UNIPOLE & MULTIPOLE CONNECTORS

No reproduction or use without express permission of editorial or pictorial content, in any manner. LEMO reserve the right at all times to modify and improve specifications without any notification.

LEMO unipole and multipole connectors

This catalogue gives the complete description of LEMO unipole and multipole type connectors. The LEMO manufacturing programme has been extended to almost 40 series divided into 7 product families with specific mating and environmental characteristics. Each series includes a wide variety of plug, socket, coupler and bridge plug models, available in contact configurations adapted to all round cables, including up to 114 conductors, and a maximum diameter of 30 mm. Watertight and vacuumtight models are also available. Since LEMO connectors are perfectly screened and designed to guarantee very low resistance to shell electrical continuity, they are particularly adapted to applications where electromagnetic compatibility (EMC) is important.

Table of Contents

3 steps to select the right connector	3
B Series (indoor, keyed)	
Part Numbering system	
Metal Housing models	14
Elbow socket models	
Plastic housing models	
Watertight or vacuumtight models	
Bridge models	
Threaded-latching models	
Alignment Key and Polarized Keying System	
K Series (outdoor, keyed)	
Part Numbering system	
Metal Housing models	
Watertight or vacuumtight models	
Alignment Key and Polarized Keying System	
T Series (outdoor, keyed)	
Part Numbering system	51
Metal Housing models	
Watertight or vacuumtight models	
Plastic housing models	56
B, K and T Series Insert configuration, Housings, Insulators, Contacts, Collets, Variant	57
S Series (indoor, stepped insert)	
Part Numbering system	75
Metal Housing models	
5	
Elbow socket models	
Plastic housing models	
Watertight or vacuumtight models	
E Series (outdoor, stepped insert)	
Part Numbering system	
Metal Housing models	
Watertight or vacuumtight models	
S, and E Series Insert configuration, Housings, Insulators, Contacts, Collets, Variant	
M Series (outdoor, keyed)	
F Series (outdoor, keyed)	
Spare parts	
Accessories	
Tooling	151
Panel cut-outs and PCB drilling pattern	
Cable assembly (B, K, T, S and E series)	
Technical characteristics	
Product safety notice	

Precision modular connectors to suit your application

Since its creation in Switzerland in 1946 the LEMO Group has been recognized as a global leader of circular Push-Pull connectors and connector solutions. Today LEMO and its affiliated companies, REDEL and COELVER, are active in more than 80 countries with the help of over 40 subsidiaries and distributors.

Over 75000 connectors

The modular design of the LEMO range provides over 75000 connectors from miniature ø 3 mm to ø 50 mm, capable of handling cable diameters up to 30 mm and for up to 114 contacts.

This vast portfolio enables you to select the ideal connector configuration to suit almost any specific requirement in most markets, including medical devices, test and measurement instruments, machinery, audio video broadcast, telecommunications and military.

LEMO's Push-Pull Self-Latching Connection System

This self-latching system is renowned worldwide for its easy and quick mating and unmating features. It provides absolute security against vibration, shock or pull on the cable, and facilitates operation in a very limited space.

UL Recognition 🔊

LEMO connectors are recognized by the Underwriters Laboratories (UL). The approval of the complete system (LEMO connector, cable and your equipment) will be easier because LEMO connectors are recognized.

CE marking C€

CE marking $\zeta \in$ means that the appliance or equipment bearing it complies with the protection requirements of one or several European safety directives. CE marking $\zeta \in$ applies to complete products or equipment, but not to electromechanical components, such as connectors.

RoHS

LEMO connector specifications conforms the requirements of the RoHS directive (2011/65/EU) of the European Parliament and the latest amendments. This directive specifies the restrictions of the use of hazardous substances in electrical and electronic equipment marketed in Europe.

3 steps to select the right connector

Step 1: Select connector series

Select the appropriate LEMO connector series according to the environmental parameters that will affect your device or cable such as indoor, outdoor, temperature range, ingress protection of the mated connector and of your device. Use the table shown on page 4.

