

GaAs SP6T 2.5 V High Power Switch Dual- / Tri- / Quad-Band GSM Applications

Rev. V1

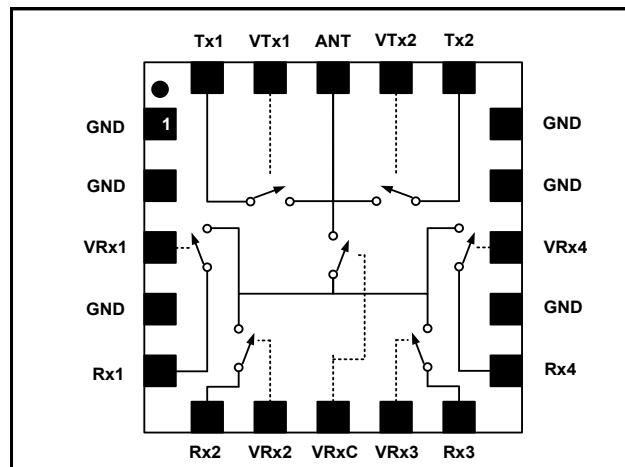
Features

- Dual- / tri- / quad-band GSM / GPRS / EDGE
- 2.5V Operation
- Harmonics: -70 dBc @ +34.5 dBm & 1 GHz
- Insertion Loss: 0.5 dB @ 1 GHz
- Tx - Rx Isolation: 41 dB @ 2 GHz
- Lead-Free 4 mm 20-Lead PQFN Package
- RoHS Compliant* and 260°C Reflow Compatible

Description

M/A-COM's MASW-000105 is a GaAs PHEMT MMIC single pole six throw (SP6T) high power switch in a 4 mm PQFN package. Designed for dual-, tri-, or quad-band GSM/GPRS/EDGE mobile devices, the MASW-000105 is ideally suited for applications where high power, low control voltage, low insertion loss, high isolation, small size and low cost are required. This part can be used in all systems operating up to 2.5 GHz requiring high power at low control voltage.

The MASW-000105 is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.


The MASW-000105 can also be purchased in die form as the MASWSS0091.

Ordering Information^{1,2}

Part Number	Package
MASW-000105-TR3000	3000 piece reel
MASW-000105-001SMB	Sample Test Board

1. Reference Application Note M513 for reel size information.
2. All sample boards include 5 loose parts.

Functional Block Diagram

Pin Configuration

Pin No.	Function	Description
1	GND	Ground
2	GND	Ground
3	VRx1	Rx1 Control
4	GND	Ground
5	Rx1	Rx1 Port
6	Rx2	Rx2 Port
7	VRx2	Rx2 Control
8	VRxC	Rx Common Control
9	VRx3	Rx3 Control
10	Rx3	Rx3 Port
11	Rx4	Rx4 Port
12	GND	Ground
13	VRx4	Rx4 Control
14	GND	Ground
15	GND	Ground
16	Tx2	Tx2 Port
17	VTx2	Tx2 Control
18	ANT	ANT Pad
19	VTx1	Tx1 Control
20	Tx1	Tx1 Port
21	Paddle ³	RF and DC Ground

3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

GaAs SP6T 2.5 V High Power Switch
Dual- / Tri- / Quad-Band GSM Applications

Rev. V1

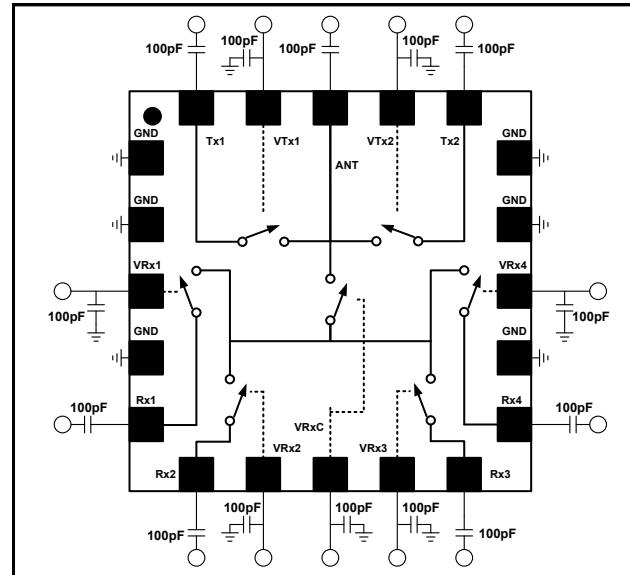
Electrical Specifications: $T_A = 25^\circ\text{C}$, $V_C = 0\text{V}/2.5\text{V}$, $Z_0 = 50 \Omega$ ⁴

