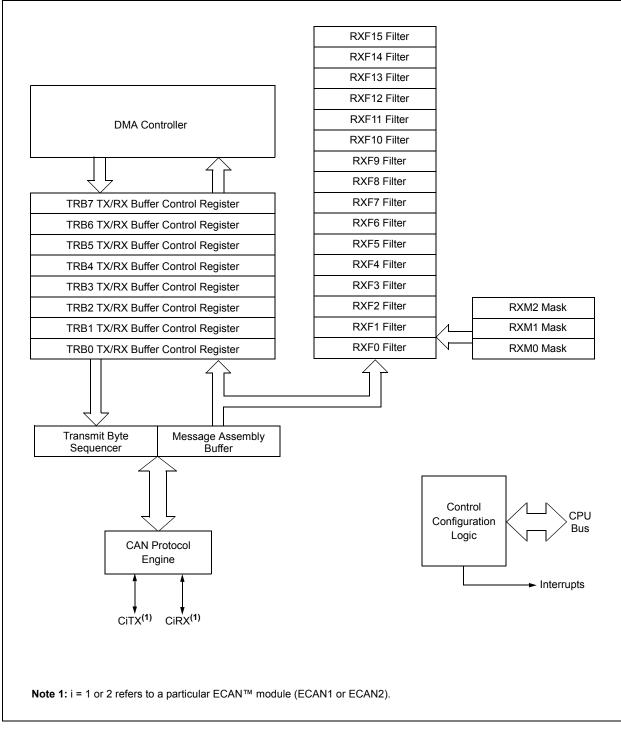
An extended data frame is similar to a standard data frame, but includes an extended identifier as well.

• Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

• Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.


· Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Typically, if the CAN module is allowed to Note: transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER 19-1: CICTRL1: ECAN™ CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0			
	—	CSIDL	ABAT			REQOP<2:0>				
bit 15							bit 8			
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0			
	OPMODE<2:0>		_	CANCAP		_	WIN			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	r = Bit is Rese	erved			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	CSIDL: Stop	in Idle Mode b	oit							
	1 = Discontinu	ue module ope	ration when d	evice enters Id	lle mode					
	0 = Continue	module operat	ion in Idle mo	de						
bit 12	ABAT: Abort	-								
	Signal all tran are aborted	smit buffers to	abort transmi	ssion. Module	will clear this bi	t when all trans	missions			
oit 11	Reserved: Do	o not use								
bit 10-8	REQOP<2:0>: Request Operation Mode bits									
	000 = Set Normal Operation mode									
	001 = Set Disable mode									
	010 = Set Loopback mode 011 = Set Listen Only Mode									
	100 = Set Configuration mode									
	101 = Reserved - do not use									
	110 = Reserved - do not use 111 = Set Listen All Messages mode									
6:4 7 F		-								
bit 7-5		•		10						
	000 = Module is in Normal Operation mode 001 = Module is in Disable mode									
	010 = Module is in Loopback mode									
		011 = Module is in Listen Only mode								
		100 = Module is in Configuration mode								
		101 = Reserved 110 = Reserved								
	111 = Module	is in Listen A	I Messages m	ode						
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	CANCAP: C	AN Message F	Receive Timer	Capture Event	t Enable bit					
	1 = Enable in 0 = Disable C		sed on CAN n	nessage receiv	/e					
bit 2-1		ted: Read as '	0'							
bit 0	WIN: SFR M									
	1 = Use filter	•	-							
	0 = Use buffe									

REGISTER 19-2: CiCTRL2: ECAN™ CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	-	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
—	—	—			DNCNT<4:0>	>			
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown		
bit 15-5	Unimplemen	ted: Read as '	0'						
bit 4-0	DNCNT<4:0>	•: DeviceNet™	Filter Bit Num	ber bits					
	10010-1111:	1 = Invalid sele	ection						
	10001 = Con	npare up to dat	a byte 3, bit 6	with EID<17>					
	•								
	•								
	• 00001 = Con	npare up to dat	a hvto 1 hit 7	with EID<0>					
		ipare up to uat							

00000 = Do not compare data bytes

bi
R-0
b
n

REGISTER 19-3: CiVEC: ECAN[™] INTERRUPT CODE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
DMABS<2:0>		_	_	_			
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		—			FSA<4:0>		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable t	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 12-5	101 = 24 buff 100 = 16 buff 011 = 12 buff 010 = 8 buffe 001 = 6 buffe 000 = 4 buffe	ers in DMA RAI ers in DMA RAI ers in DMA RAI ers in DMA RAI rs in DMA RAM rs in DMA RAM rs in DMA RAM	M M M				
bit 4-0	=	30 buffer 31 buffer		bits			

REGISTER	19-5: CiFIF	O: ECAN™ F	FO STATU	S REGISTER			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	—			FBP	<5:0>		
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	—			FNRI	3<5:0>		
bit 7	·						bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14 bit 13-8 bit 7-6 bit 5-0	FBP<5:0>: F 011111 = R 011110 = R	B30 buffer RB1 buffer	er Pointer bits				
	011111 = RI 011110 = RI	B31 buffer B30 buffer RB1 buffer					

REGISTER 1	9-6: CiINTF	: ECAN™ IN	TERRUPT	FLAG REGIS	TER		
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0
Legend: C = Clear only bit			' bit				
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is u			nown	

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
bit 12	TXBP: Transmitter in Error State Bus Passive bit
bit 11	RXBP: Receiver in Error State Bus Passive bit
bit 10	TXWAR: Transmitter in Error State Warning bit
bit 9	RXWAR: Receiver in Error State Warning bit
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
bit 7	IVRIF: Invalid Message Received Interrupt Flag bit
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
bit 1	RBIF: RX Buffer Interrupt Flag bit
bit 0	TBIF: TX Buffer Interrupt Flag bit

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		_	_	—		_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 19-7: CIINTE: ECAN™ INTERRUPT ENABLE REGISTER

bit 15-8	Unimplemented: Read as '0'

- bit 7 IVRIE: Invalid Message Received Interrupt Enable bit
- bit 6 WAKIE: Bus Wake-up Activity Interrupt Flag bit
- bit 5 ERRIE: Error Interrupt Enable bit

bit 4 Unimplemented: Read as '0'

- bit 3 FIFOIE: FIFO Almost Full Interrupt Enable bit
- bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit
- bit 1 **RBIE:** RX Buffer Interrupt Enable bit
- bit 0 TBIE: TX Buffer Interrupt Enable bit

REGISTER 19-8: CIEC: ECAN[™] TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		TERR	CNT<7:0>				
						bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	
		RERR	CNT<7:0>				
						bit 0	
oit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unk		x = Bit is unkn	iown	
	R-0	R-0 R-0 Dit W = Writable bit	R-0 R-0 R-0 RERR	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	$TERRCNT < 7:0 >$ $R-0 \qquad R-0 \qquad RERRCNT < 7:0 >$ $W = Writable bit \qquad U = Unimplemented bit, read as '0'$	

bit 15-8**TERRCNT<7:0>:** Transmit Error Count bitsbit 7-0**RERRCNT<7:0>:** Receive Error Count bits

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	_	_	—	—	_	_				
bit 15							bit				
		DAMO									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	IW<1:0>			BRF	P<5:0>						
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-8	Unimplemen	ted: Read as '	0'								
bit 7-6	SJW<1:0>: S	SJW<1:0>: Synchronization Jump Width bits									
	11 = Length is 4 x TQ										
	10 = Length is 3 x TQ										
	01 = Length is										
	00 = Length is										
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits										
	11 1111 = T	Q = 2 x 64 x 1/	FCAN								
	•										
	•										
	•										
		Q = 2 x 3 x 1/F									
	00 0001 = T	q = 2 x 2 x 1/F	CAN								

00 0000 = TQ = 2 x 1 x 1/FCAN

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	WAKFIL	—		—		SEG2PH<2:0>	
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM		SEG1PH<2:0	>		PRSEG<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14 bit 13-11 bit 10-8 bit 7	1 = Use CAN 0 = CAN bus Unimplemen SEG2PH<2:0 111 = Length 000 = Length SEG2PHTS:	is 1 x Tq Phase Segme	or wake-up used for wak o' er Segment 2	e-up bits			
bit 6	SAM: Sample		us Line bit e times at the	sample point	Time (IPT), w	hichever is grea	ter
bit 5-3	SEG1PH<2:0 111 = Length 000 = Length		er Segment 1	bits			
bit 2-0	PRSEG<2:0> 111 = Length 000 = Length		Time Segmer	nt bits			

REGISTER 19-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 19-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP	<3:0>			F2BI	><3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F1BP<3:0>				F0BI	><3:0>		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	F3BP<3:0>:	RX Buffer Writt	en when Filte	r 3 Hits bits			
bit 11-8	F2BP<3:0>:	RX Buffer Writt	en when Filte	r 2 Hits bits			
bit 7-4	F1BP<3:0>:	RX Buffer Writt	en when Filte	r 1 Hits bits			
bit 3-0	F0BP<3:0>:	RX Buffer Writt	en when Filte	r 0 Hits bits			
		hits received ir hits received ir					

- :
- 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

REGISTER 19-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7BP<3:0>					F6BP	<3:0>	
bit 15				•			bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | F5BP< | <3:0> | | | F4BP | <3:0> | |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	F7BP<3:0>: RX Buffer Written when Filter 7 Hits bits
bit 11-8	F6BP<3:0>: RX Buffer Written when Filter 6 Hits bits
bit 7-4	F5BP<3:0>: RX Buffer Written when Filter 5 Hits bits
bit 3-0	F4BP<3:0>: RX Buffer Written when Filter 4 Hits bits

REGISTER 19-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F11BP<3:0>				F10BP<3:0>				
bit 15	bit 15						bit 8		

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | F9BP< | <3:0> | | | F8BP | <3:0> | |
| bit 7 | | | | • | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 11-8 F10BP<3:0>: RX Buffer Written when Filter 10 Hits bits

bit 7-4 **F9BP<3:0>:** RX Buffer Written when Filter 9 Hits bits

bit 3-0 F8BP<3:0>: RX Buffer Written when Filter 8 Hits bits

REGISTER 19-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15B	P<3:0>			F14E	3P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F13B	P<3:0>		F12BP<3:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

DIL 10-12	
bit 11-8	F14BP<3:0>: RX Buffer Written when Filter 14 Hits bits

- bit 7-4 **F13BP<3:0>:** RX Buffer Written when Filter 13 Hits bits
- bit 7-4 **FIOD** (0.0): Tot Build White when Filter 40 Lite bits
- bit 3-0 F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits

REGISTER 19-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER n STANDARD IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	—	EXIDE	—	EID17	EID16
bit 7							bit 0

Legend:				
R = Readable bit	dable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-5	SID<10:0>: Standard Identifier bits 1 = Message address bit SIDx must be '1' to match filter 0 = Message address bit SIDx must be '0' to match filter
bit 4	Unimplemented: Read as '0'
bit 3	EXIDE: Extended Identifier Enable bit
	If MIDE = 1 then:
	1 = Match only messages with extended identifier addresses
	0 = Match only messages with standard identifier addresses
	If MIDE = 0 then:
	Ignore EXIDE bit.
bit 2	Unimplemented: Read as '0'
bit 1-0	EID<17:16>: Extended Identifier bits
	1 = Message address bit EIDx must be '1' to match filter
	0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-17: CiRXFnEID: ECAN™ ACCEPTANCE FILTER n EXTENDED IDENTIFIER (n = 0, 1, ..., 15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	able bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 19-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK<1:0>		F6MSI	F6MSK<1:0>		F5MSK<1:0>		K<1:0>
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MS	SK<1:0>	F2MSI	<<1:0>	F1MS	K<1:0>	FOMS	K<1:0>
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read		las '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	F7MSK<1:0>	: Mask Source	e for Filter 7 bi	it			
bit 13-12	F6MSK<1:0>	: Mask Source	e for Filter 6 bi	it			
bit 11-10	F5MSK<1:0>	: Mask Source	e for Filter 5 bi	it			
bit 9-8	F4MSK<1:0>	: Mask Source	e for Filter 4 bi	it			
bit 7-6	F3MSK<1:0>	: Mask Source	e for Filter 3 bi	it			
bit 5-4	F2MSK<1:0>	: Mask Source	e for Filter 2 bi	it			
bit 3-2	F1MSK<1:0>	: Mask Source	e for Filter 1 bi	it			
bit 1-0	F0MSK<1:0>	: Mask Source	e for Filter 0 bi	it			
	11 = Reserve	d					
	•	nce Mask 2 reg nce Mask 1 reg	-				

00 = Acceptance Mask 0 registers contain mask

E15M	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
1 1 3 1 1	F15MSK<1:0>		K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>
oit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11M	SK<1:0>	F10MS	F10MSK<1:0>		F9MSK<1:0>		< <1:0>
oit 7							bit (
.egend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
it 15-14	11 = Reserv 10 = Accept 01 = Accept	0>: Mask Sourc ed ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contai gisters contai	n mask n mask			

bit 13-12 F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)

bit 11-10 **F13MSK<1:0>:** Mask Source for Filter 13 bit (same values as bit 15-14)

bit 9-8 F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)

bit 7-6 **F11MSK<1:0>:** Mask Source for Filter 11 bit (same values as bit 15-14)

bit 5-4 F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)

bit 3-2 F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)

bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

REGISTER	19-20: CiRXN	InSID: ECAN	I™ ACCEP1		R MASK n S	TANDARD ID	ENTIFIER
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	MIDE		EID17	EID16
bit 7							bit 0
<u></u>							
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-5	1 = Include b	Standard Ident it SIDx in filter is don't care in	comparison	son			
bit 4	Unimplemer	ted: Read as '	ʻ0'				
bit 3	MIDE: Identi	fier Receive M	ode bit				
	0 = Match ei	ther standard of	or extended a	ddress messag	ddress) that co le if filters matcl /EID) = (Messa		DE bit in filter
bit 2	Unimplemer	nted: Read as '	ʻ0'				
bit 1-0	EID<17:16>:	Extended Ider	ntifier bits				
		oit EIDx in filter					

0 = Bit EIDx is don't care in filter comparison

REGISTER 19-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x R/V	V-x R/W-x	R/W-x	R/W-x	R/W-x		D 444
			1000	rv/ VV-X	R/W-x	R/W-x
EID15 EID	D14 EID13	EID12	EID11	EID10	EID9	EID8
bit 15	· · · · · · · · · · · · · · · · · · ·					bit 8
R/W-x R/V	V-x R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7 EII	D6 EID5	EID4	EID3	EID2	EID1	EID0
bit 7	·					bit 0
Legend:						

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 19-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

RXFUL<15:0>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-23: CiRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (clear by application software)

REGISTER 19-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7		•					bit 0
Legend:		C = Clear only	v bit				

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

RXOVF<15:0>: Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 19-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/C-0 |
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>
bit 15	·			•			bit 8
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	RI<1:0>
bit 7				I			bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 6 bit 5	 0 = Buffer TR TXABTm: Metal 1 = Message 0 = Message TXLARBm: 	completed tran	buffer bit ⁽¹⁾ bit ⁽¹⁾ smission succ	1)			
	0 = Message	lost arbitration did not lose arl	pitration while	being sent			
bit 4	1 = A bus erre	rror Detected D or occurred whi or did not occu	le the messag	je was being s			
bit 3	Setting this bi		s sending a m		it will automatic equest a messa		the message
bit 2	RTRENm: Au	uto-Remote Tra	nsmit Enable	bit			
		emote transmit emote transmit					
bit 1-0	TXmPRI<1:0	>: Message Tr	ansmission Pi	riority bits			
		message priori ermediate mess					

Note 1: This bit is cleared when TXREQ is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

REGISTER 19-27: CiTRBnSID: ECAN™ BUFFER n STANDARD IDENTIFIER (n = 0, 1, ..., 31)

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_		SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

- bit 12-2 SID<10:0>: Standard Identifier bits
- bit 1 SRR: Substitute Remote Request bit
 - 1 = Message will request remote transmission
 - 0 = Normal message
- bit 0 IDE: Extended Identifier bit
 - 1 = Message will transmit extended identifier
 - 0 = Message will transmit standard identifier

REGISTER 19-28: CITRBnEID: ECAN™ BUFFER n EXTENDED IDENTIFIER (n = 0, 1, ..., 31)

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	—	EID17	EID16	EID15	EID14
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U =		U = Unimpler	mented bit, read	as '0'			

'0' = Bit is cleared

'1' = Bit is set

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

-n = Value at POR

x = Bit is unknown

REGISTER 19-29:	CiTRBnDLC: ECAN™	' BUFFER n DATA LEN	GTH CONTROL (r	n = 0, 1,, 31)
-----------------	------------------	---------------------	----------------	----------------

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	RB0	DLC3	DLC2	DLC1	DLC0

bit 7				bit 0
[
Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	 1 = Message will request remote transmission 0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

REGISTER 19-30: CiTRBnDm: ECAN™ BUFFER n DATA FIELD BYTE m (n = 0, 1, ..., 31; m = 0, 1, ..., 7)⁽¹⁾

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRBnDm7 | TRBnDm6 | TRBnDm5 | TRBnDm4 | TRBnDm3 | TRBnDm2 | TRBnDm1 | TRBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRBnDm<7:0>: Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

REGISTER 19-31: CITRBnSTAT: ECAN™ RECEIVE BUFFER n STATUS (n = 0, 1, ..., 31)

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	_	—	—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

20.0 DATA CONVERTER INTERFACE (DCI) MODULE

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Data Converter Interface (DCI)" (DS70288) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

20.1 Module Introduction

The dsPIC33FJXXXGPX06/X08/X10 Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- AC-Link Compliant mode

The DCI module provides the following general features:

- Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

20.2 Module I/O Pins

There are four I/O pins associated with the module. When enabled, the module controls the data direction of each of the four pins.