Step 2: Select connector size

Use the section (mm²) or the AWG of your cable wire to select the optimal contact diameter (values vary between solder, crimp or print contact), see page 8.

Use this optimal contact diameter to determine the right connector size as well as the insert configuration, see page 6.

• Step 3: Complete the part number

Now that you know the series, as well as the insulator configuration, complete the part numbering system with the help of the following table.

Part number	Part number coding											
	Model	Series	Insert configuration	Housing material	Insulator material	Contact	Collet	Variant				
B Series (indoor, keyed)	14	14	57	64	64	64	67	71				
K Series (outdoor, keyed)	39	39	57	64	64	64	68	71				
T Series (outdoor, keyed)	53	53	57	64	64	64	70	71				
S Series (indoor, stepped insert)	76	76	103	112	112	112	115	121				
E Series (outdoor, stepped insert)	95	95	103	112	112	112	119	121				

Note: Figures in the above table refer to the catalogue pages.

LEMO unipole and multipole connectors

The standard keyed Series (B, 00)

The characteristic feature of these connector series is a keying system which allows higher contact density and prevents all errors in alignment. The various keying alternatives prevent unwanted cross mating of otherwise similar connectors. It is also possible to use crimp contacts to reduce cable assembly time. These connector series, include the 0B to 5B range as well as the 00 multipole, some vacuumtight models are also available.

The watertight keyed Series (K, T)

These series are watertight when mated and assembled to an appropriate cable. They include the 0K to 5K series and the TT to 3T series, available in the same types as the 0B to 5B series.

The standard Series (S, 00)

The characteristic feature of these connector series is the hermaphroditic insulator in the multipole version. They include principally the 0S to 6S series, as well as the 00 unipole series.

The watertight Series (E)

These series are watertight when mated and assembled to an appropriate cable. They include the 0E to 6E series and are available in the same types as the S series.

Note:

1) Mated connector. See ingress protection code p. 5. ²) Your device. For selection of connectors for watertight and vacuumtight devices, see p. 5.

Definition of Ingress Protection (IP code)

IEC 60529 outlines an international classification system for the sealing effectiveness of enclosures of electrical equipment against the intrusion into the equipment of foreign bodies (i.e. tools, dust, fingers) and moisture. This classification system utilizes the letters «IP» (Ingress Protection) followed by two digits.

Degrees of protection - First digit

The first digit of the IP code indicates the degree to which persons are protected against contact with moving parts and the degree that equipment is protected against solid foreign bodies intruding into an enclosure.

Code	First digit description
0	No special protection
1	Protection from a large part of the body such as hand or from solid objects greater than 50 mm in diameter
2	Protection against objects not greater than 80 mm in length and 12 mm in diameter
3	Protection from entry by tools, wires, etc., with a diameter or thickness greater than 2.5 mm
4	Protection from entry by solid objects with a diameter or thickness greater than 1.0 mm
5	Protection from the amount of dust that would interfere with the operation of the equipment
6	Dust-tight
7	-
8	-

Example: IP 50 = IP	5	0
IP letter code		
1st diait —		

2nd digit

Degrees of protection - Second digit

The second digit indicates the degree of protection of the equipment inside the enclosure against the harmful entry of various forms of moisture (e.g. dripping, spraying, submersion, etc.)

Code	Second digit description
0	No special protection
1	Protection from vertically dripping water
2	Protection from dripping water when tilted up to 15°
3	Protection from sprayed water
4	Protection from splashed water
5	Protection from water projected from a nozzle
6	Protection against heavy seas, or powerful jets of water
7	Protection against temporary immersion
8	Protection against complete continuous submersion in water

Selection of connectors for watertight or vacuumtight devices

LEMO B and S series are rated IP50 only when mated. LEMO E, K and T series are rated IP66 (and over) only when mated. If a device must be watertight or vacuumtight when the connectors are unmated, it is important to select a water-tight or vacuumtight socket. You can consider the following two situations:

- A) Figure 1 shows a typical outdoor device. To ensure this device retains IP66 or above when connectors are unmated, it is important to choose a watertight socket from B, S, E, K or T series.
- B) Figure 2 shows a device which is subjected to pressure difference such as a near vacuum or pressurized gas and must exhibit no leakage. To ensure the device maintains its sealing, the socket is additionally tested for helium leakage (according MIL 1344A).

