

www.ti.com

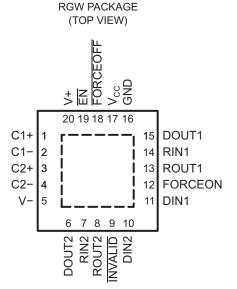
SLLS824A - AUGUST 2007 - REVISED SEPTEMBER 2011

3-V TO 5.5-V MULTICHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

Check for Samples: TRSF3223E

FEATURES

- ESD Protection for RS-232 Bus Pins
 - ±15-kV Human-Body Model (HBM)
 - ±8-kV IEC 61000-4-2, Contact Discharge
 - ±15-kV IEC 61000-4-2, Air-Gap Discharge
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- · Operates up to 1000 kbit/s
- Two Drivers and Two Receivers
- Low Standby Current . . . 1 µA Typ
- External Capacitors . . . 4 × 0.1 µF
- Accepts 5-V Logic Input With 3.3-V Supply


APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

DESCRIPTION/ ORDERING INFORMATION

The TRSF3223E consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port connection pins, including GND). This device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The TRSF3223E operates at typical data signaling rates up to 1000 kbit/s.

DB, DW,	OR PW		
	<u> </u>		
EN[1 0	20	FORCEOFF
C1+[2	19] V _{CC}
V+[3	18] GND
C1-[4	17	DOUT1
C2+[5	16	RIN1
C2-[6	15	ROUT1
V-[7	14	FORCEON
DOUT2	8	13	DIN1
RIN2	9	12	DIN2
ROUT2	10	11	INVALID

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

www.ti.com

SLLS824A - AUGUST 2007 - REVISED SEPTEMBER 2011

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low and EN is high, both drivers and receivers are shut off, and the supply current is reduced to 1 mA. Disconnecting the serial port or turning off the peripheral drivers causes auto-powerdown to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown enabled, the device is automatically activated when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for more than 30 µs. INVALID is low (invalid data) if the receiver input voltage is between -0.3 V and 0.3 V for more than 30 µs. Refer to Figure 4 for receiver input levels.

T _A	PAC	KAGE ^{(1) (2)}	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC – DW	Tube of 25	TRSF3223ECDW	TROFRAGEO
	50IC - DW	Reel of 2000	TRSF3223ECDWR	TRSF3223EC
0°C to 70°C	SSOP – DB	Tube of 70	TRSF3223ECDB	DTOOLO
0°C to 70°C	330P - DB	Reel of 2000	TRSF3223ECDBR	RT23EC
		Tube of 70	TRSF3223ECPW	DTOOLO
	TSSOP – PW	Reel of 2000	TRSF3223ECPWR	RT23EC
		Tube of 25	TRSF3223EIDW	TROFRAGE
	SOIC – DW	Reel of 2000	TRSF3223EIDWR	TRSF3223EI
		Tube of 70	TRSF3223EIDB	DTOOL
–40°C to 85°C	SSOP – DB	Reel of 2000	TRSF3223EIDBR	RT23EI
		Tube of 70	TRSF3223EIPW	DTOOF
	TSSOP – PW	Reel of 2000	TRSF3223EIPWR	RT23EI
	QFN – RGW	Reel of 3000	TRSF3223EIRGWR	RT23EI

Table 1. ORDERING INFORMATION

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

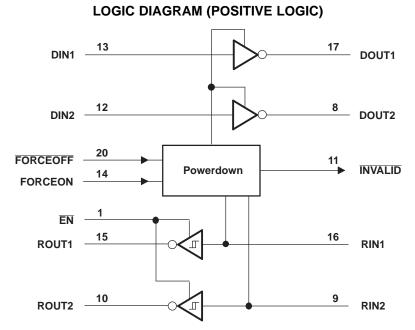
FUNCTION TABLES

Each Driver⁽¹⁾

		INPUTS	OUTPUT		
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	OUTPUT DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	н	Н	Х	Н	Normal operation with
Н	н	Н	х	L	auto-powerdown disabled
L	L	Н	Yes	Н	Normal operation with
Н	L	Н	Yes	L	auto-powerdown enabled
L	L	Н	No	Z	Powered off by
н	L	Н	No	Z	auto-powerdown feature

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

AS STRUMENTS


www.ti.com

SLLS824A - AUGUST 2007 - REVISED SEPTEMBER 2011

Each	Receiver	(1)
------	----------	-----

	INPU	TS	OUTPUT				
RIN	EN	VALID RIN RS-232 LEVEL	ROUT				
L	L	Х	Н				
н	L	Х	L				
х	Н	Х	Z				
Open	L	No	н				

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

Pin numbers are for the DB, DW, and PW packages.