20.2.1 CSCK PIN

The CSCK pin provides the serial clock for the DCI module. The CSCK pin may be configured as an input or output using the CSCKD control bit in the DCICON1 SFR. When configured as an output, the serial clock is provided by the dsPIC33FJXXXGPX06/X08/X10. When configured as an input, the serial clock must be provided by an external device.

20.2.2 CSDO PIN

The Serial Data Output (CSDO) pin is configured as an output only pin when the module is enabled. The CSDO pin drives the serial bus whenever data is to be transmitted. The CSDO pin is tri-stated, or driven to '0', during CSCK periods when data is not transmitted depending on the state of the CSDOM control bit. This allows other devices to place data on the serial bus during transmission periods not used by the DCI module.

20.2.3 CSDI PIN

The Serial Data Input (CSDI) pin is configured as an input only pin when the module is enabled.

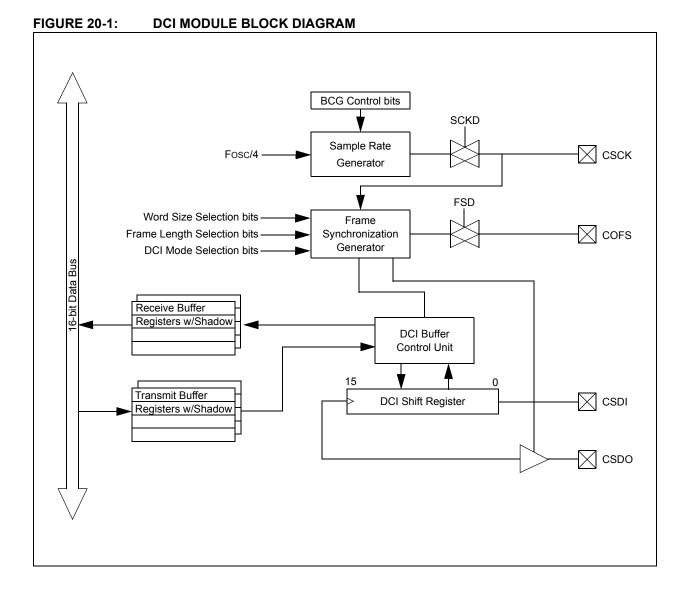
20.2.3.1 COFS Pin

The Codec Frame Synchronization (COFS) pin is used to synchronize data transfers that occur on the CSDO and CSDI pins. The COFS pin may be configured as an input or an output. The data direction for the COFS pin is determined by the COFSD control bit in the DCICON1 register.

The DCI module accesses the shadow registers while the CPU is in the process of accessing the memory mapped buffer registers.

20.2.4 BUFFER DATA ALIGNMENT

Data values are always stored left justified in the buffers since most Codec data is represented as a signed 2's complement fractional number. If the received word length is less than 16 bits, the unused Least Significant bits in the Receive Buffer registers are set to '0' by the module. If the transmitted word length is less than 16 bits, the unused LSbs in the Transmit Buffer register are ignored by the module. The word length setup is described in subsequent sections of this document.


20.2.5 TRANSMIT/RECEIVE SHIFT REGISTER

The DCI module has a 16-bit shift register for shifting serial data in and out of the module. Data is shifted in/out of the shift register, MSb first, since audio PCM data is transmitted in signed 2's complement format.

20.2.6 DCI BUFFER CONTROL

The DCI module contains a buffer control unit for transferring data between the shadow buffer memory and the Serial Shift register. The buffer control unit is a simple 2-bit address counter that points to word locations in the shadow buffer memory. For the receive memory space (high address portion of DCI buffer memory), the address counter is concatenated with a '0' in the MSb location to form a 3-bit address. For the transmit memory space (high portion of DCI buffer memory), the address counter is concatenated with a '1' in the MSb location.

Note: The DCI buffer control unit always accesses the same relative location in the transmit and receive buffers, so only one address counter is provided.

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
DCIEN		DCISIDL	_	DLOOP	CSCKD	CSCKE	COFSD			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
UNFM	CSDOM	DJST	_	<u> </u>		COFS	V<1:0>			
bit 7							bit C			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown			
	-									
bit 15	DCIEN: DCI	Module Enable	bit							
	1 = Module is									
	0 = Module is									
bit 14	-	ted: Read as '								
bit 13		Stop in Idle C								
		ill halt in CPU I		U Idle mode						
bit 12	 0 = Module will continue to operate in CPU Idle mode Unimplemented: Read as '0' 									
bit 11	DLOOP: Digital Loopback Mode Control bit									
	1 = Digital Loopback mode is enabled. CSDI and CSDO pins internally connected									
	0 = Digital Loopback mode is disabled									
bit 10	CSCKD: Sample Clock Direction Control bit									
		n is an input wh								
bit 9	•	n is an output w hple Clock Edge		ule is enabled						
DIL 9				dae sampled o	on serial clock ri	sina edae				
					n serial clock fa					
bit 8	COFSD: Frar	ne Synchroniza	ation Direction	n Control bit						
	1 = COFS pin is an input when DCI module is enabled									
	-	n is an output w	hen DCI moo	dule is enabled						
bit 7		rflow Mode bit								
		iast value writte		smit registers o	n a transmit und	demow				
bit 6		ial Data Output								
				abled transmit t	ime slots					
				transmit time s						
bit 5		ata Justification								
			otion is begur	n during the sar	ne serial clock o	cycle as the frai	me			
		ization pulse smission/recer	ntion is begur	one serial clo	ck cycle after fra	ame synchroniz	ation pulse			
bit 4-2		ted: Read as '	•							
bit 1-0	-	-: Frame Sync								
	11 = 20-bit A	-								
	10 = 16-bit A									
	01 = I ² S Frame Sync mode 00 = Multi-Channel Frame Sync mode									

REGISTER 20-1: DCICON1: DCI CONTROL REGISTER 1

	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0				
—		_	—	BLEN	<1:0>		COFSG3				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	COFSG<2:0>				WS	<3:0>					
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable bi	t	U = Unimplem	nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown				
oit 15-12	-	ed: Read as '0'									
oit 11-10		Buffer Length Co									
	 11 = Four data words will be buffered between interrupts 10 = Three data words will be buffered between interrupts 										
	 10 = I nree data words will be buffered between interrupts 01 = Two data words will be buffered between interrupts 										
		words will be bu									
oit 9		ed: Read as '0'									
oit 8-5	-	Frame Sync G	enerator Co	ontrol bits							
		rame has 16 wc									
	•										
	•										
	•										
		rame has 3 wor rame has 2 wor									
		rame has 1 wor									
bit ∕l	Unimplemented: Read as '0'										
	-										
	WS<3:0>: DC	I Data Word Siz	e bits								
	WS<3:0>: DC		e bits								
	WS<3:0>: DC	I Data Word Siz	e bits								
	WS<3:0>: DC	I Data Word Siz	e bits								
	WS<3:0>: DC 1111 = Data v • • • • 0100 = Data v	I Data Word Siz vord size is 16 b vord size is 5 bit	e bits its s								
	WS<3:0>: DC 1111 = Data v • • • • • • • • • • • • • • • • • • •	I Data Word Siz vord size is 16 b vord size is 5 bit vord size is 4 bit	e bits its s s								
bit 4 bit 3-0	WS<3:0>: DC 1111 = Data v • • • • • • • • • • • • • • • • • • •	I Data Word Siz vord size is 16 b vord size is 5 bit vord size is 4 bit d Selection . Do	e bits its s s not use. Ui	nexpected resul							

REGISTER 20-3: DCICON3: DCI CONTROL REGISTER 3

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		_		BCG<11:8>				
bit 15				-			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			BCG	<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-12 Unimplemented: Read as '0'

bit 11-0 BCG<11:0>: DCI Bit Clock Generator Control bits

REGISTER 20-4:

DCISTAT: DCI STATUS REGISTER

U-0 U-0 U-0 U-0 R-0 R-0 R-0 R-0 SLOT<3:0> ____ ____ ____ ____ bit 15 bit 8 U-0 U-0 U-0 U-0 R-0 R-0 R-0 R-0 ROV RFUL TUNF TMPTY bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as '0' bit 11-8 SLOT<3:0>: DCI Slot Status bits 1111 = Slot #15 is currently active 0010 = Slot #2 is currently active 0001 = Slot #1 is currently active 0000 = Slot #0 is currently active bit 7-4 Unimplemented: Read as '0' bit 3 ROV: Receive Overflow Status bit 1 = A receive overflow has occurred for at least one receive register 0 = A receive overflow has not occurred bit 2 RFUL: Receive Buffer Full Status bit 1 = New data is available in the receive registers 0 = The receive registers have old data bit 1 TUNF: Transmit Buffer Underflow Status bit 1 = A transmit underflow has occurred for at least one transmit register 0 = A transmit underflow has not occurred bit 0 TMPTY: Transmit Buffer Empty Status bit 1 = The transmit registers are empty 0 = The transmit registers are not empty

REGISTER 20-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RSE7 | RSE6 | RSE5 | RSE4 | RSE3 | RSE2 | RSE1 | RSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

bit 15							bit 8
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

NOTES:

21.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJXXXGPX06/X08/X10 devices have up to 32 ADC input channels. These devices also have up to 2 ADC modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

21.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other

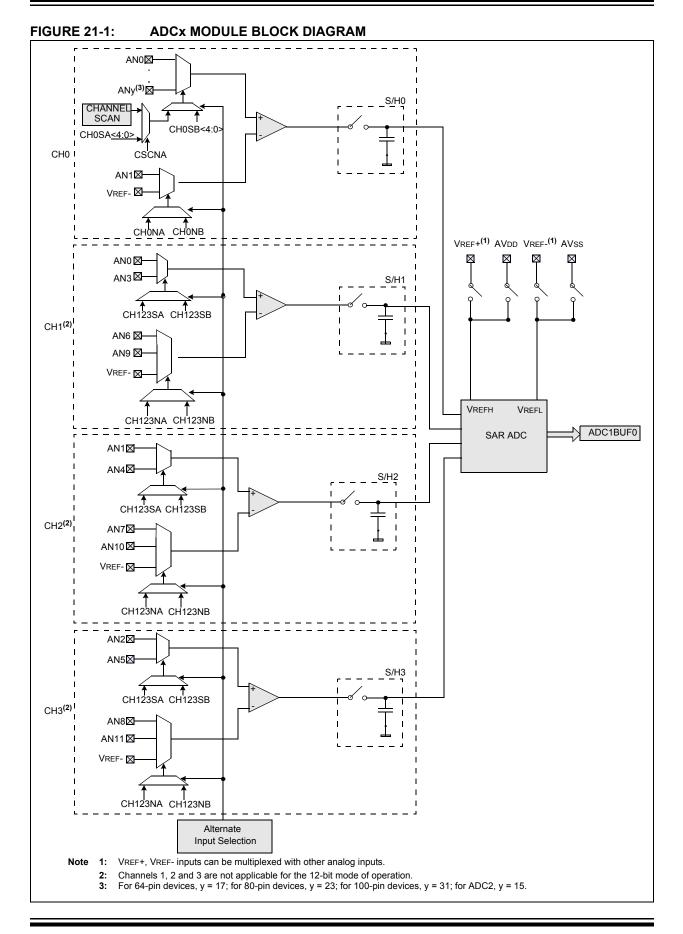
analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the device data sheet for further details.

A block diagram of the ADC is shown in Figure 21-1.

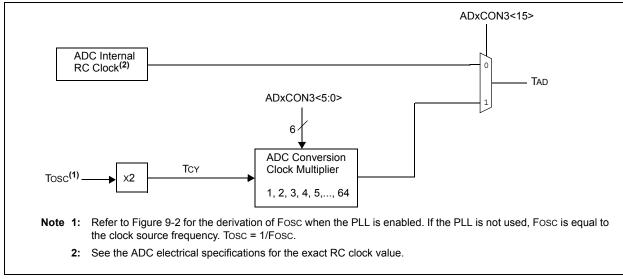
21.2 ADC Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on ADC module (ADxCON1<15>)
 - Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit
 - b) Select ADC interrupt priority


21.3 ADC and DMA

2.


If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	ADDMABM	_	AD12B	FORM	1<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0 HC,HS	R/C-0 HC, HS
	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE
bit 7							bit C
Legend:		HC = Cleared	by hardware	HS = Set by	hardware		
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15		Operating Mo dule is operati ff					
bit 14	Unimplemen	ted: Read as	ʻ0 '				
bit 13	ADSIDL: Stop	p in Idle Mode	bit				
			peration when de ation in Idle mod		lle mode		
bit 12	ADDMABM:	DMA Buffer B	uild Mode bit				
	channel t 0 = DMA buf	that is the sam fers are writter	n in the order of c ne as the addres n in Scatter/Gath ased on the inde	ss used for the her mode. The	non-DMA stan module will pro	d-alone buffer vide a scatter/g	ather addres
bit 11	Unimplemen	ted: Read as	ʻ0 '				
bit 10	AD12B: 10-B	it or 12-Bit Op	eration Mode bi	t			
		-channel ADC -channel ADC					
bit 9-8	For 10-bit ope 11 = Signed f 10 = Fraction 01 = Signed i 00 = Integer (For 12-bit ope 11 = Signed f 10 = Fraction 01 = Signed I	fractional (Dou al (Dout = dd integer (Dout (Dout = 0000 eration: fractional (Dou al (Dout = dd Integer (Dout	Format bits IT = sddd dddo ad dddd ddoo ssss sssd 00dd dddd d IT = sddd dddo ad dddd dddo ssss sddd dddd dddd d	0 0000) dddd dddd,w dddd) d dddd 0000 d 0000) dddd dddd,w	where $s = .NOT$, where $s = .Ne$	⊡d<9>) OT.d<11>)	
bit 7-5			Source Select				
		al counter ends ved	s sampling and s		on (auto-conve	ert)	
	100 = Reserv 011 = MPWM 010 = GP tim 001 = Active	ved / interval ends ler (Timer3 for transition on II	sampling and s ADC1, Timer5 f NT0 pin ends sa ends sampling a	for ADC2) com ampling and st	npare ends sam arts conversion		s conversion

REGISTER 21-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in prog-

ress. Automatically cleared by hardware at start of a new conversion.

© 2009 Microchip Technology Inc.

