() IDT.

LOW-VOLTAGE 24-BIT BUS EXCHANGE SWITCH

FEATURES:

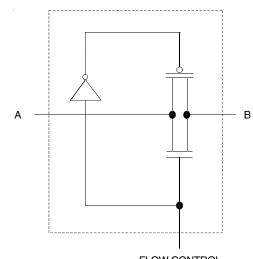
- 5Ω A/B bi-directional switch
- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100mA
- Vcc = 2.3V 3.6V, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- · Available in TSSOP package

DESCRIPTION:

The CBTLV16212 provides a set of 24 high-speed switches for bus exchanging and switching. The device has low ON resistance, resulting in under 250ps propagation delay through the switch. The CBTLV16212 operates as a single 24-bit bus switch or as a 12-bit bus exchanger, which provides data exchanging between the four signal ports through the data select (S0-S2) pins.

The CBTLV16212 has the break-before-make feature, which allows zero current when switching between ports B1 and B2.

APPLICATIONS:


• 3.3V High Speed Bus Switching and Bus Isolation

FUNCTIONAL BLOCK DIAGRAM

54 1B1 sw 1A1 SW sw 53 1A2 SW 1B: 27 SW 30 12B1 12A1 sw SW Т 29 12B2 28 SW 12A2

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

SIMPLIFIED SCHEMATIC, EACH SWITCH

FLOW CONTROL CIRCUITRY

DECEMBER 2014

PIN CONFIGURATION

			<i>۲ ر</i>			
S0	Г	1	\bigcirc	56		S1
1A1	Г	2		55		S2
1A2	Г	3		54	þ	1B1
2A1	Г	4		53	þ	1B2
2A2	Г	5		52	þ	2B1
3A1	Γ	6		51		2B2
3A2	Г	7		50		3B1
GND	Γ	8		49		GND
4A1	Г	9		48		3B2
4A2	Γ	10		47		4B1
5A1	Γ	11		46		4B2
5A2		12		45		5B1
6A1	Γ	13		44		5B2
6A2	Γ	14		43		6B1
7A1		15		42		6B2
7A2	Γ	16		41		7B1
Vcc	Г	17		40		7B2
8A1	Γ	18		39		8B1
GND		19		38		GND
8A2		20		37		8B2
9A1	Γ	21		36		9B1
9A2	Γ	22		35		9B2
10A1	Γ	23		34		10B1
10A2	Г	24		33		10B2
11A1	Г	25		32	Þ	11B1
11A2	Γ	26		31	Þ	11B2
12A1	П	27		30	р	12B1
12A2	Г	28		29		12B2

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	V
VI	Input Voltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
Ік	Input Clamp Current, VI/O < 0	-50	mA
Tstg	Storage Temperature Range	-65 to +150	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
Sx	Data Select
xAx	Port A Inputs or Outputs
xBx	Port B Inputs or Outputs

FUNCTION TABLE⁽¹⁾

Inputs			Inputs/Outputs		
S2	S1	S0	A 1	A2	Operation
L	L	L	Z	Z	Disconnect
L	L	Н	B1	Z	A1 port = B1 port
L	Н	L	B2	Z	A1 port = B2 port
L	Н	Н	Z	B1	A2 port = B1 port
Н	L	L	Z	B2	A2 port = B2 port
Н	L	Н	Z	Z	Disconnect
Н	Н	L	B1	B2	A1 port = B1 port
					A2 port = B2 port
Н	Н	Н	B2	B1	A1 port = B2 port
					A2 port = B1 port

NOTE:

1. H = HIGH Voltage Level L = LOW Voltage Level

Z = High-Impedance

OPERATING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
Vih	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	—	V
		Vcc = 2.7V to 3.6V	2	—	
Vil	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	—	0.7	V
		Vcc = 2.7V to 3.6V	—	0.8	
TA	Operating Free-Air Temperature		-40	+85	°C