www.ti.com

STRUMENTS

EXAS

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.3	6	V
V+	Positive-output supply voltage range ⁽²⁾		-0.3	7	V
V–	Negative-output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
VI		Driver (FORCEOFF, FORCEON, EN)	-0.3	6	
	Input voltage range	Receiver	-25	25	V
		Driver	-13.2	13.2	V
Vo	Output voltage range	Receiver (INVALID)	-0.3	V _{CC} + 0.3	v
		DB package		70	
θ_{JA}	Package thermal impedance ^{(3) (4)}	DW package		58	°C/W
		PW package		83	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range			150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings (1) only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient (3)temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with JESD 51-7. (4)

Recommended Operating Conditions⁽¹⁾

See Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 V$	3	3.3	3.6	V
			$V_{CC} = 5 V$	4.5	5	5.5	v
V	Driver and control	DIN, EN, FORCEOFF, FORCEON	$V_{CC} = 3.3 V$	2			V
VIH	high-level input voltage	DIN, EN, FORCEOFF, FORCEON	$V_{CC} = 5 V$	2.4			v
V _{IL}	Driver and control low-level input voltage	DIN, EN, FORCEOFF, FORCEON				0.8	V
v	Driver and control input voltage	DIN, EN, FORCEOFF, FORCEON		0		5.5	N/
VI	Receiver input voltage	-25		25	V		
Ŧ			TRSF3223EC	0		70	°C
T _A	Operating free-air temperature	TRSF3223EI	-40		85	°C	

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

PARAMETER		RAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	EN, FORCEOFF, FORCEON			±0.01	±1	μA
		Auto-powerdown disabled	V_{CC} = 3.3 V or 5 V, T _A = 25°C, No load, FORCEOFF and FORCEON at V _{CC}		0.3	1	mA
I_{CC}	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
		Auto-powerdown enabled	No load, $\overline{\text{FORCEOFF}}$ at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μA

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

DRIVER SECTION

www.ti.com

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND	5	5.4		V
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND	-5	-5.4		V
I _{IH}	High-level input current	$V_1 = V_{CC}$		±0.01	±1	μA
$I_{\parallel L}$	Low-level input current	V _I at GND		±0.01	±1	μA
	Short-circuit output current ⁽³⁾	$V_{CC} = 3.6 \text{ V}, \text{ V}_{O} = 0 \text{ V}$		±35	±60	mA
los	Short-circuit output current	$V_{CC} = 5.5 \text{ V}, \text{ V}_{O} = 0 \text{ V}$		1 00	IOO	ША
r _o	Output resistance	V _{CC} , V+, and V– = 0 V, V _O = ± 2 V	300	10M		Ω
		$\overline{\text{FORCEOFF}}$ = GND, V _{CC} = 3 V to 3.6 V, V _O = ±12 V			±25	
I _{OZ}	Output leakage current	$\overline{\text{FORCEOFF}}$ = GND, V _{CC} = 4.5 V to 5.5 V, V _O = ±12 V			±25	μA

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(3)Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

P	ARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾ M	٩X	UNIT
Maximum		C _L = 1000 pF		250				
	data rate (see Figure 1)	$R_L = 3 k\Omega$, One DOUT switching	C _L = 250 pF,	V_{CC} = 3 V to 4.5 V	1000			kbit/s
			C _L = 1000 pF,	V_{CC} = 4.5 V to 5.5 V	1000			
t _{sk(p)}	Pulse skew ⁽³⁾	$C_{L} = 150 \text{ pF}$ to 2500 pF,	$R_L = 3 \ k\Omega$ to 7 $k\Omega$,	See Figure 2		300		ns
	Slew rate,	$R_L = 7 k\Omega$,	$C_L = 150 \text{ pF} \text{ to } 1000 \text{ pF}$		8		90	
SR(tr) transition region	$R_1 = 3 k\Omega$	C _L = 1000 pF		12		60	V/µs	
	(see Figure 1)	$K_{L} = 3 K_{2}$	$C_L = 150 \text{ pF}$ to 250 pF		24	1	50	

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. (1)

(2)