Parameter	Test Conditions		Units	Min.	Typ.	Max.
Insertion Loss ⁵	Ant - Tx	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dB	- -	0.5 0.7	0.7 -
	Ant - Rx	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dB	- -	1.0 1.3	1.2 -
Isolation	T _x to R _x , T _x On	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dB	40 - 41	47	-
	T _x to T _x , T _x On	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dB	20 - 21	27 21	-
	R _x to T _x , R _x On	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dB	- -	26 21	-
	R _x to R _x , R _x On	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dB	- -	37 33	-
Return Loss	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dB	- -	18 16	-	-
T _x P0.1dB	V _C = 0 V / 2.5 V	dBm	-	36	-	-
R _x P1dB	V _C = 0 V / 2.5 V	dBm	-	24	-	-
IP3	T _x to ANT ANT to R _x	dBm	- -	60 50	-	-
2nd Harmonic	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dBc	- -	71 70	-	-
3rd Harmonic	0.5 - 1.0 GHz 1.0 - 2.0 GHz	dBc	- -	74 66	-	-
Trise, Tfall	10% to 90% RF, 90% to 10% RF	μs	-	0.5	-	-
Ton, Toff	50% control to 90% RF, 50% control to 10% RF	μs	-	0.9	-	-
Transients	In Band	mV	-	30	-	-
Control Current	V _C = 2.5 V	μA	-	20	50	

4. External DC blocking capacitors are required on all RF ports.

5. Insertion loss can be optimized by varying the DC blocking capacitor value, e.g. 100 pF for 0.5 GHz - 2.0 GHz.

GaAs SP6T 2.5 V High Power Switch Dual- / Tri- / Quad-Band GSM Applications


Rev. V1

Absolute Maximum Ratings ^{6,7}

Parameter	Absolute Maximum
Input Power (0.5 - 2.5 GHz, 2.5V Control)	+38 dBm
Voltage	+8.5 volts
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

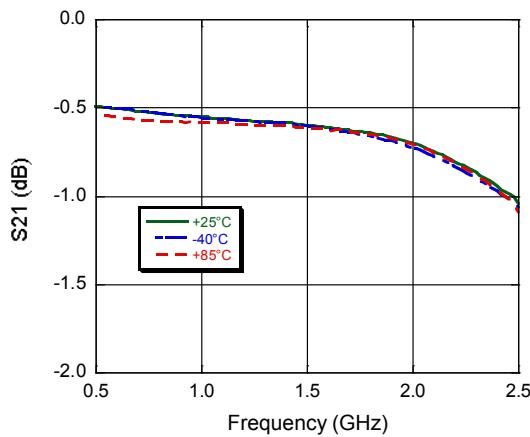
6. Exceeding any one or combination of these limits may cause permanent damage to this device.
7. M/A-COM does not recommend sustained operation near these survivability limits.