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to +85°C

Symbol	Parameter	Test Conditions		Min.	Тур. ⁽¹⁾	Max.	Unit
Vik	Control Inputs, Data I/O	Vcc = 3V, li = -18mA		_	—	-1.2	V
li	Control Inputs	Vcc = 3.6V, VI = Vcc or GNE)	_	—	±1	μA
loz	Data I/O	Vcc = 3.6V, Vo = 0V or 3.6V	switch disabled	_	—	5	μA
loff		Vcc = 0V, VI or Vo = 0V or 3	.6V	_	—	10	μA
lcc		Vcc = 3.6V, Io = 0, VI = Vcc	or GND	_	—	10	μA
$\Delta ICC^{(2)}$	Control Inputs	Vcc = 3.6V, one input at 3V, other inputs at Vcc or GND		_	—	300	μA
Сі	Control Inputs	Vi = 3V or 0		_	5	_	pF
CIO(OFF)		Vo = 3V or 0 (switch off)		_	13.5	_	pF
	Max. at Vcc = 2.3V	VI = 0	Io = 64mA	_	5	8	
	Typ. at Vcc = 2.5V		lo = 24mA	—	5	8	
Ron ⁽³⁾		VI = 1.7V	lo = 15mA	_	27	40	Ω
		VI = 0	lo = 64mA	_	5	7	
	Vcc = 3V		lo = 24mA	_	5	7	
		VI = 2.4V	lo = 15mA	_	10	15	

NOTES:

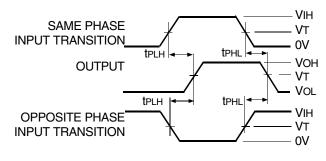
1. Typical values are at 3.3V, +25°C ambient.

2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.

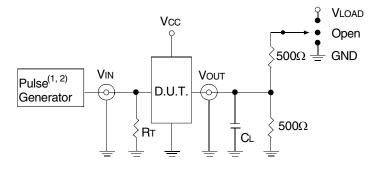
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

		$Vcc = 2.5V \pm 0.2V$		$Vcc = 3.3V \pm 0.3V$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tPD ⁽¹⁾	Propagation Delay	—	0.15	—	0.25	ns
	A to B or B to A					
tep	Propagation Delay	3	11.1	3	8.8	ns
	S to A or B					
ten	Output Enable Time	3	10.9	3	8.6	ns
	S to A or B					
tois	OutputDisableTime	1	8.7	2	8.8	ns
	S to A or B					


NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impededance).


TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	2 x Vcc	V
Vih	3	Vcc	V
Vτ	1.5	Vcc/2	V
Vlz	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

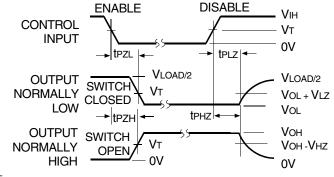
Propagation Delay

Test Circuits for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

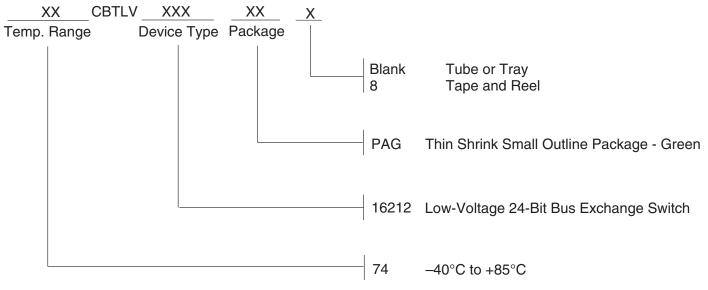

NOTES:

1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.

2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
tplz/tpzL	VLOAD
tpнz/tpzн	GND
ted	Open



NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERING INFORMATION

Datasheet Document History

12/04/2014 Pg. 5 Updated the ordering information by removing the "IDT" notation, non RoHS part and by adding Tape and Reel information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology): 74CBTLV16212PAG8 74CBTLV16212PAG