(3)

www.ti.com

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} - 0.6$	V _{CC} - 0.1		V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
	Positive-going input threshold voltage	$V_{CC} = 3.3 V$		1.6	2.4	V
V _{IT+}		$V_{CC} = 5 V$		1.9	2.4	V
V	Negative going input threshold voltage	$V_{CC} = 3.3 V$	0.6	1.1		V
V _{IT–}	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.6	1.4		v
V _{hys}	Input hysteresis (V _{IT+} – V _{IT})			0.5		V
I _{OZ}	Output leakage current	$\overline{EN} = V_{CC}$		±0.05		μA
ri	Input resistance	$V_I = \pm 3 V$ to $\pm 25 V$	3	5		kΩ

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_L = 150 \text{ pF}$, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	$C_L = 150 \text{ pF}$, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device. (1)

(2)

(3)

SLLS824A - AUGUST 2007 - REVISED SEPTEMBER 2011

www.ti.com

AUTO-POWERDOWN SECTION

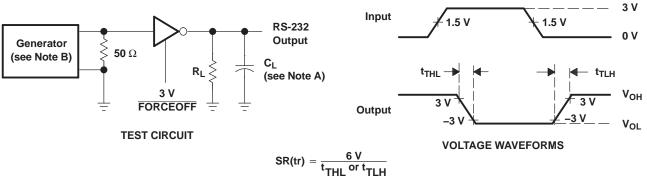
Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

PARAMETER		TEST	MIN	MAX	UNIT	
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND,	$\overline{FORCEOFF} = V_{CC}$		2.7	V
V _{T-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND,	$\overline{FORCEOFF} = V_{CC}$	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND,	$\overline{FORCEOFF} = V_{CC}$	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	$\frac{I_{OH} = 1 \text{ mA,}}{FORCEOFF} = V_{CC}$	FORCEON = GND,	V _{CC} - 0.6		V
V _{OL}	INVALID low-level output voltage	$\frac{I_{OL} = 1.6 \text{ mA}}{\text{FORCEOFF}} = V_{CC}$	FORCEON = GND,		0.4	V

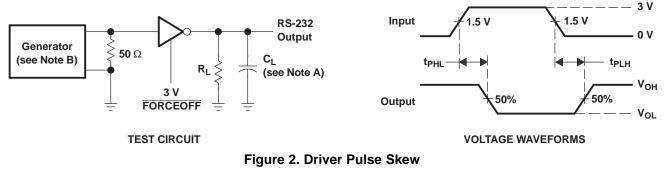
Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

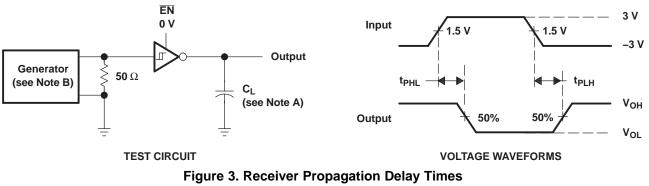

	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

SLLS824A - AUGUST 2007 - REVISED SEPTEMBER 2011


PARAMETER MEASUREMENT INFORMATION

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

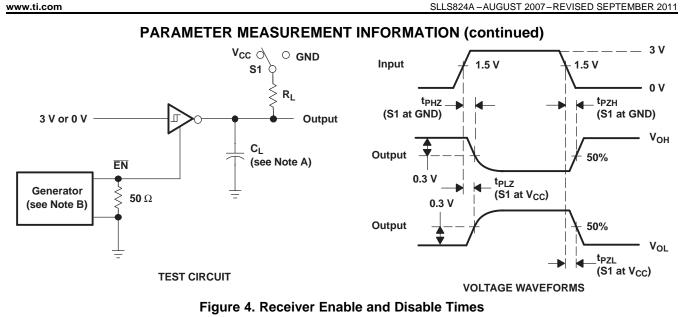

Figure 1. Driver Slew Rate

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.


STRUMENTS

XAS

TRSF3223E

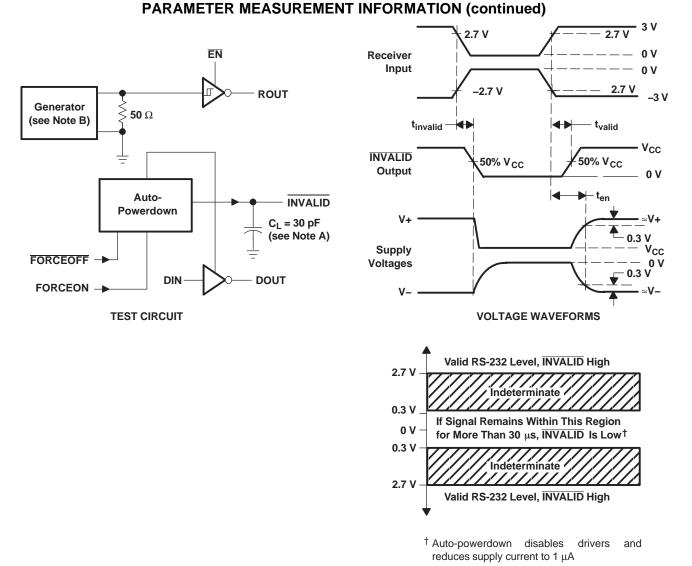
SLLS824A - AUGUST 2007 - REVISED SEPTEMBER 2011