Fig. 2 FGG plug B series HGG socket B series

Check temperature range (see section on pages 30, 47, 55, 91 and 101).

Step 2: Select Connector Size

Select the right connector size and insert configuration

- i

To be able to select the right connector size (0 to 6), it is important to define the contact diameter (\emptyset A). Find out the available contact diameter (\emptyset A) of the LEMO connector depending on the number of contacts required and depending on the rating required (see pages 57 to 63 and 103 to 111). The following table shows the contact diameter (\emptyset A).

										Ser	ies							
	Number of contacts	Insert configuration	• • • • • • • • • • • • • • • •								••••••••••••••••••••••••••••••••••••••							
		sul	00-TT	0B-0K-0T	1B-1K-1T	XB	2B-2K-2T	3B-3K-3T	4B-4K	5 B- 5 K	00	0S-0E	1S-1E	2S-2E	3 S- 3 E	4S-4E	5 S- 5 E	6S-6E
	1	113									1.3							
	1	116										1.6						
<u>e</u>	1	120											2.0					
Unipole	1	130											3.0	3.0				
	1	140												4.0	4.0	4.0		
	1	160													6.0	6.0		
	1	112															12.0	
	2	302	0.5	0.9	1.3		2.0	3.0		6.0		0.9	1.3	1.6	2.0	4.0	6.0	
	3	303	0.5	0.9	1.3		1.6	2.0				0.7	0.9	1.3	2.0	3.0	6.0/4.0	6.0
	4	304	0.5	0.7	0.9		1.3	2.0	3.0	4.0		0.7	0.9	1.3	2.0	3.0	4.0	8.0
	5	305	0.35	0.7	0.9		1.3	1.6					0.9/0.7	1.3	2.0/1.3	3.0/2.0	4.0/3.0	
	6	306	0.35	0.5	0.7		1.3	1.6	2.0				0.7	1.3	1.3	2.0	3.0	
	7	307		0.5	0.7		1.3	1.6	2.0					1.3/0.9	1.3	2.0/1.3		
	8	308			0.7		0.9	1.3						0.9	1.3	1.3	3.0	
	9	309		0.5				1.3/2.0								1.3		
ole	10	310			0.5		0.9	1.3	1.6	3.0				0.9	1.3	1.3	2.0	
Multipole	12	312		0.35		0.7	0.7	0.9	1.3						0.9	1.3	2.0	4.0/5.0
2	13	313													0.9	1.3		
	14	314			0.5		0.7	0.9		2.0					0.9	1.3	3.0/2.0	
	16	316			0.5		0.7	0.9	0.9	2.0					0.9	0.9	2.0	3.0
	18	318					0.7	0.9							0.9	0.9	3.0/1.6	4.0
	19	319					0.7											
	20	320						0.7	0.9	1.6						0.9	1.6	3.0
	22	322				0.5		0.7								0.9	3.0/1.6	
	24	324						0.7	0.9								0.9	1.6
	26	326					0.5	0.7										

			Series															
	Number of contacts	Insert configuration	•															
	Nur	Inse	00-TT	0B-0K-0T	1B-1K-1T	XB	2B-2K-2T	3B-3K-3T	4B-4K	5B-5K	00	0S-0E	1S-1E	2S-2E	3 S- 3 E	4S-4E	5S-5E	6S-6E
	30	330						0.7	0.9	1.3							1.3	2.0
	32	332					0.5											2.0
	36	336															1.3	2.01)
	40	340							0.7	1.3							1.3	2.0
	44	344															1.3	
ele	48	348							0.7	1.3							1.3	2.0
Multipole	50	350								0.9								
M	54	354								0.9								
	60	360																1.6
	62	362																1.6
	64	364								0.9								1.3
	72	372																1.3
	106	106																0.9

Note: $^{1)}$ 2.0 is for 6S series, for 6E the values are 1.3 and 5.0.

