M M K M N

200Mbps SFP Limiting Amplifier

General Description

The MAX3969 limiting amplifier with PECL data outputs is ideal for low-cost ATM, Fast Ethernet, FDDI and ESCON fiber optic receivers.
The MAX3969 features 1 mV P-p input sensitivity and an integrated power detector that senses the input signal power. It provides a received-signal-strength indicator (RSSI), which is an analog indication of the power level. Signal strength is also indicated by the complementary TTL loss-of-signal (LOS) outputs and the PECL signaldetect (SD) output, both of which indicate the power level relative to a programmable threshold.
The threshold can be adjusted to detect signal amplitudes as low as 2.7 mV P-p. An optional squelch function disables switching of the data outputs by holding them at a known state when the signal is below the programmed threshold.
The MAX3969 is available in die form and a $4 \mathrm{~mm} \times$ 4mm, 20-pin thin QFN package.

Applications

SFP/SFF Transceivers
Fast Ethernet/FDDI Transceivers
155Mbps LAN ATM Transceivers
ESCON Receivers
FTTx Transceivers

Features

- 1mVP-P Input Sensitivity

- Loss-of-Signal Detector with Programmable Threshold
- TTL LOS and PECL Signal Detect
- Analog Received-Signal-Strength Indicator
- Output Squelch Function
- Compatible with 4B/5B Data Coding

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX3969ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN	T2044-2
MAX3969E/D	-	Dice *	-

*Dice are designed to operate over a $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ junction temperature $\left(T_{J}\right)$ range, but are tested and guaranteed only at $T_{A}=+25^{\circ} \mathrm{C}$.

Typical Application Circuits

Typical Application Circuits continued at end of data sheet.
Pin Configuration appears at end of data sheet.

200Mbps SFP Limiting Amplifier

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage Range (VCC, $\mathrm{V}_{C C O}$)-0.5V to +7.0 V Voltage at FILTER, RSSI, IN+, IN-, CZP, CZN, SQUELCH,

TTL Output Current (LOS, $\overline{\mathrm{LOS}}$)
......................... $\pm 9 \mathrm{~mA}$
PECL Output Current (OUT+, OUT-, SD) $\pm 50 \mathrm{~mA}$
Differential Voltage Between CZP and CZN..........-1.5V to +1.5 V
Differential Voltage Between $\mathrm{IN}+$ and $\mathrm{IN}-.-1.5 \mathrm{~V}$ to +1.5 V
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} C \mathrm{C}=+2.97 \mathrm{~V}\right.$ to +5.5 V , PECL outputs terminated with 50Ω to $\mathrm{V} C \mathrm{C}-2 \mathrm{~V}, \mathrm{R} 1=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	PECL outputs open		22	45	mA
LOS Hysteresis	Input $=4.0 \mathrm{mV}$ P-P ((ote 2)	3.0	5	8.0	dB
Squelch Input Current			27	100	$\mu \mathrm{A}$
PECL Output-Voltage High	(Note 3)	-1085		-880	mV
PECL Output-Voltage Low	(Note 3)	-1830		-1550	mV
LOS Assert Accuracy	Input $=7 \mathrm{mV} \mathrm{P}_{\text {P-P }}$ or $90 \mathrm{mV} \mathrm{P}_{\text {P-P, }} 0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-3.0		+3.0	dB
	Input $=7 \mathrm{mV}$ P-P or 90 mV P-P, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-3.6		+3.6	dB
Minimum LOS Assert Input				2.7	$\mathrm{mV} \mathrm{P}_{-\mathrm{P}}$
Maximum LOS Deassert Input		143			$\mathrm{mV} \mathrm{P}_{-\mathrm{P}}$
Input Sensitivity	(Note 4)		1	4	mVP-P
Input Overload	(Note 4)	1500			mVP-P
TTL Output High	RLOS $=4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$	2.4	3.0		V
TTL Output Leakage	(Note 5)		1	20	$\mu \mathrm{A}$
TTL Output Low	$\mathrm{IOL}=800 \mu \mathrm{~A}$		0.2	0.5	V
Data Output Transition Time	20\% to 80\%, Input > 4mVP-P (Note 4)	0.35	0.8	1.20	ns
Pulse-Width Distortion	Input > 4mVP-P (Notes 4, 6)		50	250	ps
LOS, SD Assert/Deassert Time	CFILTER $=0.01 \mu \mathrm{~F}$		10		$\mu \mathrm{s}$

Note 1: Dice are tested and guaranteed only at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 2: LOS hysteresis = 20log(VLOS-DEASSERT / VLOS-ASSERT).
Note 3: Relative to supply voltage (V_{Cc}).
Note 4: AC characteristics are guaranteed by design and characterization.
Note 5: Input < LOS threshold (LOS = HIGH), VLOS $=2.4 \mathrm{~V}$.
Note 6: Pulse-width distortion = [(width of wider pulse) - (width of narrower pulse)] / 2, measured with 100Mbps 1-0 pattern.