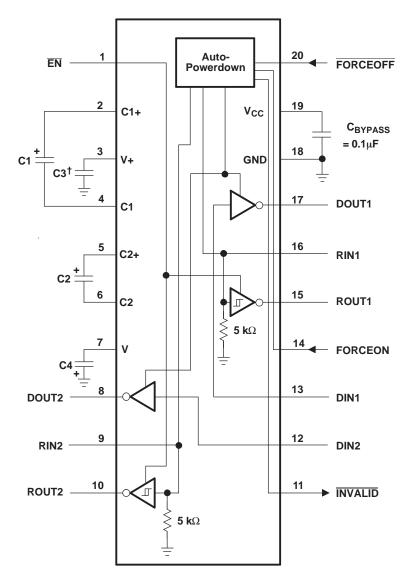
A. C_L includes probe and jig capacitance.

В. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_O = 50 Ω , 50% duty cycle, $t_r \leq$ 10 ns, t_f ≤ 10 ns.

www.ti.com

SLLS824A - AUGUST 2007 - REVISED SEPTEMBER 2011




Figure 5. INVALID Propagation Delay Times and Supply Enabling Time

TEXAS INSTRUMENTS

www.ti.com

SLLS824A - AUGUST 2007 - REVISED SEPTEMBER 2011

APPLICATION INFORMATION

^{\dagger} C3 can be connected to V_{CC} or GND.

- NOTES: A. Resistor values shown are nominal.
 - B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.
 V_{CC} vs CAPACITOR VALUES

V _{CC}	C1	C2, C3, and C4
3.3 V \pm 0.3 V	0.1 μ F	0.1 μF
5 V \pm 0.5 V	0.047 μ F	0.33 μF
3 V to 5.5 V	0.1 μF	0.47 μF

Figure 6. Typical Operating Circuit and Capacitor Value	Figure 6	erating Circuit and Capa	citor Values
---	----------	--------------------------	--------------

Copyright © 2007–2011, Texas Instruments Incorporated

REVISION HISTORY

Cł	nanges from Original (August 2007) to Revision A P	age
•	Added RGW package to datasheet.	1
•	Deleted RHL package from datasheet.	1

www.ti.com

12 5

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TRSF3223ECDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RT23EC	Samples
TRSF3223ECPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RT23EC	Samples
TRSF3223EIDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI	Samples
TRSF3223EIDWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRSF3223EI	Samples
TRSF3223EIPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI	Samples
TRSF3223EIPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RT23EI	Samples
TRSF3223EIRGWR	ACTIVE	VQFN	RGW	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	RT23EI	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

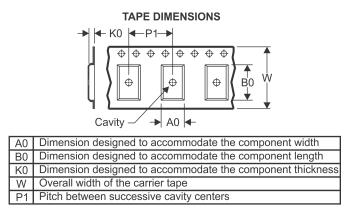
PACKAGE OPTION ADDENDUM

24-Aug-2018

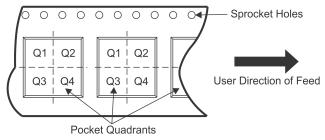
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