Verify the fitting to your wire

Verify if the selected contact diameter (ø A) of the LEMO connector fits to your cable wire diameter (AWG number or max. available section).

		Contact				Conc	luctor				
Contact type					olid		Strar		(F _r ¹⁾ (N)	Notes
	ø A (mm)	ø C (mm)	Form per fig.	AWG max.	Section max. (mm ²)	AV min.	max.	min.	n (mm²) max.	(N)	
Solder	0.35	0.40	-	28	0.09	-	30	-	0.05	-	
	0.5 ²⁾	0.40 ²⁾	-	28	0.09	-	30	-	0.05	-	
	0.5	0.457)	-	28	0.09	-	28	-	0.09	-	
	0.73)	0.60 ³⁾	-	24	0.25	-	26	-	0.14	-	
	0.7	0.80	-	22	0.34	-	22 ⁴⁾	-	0.34	-	
<u>@ A</u> <u>@ C</u>	0.9	0.806)	-	226)	0.346)	-	224)6)	-	0.346)	-	
	1.3	1.00	-	20	0.50	-	20 ⁴⁾	-	0.50	-	
	1.6	1.40	-	16	1.00	-	18	-	1.00	-	•
	2.0	1.80	-	14	1.50	-	16	-	1.50	-	
t t	3.0	2.70	-	10	4.00	-	12	-	4.00	-	
	4.0	3.70	-	10	6.00	-	10	-	6.00	-	
	5.0	5.20	-	-	-	-	8	-	10.00	-	
	6.0	5.20	-	-	-	-	8	-	10.00	-	
	8.0	7.00	-	-	-	-	4	-	21.00	-	
	12.0	11.50	-	-	-	-	0	-	50.00	-	
Crimp	0.55)	0.45	1	-	-	32	28	0.035	0.09	12	•
fig. 1	0.7	0.80	1	-	-	26	22 ⁴⁾	0.140	0.34	22	
0 A 0	0.7	0.45	2	-	-	32	28	0.035	0.09	22	0
	0.9	1.10	1	-	-	24	20	0.250	0.50	30	
	0.9	0.80	2	-	-	26	22 ⁴⁾	0.140	0.34	30	0
	0.9	0.45	2	-	-	32	28	0.035	0.09	30	0
	1.3	1.40	1	-	-	20	18	0.500	1.00	40	•
	1.3	1.10	2	-	-	24	20	0.250	0.50	40	0
fig. 2	1.3	0.80	2	-	-	26	22 ⁴⁾	0.140	0.34	40	0
	1.6	1.90	1	-	-	18	14 ⁴⁾	1.000	1.50	50	•
	1.6	1.40	2	-	-	22	18	0.340	1.00	50	0
۲ A م C	2.0	2.40	1	-	-	16	12 ⁴⁾	1.500	2.50	65	•
	2.0	1.90	2	-	-	18	14	1.000	1.50	65	0
	3.0	3.20	1	-	-	14	10 ⁴⁾	2.500	4.00	75	•
	4.0	4.00	1	-	-	12	10	4.000	6.00	90	•

Note:

contact retention force in the insulator (according to IEC 60512-8 test 15 a).
for 00/TT multipole series.
for S, E series.
for a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor distribution of the maximum conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor distribution of the solder cup diameter. (a) for a given Awa, the diameter of some stranded conductor decign is to larger than the order of a given and t

 First choice alternative ○ Special order alternative

Verify the fitting to your wire

Verify if the selected contact diameter (Ø A) of the LEMO connector fits to your cable wire diameter (AWG number or max. available section).

Note: 1) contact retention force in the insulator (according to IEC 60512-8 test 15 a).

Verify the fitting to your cable

Verify if the selected connector size fits to your cable diameter.