Functional Schematic

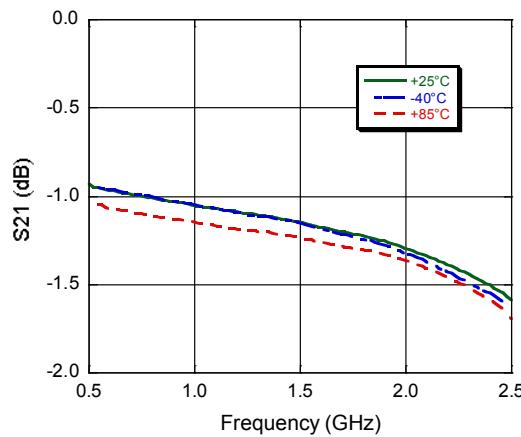
Truth Table ^{8,9}

VTx1	VTx2	VRxC	VRx1	VRx2	VRx3	VRx4	ANT-Tx1	ANT-Tx2	ANT-Rx1	ANT-Rx2	ANT-Rx3	ANT-Rx4
1	0	0	0	0	0	0	On	Off	Off	Off	Off	Off
0	1	0	0	0	0	0	Off	On	Off	Off	Off	Off
0	0	1	1	0	0	0	Off	Off	On	Off	Off	Off
0	0	1	0	1	0	0	Off	Off	Off	On	Off	Off
0	0	1	0	0	1	0	Off	Off	Off	Off	On	Off
0	0	1	0	0	0	1	Off	Off	Off	Off	Off	On

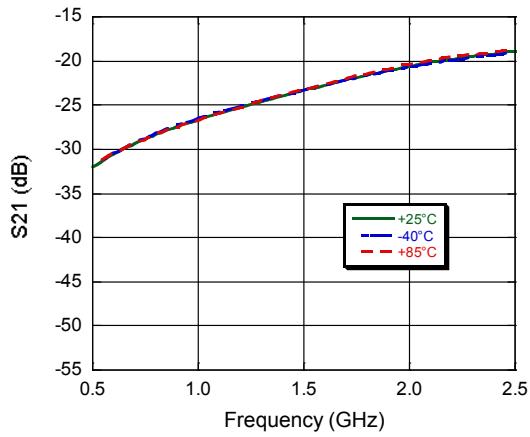
8. Differential voltage, V (state 1) -V (state 0), must be 2.5 V minimum.

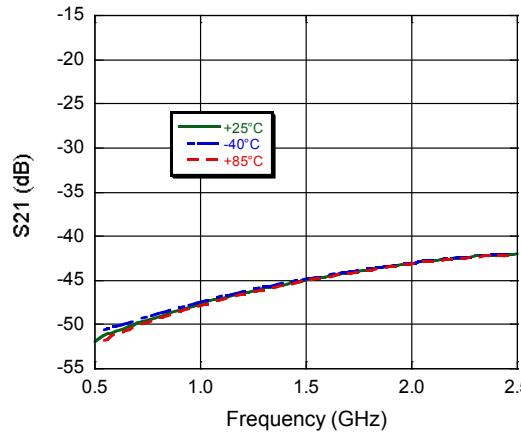

9. State 0 = 0 V to +0.2 V, State 1 = 2.5 V to 5 V.

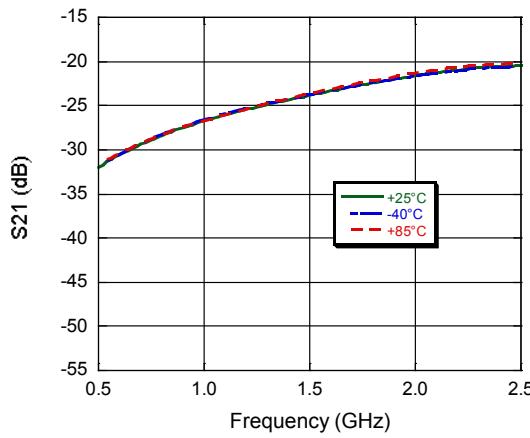
GaAs SP6T 2.5 V High Power Switch Dual- / Tri- / Quad-Band GSM Applications