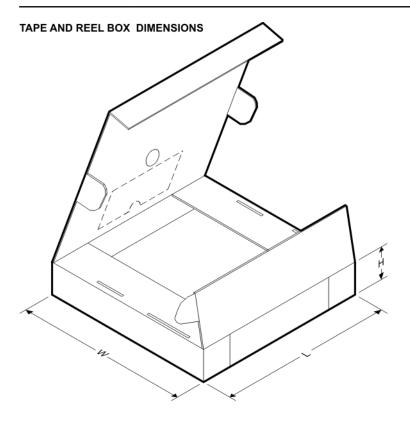

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

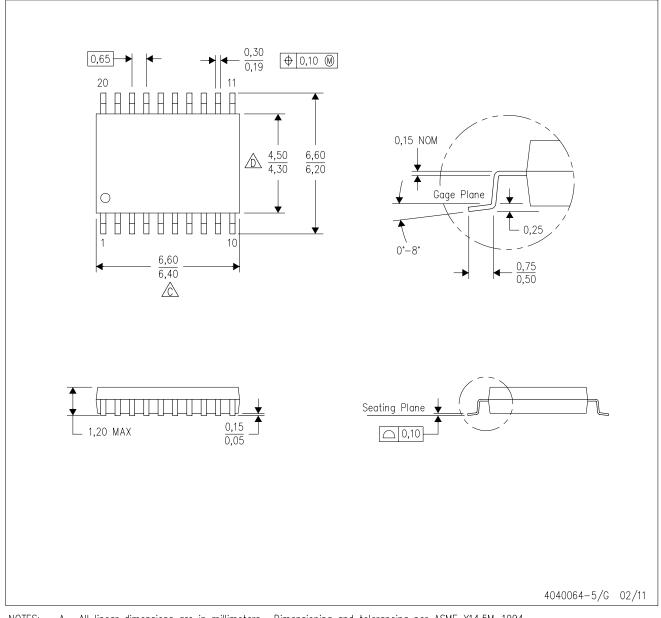

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRSF3223ECDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TRSF3223ECPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TRSF3223EIDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TRSF3223EIDWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
TRSF3223EIPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TRSF3223EIRGWR	VQFN	RGW	20	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-Aug-2013



*All dimensions are nominal

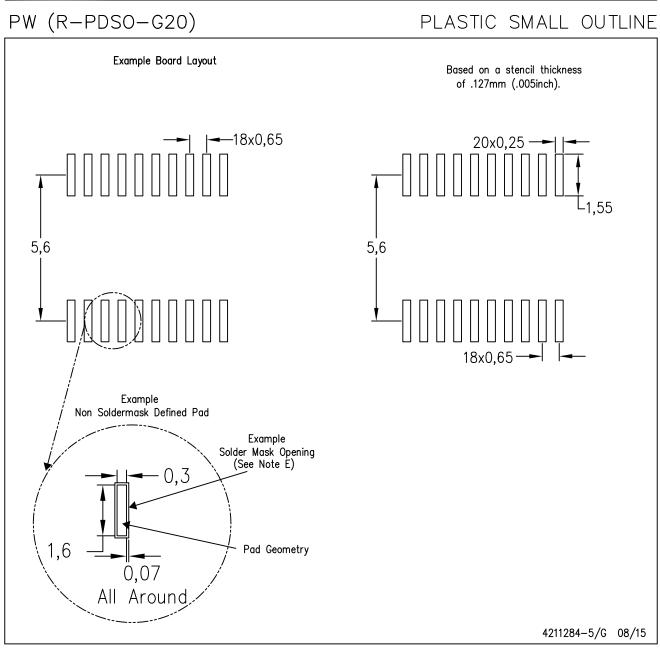
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRSF3223ECDBR	SSOP	DB	20	2000	367.0	367.0	38.0
TRSF3223ECPWR	TSSOP	PW	20	2000	367.0	367.0	38.0
TRSF3223EIDBR	SSOP	DB	20	2000	367.0	367.0	38.0
TRSF3223EIDWR	SOIC	DW	20	2000	367.0	367.0	45.0
TRSF3223EIPWR	TSSOP	PW	20	2000	367.0	367.0	38.0
TRSF3223EIRGWR	VQFN	RGW	20	3000	367.0	367.0	35.0

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

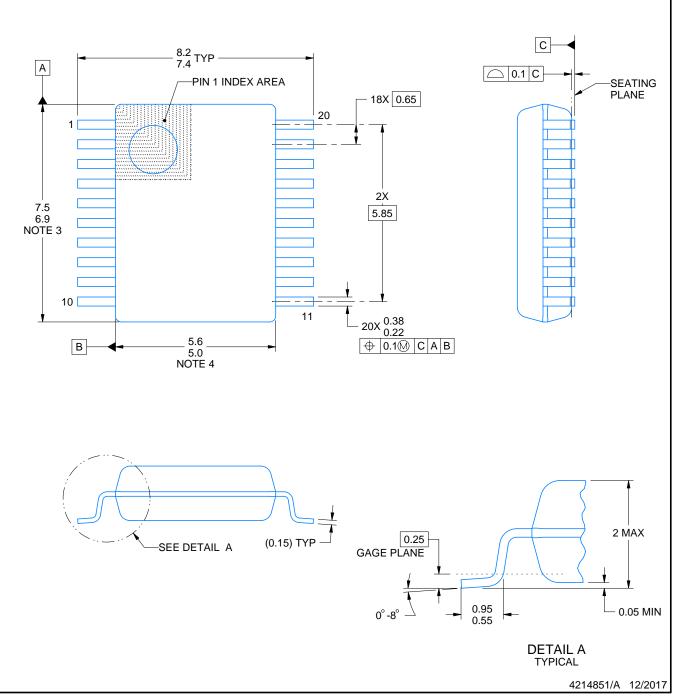
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