200Mbps SFP Limiting Amplifier

Typical Operating Characteristics

($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, PECL outputs terminated with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}, \mathrm{R} 1=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)
TRANSFER FUNCTION

RSSI VOLTAGE vs. TEMPERATURE (LOS LOW, RSSI LOAD > 10k Ω)

BIT ERROR RATIO vs. DIFFERENTIAL INPUT VOLTAGE

POWER-DETECT THRESHOLD vs. R2
($\mathrm{R} 1=100 \mathrm{k} \Omega$)

RSSI VOLTAGE vs. DIFFERENTIAL INPUT VOLTAGE

LOSS-OF-SIGNAL HYSTERESIS
vs. TEMPERATURE

200Mbps SFP Limiting Amplifier

($\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$, PECL outputs terminated with 50Ω to $\mathrm{V} C \mathrm{C}-2 \mathrm{~V}, \mathrm{R} 1=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PIN	NAME	FUNCTION
1	INV	Inverting Input of Internal Op Amp that Sets Power-Detect Threshold Voltage (Figure 1). Connect a resistor from V_{TH} to $\operatorname{INV}(\mathrm{R} 2)$, and from INV to ground $(\mathrm{R} 1=100 \mathrm{k} \Omega)$, to program the desired threshold voltage.
2	FILTER	Filter Output of Logarithmic Full-Wave Detectors (FWDs). The FWD outputs are summed together at FILTER to generate the RSSI output. Connect a capacitor from FILTER to V_{C} for proper operation.
3	RSSI	Received-Signal-Strength Indicator Output. The voltage at RSSI indicates the input-signal power. The RSSI output is reduced approximately 120 mV when LOS is asserted.
4	N -	Inverting Data Input
5	IN+	Noninverting Data Input
6, 7, 8	GND	Ground
9	CZP	Autozero Capacitor Input. Connect a capacitor between CZP and CZN.
10	CZN	Autozero Capacitor Input. Connect a capacitor between CZP and CZN.
11	Vcco	Output-Buffer Supply Voltage. Connect to the same potential as $\mathrm{V}_{\text {cc }}$.
12	OUT+	Noninverting PECL Data Output. Terminate with 50Ω to (VCC - 2V).
13	OUT-	Inverting PECL Data Output. Terminate with 50Ω to (VCC - 2V).
14	SD	Signal Detect, PECL Output. The SD output is high when input power is above the power-detect threshold, and low when input power is below the power-detect threshold. This pin is PECLcompatible and should be terminated with 50Ω to ($\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$) or equivalent.
15	LOS	Loss-of-Signal Output, TTL Open Collector (with ESD Protection). The LOS output is high when input power is below the power-detect threshold, and low when input power is above the power-detect threshold.
16	$\overline{\mathrm{LOS}}$	Inverted Loss-of-Signal Output, TTL Open Collector (with ESD Protection). The $\overline{\text { LOS }}$ output is low when input power is below the power-detect threshold, and high when input power is above the power-detect threshold.

200Mbps SFP Limiting Amplifier

Pin Description

PIN	NAME	FUNCTION
17,18	VCC	Supply Voltage
19	SQUELCH	Squelch Input. The squelch function disables the data outputs by forcing OUT- low and OUT+ high when the signal is below the power-detect threshold. Connect to GND or leave unconnected to disable squelch. Connect to VCC to enable squelch.
20	$V_{T H}$	Output of Internal Op Amp that Sets Power-Detect Threshold Voltage (Figure 1). Connect a resistor from VTH to INV (R2) and from INV to ground (R1 = 100k Ω), to program the desired threshold voltage.
EP	Exposed Pad	Ground. The exposed pad must be soldered to the circuit board ground for proper thermal and electrical performance.