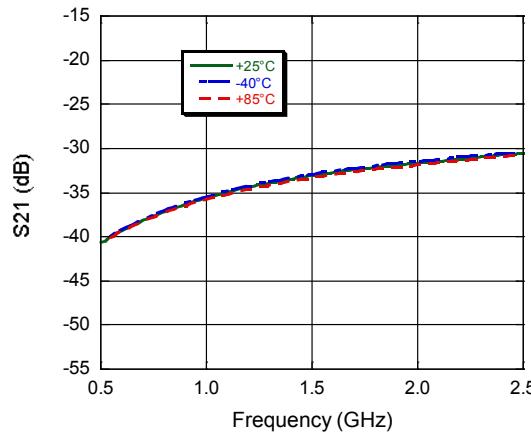

Rev. V1

Typical Performance Curves


T_x Insertion Loss

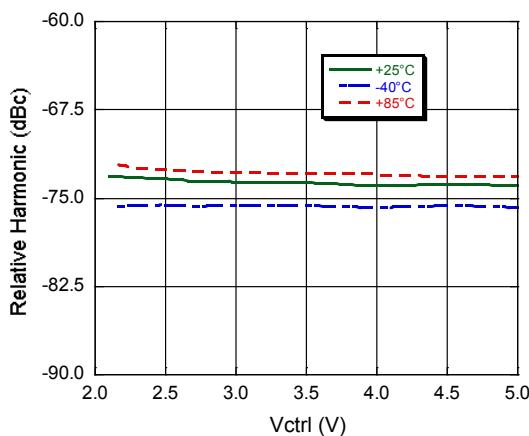

R_x Insertion Loss


T_x - T_x Isolation


T_x - R_x Isolation

R_x - T_x Isolation

R_x - R_x Isolation


GaAs SP6T 2.5 V High Power Switch

Dual- / Tri- / Quad-Band GSM Applications

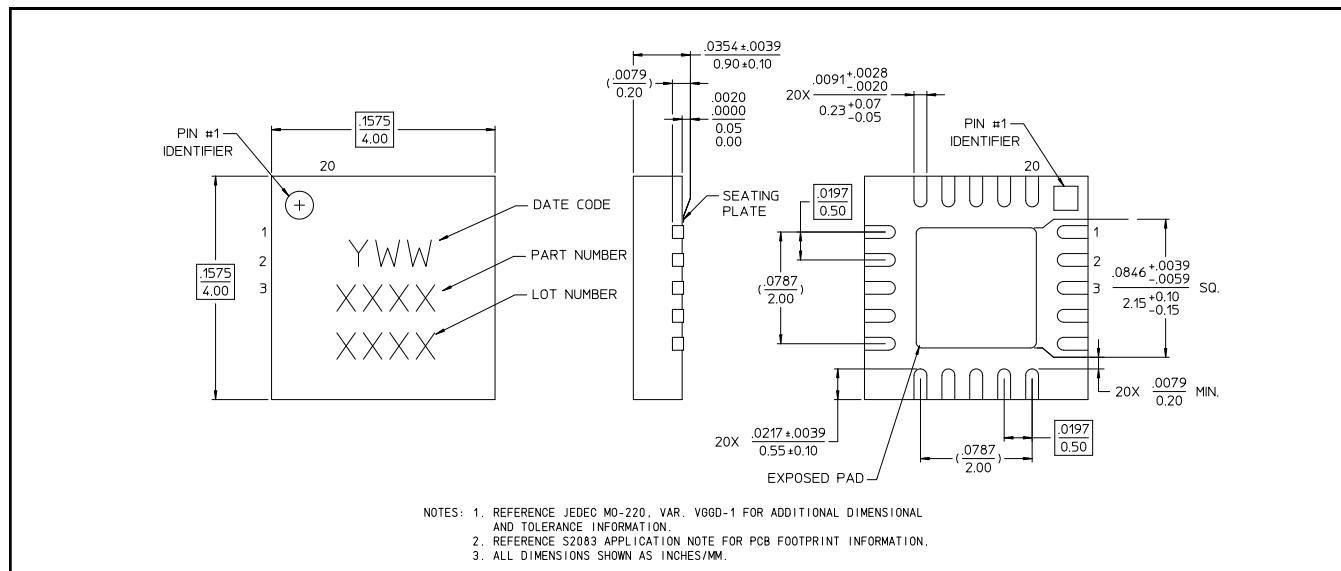
Rev. V1

Typical Performance Curves

3rd Harmonic vs. Vctrl @ 1 GHz, Pin = +35 dBm,
100% Duty Cycle

Qualification

Qualified to M/A-COM specification REL-201, Process Flow -2.


Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Lead Free 4 mm 20-lead PQFN [†]

[†]Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 1 requirements.

Plating is 100% matte tin over copper.

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[MACOM:](#)

[MASW-000105-TR3000](#)