DB0020A

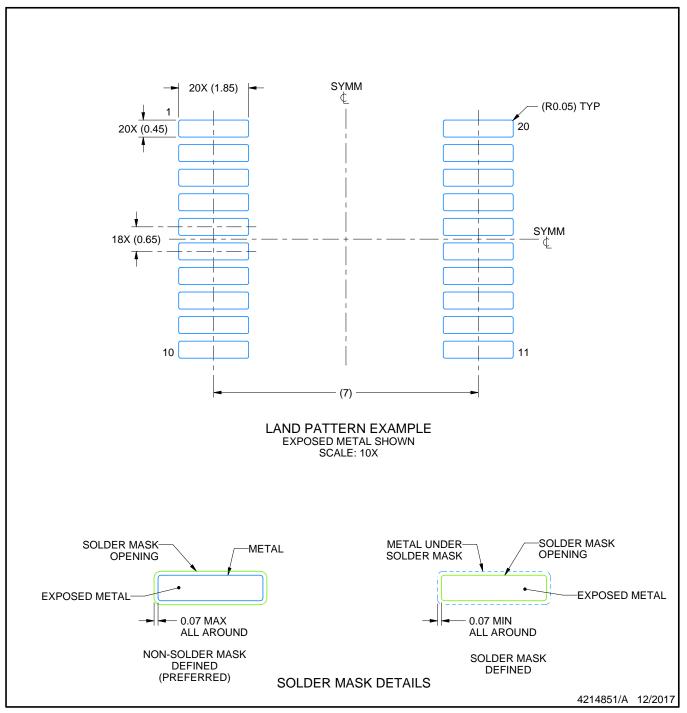
PACKAGE OUTLINE

TSSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



DB0020A

EXAMPLE BOARD LAYOUT

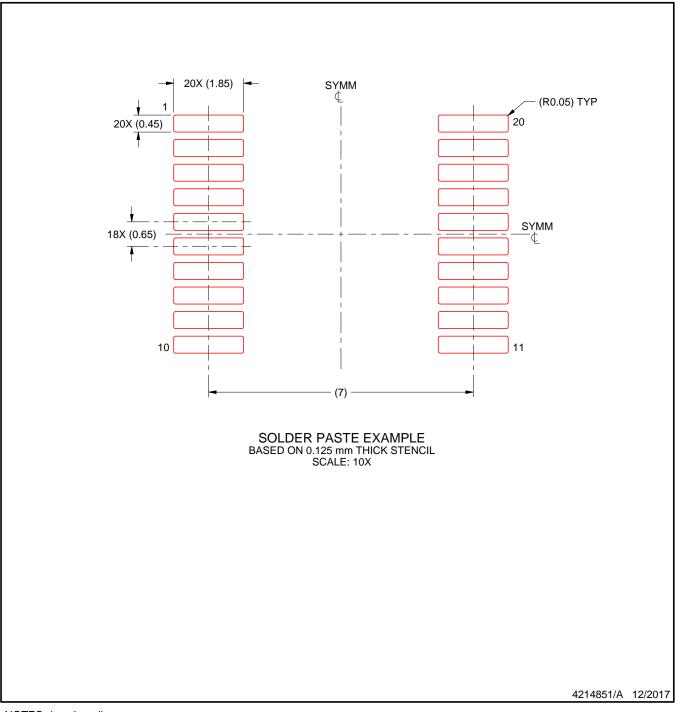
TSSOP - 2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