Figure 1. Functional Diagram

Detailed Description

The MAX3969 contains a series of limiting amplifiers and power detectors, offset correction, data-squelch circuitry, TTL buffers for LOS outputs, and PECL output buffers for signal detect (SD) and data outputs. See Figure 1 for the functional diagram.

Gain Stages and Offset Correction

A cascade of limiting amplifiers provides approximately 65 dB of combined small-signal gain. The large gain makes the amplifier susceptible to small DC offsets in the signal path. To correct DC offsets, the amplifier has an internal feedback loop that acts as a DC autozero
circuit. By correcting the DC offsets, the limiting amplifier sensitivity and power-detector accuracy are improved.
The offset correction is optimized for data streams with a 50\% duty cycle. A different average duty cycle results in increased pulse-width distortion and loss of sensitivity. The offset-correction circuitry is less sensitive to variations of input duty cycle (for example, the 40% to 60% duty cycle encountered in 4B/5B coding) when the input is less than 30 mVp -p.
The data inputs must be AC-coupled for the offset correction loop to function properly. Differential input impedance is $>5 \mathrm{k} \Omega$.

200Mbps SFP Limiting Amplifier

Abstract

Power Detector Each amplifier stage contains a logarithmic FWD, which indicates the RMS input signal power. The FWD outputs are summed together at the FILTER pin where the signal is filtered by an external capacitor (CFILTER) connected between FILTER and VCC. The FILTER signal generates the RSSI output voltage (VRSSI), which is proportional to the input power in decibels. When LOS is low, $\mathrm{V}_{\mathrm{RSS}}$ is approximated by the following equation:

$$
\mathrm{V}_{\text {RSSI }}(\mathrm{V})=1.2 \mathrm{~V}+0.5 \log (\mathrm{VIN})
$$

where, V_{IN} is the data input voltage measured in mV P-p. This relation translates to a 25 mV increase in $\mathrm{V}_{\mathrm{RSS}}$ for every 1dB increase in VIN. The RSSI output is reduced approximately 120 mV when LOS is high.
Typically the RSSI output is connected to an A/D converter for diagnostic monitoring. This output can be left open if not required in the application. The RSSI output is designed to drive a minimum load resistance of $10 \mathrm{k} \Omega$ to ground, and a maximum capacitance of 10 pF . A $10 \mathrm{k} \Omega$ series resistor is required to buffer loads greater than 10 pF .

Signal-Strength Comparator
A comparator is used to indicate the input signal strength relative to a user-programmable threshold. One of the comparator inputs is connected to the RSSI output signal, and the other is connected to the threshold voltage (V_{TH}), which is set externally and provides a trip point for signal-strength indication. When the signal strength is above the threshold, the SD output asserts high and the LOS output deasserts low. Likewise, when the signal strength falls below the threshold, SD deasserts low and LOS asserts high. To ensure chatter-free operation, the comparator is designed with approximately 5dB of hysteresis.

Squelch

The squelch function disables the data outputs by forcing OUT- low and OUT+ high when the input signal is below the programmed threshold. This function ensures that when there is a loss of signal, the limiting amplifier and all downstream devices do not respond to input noise. Connect SQUELCH to GND or leave it unconnected to disable squelch. Connect SQUELCH to VCC to enable squelch.

PECL Outputs

The data outputs (OUT+, OUT-) and signal-detect output (SD) are supply-referenced PECL outputs. See Figure 2 for the equivalent output circuit.
Both data outputs must be terminated for proper operation, but the SD output can be left open if not required in the application. The proper termination for a PECL output is 50Ω to (VCC -2 V), but other standard termination techniques can be used. For more information on PECL terminations and how to interface with other logic families, refer to Maxim Application Note HFAN-01.0: Introduction to LVDS, PECL, and CML.

TTL Outputs

The LOS outputs (LOS, $\overline{\text { LOS }}$) are implemented with open-collector, Schottky-clamped, ESD-protected, TTLcompatible outputs. See Figure 3 for the equivalent output circuit. The LOS outputs require external pullup resistors for proper operation. Resistor values between $4.7 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$ are recommended.
If the LOS outputs are not required for the application, they can be left open.

Design Procedure

Program the Power-Detect Threshold
The suggested procedure for setting the power-detect threshold is given below and is illustrated in Figure 4.