	Cab	le diamete	er range (r	nm)		Cab	le diamete	er range (r	nm)		Cat	ole diamete	er range (r	nm)
Series	Co	llet		or fitting d relief	Series				or fitting d relief	Series	Collet			or fitting d relief
	min.	max.	min.	max.		min.	max.	min.	max.		min.	max.	min.	max.
001)	1.4	3.5	1.4	3.5	TT	2.4	3.0	2.4	3.0	0E	1.0	5.0	1.0	5.0
0B	1.4	5.6	1.4	5.2	0T	1.0	6.5 ³⁾	1.0	6.5 ³⁾	1E	1.3	8.53)	1.3	8.5 ³⁾
1B	2.2	7.6	2.2	7.2	1T	1.3	8.5 ³⁾	1.3	8.5 ³⁾	2E	1.3	10.5 ³⁾	1.3	10.5 ³⁾
XB	4.4	8.0	4.4	7.0	2T	1.3	10.5 ³⁾	1.3	10.5 ³⁾	ЗE	2.6	15.0 ³⁾	2.6	15.0 ³⁾
2B	1.4	9.9	1.4	9.2	3T	2.6	15.0 ³⁾	2.6	15.0 ³⁾	4E	4.8	23.5 ³⁾	4.8	15.0
3B	4.2	11.9	4.2	11.0	002)	1.3	4.4	1.3	4.4	5E	9.6	23.5	-	-
4B	4.9	16.0	4.9	15.0	0S	1.3	6.2 ³⁾	1.3	6.2 ³⁾	6E	13.0	30.0	-	-
5B	9.6	25.0	9.6	15.5	1S	1.4	8.7 ³⁾	1.4	8.7 ³⁾					
0K	1.0	5.0	1.0	5.0	2S	1.3	10.5 ³⁾	1.3	10.5 ³⁾					
1K	1.3	8.5 ³⁾	1.3	8.5 ³⁾	3S	2.6	13.0 ³⁾	2.6	13.0 ³⁾					
2K	1.3	10.5 ³⁾	1.3	10.5 ³⁾	4S	4.1	22.0 ³⁾	4.1	13.0					
ЗK	2.6	15.0 ³⁾	2.6	15.0 ³⁾	5S	6.1	30.0	-	-					
4K	4.6	23.5 ³⁾	4.6	15.0	6S	11.1	30.0	-	-					

5K

9.6

23.5

Note:
1) for multipole only.
2) for unipole only.
3) for these series the maximum cable diameter require models with oversized cable collet (type K).

B SERIES

 \square

K SERIES (watertight)

T SERIES (watertight)

B Series

- B series connectors provide the following main features: security of the Push-Pull self-latching system
- solder, crimp or print contacts (straight or elbow)
- multiple key options to avoid cross mating of similar connectors
- 360° screening for full EMC shielding.

- multipole types 2 to 64 contacts
- high packing density for space savings keying system («G» key standard) for connector alignment _ _

Part Numbering System

FGG.1B.306.CLAD62 = straight plug with key (G) and cable collet, 1B series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, male solder contacts, D type collet for 6.0 mm diameter cable.

PHG.1B.306.CLLD62Z = free socket with key (G) and cable collet, 1B series, multipole type with 6 contacts, outer shell in chromeplated brass, PEEK insulator, female solder contacts, D type collet for 6.0 mm diameter cable and nut for fitting a bend relief.

EGG.1B.306.CYM = fixed socket, nut fixing, with key (G), 1B series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK extended insulator, female crimp contacts.

RJG.1B.306.CLA = straight fixed coupler with keys (J) at the flange end and key (G) at the other end, 1B series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, male-female contacts.