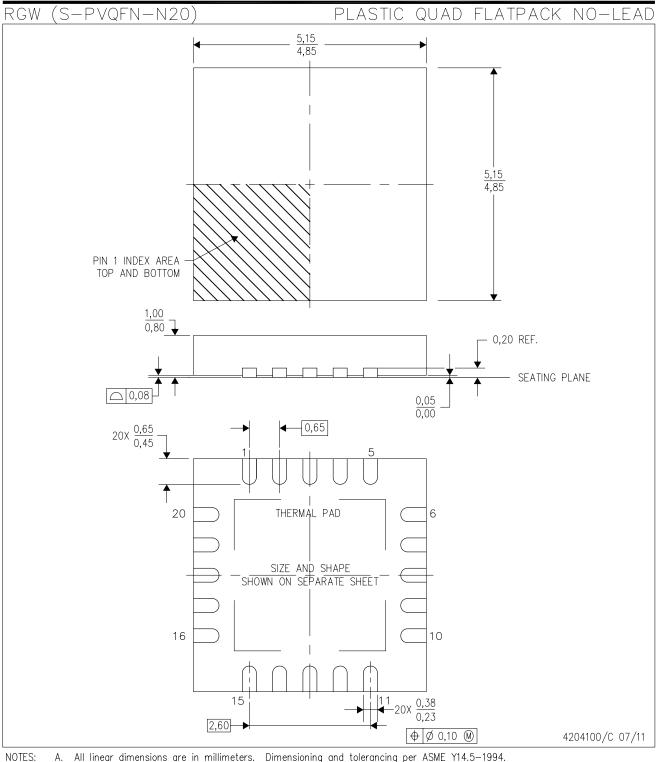


DB0020A

EXAMPLE STENCIL DESIGN

TSSOP - 2 mm max height

SMALL OUTLINE PACKAGE



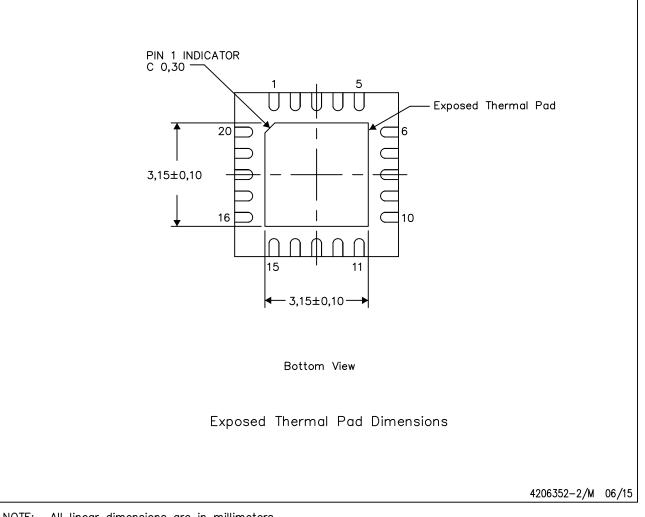
NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

MECHANICAL DATA

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.

- Β. This drawing is subject to change without notice.
- Quad Flat pack, No-leads (QFN) package configuration C.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. D.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