1) Determine the maximum receiver sensitivity (RX_MAX) in dBm and the PIN-TIA responsivity (G) in V/W.
2) Calculate the differential voltage swing (VIN_SEN) at the MAX3969 inputs while operating at sensitivity.

$$
\text { VIN_SEN }=10\left(R X _M A X / 10\right) \times 2 \times G
$$

3) Calculate the threshold voltage $\left(\mathrm{V}_{\mathrm{IN}} \mathrm{TH}\right)$ at which LOS must be low (SD must be high) by allowing 3.6 dB (1.8dB optical) margin for power-detector accuracy.

$$
\text { VIN_TH }=\text { VIN_SEN } \times 0.66
$$

4) Use VIN_TH and the line labeled (SD HIGH / LOS LOW) in the Power-Detect Threshold vs. R2 graph in the Typical Operating Characteristics to determine the value of $R 2$. Select $R 1=100 \mathrm{k} \Omega$.

200Mbps SFP Limiting Amplifier

Figure 2. Equivalent PECL Output Circuit

Figure 3. Equivalent TTL Output Circuit

2
3
3
0
0
0
0
0

Figure 4. Signal Levels for Power-Detect Threshold

Select Cfilter

For SFP/SFF, FDDI, 155Mbps ATM LAN, Fast Ethernet, and ESCON receivers, Maxim recommends CFILTER = $0.01 \mu \mathrm{~F}$. This capacitor value ensures chatter-free LOS/SD and provides a typical assert/deassert time of $10 \mu \mathrm{~s}$. For other applications, the value of CFILTER can be calculated using the following equation:

CFILTER $=\tau / 825 \Omega$
where τ is the desired time constant of the power detector.

Select $C_{A Z}$ and Cin

External-coupling capacitors (CIN) are required on the data inputs for the offset correction loop to function properly. The offset correction loop bandwidth is determined by the external capacitor (CAZ) connected between CZP and CZN. The poles associated with CIN and CAZ must work together to provide a flat response at the lower -3dB corner frequency. For SFP/SFF, FDDI, 155Mbps ATM LAN, Fast Ethernet, and ESCON receivers, Maxim recommends the following:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{IN}}=4700 \mathrm{pF} \\
\mathrm{C}_{\mathrm{AZ}}=1 \mu \mathrm{~F}
\end{gathered}
$$

200Mbps SFP Limiting Amplifier

\qquad Applications Information

Wire Bonding

For high-current density and reliable operation, the MAX3969 uses gold metalization. For best results, use gold-wire ball-bonding techniques. Use caution if attempting wedge bonding. Die pad size is 4 mils $\times 4$ mils. Die thickness is 16 mils.
Table 1 lists the bond pad coordinates for the MAX3969. The origin for pad coordinates is defined as the bottom left corner of the bottom left pad. All pad locations are referenced from the origin and indicate the center of the pad where the bond wire should be connected. Refer to Maxim Application Note HFAN-08.0.1: Understanding Bonding-Coordinates and Physical Die Size for detailed information.

Pin Configuration

Table 1. Bond Pad Coordinates

PAD	NAME	COORDINATES $(\mu \mathbf{m})$	
		\mathbf{X}	\mathbf{Y}
1		INV	46.6
2	FILTER	46.6	505.6
2	RSSI	46.6	351.7
3	IN-	46.6	197.8
4	IN+	46.6	46.6
5	GND	195.1	-99.1
6	GND	432.7	-99.1
7	GND	589.3	-99.1
8	CZP	743.2	-99.1
9	CZN	945.7	-99.1
10	VCCO	1204.9	-96.4
11	OUT+	1204.9	81.7
12	OUT-	1204.9	262.6
13	SD	1204.9	492.1
14	LOS	1204.9	697.3
15	$\overline{\text { LOS }}$	1053.7	818.8
16	VCC	808.0	818.8
17	VCC	586.6	818.8
18	VQUELCH	432.7	818.8
19	SOLH	195.1	818.8
20	VTH		

Chip Information
TRANSISTOR COUNT: 915
SUBSTRATE CONNECTED TO GND
PROCESS: Silicon Bipolar
DIE THICKNESS: 16 mils

200Mbps SFP Limiting Amplifier

200Mbps SFP Limiting Amplifier

 Typical Application Circuits (continued)
\qquad

200Mbps SFP Limiting Amplifier

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
MAX3969ETP + MAX3969ETP + T MAX3969ETP

[^0]: © 2006 Maxim Integrated Products