REGISTER	21-2: ADxC0	ON2: ADCx	CONTROL RE	EGISTER 2	(where x = 1	or 2)			
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	VCFG<2:0>				CSCNA	CHPS	<1:0>		
bit 15							bit		
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
BUFS			SMP	<3:0>		BUFM	ALTS		
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	e bit	U = Unimple	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkn	own		
bit 15-13		Converter Vol	tage Reference	Configuration	hite				
511 15-15		VREF+	VREF-						
	000	AVDD	Avss	=					
		rnal VREF+	Avss	-					
	010	AVDD	External VREF-	-					
	011 Exte	rnal VREF+	External VREF-						
	1xx	Avdd	Avss						
bit 12-11	Unimplemen	ted: Read as	ʻ0'						
bit 10	CSCNA: Scan Input Selections for CH0+ during Sample A bit								
	1 = Scan inp	1 = Scan inputs							
	0 = Do not so	can inputs							
bit 9-8	CHPS<1:0>: Selects Channels Utilized bits								
			1:0> is: U-0, Ur	nimplementee	d, Read as '0'				
			CH2 and CH3						
	01 = Convert		-11						
bit 7			(only valid whe	n BIJEM = 1)					
Dit 7	1 = ADC is c	urrently filling	second half of b	ouffer, user sh	ould access dat				
		, ,		er, user should	l access data in	second half			
bit 6	Unimplemen	ted: Read as	'0'						
bit 5-2	SMPI<3:0>: S operations pe		ent Rate for DN	IA Addresses	bits or number	of sample/conv	ersion		
	1111 = Increi	ments the D	MA address o	or generates	interrupt after	completion of	every 16t		
	1110 = Increi		MA address c	or generates	interrupt after	completion of	every 15t		
	samp	le/conversion	operation						
	•								
				or generates	interrupt after	completion o	f every 2r		
	0000 = Increi	e/conversion ments the l e/conversion	DMA address	or generate	es interrupt a	fter completio	n of eve		
bit 1	BUFM: Buffer	Fill Mode Se	lect bit						
		-	buffer on first ir fer from the beg		econd half of the	e buffer on next	interrupt		
bit 0	-	-	ple Mode Selec	-					
		-	-		nple and Sample	e B on next san	nple		
			nput selects for		,				

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC	_	— SAMC<4:0> ⁽¹⁾								
bit 15							bit 8			
DAMO	DAVA	D/// 0		DAVA	DANO	D 444.0				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 <7:0> ⁽²⁾	R/W-0	R/W-0	R/W-0			
bit 7			ADOO	\$1.0			bit (
Legend:										
R = Readable	e bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown			
bit 15	ADRC: ADC	Conversion Clo	ck Source bit	t						
1 = ADC internal RC clock										
	0 = Clock de	erived from syster	m clock							
bit 14-13	Unimplemented: Read as '0'									
bit 12-8	SAMC<4:0>	. Auto Sample T	ime bits ⁽¹⁾							
	11111 = 31	•								
	•									
	•									
	•	-								
	00001 = 1 7 00000 = 0 7									
bit 7-0		·: ADC Conversio	n Clock Sele	ect bits(2)						
	111111111									
	•									
	•									
	•									
	• 01000000 = Reserved									
	01000000 = Reserved 00111111 = Tcy · (ADCS<7:0> + 1) = 64 · Tcy = Tad									
	•									
	•									
	00000010 =	= Tcy · (ADCS<7	(:0> + 1) = 3	· TCY = TAD						
		= TCY · (ADCS<7								
		= Tcy · (ADCS<7								
Note 1: T	his bit onlv use	ed if ADxCON1 <s< td=""><td>SRC> = 1.</td><td></td><td></td><td></td><td></td></s<>	SRC> = 1.							
	-	ed if ADxCON3<								

REGISTER 21-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—		—	_
bit 15						-	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_	—		DMABL<2:0>	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplei	mented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unkr	nown	

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

REGISTER 2		IS123: ADCx			3 SELECT P	EGISTED	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	— — — — CH123NB<1:0>						CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
							CH123SA
bit 7					011120	11/11/01	bit C
Legend:							
R = Readable	e bit	W = Writable b	pit	U = Unimple	emented bit, rea	ad as '0'	
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unk	nown
bit 8	11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SB: CH When AD12E 1 = CH1 posit 0 = CH1 posit	B = 1, CHxNB is gative input is A gative input is A 12, CH3 negative nannel 1, 2, 3 P B = 1, CHxSB is give input is ANG ive input is ANG	N9, CH2 nega N6, CH2 nega ve input is VRE cositive Input S s: U-0, Unimp 3, CH2 positive 0, CH2 positive	ative input is A ative input is A F- Select for Sam I emented, Re e input is AN4	N10, CH3 neg N7, CH3 nega ple B bit ead as '0' , CH3 positive	tive input is AN	
bit 7-3	•	ted: Read as 'o					
bit 2-1 bit 0	When AD12E 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SA: CH		s: U-0, Unimp N9, CH2 nega N6, CH2 nega ve input is VRE Positive Input S	lemented, Re ative input is A ative input is A F- Select for Sam	ead as 'o' N10, CH3 neg N7, CH3 nega	ative input is A	
	CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0' 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2						

REGISTER	21-6: ADxC	HS0: ADCx IN	IPUT CHAN	NEL 0 SELE	CT REGISTI	ER	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		—			CH0SB<4:03	>	
bit 15			•				bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA		— CH0SA<4:0>					
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimple	mented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 14-13 bit 12-8 bit 7	CH0SB<4:0> Same definition CH0NA: Cha 1 = Channel (ited: Read as '0 : Channel 0 Poi on as bit<4:0>. nnel 0 Negative 0 negative input 0 negative input 	sitive Input S Input Select t is AN1				
bit 6-5	Unimplemen	ted: Read as 'c)'				
bit 4-0	11111 = Cha 11110 = Cha • • • • • • • • • • • • • • • • • • •	Channel 0 Positive i innel 0 positive i	input is AN31 input is AN30 input is AN2 input is AN1		e A bits		

Note: ADC2 can only select AN0 through AN15 as positive input.

REGISTER 21-7:	ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH ^(1,2)
----------------	--

R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set		bit	U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknow			nown	
Legend:							
bit 7							bit C
bit 7							hit (
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0

CSS<31:16>: ADC Input Scan Selection bits

- 1 = Select ANx for input scan
- 0 = Skip ANx for input scan
- **Note 1:** On devices without 32 analog inputs, all ADxCSSH bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREFL.
 - **2:** CSSx = ANx, where x = 16 through 31.

REGISTER 21-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7	•			·		•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS<15:0>: ADC Input Scan Selection bits

- 1 = Select ANx for input scan
- 0 = Skip ANx for input scan
- **Note 1:** On devices without 16 analog inputs, all ADxCSSL bits may be selected by user. However, inputs selected for scan without a corresponding input on device will convert VREFL.
 - **2:** CSSx = ANx, where x = 0 through 15.

REGISTER 21-9: AD1PCFGH: ADC1 PORT CONFIGURATION REGISTER HIGH^(1,2,3)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit W = Writable bit		U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

PCFG<31:16>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss
 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

- **Note 1:** On devices without 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - 2: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 port Configuration register exists.
 - **3:** PCFGx = ANx, where x = 16 through 31.

REGISTER 21-10: ADxPCFGL: ADCx PORT CONFIGURATION REGISTER LOW^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7			•	•			bit 0
Legend:							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

PCFG<15:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss
 0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

Note 1: On devices without 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.

- **2:** On devices with two analog-to-digital modules, both AD1PCFGL and AD2PCFGL will affect the configuration of port pins multiplexed with AN0-AN15.
- **3:** PCFGx = ANx, where x = 0 through 15.

22.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "CodeGuard™ Security" (DS70199), Section 24. "Programming and Diagnostics" (DS70207), and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

dsPIC33FJXXXGPX06/X08/X10 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

22.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 22-1.

The individual Configuration bit descriptions for the FBS, FSS, FGS, FOSCSEL, FOSC, FWDT, FPOR and FICD Configuration registers are shown in Table 22-2.

Note that address 0xF80000 is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFF) which can only be accessed using table reads and table writes.

The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS	S<1:0>	_	—		BSS<2:0>		BWRP
0xF80002	FSS	RSS	S<1:0>	_	—		SSS<2:0>		SWRP
0xF80004	FGS	—	_	_	_	_	GSS1	GSS0	GWRP
0xF80006	FOSCSEL	IESO	Reserved ⁽²⁾	_	—	-	FNOSC<2:0>		
0xF80008	FOSC	FCKS	SM<1:0>	_	_	_	OSCIOFNC	POSCM	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST	<3:0>	
0xF8000C	FPOR	—	_	_	—	-	FPV	VRT<2:0>	
0xF8000E	FICD	Rese	erved ⁽¹⁾	JTAGEN	_	_	—	ICS<	<1:0>
0xF80010	FUID0		User Unit ID Byte 0						
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3		User Unit ID Byte 3						

TABLE 22-1: DEVICE CONFIGURATION REGISTER MAP

Note 1: When read, these bits will appear as '1'. When you write to these bits, set these bits to '1'.

2: When read, this bit returns the current programmed value.

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	 Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0007FEh 010 = High security; boot program Flash segment starts at End of VS, ends at 0007FEh Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh 001 = High security; boot program Flash segment starts at End of VS, ends at 001FFEh Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 003FFEh 000 = High security; boot program Flash segment starts at End of VS, ends at 003FFEh
RBS<1:0>	FBS	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 22-2: dsPIC33FJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION

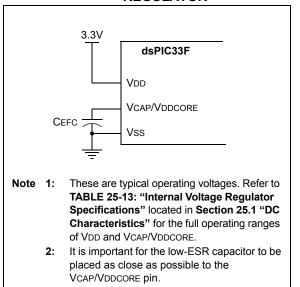
TABLE 22-2:	dsPIC33FJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)					
Bit Field	Register	Description				
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size				
		(FOR 128K and 256K DEVICES) X11 = No Secure program Flash segment				
		Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE				
		Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE				
		Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE				
		(FOR 64K DEVICES) X11 = No Secure program Flash segment				
		Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE				
		Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE				
		Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE				
RSS<1:0>	FSS	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM				
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security; general program Flash segment starts at End of SS, ends at EOM 0x = High security; general program Flash segment starts at End of SS, ends at EOM				
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected				

TABLE 22-2: dsPIC33FJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 0001 = 1:2 0000 = 1:1
JTAGEN	FICD	JTAG Enable bits 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved

TABLE 22-2: dsPIC33FJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

22.2 On-Chip Voltage Regulator


All of the dsPIC33FJXXXGPX06/X08/X10 devices power their core digital logic at a nominal 2.5V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJXXXGPX06/X08/X10 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. The regulator requires that a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) be connected to the VCAP/VDDCORE pin (Figure 22-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 25-13 of Section 25.0 "Electrical Characteristics".

Note:	It is important for the low-ESR capacitor to				
	be placed as close as possible to the				
	VCAP/VDDCORE pin.				

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 22-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

22.3 BOR: Brown-Out Reset

The BOR (Brown-out Reset) module is based on an internal voltage reference circuit that monitors the regulated voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR will generate a Reset pulse which will reset the device. The BOR will select the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). Furthermore, if an oscillator mode is selected, the BOR will activate the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock will be held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) will be applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) will be set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and will reset the device should VDD fall below the BOR threshold voltage.

22.4 Watchdog Timer (WDT)

For dsPIC33FJXXXGPX06/X08/X10 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

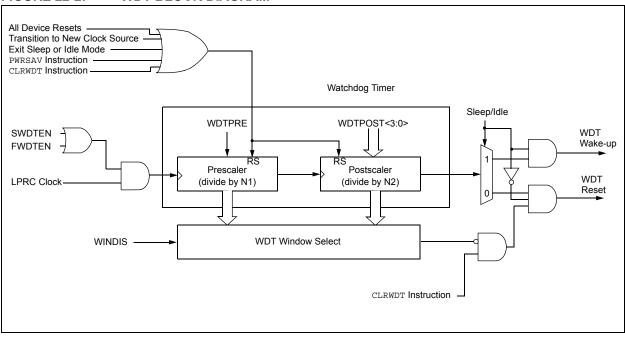
The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler and then can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) will need to be cleared in software after the device wakes up.


The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note:	The CLRWDT and PWRSAV instructions					
	clear the prescaler and postscaler counts					
	when executed.					

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

FIGURE 22-2: WDT BLOCK DIAGRAM

22.5 JTAG Interface

dsPIC33FJXXXGPX06/X08/X10 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on the interface will be provided in future revisions of the document.

22.6 Code Protection and CodeGuard™ Security

The dsPIC33F product families offer the advanced implementation of CodeGuard[™] Security. CodeGuard[™] Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IP are resident on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

The code protection features are controlled by the Configuration registers: FBS, FSS and FGS.

Note:	Refer to Section 23. "CodeGuard™
	Security" (DS70199) in the "dsPIC33F
	Family Reference Manual" for further
	information on usage, configuration and
	operation of CodeGuard™ Security.

22.7 In-Circuit Serial Programming

dsPIC33FJXXXGPX06/X08/X10 family digital signal controllers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming sequence. This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware, to be programmed. Please refer to the "*dsPIC33F/PIC24H Flash Programming Specification*" (DS70152) document for details about ICSP.

Any one out of three pairs of programming clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

22.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any one out of three pairs of debugging clock/data pins may be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, Vss and the PGEDx/PGECx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

NOTES:

23.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "dsPIC33F Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- · DSP operations
- Control operations

Table 23-1 illustrates the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 23-2 provides all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions may use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and may include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"dsPIC30F/33F Programmer's Reference Manual"* (DS70157).

Field	Description			
#text	Means literal defined by "text"			
(text)	Means "content of text"			
[text]	Means "the location addressed by text"			
{ }	Optional field or operation			
<n:m></n:m>	Register bit field			
.b	Byte mode selection			
.d	Double-Word mode selection			
.S	Shadow register select			
.W	Word mode selection (default)			
Acc	One of two accumulators {A, B}			
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}			
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$			
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero			
Expr	Absolute address, label or expression (resolved by the linker)			
f	File register address ∈ {0x00000x1FFF}			
lit1	1-bit unsigned literal $\in \{0,1\}$			
lit4	4-bit unsigned literal ∈ {015}			
lit5	5-bit unsigned literal ∈ {031}			
lit8	8-bit unsigned literal ∈ {0255}			
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode			
lit14	14-bit unsigned literal ∈ {016384}			
lit16	16-bit unsigned literal ∈ {065535}			
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'			
None	Field does not require an entry, may be blank			
OA, OB, SA, SB	DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate			
PC	Program Counter			
Slit10	10-bit signed literal ∈ {-512511}			
Slit16	16-bit signed literal ∈ {-3276832767}			
Slit6	6-bit signed literal ∈ {-1616}			
Wb	Base W register ∈ {W0W15}			
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }			
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }			
Wm,Wn	Dividend, Divisor working register pair (direct addressing)			

TABLE 23-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description				
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}				
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions \in {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}				
Wn	One of 16 working registers ∈ {W0W15}				
Wnd	One of 16 destination working registers ∈ {W0W15}				
Wns	One of 16 source working registers ∈ {W0W15}				
WREG	W0 (working register used in file register instructions)				
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }				
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }				
Wx	X data space prefetch address register for DSP instructions ∈ {[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2, [W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2, [W9 + W12], none}				
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}				
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2, [W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2, [W11 + W12], none}				
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}				

TABLE 23-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA, Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB, Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	-	Branch Unconditionally	1	2	None
			Expr Z Expr	Branch if Zero	1	1 (2)	None
		BRA BRA	Z,Expr	Computed Branch	1	2	None
7	BSET		Wn f #bit4	Bit Set f	1	1	None
'	Taca	BSET	f,#bit4		1	1	
8	DCW	BSET	Ws,#bit4	Bit Set Ws	-		None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BTG	BSW.Z BTG	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9		0.00	f,#bit4	Bit Toggle f	1	1	None

IABL	E 23-2:	INSTRU	JCTION SET OVERVIE	EW (CONTINUED)		1	
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17			£	$f = \bar{f}$	1	1	· · ·
17	COM	COM	f	_			N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow (Wb - Ws - \overline{C})	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f - 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Assembly # of # of Status Flags Instr Assembly Syntax Description Mnemonic Words Cycles Affected # 29 DIV Signed 16/16-bit Integer Divide N,Z,C,OV DIV.S 1 18 Wm,Wn DIV.SD N,Z,C,OV Wm,Wn Signed 32/16-bit Integer Divide 1 18 DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.UD 1 18 N,Z,C,OV Wm,Wn Unsigned 32/16-bit Integer Divide 30 DIVF DIVF Wm,Wn Signed 16/16-bit Fractional Divide 1 18 N,Z,C,OV 2 31 Do code to PC + Expr, lit14 + 1 times 2 DO DO #lit14,Expr None DO Do code to PC + Expr, (Wn) + 1 times 2 2 None Wn,Expr 32 ED ED Wm*Wm, Acc, Wx, Wy, Wxd Euclidean Distance (no accumulate) 1 1 OA,OB,OAB, SA,SB,SAB 33 1 OA,OB,OAB, Euclidean Distance 1 EDAC EDAC Wm*Wm, Acc, Wx, Wy, Wxd SA,SB,SAB 34 EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 None 35 FBCL FBCL Find Bit Change from Left (MSb) Side 1 1 С Ws,Wnd 36 FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 С 37 FF1R Find First One from Right (LSb) Side 1 С FF1R Ws,Wnd 1 38 2 GOTO GOTO Go to address 2 None Expr 1 GOTO Go to indirect 2 None Wn 39 1 INC INC f f = f + 11 C,DC,N,OV,Z TNC f,WREG WREG = f + 11 1 C,DC,N,OV,Z INC Ws,Wd Wd = Ws + 11 1 C,DC,N,OV,Z 40 1 C,DC,N,OV,Z INC2 INC2 f = f + 2 1 f WREG = f + 21 C,DC,N,OV,Z INC2 1 f,WREG INC2 Ws,Wd Wd = Ws + 21 1 C,DC,N,OV,Z 41 TOR IOR f f = f .IOR. WREG 1 1 N.Z f,WREG WREG = f .IOR. WREG 1 1 N,Z IOR Wd = lit10 .IOR. Wd 1 1 N.Z #lit10,Wn TOR Wd = Wb .IOR. Ws 1 1 N,Z IOR Wb,Ws,Wd τor Wd = Wb .IOR. lit5 1 1 N.Z Wb, #lit5, Wd 42 LAC LAC Wso, #Slit4, Acc Load Accumulator 1 1 OA.OB.OAB. SA,SB,SAB 43 LNK LNK #lit14 Link Frame Pointer 1 1 None 44 LSR LSR f = Logical Right Shift f 1 1 C,N,OV,Z f LSR f,WREG WREG = Logical Right Shift f 1 1 C,N,OV,Z Wd = Logical Right Shift Ws 1 1 C,N,OV,Z LSR Ws,Wd Wnd = Logical Right Shift Wb by Wns 1 1 N,Z LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by lit5 1 N.Z LSR Wb, #lit5, Wnd 1 45 OA,OB,OAB, MAC MAC Wm*Wn, Acc, Wx, Wxd, Wy, Wyd Multiply and Accumulate 1 1 SA,SB,SAB AWB OA,OB,OAB, MAC 1 1 Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate SA,SB,SAB 46 MOV MOV Move f to Wn 1 1 None f,Wn MOV Move f to f 1 1 N,Z f Move f to WREG N,Z MOV f,WREG 1 1 MOV #lit16,Wn Move 16-bit literal to Wn 1 1 None Move 8-bit literal to Wn 1 1 MOV.b #lit8,Wn None Move Wn to f 1 MOV Wn,f 1 None Move Ws to Wd 1 MOV Wso,Wdo 1 None Move WREG to f N,Z MOV WREG, f 1 1 MOV.D Wns,Wd Move Double from W(ns):W(ns + 1) to Wd 1 2 None MOV.D Ws,Wnd Move Double from Ws to W(nd + 1):W(nd) 1 2 None 47 Prefetch and store accumulator 1 MOVSAC MOVSAC Acc, Wx, Wxd, Wy, Wyd, AWB 1 None

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	МРҮ	MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd		Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN	c	Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f wrec	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry Mc	1	1	C,N,Z
64	RLNC	RLC RLNC	Ws,Wd f	Wd = Rotate Left through Carry Ws f = Rotate Left (No Carry) f	1	1	C,N,Z N,Z
04	RUNC	RLNC	I f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Weed = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
55	1000	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Web = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 23-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Assen Mnemonic		Assembly Syntax Description		# of Words	# of Cycles	Status Flags Affected
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
	SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
SETM	SETM	f	f = 0xFFFF	1	1	None
	SETM	WREG	WREG = 0xFFFF	1	1	None
	SETM	Ws	Ws = 0xFFFF	1	1	None
SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB SA,SB,SAB
	SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
	SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
SUB	SUB	Асс	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
	SUB	f	f = f – WREG	1	1	C,DC,N,OV,
	SUB	f,WREG	WREG = f - WREG	1	1	C,DC,N,OV,
	SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,
	SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,
SUBB	SUBB	f	f = f - WREG - (C)	1	1	C,DC,N,OV,
	SUBB	f,WREG	WREG = f - WREG - (\overline{C})	1	1	C,DC,N,OV,
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,
	SUBB	Wb,#lit5,Wd	$Wd = Wb - Iit5 - (\overline{C})$	1	1	C,DC,N,OV,
SUBR	SUBR	f	f = WREG - f	1	1	C,DC,N,OV,Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
	SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
	SUBBR	f,WREG	WREG = WREG - f - (\overline{C})	1	1	C,DC,N,OV,Z
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
	SUBBR	Wb,#lit5,Wd	$Wd = Iit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
	SWAP	Wn	Wn = byte swap Wn	1	1	None
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z C,Z,N
ZE		XOR	XOR Wb,Ws,Wd XOR Wb,#lit5,Wd	XOR Wb,Ws,Wd Wd = Wb.XOR.Ws XOR Wb,#lit5,Wd Wd = Wb.XOR.lit5	XOR Wb,Ws,Wd Wd = Wb.XOR.Ws 1 XOR Wb,#lit5,Wd Wd = Wb.XOR.lit5 1	XOR Wb,Ws,Wd Wd = Wb.XOR.Ws 1 1 XOR Wb,#lit5,Wd Wd = Wb.XOR.lit5 1 1

24.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

24.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

24.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

24.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

24.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

24.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

24.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

24.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost-effective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

24.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

24.12 PICkit 2 Development Programmer

The PICkit 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

24.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

25.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJXXXGPX06/X08/X10 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJXXXGPX06/X08/X10 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	0.3V to +5.6V
Voltage on VCAP/VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.

25.1 DC Characteristics

Characteristic	VDD Range	Temp Range	Max MIPS
onaracteristic	(in Volts)	(in °C)	dsPIC33FJXXXGPX06/X08/X10
DC5	3.0-3.6V	-40°C to +85°C	40

TABLE 25-1: OPERATING MIPS VS. VOLTAGE

TABLE 25-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
dsPIC33FJXXXGPX06/X08/X10					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	РDMAX (ΤJ - ΤΑ)/θJA			W

TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θja	40		°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 80-pin TQFP (12x12x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θja	40	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 25-4: DO	C TEMPERATURE AND VOLTAGE SPECIFICATIONS
----------------	--

DC CHA	ARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C \leq TA \leq +85°C for IndustrialMinTyp ⁽¹⁾ MaxUnitsConditions					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
Operati	ng Voltag	9						
DC10	Supply V	/oltage						
	Vdd	—	3.0	_	3.6	V	—	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	—	V	_	
DC16	VPOR	VDD Start Voltage⁽⁴⁾ to ensure internal Power-on Reset signal	_	_	Vss	V	_	
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s	
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	2.25	—	2.75	V	Voltage is dependent on load, temperature and VDD	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD can be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: VDD voltage must remain at Vss for a minimum of 200 μs to ensure POR.

TABLE 25-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Parameter No.	Typical ⁽¹⁾	Max	Units	Units Conditions					
Operating Cur	rent (IDD) ⁽²⁾								
DC20d	27	30	mA	-40°C					
DC20a	27	30	mA	+25°C	3.3V	10 MIPS			
DC20b	27	30	mA	+85°C					
DC21d	36	40	mA	-40°C					
DC21a	37	40	mA	+25°C	3.3V	16 MIPS			
DC21b	38	45	mA	+85°C					
DC22d	43	50	mA	-40°C					
DC22a	46	50	mA	+25°C	3.3V	20 MIPS			
DC22b	46	55	mA	+85°C					
DC23d	65	70	mA	-40°C					
DC23a	65	70	mA	+25°C	3.3V	30 MIPS			
DC23b	65	70	mA	+85°C	7				
DC24d	84	90	mA	-40°C					
DC24a	84	90	mA	+25°C	3.3V	40 MIPS			
DC24b	84	90	mA	+85°C	1				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Parameter No.	Typical ⁽¹⁾	Мах	Units	Units Conditions								
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾												
DC40d	3	25	mA	-40°C								
DC40a	3	25	mA	+25°C	3.3V	10 MIPS						
DC40b	3	25	mA	+85°C	0.00							
DC41d	4	25	mA	-40°C								
DC41a	5	25	mA	+25°C	3.3V	16 MIPS						
DC41b	6	25	mA	+85°C								
DC42d	8	25	mA	-40°C								
DC42a	9	25	mA	+25°C	3.3V	20 MIPS						
DC42b	10	25	mA	+85°C								
DC43a	15	25	mA	+25°C								
DC43d	15	25	mA	-40°C	3.3V	30 MIPS						
DC43b	15	25	mA	+85°C								
DC44d	16	25	mA	-40°C								
DC44a	16	25	mA	+25°C	3.3V	40 MIPS						
DC44b	16	25	mA	+85°C								

TABLE 25-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 25-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACI	FERISTICS		(unless oth	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Units Conditions					
Power-Down	Current (IPD) ^{(;}	2)							
DC60d	55	500	μA	-40°C					
DC60a	211	500	μΑ	+25°C	3.3V	Base Power-Down Current ^(3,4)			
DC60b	244	500	μΑ	+85°C					
DC61d	8	13	μΑ	-40°C					
DC61a	10	15	μA	+25°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾			
DC61b	12	20	μA	+85°C	1				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

DC CHARAC	TERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C \leq TA \leq +85°C for Industrial					
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions			
DC73a	11	35	1:2	mA				
DC73f	11	30	1:64	mA	-40°C	3.3V	40 MIPS	
DC73g	11	30	1:128	mA				
DC70a	42	50	1:2	mA			40 MIPS	
DC70f	26	30	1:64	mA	+25°C	3.3V		
DC70g	25	30	1:128	mA				
DC71a	41	50	1:2	mA				
DC71f	25	30	1:64	mA	+85°C	3.3V 4	40 MIPS	
DC71g	24	30	1:128	mA]			

TABLE 25-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

DC CHA	RACTER	ISTICS		otherwi	se stated))	3.0V to 3.6V TA \leq +85°C for Industrial
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	—	0.2 Vdd	V	
DI15		MCLR	Vss	—	0.2 Vdd	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with I ² C	Vss	—	0.3 Vdd	V	SMbus disabled
DI19		I/O Pins with I ² C	Vss	—	0.2 Vdd	V	SMbus enabled
	VIH	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.8 Vdd 0.8 Vdd	_	Vdd 5.5	V V	
		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	2 2	_	Vdd 5.5	V V	VDD = 3.3V VDD = 3.3V
DI26		I/O Pins with OSC1 or SOSCI	0.7 Vdd	—	Vdd	V	
DI28		I/O Pins with I ² C	0.7 Vdd	_	5.5	V	SMbus disabled
DI29		I/O Pins with I ² C	0.8 Vdd	—	5.5	V	SMbus enabled
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	_	—	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±2	μA	Shared with external reference pins
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±3.5	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	—	—	±8	μA	Analog pins shared with external reference pins
DI55		MCLR	—	_	±2	μA	$Vss \leq Vpin \leq Vdd$
DI56		OSC1	—	—	±2	μA	$Vss \le VPIN \le VDD,$ XT and HS modes

TABLE 25-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for a list of 5V tolerant pins.

TABLE 25-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No. Symbol Characteristic			Min	Тур	Мах	Units	Conditions		
	Vol	Output Low Voltage							
DO10		I/O ports	—	_	0.4	V	IOL = 2 mA, VDD = 3.3V		
DO16		OSC2/CLKO	_	—	0.4	V	IOL = 2 mA, VDD = 3.3V		
	Voн	Output High Voltage							
DO20		I/O ports	2.40	—	—	V	Iон = -2.3 mA, Vdd = 3.3V		
DO26		OSC2/CLKO	2.41	_	—	V	Iон = -1.3 mA, Vdd = 3.3V		

TABLE 25-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40	_	2.55	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

DC CHA	RACTER	ISTICS	(unless	s otherw	ise state	d)	s: 3.0V to 3.6V
			Operat	ing temp	erature	-40°C :	\leq TA \leq +85°C for Industrial
Param No.	Symbol Characteristic			Typ ⁽¹⁾	Max	Units	Conditions
		Program Flash Memory					
D130a	Eр	Cell Endurance	100	1000	_	E/W	See Note 2
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D132B	VPEW	VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage
D134	TRETD	Characteristic Retention	20	—	_	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	_	10	—	mA	
D136a	Trw	Row Write Time	1.32	-	1.74	ms	Trw = 11064 FRC cycles, See Note 2
D137a	TPE	Page Erase Time	20.1	-	26.5	ms	TPE = 168517 FRC cycles, See Note 2
D138a	Tww	Word Write Cycle Time	42.3	-	55.9	μs	Tww = 355 FRC cycles, See Note 2

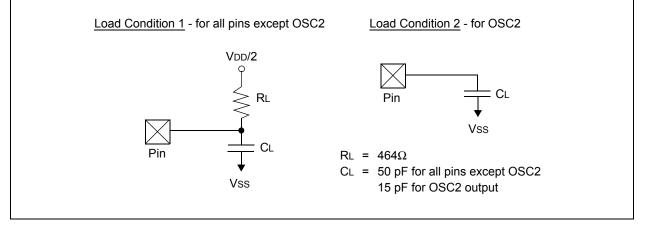
TABLE 25-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 25-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 25-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

(unless o	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Param No.	ⁿ Symbol Characteristics Min Typ Max Units Comments									
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)			


25.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33FJXXXGPX06/X08/X10 AC characteristics and timing parameters.

TABLE 25-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

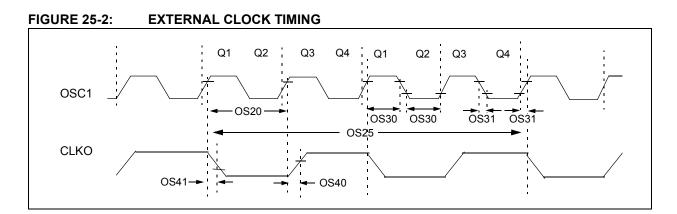

	Standard Operating Conditions: 3.0V to 3.6V
	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	Operating voltage VDD range as described in Section 25.0 "Electrical
	Characteristics".

FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 25-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

АС СНА	RACTE	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param No.	Sym bol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions				
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC				
		Oscillator Crystal Frequency	3.5 10 —		10 40 33	MHz MHz kHz	XT HS SOSC				
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns	—				
OS25	TCY	Instruction Cycle Time ⁽²⁾	25		DC	ns	—				
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC				
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	—	20	ns	EC				
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns	—				
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2		ns	—				
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C				

TABLE 25-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

TABLE 25-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

АС СНА					tandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characteris	tic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
OS50	Fplli	PLL Voltage Controlle Oscillator (VCO) Inpu Frequency Range ⁽²⁾		0.8		8.0	MHz	ECPLL, HSPLL, XTPLL modes			
OS51	Fsys	On-Chip VCO Systen Frequency	٦	100	_	200	MHz	_			
OS52	TLOCK	PLL Start-up Time (Lo	ock Time)	0.9	1.5	3.1	ms	—			
OS53	DCLK	CLKO Stability (Jitter)		-3.0	0.5	3.0	%	Measured over 100 ms period			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 25-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY


АС СНА	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Param No.	Characteristic	Min	Ain Typ Max Units Conditions				ions				
	Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ^(1,2)										
F20	FRC	-2		+2	% $-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0-3.6V						

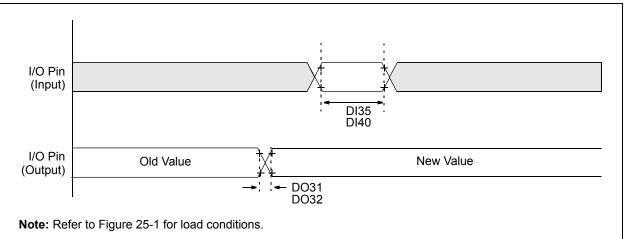
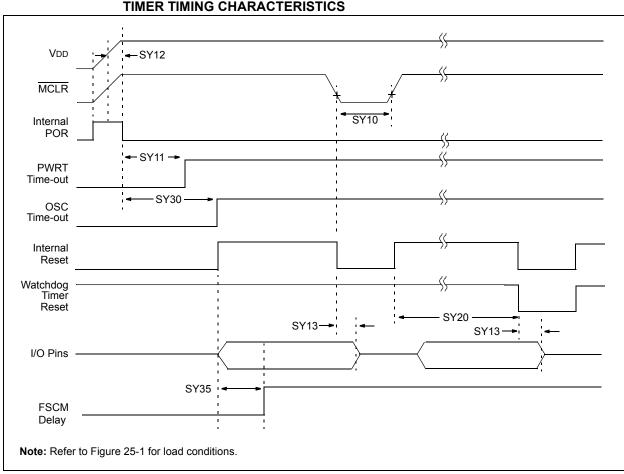

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.
2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C FRC.

TABLE 25-19: INTERNAL LPRC ACCURACY

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwise state Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							-			
Param No.	Characteristic	Min	Тур	Max Units Conditions						
	LPRC @ 32.768 kHz ⁽¹⁾	z ⁽¹⁾								
F21	LPRC	$-20 \qquad \pm 6 \qquad +20 \qquad \% \qquad -40^{\circ}C \leq TA \leq +85^{\circ}C \qquad VDD = 3.0-3.6V$								

Note 1: Change of LPRC frequency as VDD changes.

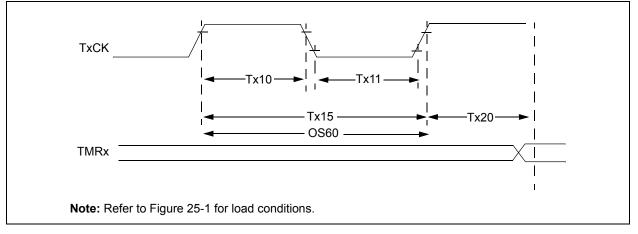


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristi	Characteristic			Max	Units	Conditions		
DO31	TioR	Port Output Rise Time		_	10	25	ns			
DO32	TIOF	Port Output Fall Time		_	10	25	ns	—		
DI35	TINP	INTx Pin High or Low Tir	20	_		ns	—			
DI40	Trbp	CNx High or Low Time (i	2	—	_	TCY	—			

TABLE 25-20: I/O TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS


TABLE 25-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	(unles	s otherwise	stated)		3.0V to 3.6V TA ≤ +85°C for Industrial
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse-Width (low)	2			μs	-40°C to +85°C
SY11	Tpwrt	Power-up Timer Period		2 4 16 32 64 128		ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_
SY20	Twdt1	Watchdog Timer Time-out Period	_	_		_	See Section 22.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 25-19)
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	_	—	Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

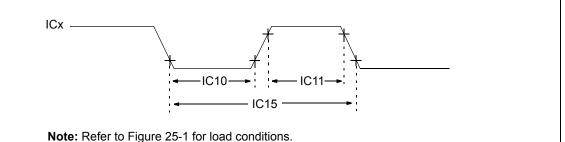
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 25-5: TIMER1, 2, 3, 4, 5, 6, 7, 8 AND 9 EXTERNAL CLOCK TIMING CHARACTERISTICS

АС СНА	RACTERIST	ICS		(unless	dard Operating Conditions: 3.0V to 3.6V ss otherwise stated) ating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions		
TA10	ТтхН	TxCK High Time	Synchron no presca		0.5 Tcy + 20	—	_	ns	Must also meet parameter TA15		
			Synchron with prese		10		—	ns			
			Asynchro	nous	10	_	_	ns			
TA11	TTXL	TxCK Low Time	Synchron no presca		0.5 TCY + 20	_	—	ns	Must also meet parameter TA15		
			Synchron with prese		10	_	—	ns			
			Asynchro	nous	10	—		ns			
TA15	ΤτχΡ	TxCK Input Period	Synchron no presca		Тсү + 40	_	_	ns	—		
			Synchron with prese		Greater of: 20 ns or (Tcy + 40)/N	—	_	—	N = prescale value (1, 8, 64, 256)		
			Asynchro	nous	20	_		ns	_		
OS60	Ft1	SOSC1/T1CK Osci frequency Range (c by setting bit TCS (scillator er	nabled	DC	—	50	kHz	—		
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TCY	_	1.5 TCY	—	—		

TABLE 25-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.


TABLE 25-23: TIMER2, TIMER4, TIMER6 AND TIMER8 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTERIS	TICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No. Symbol Characteristic			eristic		Min	Тур	Max	Units	Conditions		
TB10	TtxH	TxCK High Time	Synchron no presc		0.5 Tcy + 20		_	ns	Must also meet parameter TB15		
			Synchron with pres		10	_	—	ns			
TB11	TtxL	TxCK Low Time	Synchron no presc		0.5 TCY + 20	_	—	ns	Must also meet parameter TB15		
			Synchron with pres		10	_	—	ns			
TB15	TtxP	TxCK Input Period	Synchron no presc		TCY + 40	_	—	ns	N = prescale value		
			Synchron with pres		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)		
TB20	TCKEXT- MRL	Delay from Extern Edge to Timer Inci		lock	0.5 TCY	_	1.5 TCY		—		

TABLE 25-24: TIMER3, TIMER5, TIMER7 AND TIMER9 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	RACTERIST	rics		(unles	ord Operating (s otherwise stating temperature	ated)			1
Param No.	Symbol Characteristic				Min	Тур	Max	Units	Conditions
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchro no presc		Тсү + 40			ns	N = prescale value
			Synchro with pres		Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY		1.5 Тсү	_	—

FIGURE 25-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

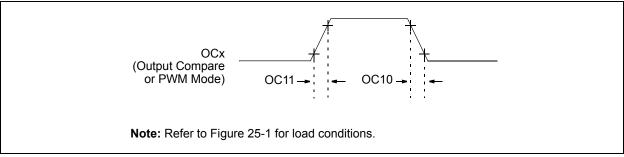


TABLE 25-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	(unless otherwis	e stated)	nditions: 3.0V to 3.6V d) -40°C ≤ TA ≤ +85°C				
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Мах	Units	Conditions		
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	_	ns	_		
			With Prescaler	10		ns			
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20		ns	_		
			With Prescaler	10		ns			
IC15	TccP	ICx Input Period	•	(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 25-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

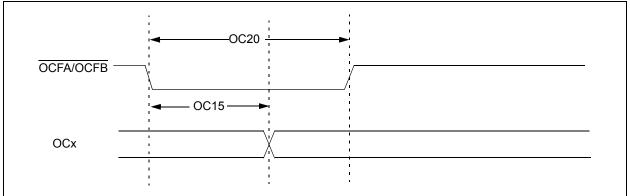


TABLE 25-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

АС СНА	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions			
OC10	TccF	OCx Output Fall Time	— — — ns See parameter D032							
OC11 TccR OCx Output Rise Time — — — ns See parameter D031										

Note 1: These parameters are characterized but not tested in manufacturing.

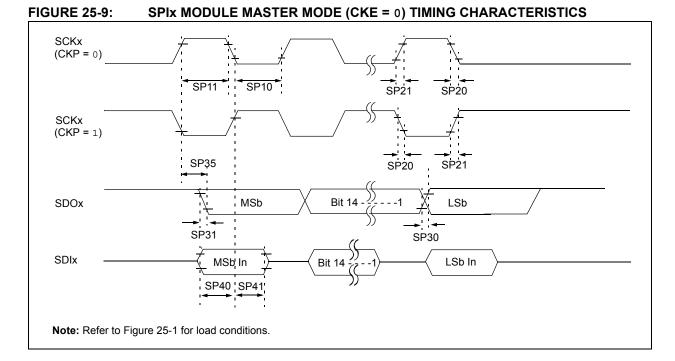
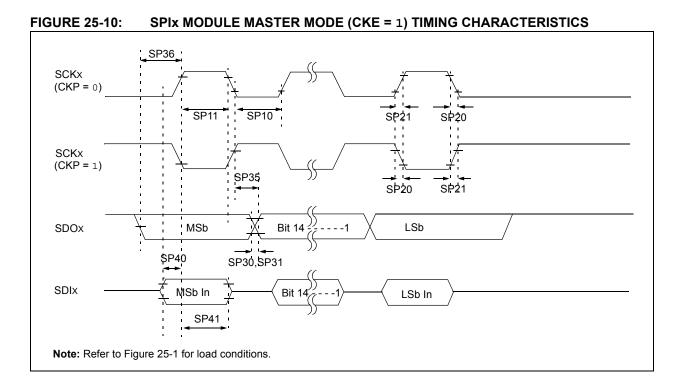


TABLE 25-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHAI	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$						
Param No. Symbol Characteristic ⁽¹⁾			Min	Тур	Мах	Units	Conditions		
OC15	Tfd	Fault Input to PWM I/O Change	<u> </u>				_		
OC20	DC20 TFLT Fault Input Pulse-Width			_	_	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

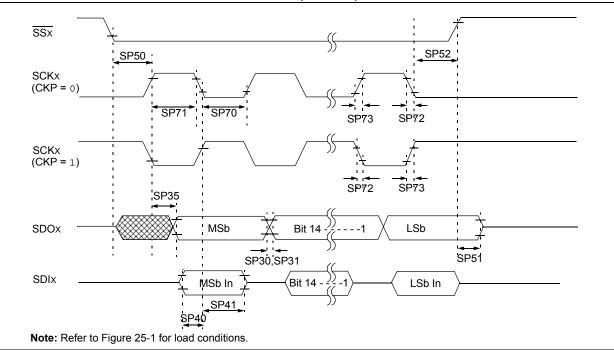

АС СНА	RACTERIST	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time	Tcy/2		_	ns	See Note 3		
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter D032 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter D031 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter D031 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	—	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


TABLE 25-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

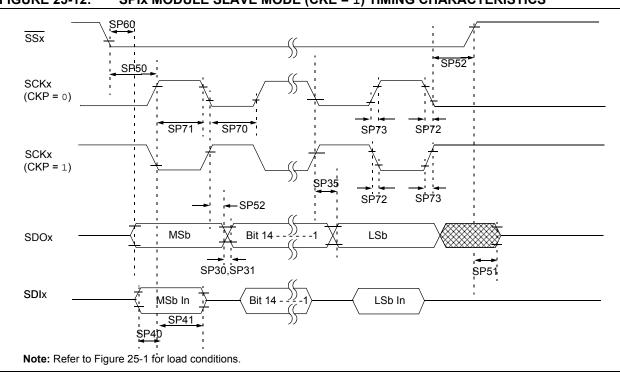
АС СНА	RACTERIST	ïcs	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽³⁾	Tcy/2	—	_	ns	—		
SP11	TscH	SCKx Output High Time ⁽³⁾	Tcy/2			ns	—		
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_	_	ns	See parameter D032		
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	—	—	—	ns	See parameter D031		
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	—	—	_	ns	See parameter D032		
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	—	—	_	ns	See parameter D031		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 25-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 25-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30	_	_	ns	—		
SP71	TscH	SCKx Input High Time	30	_	_	ns	—		
SP72	TscF	SCKx Input Fall Time ⁽³⁾	_	10	25	ns	—		
SP73	TscR	SCKx Input Rise Time ⁽³⁾		10	25	ns	—		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	_		ns	See parameter D032		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾		_		ns	See parameter D031		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	_		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20			ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	_		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	_	_	ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_		ns	—		

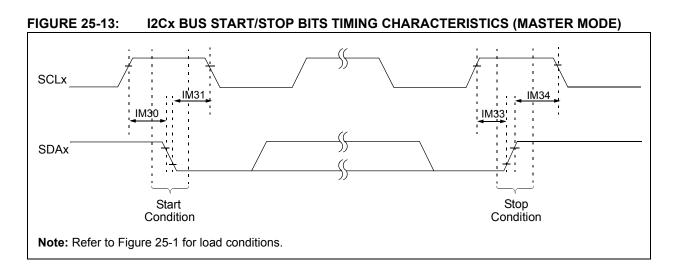
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

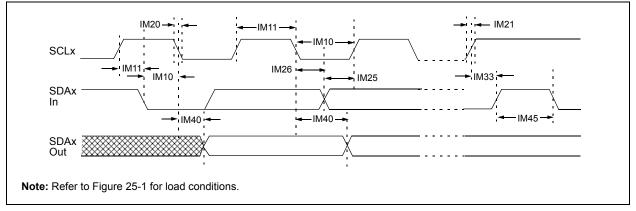
3: Assumes 50 pF load on all SPIx pins.

FIGURE 25-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

	RACTERIS	TICS	Standard Op (unless othe Operating ter	erating rwise st	Conditio ated)		to 3.6V
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_	_	ns	_
SP71	TscH	SCKx Input High Time	30	_	_	ns	—
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	—
SP73	TscR	SCKx Input Rise Time ⁽³⁾		10	25	ns	—
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾		_	_	ns	See parameter D032
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾		_	_	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20			ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	_		ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10		50	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	—
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	_


TABLE 25-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

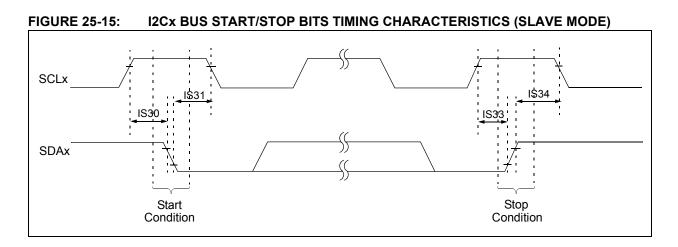
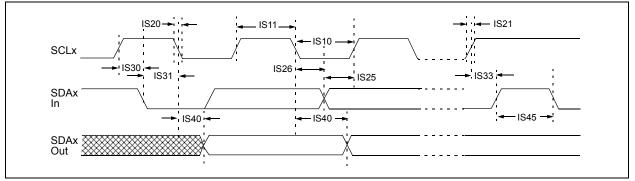


TABLE 25-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	stated)		
Param No.	Symbol	Charact	teristic	Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	—
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	—
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	—
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾		300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	_
		Setup Time	400 kHz mode	100	—	ns	
			1 MHz mode ⁽²⁾	40	_	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	_
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0.2	_	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	After this period the
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	_
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	—
		From Clock	400 kHz mode	_	1000	ns	—
			1 MHz mode ⁽²⁾	—	400	ns	_
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	—	μs	free before a new
			1 MHz mode ⁽²⁾	0.5	_	μs	transmission can start
IM50	Св	Bus Capacitive Lo	bading	—	400	pF	_

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" in the "*dsPIC33F Family Reference Manual*".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

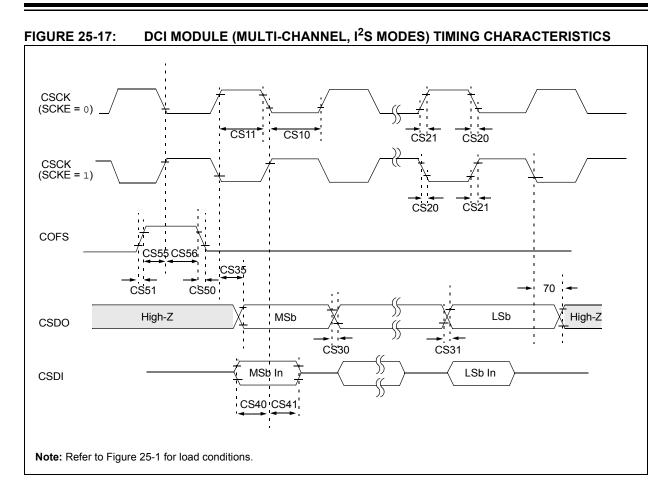
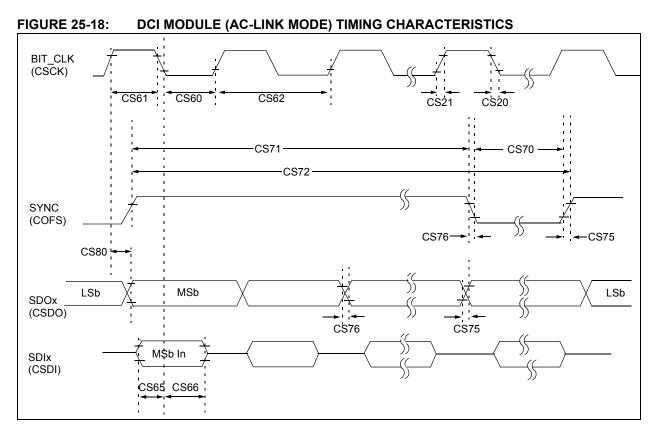


TABLE 25-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol TLO:SCL	Characteristic		Min	Max —	Units μs	Conditions		
IS10		Clock Low Time	lock Low Time 100 kHz mode 4.7	Device must operate at a minimum of 1.5 MHz					
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	—	μs	—		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	—	μs	—		
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	_	300	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾		100	ns			
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	_	1000	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾		300	ns			
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	—		
			400 kHz mode	100	—	ns			
			1 MHz mode ⁽¹⁾	100	—	ns			
IS26	THD:DAT	Data Input	100 kHz mode	0	—	μs	—		
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽¹⁾	0	0.3	μs			
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μs	Only relevant for Repeated		
			400 kHz mode	0.6	—	μs	Start condition		
			1 MHz mode ⁽¹⁾	0.25	—	μs			
IS31	Thd:sta	Start Condition Hold Time	100 kHz mode	4.0	—	μs	After this period, the first		
			400 kHz mode	0.6	—	μs	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25	—	μs			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	—		
		Setup Time	400 kHz mode	0.6	—	μs			
			1 MHz mode ⁽¹⁾	0.6	—	μs			
IS34	THD:STO	Stop Condition Hold Time	100 kHz mode	4000	—	ns			
			400 kHz mode	600	—	ns			
			1 MHz mode ⁽¹⁾	250		ns			
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—		
		From Clock	400 kHz mode	0	1000	ns	4		
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free		
			400 kHz mode	1.3		μs	before a new transmission can start		
			1 MHz mode ⁽¹⁾	0.5	—	μs			
S50	Св	Bus Capacitive Lo	•		400	pF	—		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 25-34:	DCI MODULE	MULTI-CHANNEL.	I ² S MODES) TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
CS10	TCSCKL	CSCK Input Low Time (CSCK pin is an input)	Tcy/2 + 20	—	—	ns		
		CSCK Output Low Time ⁽³⁾ (CSCK pin is an output)	30	_	_	ns		
CS11	Тсѕскн	CSCK Input High Time (CSCK pin is an input)	Tcy/2 + 20	_	_	ns	—	
		CSCK Output High Time ⁽³⁾ (CSCK pin is an output)	30	_	_	ns	—	
CS20	TCSCKF	CSCK Output Fall Time ⁽⁴⁾ (CSCK pin is an output)	_	10	25	ns	_	
CS21	TCSCKR	CSCK Output Rise Time ⁽⁴⁾ (CSCK pin is an output)	—	10	25	ns	—	
CS30	TCSDOF	CSDO Data Output Fall Time ⁽⁴⁾	—	10	25	ns	—	
CS31	TCSDOR	CSDO Data Output Rise Time ⁽⁴⁾	_	10	25	ns		
CS35	Tdv	Clock Edge to CSDO Data Valid	—	—	10	ns	—	
CS36	TDIV	Clock Edge to CSDO Tri-Stated	10	—	20	ns	_	
CS40	TCSDI	Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	_	_	ns	_	
CS41	THCSDI	Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	—	_	ns	_	
CS50	TCOFSF	COFS Fall Time (COFS pin is output)	—	10	25	ns	See Note 1	
CS51	TCOFSR	COFS Rise Time (COFS pin is output)	—	10	25	ns	See Note 1	
CS55	TSCOFS	Setup Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	—	_	ns	_	
CS56	THCOFS	Hold Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	—	_	ns	_	

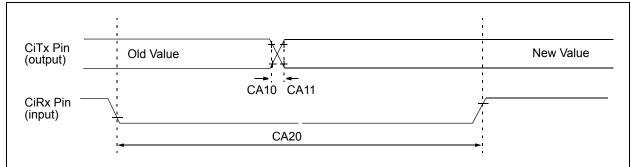
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all DCI pins.

TABLE 25-35: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS


AC CHARACTERISTICS (unle			(unless	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$				
Param No.	Symbol	Characteristic ^(1,2)	Min	Тур ⁽³⁾	Max	Units	Conditions	
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	_	
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	—	
CS62	TBCLK	BIT_CLK Period		81.4		ns	Bit clock is input	
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	—	—	10	ns	_	
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	—	—	10	ns	_	
CS70	TSYNCLO	SYNC Data Output Low Time		19.5		μs	See Note 1	
CS71	TSYNCHI	SYNC Data Output High Time	—	1.3	_	μs	See Note 1	
CS72	TSYNC	SYNC Data Output Period	—	20.8	_	μs	See Note 1	
CS75	TRACL	Rise Time, SYNC, SDATA_OUT	—	10	25	ns	CLOAD = 50 pF, VDD = 5V	
CS76	TFACL	Fall Time, SYNC, SDATA_OUT	—	10	25	ns	CLOAD = 50 pF, VDD = 5V	
CS77	TRACL	Rise Time, SYNC, SDATA_OUT	—	—	30	ns	CLOAD = 50 pF, VDD = 3V	
CS78	TFACL	Fall Time, SYNC, SDATA_OUT		—	30	ns	CLOAD = 50 pF, VDD = 3V	
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	—	—	15	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 25-19: CAN MODULE I/O TIMING CHARACTERISTICS

TABLE 25-36: ECAN™ MODULE I/O TIMING REQUIREMENTS

AC CHAR	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No. Symbol Characteristic ⁽¹⁾			Min	Тур	Max	Units	Conditions		
CA10	TioF	Port Output Fall Time	—			ns	See parameter D032		
CA11	TioR	Port Output Rise Time	—	_		ns	See parameter D031		
CA20	CA20 Tcwf Pulse-Width to Trigger CAN Wake-up Filter		120	—	—	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

АС СНА	RACTER	ISTICS	(unless oth	erwise			to 3.6V 85°C for Industrial
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
			Devic	e Suppl	у		
AD01	AVDD	Module VDD Supply	Greater of VDD - 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	_
AD02	AVss	Module Vss Supply	Vss - 0.3		Vss + 0.3	V	_
			Referer	nce Inpu	uts	-	
AD05	VREFH	Reference Voltage High	AVss + 2.7	_	AVDD	V	See Note 2
AD05a			3.0	—	3.6	V	VREFH = AVDD VREFL = AVSS = 0
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 2.7	V	See Note 2
AD06a			0	_	0	V	Vrefh = AVdd Vrefl = AVss = 0
AD07	Vref	Absolute Reference Voltage	3.0	_	3.6	V	VREF = VREFH - VREFL
AD08	IREF	Current Drain	_	250 —	550 1	μΑ μΑ	ADC operating, see Note 2 ADC off, see Note 2
AD08a	IAD	Operating Current	_	7.0 2.7	9.0 3.2	mA mA	10-bit ADC mode, See Note 3 12-bit ADC mode, See Note 3
			Analo	og Input	t		
AD12	Vinh	Input Voltage Range VINH	VINL	_	Vrefh	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input. See Note 1
AD13	VINL	Input Voltage Range VinL	VREFL	_	Avss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input. See Note 1
AD17	Rin	Recommended Imped- ance of Analog Voltage Source	_		200 200	$\Omega \Omega$	10-bit 12-bit

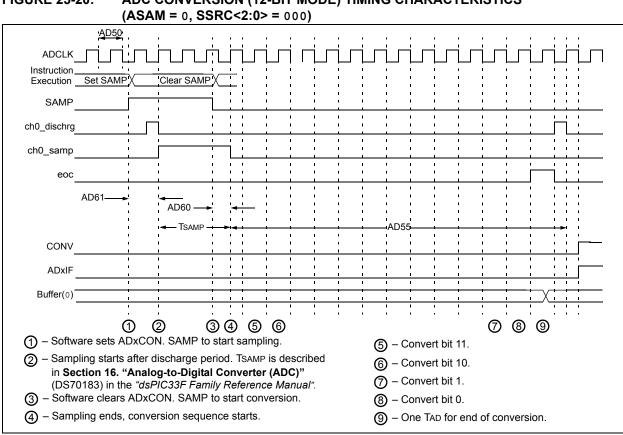
TABLE 25-37: ADC MODULE SPECIFICATIONS

Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: These parameters are not characterized or tested in manufacturing.

3: These parameters are characterized; but are not tested in manufacturing.

AC CH	ARACTERI	STICS	(unless oth	nerwise s	,		to 3.6V 85°C for Industrial
Param No.	Symbol	Characteristic	Min. Typ Max. L			Units	Conditions
	•	ADC Accuracy (12-bit Mod	de) - Measur	ements	with externa	al Vref+	/VREF-
AD20a	Nr	Resolution	1	12 data bits bits		bits	
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	—	Monotonicity ⁽¹⁾	—	_	_	_	Guaranteed
	•	ADC Accuracy (12-bit Mo	de) - Measur	ements	with interna	I VREF+	/VREF-
AD20a	Nr	Resolution	12 data bits		bits		
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	—	Monotonicity ⁽¹⁾	—	_	_	—	Guaranteed
	•	Dynamic	Performan	ce (12-bi	t Mode)		
AD30a	THD	Total Harmonic Distortion	-77	-69	-61	dB	_
AD31a	SINAD	Signal to Noise and Distortion	59	63	64	dB	—
AD32a	SFDR	Spurious Free Dynamic Range	63	72	74	dB	_
AD33a	Fnyq	Input Signal Band-Width	—	—	250	kHz	—
AD34a	ENOB	Effective Number of Bits	10.95	11.1	_	bits	—


TABLE 25-38: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes.

АС СНА	ARACTERI	STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		ADC Accuracy (10-bit Mod	de) - Measu	rements	with extern	al VREF+	/VREF-	
AD20b	Nr	Resolution		10 data bits		bits		
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	_	Monotonicity ⁽¹⁾	_		_		Guaranteed	
		ADC Accuracy (10-bit Mo	de) - Measu	rements	with intern	al VREF+	/VREF-	
AD20b	Nr	Resolution	10 data bits		bits			
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	—	Monotonicity ⁽¹⁾	—	_		_	Guaranteed	
		Dynamic	Performan	ice (10-bi	it Mode)			
AD30b	THD	Total Harmonic Distortion		-64	-67	dB		
AD31b	SINAD	Signal to Noise and Distortion	_	57	58	dB	_	
AD32b	SFDR	Spurious Free Dynamic Range		60	62	dB		
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	_	
AD34b	ENOB	Effective Number of Bits	9.1	9.7	9.8	bits		

TABLE 25-39: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: The ADC conversion result never decreases with an increase in the input voltage, and has no missing codes.

FIGURE 25-20: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS

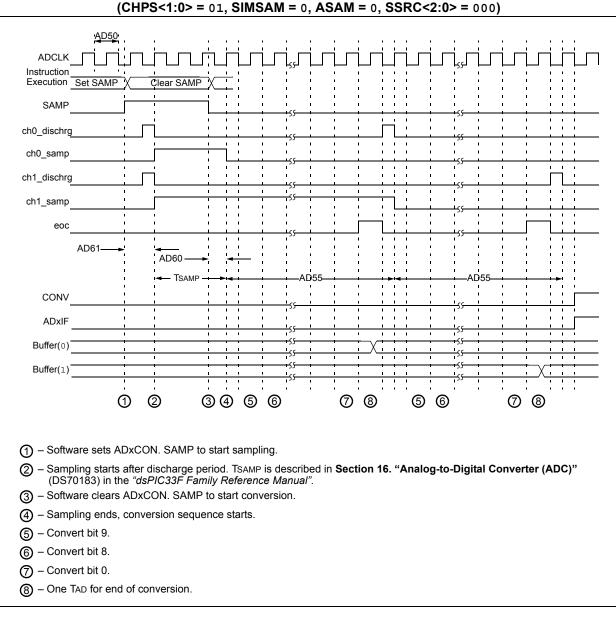
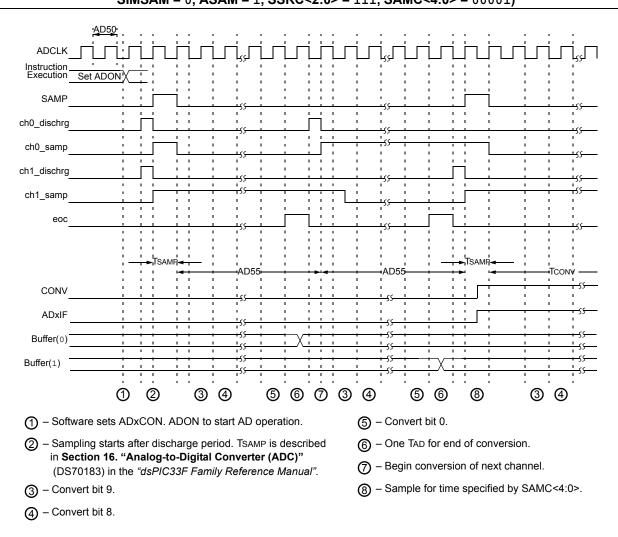

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions	
		Cloc	k Parame	ters				
AD50a	Tad	ADC Clock Period	117.6	_	—	ns	—	
AD51a	tRC	ADC Internal RC Oscillator Period	_	250	—	ns	_	
		Con	version R	ate				
AD55a	tCONV	Conversion Time	—	14 Tad		ns	—	
AD56a	FCNV	Throughput Rate	—	_	500	ksps	—	
AD57a	TSAMP	Sample Time	3 Tad	_	—	_	—	
		Timir	ng Parame	ters				
AD60a	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD	—	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61a	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 TAD	—	3.0 Tad	_	_	
AD62a	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5 TAD	—	_	_	
AD63a	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		_	20	μs		

TABLE 25-40: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS


Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

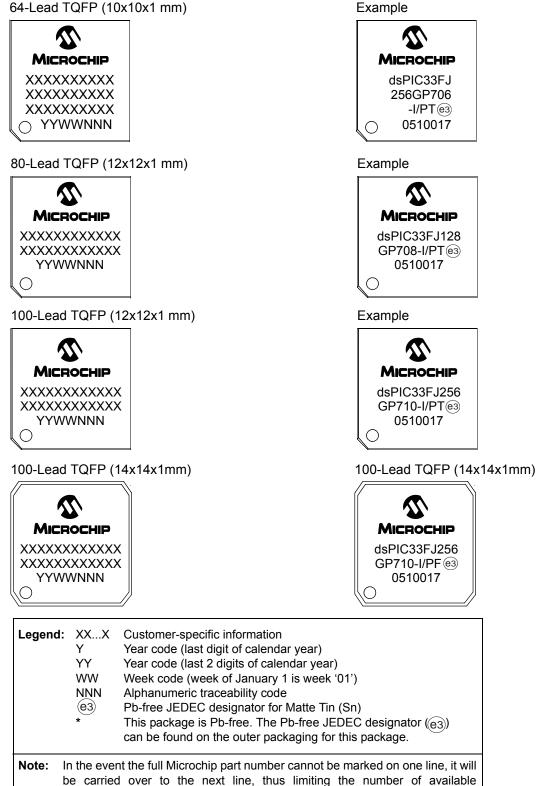
FIGURE 25-21: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)

FIGURE 25-22:ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

TABLE 25-41: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

АС СНА	ARACTE	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristic	Min. Typ ⁽¹⁾ Max. Units			Conditions				
	Clock Parameters									
AD50b	Tad	ADC Clock Period	65			ns	—			
AD51b	TRC	ADC Internal RC Oscillator Period	_	250		ns	—			
		Con	version F	Rate						
AD55b	TCONV	Conversion Time	_	12 TAD	_	_	—			
AD56b	FCNV	Throughput Rate	—		1.1	Msps	—			
AD57b	TSAMP	Sample Time	2 Tad		_	_	—			
		Timir	ng Paramo	eters						
AD60b	TPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD	_	3.0 Tad		Auto-Convert Trigger (SSRC<2:0> = 111) not selected			
AD61b	TPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad	_	_			
AD62b	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	—	_	—			
AD63b	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	—	—	20	μs	—			

Note 1: These parameters are characterized but not tested in manufacturing.

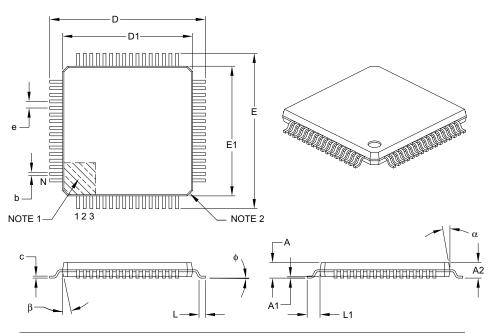

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: TDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

26.0 PACKAGING INFORMATION

26.1 **Package Marking Information**

64-Lead TQFP (10x10x1 mm)



characters for customer-specific information.

26.2 Package Details

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
Di	imension Limits	MIN	NOM	MAX		
Number of Leads	N		64			
Lead Pitch	е		0.50 BSC			
Overall Height	А	-	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	φ	0°	3.5°	7°		
Overall Width	E		12.00 BSC			
Overall Length	D		12.00 BSC			
Molded Package Width	E1		10.00 BSC			
Molded Package Length	D1		10.00 BSC			
Lead Thickness	С	0.09	_	0.20		
Lead Width	b	0.17	0.22	0.27		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

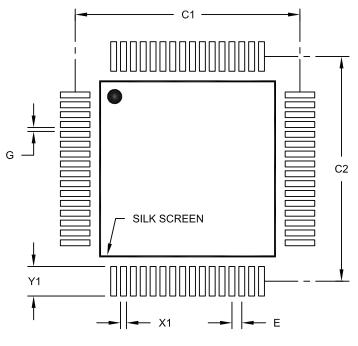
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

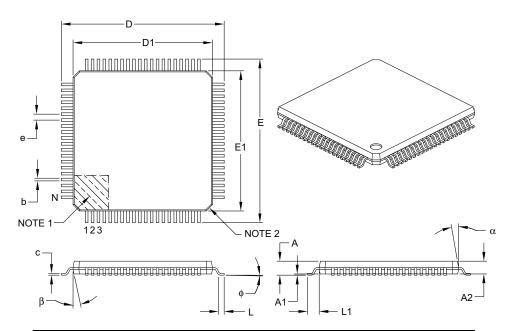
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS		
Dimension	Units Dimension Limits		NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

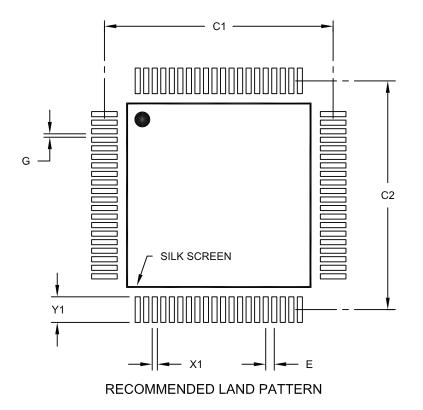
	Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N		80		
Lead Pitch	e		0.50 BSC		
Overall Height	А	-	—	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	—	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1		12.00 BSC		
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

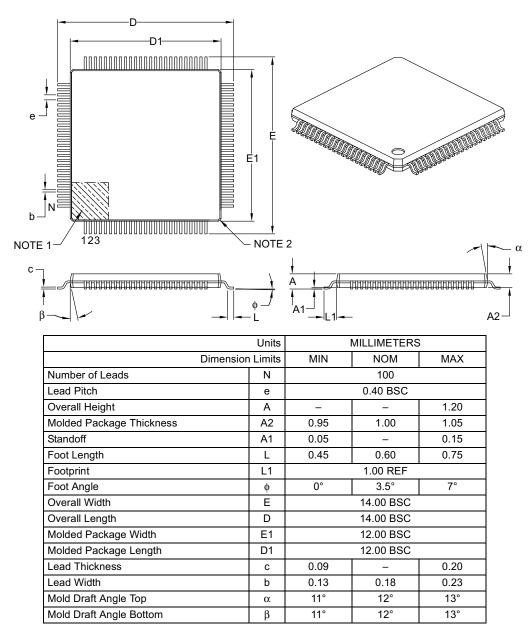
Microchip Technology Drawing C04-092B

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

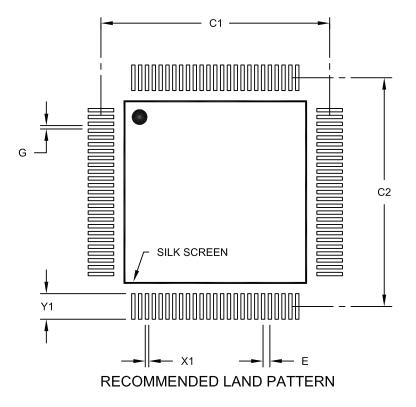
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

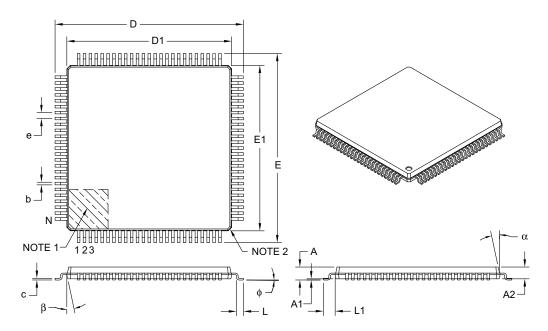
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

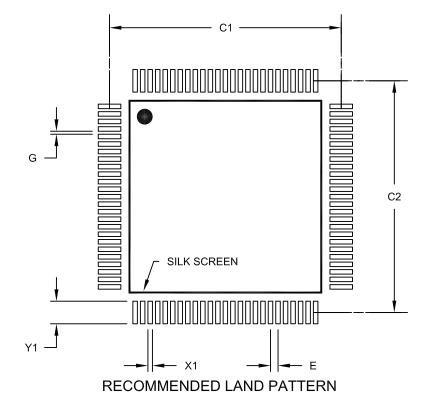
	Units		MILLIMETERS	
D	imension Limits	MIN	NOM	MAX
Number of Leads	N	100		
Lead Pitch	е	0.50 BSC		
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E	16.00 BSC		
Overall Length	D	16.00 BSC		
Molded Package Width	E1	14.00 BSC		
Molded Package Length	D1	14.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIM	ETERS	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (October 2006)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in the following table.

Section Name	Update Description
Section 1.0 "Device Overview"	Added External Interrupt pin information (INT0 through INT4) to Table 1-1.
Section 3.0 "Memory Organization"	Updated Change Notification Register Map table title to reflect application with dsPIC33FJXXXMCX10 devices (Table 3-2).
	Added Change Notification Register Map tables (Table 3-3 and Table 3-4) for dsPIC33FJXXXMCX08 and dsPIC33FJXXXMCX06 devices, respectively.
	Updated the bit range for AD1CON3 (ADCS<7:0>) in the ADC1 Register Map and added Note 1 (Table 3-15).
	Updated the bit range for AD2CON3 (ADCS<7:0>) in the ADC2 Register Map (Table 3-16).
	Updated the Reset value for C1FEN1 (FFFF) in the ECAN1 Register Map When C1CTRL1.WIN = 0 or 1 (Table 3-18) and updated the title to reflect applicable devices.
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 0 to reflect applicable devices (Table 3-19).
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 1 to reflect applicable devices (Table 3-20).
	Updated the Reset value for C2FEN1 (FFFF) in the ECAN2 Register Map When C2CTRL1.WIN = 0 or 1 (Table 3-21) and updated the title to reflect applicable devices.
	Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 0 to reflect applicable devices (Table 3-22).
	Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 1 to reflect applicable devices (Table 3-23).
	Updated Reset value for TRISA (C6FF) and changed the bit 12 and bit 13 values for ODCA to unimplemented in the PORTA Register Map (Table 3-25).
	Changed the bit 10 and bit 9 values for PMD1 to unimplemented in the PMD Register Map (Table 3-34).
Section 5.0 "Reset"	Added POR and BOR references in Reset Flag Bit Operation (Table 5-1).
Section 7.0 "Direct Memory Access (DMA)"	Updated the table cross-reference in Note 2 in the DMAxREQ register (Register 7-2).

TABLE A-1: MAJOR SECTION UPDATES

© 2009 Microchip Technology Inc.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock sources".
	Added the center frequency in the OSCTUN register for the FRC Tuning bits (TUN<5:0>) value 011111 and updated the center frequency for bits value 011110 (Register 8-4).
Section 15.0 "Serial Peripheral Interface (SPI)"	Removed redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i> , while retaining the SPI Module Block Diagram (Figure 15-1).
Section 16.0 "Inter-Integrated Circuit™ (I ² C™)"	Removed sections 16.3 through 16.13, while retaining the I ² C Block Diagram (Figure 16-1) (redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i>).
Section 17.0 "Universal Asynchronous Receiver Transmitter (UART)"	Removed sections 17.1 through 17.7 (redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i>).
Section 18.0 "Enhanced CAN (ECAN™) Module"	Removed sections 18.4 through 18.6 (redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i>).
	Updated Baud Rate Prescaler (BRP<5:0>) bit values in the CiCFG1 register (Register 18-9).
	Changed default bit value from '0' to '1' for bits 6 through 15 (FLTEN6-FLTEN15) in the CiFEN1 register (Register 18-11).
Section 19.0 "Data Converter Interface (DCI) Module"	Removed sections 19.3 through 19.7 (redundant information, which is now available in the related section in the <i>dsPIC33F Family Reference Manual</i>).
Section 20.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Removed Equation 20-1 (ADC Conversion Clock Period) and Figure 20-3 (ADC Transfer Function (10-Bit Example).
	Updated AN14 and AN15 ADC values in the ADC2 Module Block Diagram (FIGURE 20-2: "ADC2 Module Block Diagram ⁽¹⁾ ").
	Added Note 2 to ADC Conversion Clock Period Block Diagram (Figure 20-3).
	Updated ADC Conversion Clock Select bits in the ADxCON3 register from ADCS< 5 :0> to ADCS< 7 :0>. Any references to these bits have also been updated throughout this data sheet (Register 20-3).
	Added Note to ADxCHS0 register (Register 21-6).
Section 21.0 "Special Features"	Updated address 0xF8000E in the Device Configuration Register Map (Table 21-1).
	Added FICD register content (BKBUG, COE, JTAGEN and ICS<1:0>) to the dsPIC33F Configuration Bits Description and removed the last two rows (Table 21-2).
	Added a Note after the second paragraph in Section 21.2 "On-Chip Voltage Regulator".

Section Name	Update Description
Section 24.0 "Electrical Characteristics"	Updated typical value for parameter AD08 (Table 24-37).
	Updated minimum and maximum (both internal and external VREF+/VREF-) values for parameter AD21a (Table 24-38).
	Updated minimum, typical, and maximum (external VREF+/VREF-) values for parameter AD24a (Table 24-38).
	Updated maximum value for parameter AD32a (Table 24-38).
	Updated minimum and maximum (both internal and external VREF+/VREF-) values for parameter AD21a (Table 24-38).
	Updated minimum and maximum (external VREF+/VREF-) values for parameter AD21b (Table 24-39).
	Updated typical and maximum values for parameter AD32b (Table 24-39).
	Updated minimum, typical, and maximum values for parameter AD60a (Table 24-40 and Table 24-41).
	Updated minimum and maximum values for parameter AD61a (Table 24-40 and Table 24-41).
	Updated minimum and maximum values for parameter AD63a (Table 24-40 and Table 24-41).
	Added Note 3 to ADC Conversion (12-bit Mode) Timing Requirements (Table 24-40 and Table 24-41).

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Revision C (March 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSC0 to OSC2
- Changed all instances of VDDCORE and VDDCORE/VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-Bit Digital Signal Controllers"	Updated all pin diagrams to denote the pin voltage tolerance (see " Pin Diagrams ").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-Bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 4.0 "Memory Organization"	Add Accumulator A and B SFRs (ACCAL, ACCAH, ACCAU, ACCBL, ACCBH and ACCBU) and updated the Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Updated Reset values for IPC3, IPC4, IPC11 and IPC13-IPC15 in the Interrupt Controller Register Map (see Table 4-5).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-32).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator Configuration"	Added Note 2 to the Oscillator System Diagram (see Figure 9-1).
	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 " System Clock sources ".
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).
Section 10.0 "Power-Saving	Added the following registers:
Features"	PMD1: Peripheral Module Disable Control Register 1 (Register 10-1)
	• PMD2: Peripheral Module Disable Control Register 2 (Register 10-2)
	PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)
Section 11.0 "I/O Ports"	Added reference to pin diagrams for I/O pin availability and functionality (see Section 11.2 "Open-Drain Configuration").
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register (see Register 18-2).

Section Name	Update Description
Section 19.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 19-1).
	Added the ECAN Filter 15-8 Mask Selection (CiFMSKSEL2) register (see Register 19-19).
Section 21.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Replaced the ADC Module Block Diagram (see Figure 21-1) and removed Figure 21-2.
Section 22.0 "Special Features"	Added Note 2 to the Device Configuration Register Map (see Table 22-1)
Section 25.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 25-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 25-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 25-7).
	Updated Characteristics for I/O Pin Input Specifications (see Table 25-9).
	Updated Program Memory values for parameters 136, 137 and 138 (renamed to 136a, 137a and 138a), added parameters 136b, 137b and 138b, and added Note 2 (see Table 25-12).
	Added parameter OS42 (Gм) to the External Clock Timing Requirements (see Table 25-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 25-21).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

NOTES:

INDEX

1	١
^	•

A/D Converter	
DMA	225
Initialization	225
Key Features	225
AC Characteristics	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
ADC2 Register Map	
Alternate Interrupt Vector Table (AIVT)	
Arithmetic Logic Unit (ALU)	27
Assembler	
MPASM Assembler	

В

Barrel Shifter	
Bit-Reversed Addressing	64
Example	65
Implementation	
Sequence Table (16-Entry)	65
Block Diagrams	
16-bit Timer1 Module	157
A/D Module	
Connections for On-Chip Voltage Regulator	
DCI Module	
Device Clock	137. 139
DSP Engine	
dsPIC33F	
dsPIC33F CPU Core	
ECAN Module	
Input Capture	
Output Compare	
PLL	
Reset System	
Shared Port Structure	
SPI	
Timer2 (16-bit)	
Timer2/3 (32-bit)	
UART	
Watchdog Timer (WDT)	

С

C Compilers	
MPLAB C18	
MPLAB C30	
Clock Switching	145
Enabling	145
Sequence	145
Code Examples	
Erasing a Program Memory Page	75
Initiating a Programming Sequence	76
Loading Write Buffers	76
Port Write/Read	156
PWRSAV Instruction Syntax	
Code Protection	
Configuration Bits	
Description (Table)	
Configuration Register Map	
Configuring Analog Port Pins	156
CPU	
Control Register	24

CPU Clocking System Options	
Selection	138
Customer Change Notification Service	317
Customer Notification Service	317
Customer Support	
D	
Data Accumulators and Adder/Subtractor	20
Data Space Write Saturation	
Overflow and Saturation	
Round Logic	
Write Back	
Data Address Space	
Alignment	35
Memory Map for dsPIC33FJXXXGPX06/X08/X1	
es with 16 KB RAM	
Memory Map for dsPIC33FJXXXGPX06/X08/X1	0 Devic-
es with 30 KB RAM	38
Memory Map for dsPIC33FJXXXGPX06/X08/X1	0 Devic-
es with 8 KB RAM	
Near Data Space	
Software Stack	
Width	
Data Converter Interface (DCI) Module	
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	262
Program Memory	265
Temperature and Voltage Specifications	259
DCI	
Buffer Control	217
Buffer Data Alignment	
Introduction	
Transmit/Receive Shift Register	
DCI I/O Pins	
COFS	
CSCK	
CSDI	
CSDO	
DCI Module	
Register Map	
Development Support	253
DMA Module	
DMA Register Map	50
DMAC Registers	128
DMAxCNT	128
DMAxCON	128
DMAxPAD	
DMAxREQ	
DMAxSTA	
DMAxSTB	
DSP Engine	
Multiplier	
E	

ECAN Module	
CiFMSKSEL2 register	209
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	52
ECAN1 Register Map (C1CTRL1.WIN = 0)	52
ECAN1 Register Map (C1CTRL1.WIN = 1)	53

ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)5	5
ECAN2 Register Map (C2CTRL1.WIN = 0)	
Frame Types	
Modes of Operation19	
Overview19	91
ECAN Registers	
Filter 15-8 Mask Selection Register (CiFMSKSEL2). 20	9
Electrical Characteristics	57
AC	
Enhanced CAN Module	
Equations	
	0
Device Operating Frequency	
Errata1	2
F	
•	
Flash Program Memory7	
Control Registers7	
Operations7	
Programming Algorithm7	'5
RTSP Operation7	2
Table Instructions7	1
Flexible Configuration23	37
FSCM	
Delay for Crystal and PLL Clock Sources	2
Device Resets	50
1	
I/O Ports	
Parallel I/O (PIO)15	
Write/Read Timing15	6
l ² C	
Operating Modes 17	7
Registers17	7
I ² C Module	
1004 Desister Mar	
12C1 Redister Man 4	.7
I2C1 Register Map4	
I2C2 Register Map4	7
I2C2 Register Map	7 3
I2C2 Register Map	17 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24	17 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 24	17 13 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers 16 16	17 13 13 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 24	17 13 13 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers 16 16	17 13 13 13 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 16 Input Change Notification Module 15 Instruction Addressing Modes 6	17 13 13 13 13 13 13 13 13 13 13 13 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6	17 13 13 13 13 13 13 13 15 1
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6	17 13 13 13 13 13 13 13 13 13 13 13 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 16 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6	17 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6	17 13 13 13 13 13 13 13 13 13 13 13 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Input Capture 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6	17 13 37 13 13 13 16 16 17 13 13 16 16 17 12 17 13 13 16 16 17 12 17 12 17
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6	17 13 37 13 13 13 16 16 17 13 13 16 16 17 12 17 13 13 16 16 17 12 17 12 17
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 6	17 13 7 13 13 7 13 16 11 12
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MOVe and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24	17 13 13 13 13 13 13 13 13 13 13 13 13 13
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24 Overview 24 Summary 24	17 13 7 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MOVe and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24	17 13 7 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24 Overview 24 Summary 24	17 13 7 13 16 16 17 12 12 12 18 15 17 17 13 16 16 17 12 12 12 18 15 17 17 13 16 16 17 12 12 12 18 15 17 17 16 17 12 12 12 18 15 17
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 16 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24 Overview 24 Instruction-Based Power-Saving Modes 14 Idle 14	17 13 7 13 16 16 17 12
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Instruction Set 0 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14	17 13 7 13 16 16 17 12
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Internal RC Oscillator 14	7373 661122122 85787
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Sleep 14 Internal RC Oscillator 24 Use with WDT 24	7373 661122122 85787 2
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture 237, 24 Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Sleep 14 Internal RC Oscillator 24 Use with WDT 24 Internet Address 31	7373 661122122 85787 27
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Sleep 14 Internal RC Oscillator 24 Use with WDT 24 Internet Address 31 Interrupt Control and Status Registers 8	7373 661122122 85787 275
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 24 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Internal RC Oscillator 24 Use with WDT 24 Internet Address 31 Interrupt Control and Status Registers 8 IECx 8	7373 661122122 85787 2755
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 0 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Internal RC Oscillator 24 Use with WDT 24 Interrupt Control and Status Registers 8 IECx 8 IFSx 8	17 13 7 13 16 11 12 13 13 12 12 12 12 12 12 12 13 </td
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 0 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Internal RC Oscillator 24 Use with WDT 24 Interrupt Control and Status Registers 8 IFSx 8 IFSx 8 INTCON1 8	7373 661122122 85787 275555
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 0 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Internal RC Oscillator 24 Use with WDT 24 Interrupt Control and Status Registers 8 IECx 8 IFSx 8	7373 661122122 85787 275555
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 0 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Internal RC Oscillator 24 Use with WDT 24 Interrupt Control and Status Registers 8 IFSx 8 IFSx 8 INTCON1 8	17 13 73 16 16 17 12 12 12 12 12 12 12 12 12 12 12 13 12 13 13 13 15 <th15< th=""> 15 15 15<!--</td--></th15<>
I2C2 Register Map 4 In-Circuit Debugger 24 In-Circuit Emulation 23 In-Circuit Serial Programming (ICSP) 237, 24 Input Capture Registers Registers 16 Input Change Notification Module 15 Instruction Addressing Modes 6 File Register Instructions 6 Fundamental Modes Supported 6 MAC Instructions 6 MCU Instructions 6 Move and Accumulator Instructions 6 Other Instructions 6 Instruction Set 0 Overview 24 Summary 24 Instruction-Based Power-Saving Modes 14 Idle 14 Internal RC Oscillator 24 Use with WDT 24 Interrupt Control and Status Registers 8 IFSx 8 IFSx 8 INTCON1 8 INTCON2 8	7373 661122122 85787 275555555

Interrupt Disable	. 125
Interrupt Service Routine	. 125
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions	. 148
J	
JTAG Boundary Scan Interface	. 237
Μ	
Memory Organization	33
Microchip Internet Web Site	. 317
Modes of Operation	
Disable	. 193
Initialization	. 193
Listen All Messages	. 193
Listen Only	. 193
Loopback	
Normal Operation	
Modulo Addressing	62
Applicability	64
Operation Example	63
Start and End Address	
W Address Register Selection	
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal In-Circuit	
ulator	
MPLAB Integrated Development Environment Software.	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System MPLINK Object Linker/MPLIB Object Librarian	
N	
N/M Modulo	

NVIVI IVIOdule	
Register Map	

0

Open-Drain Configuration	156
Output Compare	167

Ρ

Packaging	297
Details	298
Marking	297
Peripheral Module Disable (PMD)	148
PICSTART Plus Development Programmer	256
Pinout I/O Descriptions (table)	15
PMD Module	
Register Map	60
POR and Long Oscillator Start-up Times	80
PORTA	
Register Map	58
PORTB	
Register Map	58
PORTC	
Register Map	59
PORTD	
Register Map	59
PORTE	
Register Map	59
PORTF	
Register Map	59
PORTG	
Register Map	60
Power-Saving Features	147

Clock Frequency and Switching147
Program Address Space
Construction
Data Access from Program Memory Using Program
Space Visibility69
Data Access from Program Memory Using Table Instruc-
tions
Data Access from, Address Generation67
Memory Map 33
Table Read Instructions
TBLRDH68
TBLRDL
Visibility Operation69
Program Memory
Interrupt Vector
Organization
Reset Vector

R

Reader Response
Registers
ADxCHS0 (ADCx Input Channel 0 Select234
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) 233
ADxCON1 (ADCx Control 1)228
ADxCON2 (ADCx Control 2)230
ADxCON3 (ADCx Control 3)231
ADxCON4 (ADCx Control 4)232
ADxCSSH (ADCx Input Scan Select High)235
ADxCSSL (ADCx Input Scan Select Low) 235
ADxPCFGH (ADCx Port Configuration High)
ADxPCFGL (ADCx Port Configuration Low)236
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) 205
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 206
CiCFG1 (ECAN Baud Rate Configuration 1) 202
CiCFG2 (ECAN Baud Rate Configuration 2)
CiCTRL1 (ECAN Control 1) 194
CiCTRL2 (ECAN Control 2) 195
CiEC (ECAN Transmit/Receive Error Count)
CIFCTRL (ECAN FIFO Control) 197
CiFEN1 (ECAN Acceptance Filter Enable)
CiFIFO (ECAN FIFO Status)
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 208,
209
CiINTE (ECAN Interrupt Enable)
CiINTF (ECAN Interrupt Flag)199
CiRXFnEID (ECAN Acceptance Filter n Extended Identi-
fier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi-
fier)
CiRXFUL1 (ECAN Receive Buffer Full 1) 211
CiRXFUL2 (ECAN Receive Buffer Full 2) 211
CiRXMnEID (ECAN Acceptance Filter Mask n Extended
Identifier)210
CiRXMnSID (ECAN Acceptance Filter Mask n Standard
Identifier)210
CiRXOVF1 (ECAN Receive Buffer Overflow 1) 212
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 212
CiTRBnDLC (ECAN Buffer n Data Length Control)215
CiTRBnDm (ECAN Buffer n Data Field Byte m) 215
CiTRBnEID (ECAN Buffer n Extended Identifier) 214
CiTRBnSID (ECAN Buffer n Standard Identifier) 214
CiTRBnSTAT (ECAN Receive Buffer n Status) 216
CiTRmnCON (ECAN TX/RX Buffer m Control)
CiVEC (ECAN Interrupt Code) 196

CLKDIV (Clock Divisor)	142
CORCON (Core Control)	
DCICON1 (DCI Control 1)	
DCICON2 (DCI Control 2)	
DCICON3 (DCI Control 3)	
DCISTAT (DCI Status)	
DMACS0 (DMA Controller Status 0)	
DMACS0 (DMA Controller Status 0) DMACS1 (DMA Controller Status 1)	100
DMACST (DMA Controller Status T) DMAXCNT (DMA Channel x Transfer Count)	100
DMAxCON (DMA Channel x Control)	
DMAxPAD (DMA Channel x Peripheral Address)	
DMAxREQ (DMA Channel x IRQ Select)	
DMAxSTA (DMA Channel x RAM Start Address A	
DMAxSTB (DMA Channel x RAM Start Address	
DSADR (Most Recent DMA RAM Address)	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	183
I2CxSTAT (I2Cx Status)	
ICxCON (Input Capture x Control)	
IEC0 (Interrupt Enable Control 0)	98
IEC1 (Interrupt Enable Control 1)	100
IEC2 (Interrupt Enable Control 2)	102
IEC3 (Interrupt Enable Control 3)	104
IEC4 (Interrupt Enable Control 4)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1)	
IFS2 (Interrupt Flag Status 2)	
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	00 07
INTCON1 (Interrupt Control 1)	
INTCON2 (Interrupt Control 2)	
INTTREG Interrupt Control and Status Register .	
IPC0 (Interrupt Priority Control 0)	
IPC1 (Interrupt Priority Control 1)	
IPC10 (Interrupt Priority Control 10)	
IPC11 (Interrupt Priority Control 11)	
IPC12 (Interrupt Priority Control 12)	
IPC13 (Interrupt Priority Control 13)	
IPC14 (Interrupt Priority Control 14)	
IPC15 (Interrupt Priority Control 15)	
IPC16 (Interrupt Priority Control 16)	
IPC17 (Interrupt Priority Control 17)	123
IPC2 (Interrupt Priority Control 2)	108
IPC3 (Interrupt Priority Control 3)	
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	
IPC6 (Interrupt Priority Control 6)	
IPC7 (Interrupt Priority Control 7)	
IPC8 (Interrupt Priority Control 8)	
IPC9 (Interrupt Priority Control 9)	
NVMCOM (Flash Memory Control)	
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control Regis	143
149	(er 1)
PMD2 (Peripheral Module Disable Control Regis	ter 2)
151	
PMD3 (Peripheral Module Disable Control Regis	ter 3)
153	
RCON (Reset Control)	78
RSCON (DCI Receive Slot Control)	
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
	175

SPIxSTAT (SPIx Status and Control)172SR (CPU Status)24, 86T1CON (Timer1 Control)158TSCON (DCI Transmit Slot Control)223
TxCON (T2CON, T4CON, T6CON or T8CON Control) 162
TyCON (T3CON, T5CON, T7CON or T9CON Control) 163
UxMODE (UARTx Mode)186
UxSTA (UARTx Status and Control)188
Reset
Clock Source Selection
Special Function Register Reset States
Times
Reset Sequence
Resets
S

Serial Peripheral Interface (SPI)	171
Software Simulator (MPLAB SIM)	
Software Stack Pointer, Frame Pointer	
CALLL Stack Frame	61
Special Features of the CPU	
SPI Module	
SPI1 Register Map	
SPI2 Register Map	
Symbols Used in Opcode Descriptions	
System Control	
Register Map	60

т

Temperature and Voltage Specifications	
AC	
Timer1	. 157
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	. 159
Timing Characteristics	
CLKO and I/O	. 269
Timing Diagrams	
10-bit A/D Conversion (CHPS = 01, SIMSAM = 0, A	SAM
•	294
10-bit A/D Conversion (CHPS = 01 SIMSAN	$\sqrt{1}$
0, ASAM = 1, SSRC = 111, SAM	$\tilde{C} =$
00001)	
12-bit A/D Conversion (ASAM = 0, SSRC = 000)	
CAN I/O	. 288
DCI AC-Link Mode	. 287
DCI Multi -Channel, I ² S Modes	. 285
External Clock	
I2Cx Bus Data (Master Mode)	. 281
I2Cx Bus Data (Slave Mode)	. 283
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
	. 200

	Input Capture (CAPx)	274
	OC/PWM	275
	Output Compare (OCx)	274
	Reset, Watchdog Timer, Oscillator Start-up Timer	
	Power-up Timer	
	SPIx Master Mode (CKE = 0)	276
	SPIx Master Mode (CKE = 1)	277
	SPIx Slave Mode (CKE = 0)	278
	SPIx Slave Mode (CKE = 1)	279
	Timer1, 2, 3, 4, 5, 6, 7, 8, 9 External Clock	272
Гimiı	ng Requirements	
	CLKO and I/O	269
	DCI AC-Link Mode	
	DCI Multi-Channel, I ² S Modes	289
	External Clock	267
	Input Capture	274
Timiı	ng Specifications	
	10-bit A/D Conversion Requirements	296
	12-bit A/D Conversion Requirements	293
	CAN I/O Requirements	288
	I2Cx Bus Data Requirements (Master Mode)	282
	I2Cx Bus Data Requirements (Slave Mode)	
	Output Compare Requirements	274
	PLL Clock	268
	Reset, Watchdog Timer, Oscillator Start-up Timer, F	ow-
	er-up Timer and Brown-out Reset Requiremen 271	ts
	Simple OC/PWM Mode Requirements	275
	SPIx Master Mode (CKE = 0) Requirements	
	SPIx Master Mode (CKE = 1) Requirements	
	SPIx Slave Mode (CKE = 0) Requirements	
	SPIx Slave Mode (CKE = 1) Requirements	
	Timer1 External Clock Requirements	
	Timer2, Timer4, Timer6 and Timer8 External Clock	Re-
	quirements	
	Timer3, Timer5, Timer7 and Timer9 External Clock	
	quirements	
	-	

U

UART Module	
UART1 Register Map	
UART2 Register Map	
V	

V

Voltage Regulator (On-Chip)		241
W		
Watahdaa Timar (WDT)	27	212

Watchdog Timer (WDT)	237, 242
Programming Considerations	
WWW Address	317
WWW, On-Line Support	12

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
Fron	n: Name		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Appl	lication (optional):		
Wou	Id you like a reply?YN		
Devi	ice: dsPIC33FJXXXGPX06/X08/X10	Literature Number: DS70286C	
Que	stions:		
1.	What are the best features of this documen	t?	
2.	How does this document meet your hardwa	are and software development needs?	
3	Do you find the organization of this docume	ent easy to follow? If not why?	
0.	B. Do you find the organization of this document easy to follow? If not, why?		
-			
4.	What additions to the document do you thir	k would enhance the structure and subject?	
5.	What deletions from the document could be	e made without affecting the overall usefulness?	
6.	Is there any incorrect or misleading informa	tion (what and where)?	
•			
-			
7.	How would you improve this document?		
-			

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Program Memory Product Group Pin Count — Tape and Reel Fl		Examples: a) dsPIC33FJ256GP710I/PT: General-purpose dsPIC33, 64 KB program memory, 100-pin, Industrial temp., TQFP package.	
Package			
Pattern			
Architecture:	33 = 16-bit Digital Signal Controller		
Flash Memory Family:	FJ = Flash program memory, 3.3V		
Product Group:	GP2=General purpose familyGP3=General purpose familyGP5=General purpose familyGP7=General purpose family		
Pin Count:	06 = 64-pin 08 = 80-pin 10 = 100-pin		
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial)		
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flatpack) PF = 14x14 mm TQFP (Thin Quad Flatpack)		
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise)		
	ES = Engineering Sample		

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

02/04/09

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

dsPIC33FJ256GP510T-I/PF dsPIC33FJ256GP510T-I/PT dsPIC33FJ64GP206-E/PT dsPIC33FJ64GP306-E/PT dsPIC33FJ64GP310-E/PF dsPIC33FJ64GP310-E/PT dsPIC33FJ64GP310T-I/PF dsPIC33FJ64GP310T-I/PT dsPIC33FJ64GP706-E/PT dsPIC33FJ64GP708-E/PT dsPIC33FJ64GP710-E/PF dsPIC33FJ64GP710-E/PT dsPIC33FJ64GP710T-I/PF dsPIC33FJ64GP710T-I/PT dsPIC33FJ64GP206A-I/MR dsPIC33FJ64GP306A-I/MR dsPIC33FJ64GP706A-I/MR dsPIC33FJ256GP710-I/PF dsPIC33FJ256GP506A-E/PT dsPIC33FJ256GP506A-I/PT dsPIC33FJ256GP506AT-I/PT dsPIC33FJ256GP510A-E/PF dsPIC33FJ256GP510A-E/PT dsPIC33FJ256GP510A-I/PF dsPIC33FJ256GP510A-I/PT dsPIC33FJ256GP510AT-I/PF dsPIC33FJ256GP510AT-I/PT dsPIC33FJ256GP710A-E/PF dsPIC33FJ256GP710A-E/PT dsPIC33FJ256GP710A-I/PF dsPIC33FJ256GP710A-I/PT dsPIC33FJ256GP710AT-I/PF dsPIC33FJ256GP710AT-I/PT dsPIC33FJ64GP206A-E/PT dsPIC33FJ64GP206A-I/PT dsPIC33FJ64GP206AT-I/PT dsPIC33FJ64GP306A-E/PT dsPIC33FJ64GP306A-I/PT dsPIC33FJ64GP306AT-I/PT dsPIC33FJ64GP310A-E/PF dsPIC33FJ64GP310A-E/PT dsPIC33FJ64GP310A-I/PF dsPIC33FJ64GP310A-I/PT dsPIC33FJ64GP310AT-I/PF dsPIC33FJ64GP310AT-I/PT dsPIC33FJ64GP706A-E/PT dsPIC33FJ64GP706A-I/PT dsPIC33FJ64GP706AT-I/PT dsPIC33FJ64GP708A-E/PT dsPIC33FJ64GP708A-I/PT dsPIC33FJ64GP708AT-I/PT dsPIC33FJ64GP710A-E/PF dsPIC33FJ64GP710A-E/PT dsPIC33FJ64GP710A-I/PF dsPIC33FJ64GP710A-I/PT dsPIC33FJ64GP710AT-I/PF dsPIC33FJ64GP710AT-I/PT dsPIC33FJ256GP506A-H/MR dsPIC33FJ256GP506A-H/PT DSPIC33FJ256GP710-I/PF DSPIC33FJ256GP510T-I/PF DSPIC33FJ256GP510T-I/PT DSPIC33FJ64GP206-E/PT DSPIC33FJ64GP306-E/PT DSPIC33FJ64GP310-E/PF DSPIC33FJ64GP310-E/PT DSPIC33FJ64GP310T-I/PF DSPIC33FJ64GP310T-I/PT DSPIC33FJ64GP706-E/PT DSPIC33FJ64GP708-E/PT DSPIC33FJ64GP710-E/PF DSPIC33FJ64GP710-E/PT DSPIC33FJ64GP710T-I/PF DSPIC33FJ64GP710T-I/PT DSPIC33FJ64GP706A-I/PT DSPIC33FJ128GP206-I/PT DSPIC33FJ128GP206T-I/PT DSPIC33FJ128GP306-I/PT DSPIC33FJ128GP306T-I/PT DSPIC33FJ128GP310-I/PF DSPIC33FJ128GP310-I/PT DSPIC33FJ128GP706T-I/PT DSPIC33FJ128GP708-I/PT DSPIC33FJ128GP710-I/PF DSPIC33FJ128GP710-I/PT DSPIC33FJ128GP710T-I/PT DSPIC33FJ256GP506-I/PT DSPIC33FJ256GP506T-I/PT DSPIC33FJ256GP510-I/PF DSPIC33FJ256GP510-I/PT DSPIC33FJ256GP710-I/PT DSPIC33FJ256GP710T-I/PF DSPIC33FJ256GP710T-I/PT DSPIC33FJ64GP206-I/PT DSPIC33FJ64GP206T-I/PT DSPIC33FJ64GP306-I/PT DSPIC33FJ64GP306T-I/PT DSPIC33FJ64GP310-I/PF DSPIC33FJ64GP310-I/PT DSPIC33FJ64GP706-I/PT