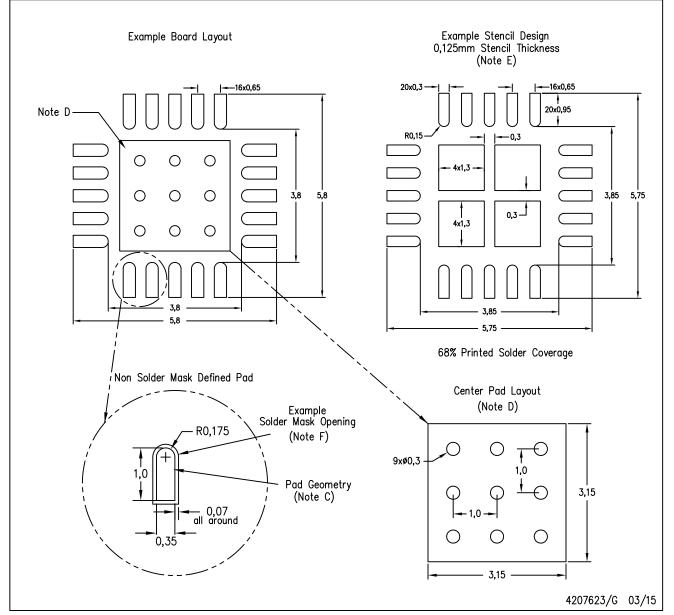


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

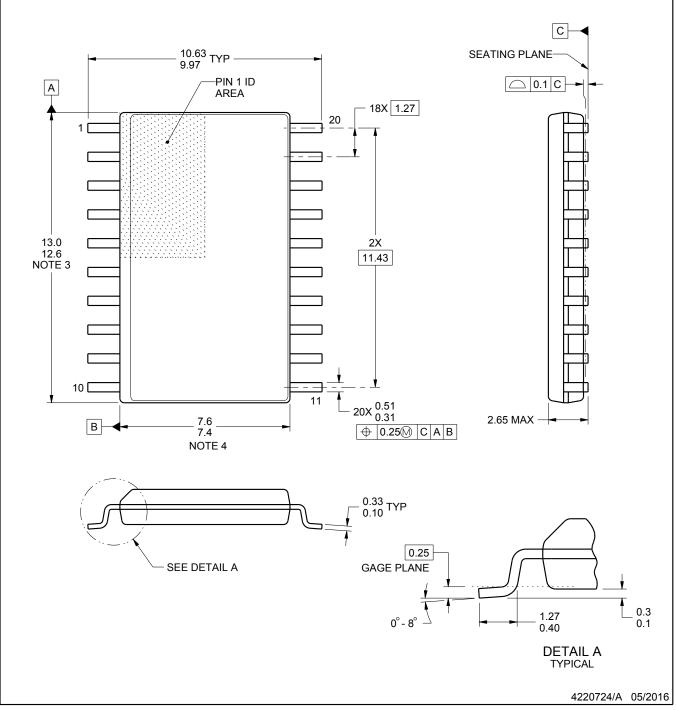
RGW (S-PVQFN-N20)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.


DW0020A

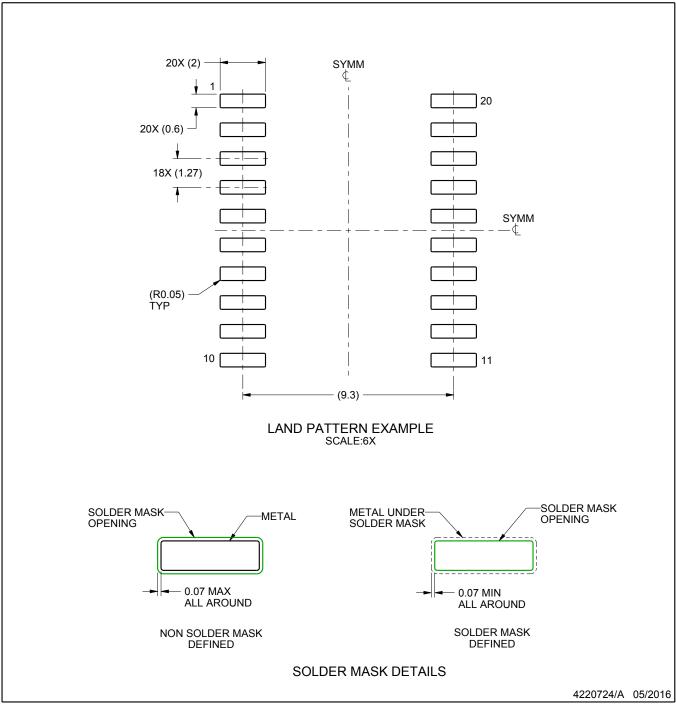
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.



DW0020A

EXAMPLE BOARD LAYOUT

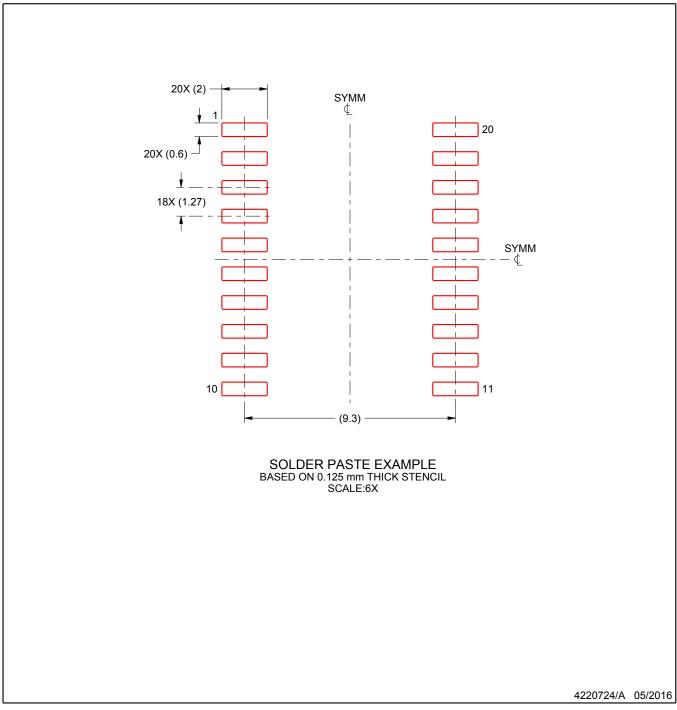
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated