MOS FET Relays G3VM-81G1

Relay Incorporating a MOS FET Optically Coupled with an Infrared LED has a 4-pin SOP Package and 80-V Load Voltage

- Continuous load current of 350 mA.
- Dielectric strength of 1,500 Vrms between I/O.
- RoHS Compliant.

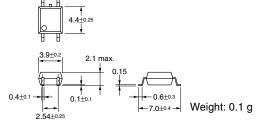
■ Application Examples

- Broadband systems
- Measurement devices
- Data loggers
- Amusement machines

Note: The actual product is marked differently from the image shown here

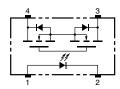
■ List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape	
SPST-NO		80 VAC	G3VM-81G1	100		
terminals			G3VM-81G1(TR)		2,500	

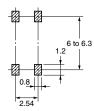

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-81G1



Note: The actual product is marked differently from the image shown here.

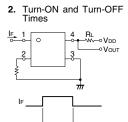

■ Terminal Arrangement/Internal Connections (Top View)

G3VM-81G1

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-81G1

■ Absolute Maximum Ratings (Ta = 25°C)

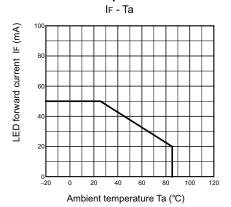

Item		Symbol	Rating	Unit	Measurement conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current		1	Α	100 μs pulses, 100 pps
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V_R	5	٧	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V _{OFF}	80	٧	
	Continuous load current	Io	350	mA	
	ON current reduction rate	Δ I _{ON} /°C	-3.5	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	T _j	125	°C	
Dielectric strength between input and output (See note 1.)		V _{I-O}	1,500	Vrms	AC for 1 min
Operating temperature		Ta	-40 to +85	°C	With no icing or condensation
Storage temperature		T _{stg}	-55 to +125	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

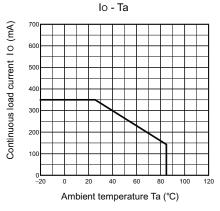
Note:

■ Electrical Characteristics (Ta = 25°C)

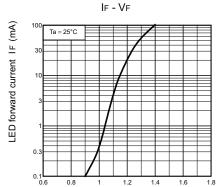
Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions
Input	LED forward voltage	V _F	1.0	1.15	1.3	٧	I _F = 10 mA
	Reverse current				10	μΑ	V _R = 5 V
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz
	Trigger LED forward current	I _{FT}		1.0	4.0	mA	I _O = 350 mA
Output	Maximum resistance with output ON	R _{ON}		1.0	1.2	Ω	I _F = 5 mA, I _O = 350 mA
	Current leakage when the relay is open	I _{LEAK}		0.2	1.0	nA	V _{OFF} = 30 V, Ta = 50°C
	Capacity between terminals	C _{OFF}		30	40	pF	V = 0, f = 100 MHz
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, Vs = 0 V
Insulation resistance		R _{I-O}	1,000			ΜΩ	V_{I-O} = 500 VDC, $R_{oH} \le 60\%$
Turn-ON time		t _{ON}		0.3	0.5	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$
Turn-OFF time		t _{OFF}		0.3	0.5	ms	$V_{DD} = 20 \text{ V (See note 2.)}$

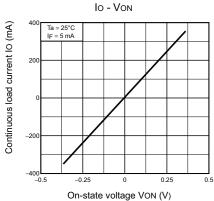

■ Recommended Operating Conditions

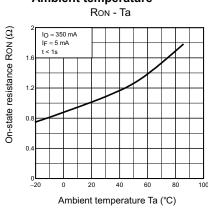
Use the G3VM under the following conditions so that the Relay will operate properly.


Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V_{DD}			64	V
Operating LED forward current	I _F	5		30	mA
Continuous load current (AC peak/DC)	Io			350	mA
Operating temperature	T _a	25		60	°C

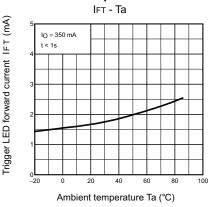
■ Engineering Data


LED forward current vs. Ambient temperature

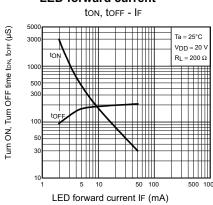

Continuous load current vs. **Ambient temperature**


LED forward current vs. LED forward voltage

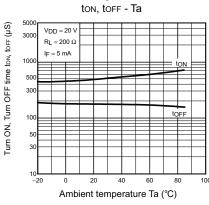
Continuous load current vs. On-state voltage



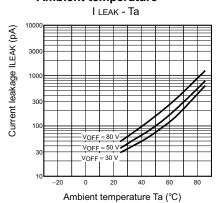
On-state resistance vs. **Ambient temperature**


Trigger LED forward current vs. Ambient temperature

LED forward voltage VF (V)



IFT (mA)


Turn ON, Turn OFF time vs. **LED forward current**

Turn ON, Turn OFF time vs. **Ambient temperature**

Current leakage vs. **Ambient temperature**

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON

OMRON ELECTRONIC COMPONENTS LLC 55 E. Commerce Drive, Suite B Schaumburg, IL 60173

847-882-2288

Cat. No. X302-E-1

12/10

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Printed in USA

Specifications subject to change without notice

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron: G3VM-81G1