Part Section Showing Internal Components

Technical Characteristics Mechanical and Climatical

Characteristics	Value	Standard				
Endurance ¹⁾	> 5000 cycles	IEC 60512-5 test 9a				
Humidity	up to 98	5% at 60° C				
Temperature range	- 55° C	C, + 250° C				
Resistance to vibrations	10-2000 Hz, 15g	IEC 60512-4 test 6d				
Shock resistance	100 g, 6 ms	IEC 60512-4 test 6c				
Salt spray corrosion test ²⁾	>1000h	IEC 60512-6 test 11f				
Protection index (mated)	IP 50	IEC 60529				
Climatical category	55/175/21	IEC 60068-1				

Metal housing models

Electrical

Chara	cteristics	Value	Standard
Shielding efficiency	at 10 MHz	>75 dB	IEC 60169-1-3
	at 1 GHz	> 40 dB	IEC 60169-1-3

Note:

the various tests have been carried out with FGG and EGG connector pairs, with chrome-plated brass shell and PEEK insulator. Detailed electrical characteristics, as well as materials and treatment are ¹⁾ see page 189, contact resistance after mating cycles. See page 182.
 ²⁾ for chrome plated product («C» material code).

Refer	rence	Dimensions (mm)									
Model	Series	А	L	Μ	S1	S2					
FGG	00 ¹⁾	6.4	28.5	20.5	5.5	5					
FGG	0B	9.5	36.0	26.0	8.0	7					
FGG	1B	12.0	43.0	32.0	10.0	9					
FGG	ХВ	13.0	44.0	33.5	11.0	10					
FGG	2B	15.0	50.0	38.0	13.0	12					
FGG	3B	18.0	58.0	43.0	15.0	14					
FGG	4B	25.0	75.0	57.0	21.0	20					
FGG	5B	35.0	103.0	78.0	31.0	30					

M1 Cable assembly (page 169)

Note: 1) the surface design of the 00 series is different.

FGG Straight plug, key (G) or keys (A...M), cable collet and nut for fitting a bend relief ²⁾

Refe	rence	Dimensions (mm)							
Model	Series	A L		M S1		S2			
FGG	00 1)	6.4	28.7	20.7	5.5	6			
FGG	0B	9.5	35.0	25.0	8.0	7			
FGG	1B	12.0	42.0	31.0	10.0	9			
FGG	ХВ	13.0	47.5	37.0	11.0	10			
FGG	2B	15.0	49.0	37.0	13.0	12			
FGG	3B	18.0	56.5	41.5	15.0	15			
FGG	4B	25.0	71.0	53.0	21.0	20			

M1 Cable assembly (page 169)

Note: 1) the surface design of the 00 series is different.

Note: 2) to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see page 145).

JGG Straight plug, short version, key (G), cable collet

Refe	rence		Dimensions (mm)			
Model	Series	А	L	М	S1	S2
JGG	0B	9.5	32	22	8	7

M4 Cable assembly (page 171)

FFG Straight plug, non-latching, key (G) or keys (A...M), cable collet

Refer	rence		Dimensions (mm)							
Model	Series	А	L	М	S1	S2				
FFG	0B	9.5	36	26	8	7				
FFG	1B	12.0	43	32	10	9				
FFG	2B	15.0	50	38	13	12				
FFG	3B	18.0	58	43	15	14				
FFG	4B	25.0	75	57	21	20				

M1 Cable assembly (page 169)

FNG Straight plug, key (G) or keys (A...M and R), cable collet and lanyard release

Refer	rence			Dimer	nsions	(mm)		
Model	Series	А	В	L	М	Ν	S1	S2
FNG	0B	9.5	15.5	36.0	26.0	140	8	7
FNG	1B	12.0	18.0	43.0	32.0	140	10	9
FNG	2B	15.0	21.0	49.0	37.0	160	13	12
FNG	3B	18.0	25.0	58.0	43.0	190	15	14
FNG	4B	25.0	32.0	75.0	57.0	230	21	20
FNG	5 B	35.0	42.0	103.0	78.0	300	31	30

M1 Cable assembly (page 169)

Note: cable material: stainless steel with Polyamide sheath.

FEG Straight plug, key (G) or keys (A...L), cable collet, front seal and nut for fitting a bend relief ¹) (IP 54 protection index when mated)

Refer	rence		Dime	nsions	(mm)	
Model	Series	А	L	М	S1	S2
FEG	0B	11.0	35.0	25.0	8	7
FEG	1B	13.5	42.0	33.0	10	9
FEG	2B	16.5	48.0	36.0	13	12
FEG	3B	19.0	56.5	41.5	15	15

M1 Cable assembly (page 169)

Note: $^{1)}$ to order, add a ${\rm \ll} Z^{\rm >}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

FDG Straight plug, long version, key (G) or keys (A...L), cable collet

Refe	rence		Dime	nsions	(mm)	
Model	Series	А	L	М	S1	S2
FDG	1B	12	68	57	10	9
FDG	2B	15	79	67	13	12

M2 Cable assembly (page 171)

Contraction of the state of the

FWG Fixed plug, nut fixing, key (G) or keys (A...L)

Reference			Dimensions (mm)							
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3
FWG	0B	14.0	12.4	M9x0.6	1.8	22.5	14.5	19.5	8.2	11
FWG	1B	18.0	15.8	M12x1.0	2.9	24.9	17.0	24.8	10.5	14
FWG	2B	19.5	19.2	M15x1.0	4.1	28.6	18.0	27.3	13.5	17
FWG	3B	25.0	25.0	M18x1.0	4.2	32.1	23.0	31.5	16.5	22

P9 Panel cut-out (page 157)

Note: 1) maximum length with crimp contacts

FAG Fixed plug, non-latching, nut fixing, key (G) or keys (A...M and R)

Refe	rence			Din	nensi	ons (r	nm)			
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3
FAG	00	8	10.2	M7x0.5	2.9	18.1	9.0	15.0	6.3	9
FAG	0B	10	12.4	M9x0.6	4.2	20.8	11.5	18.9	8.2	11
FAG	1B	14	15.8	M12x1.0	5.4	25.2	12.5	21.6	10.5	14
FAG	2B	18	19.2	M15x1.0	6.0	28.7	13.8	23.9	13.5	17
FAG	3B	22	25.0	M18x1.0	5.8	32.1	17.0	30.2	16.5	22
FAG	4B	29	34.0	M25x1.0	6.8	37.1	20.5	34.7	23.5	30
FAG	5 B	40	40.0	M35x1.0	6.8	47.1	28.0	42.8	33.5	-

P1 Panel cut-out (page 157)

 $\ensuremath{\text{Note:}}$ The 5B series is delivered without locking washer or tapered washer and with a round nut.

Note: $^{\mbox{1})}$ maximum length with crimp contacts.

FPG Elbow (90°) plug, key (G) or keys (A...M and R), cable collet

Refe	rence		Dimensions (mm)						
Model	Series	А	Н	L	М	S1	S2	S3	
FPG	00	7.5	18	24.5	16.5	6.5	5	5.3	
FPG	0B	9.5	23	30.0	20.0	8.0	7	8.0	
FPG	1B	12.0	29	36.0	25.0	11.0	9	10.0	
FPG	2B	15.0	35	41.5	29.5	13.5	12	13.0	

M3 Cable assembly (page 169)

FHG Elbow (90°) plug, key (G) or keys (A...M and R), cable collet

Refer	rence		Dimensions (mm)						
Model	Series	Α	D	Н	L	М	S1	S2	S3
FHG	3B	19	10	37	50	35	17	14	15
FHG	4B	26	15	52	67	49	22	20	21
FHG	5B	36	21	74	90	65	32	30	31

M3 Cable assembly (page 169)

FSG Anglissimo right angle plug, key (G) or keys (A...M), cable collet

Refe	rence		Dimensions (mm)							
Model	Series	А	Н	L	М	S1	S2			
FSG	00	8.0	18.1	24.8	16.8	5	7			
FSG	0B	10.0	22.4	30.3	20.3	7	9			
FSG	1B	12.0	26.4	36.5	25.5	9	11			
FSG	2B	16.5	34.5	44.0	32.0	12	15			

M5 Cable assembly (page 170)

EGG Fixed socket, nut fixing, key (G) or keys (A...M and R)

Refer	rence			Dir	nensi	ons (r	nm)			
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3
EGG	00	8	10.2	M7x0.5	6.0	15.5	1.0	13.7	6.3	9
EGG	0B	10	12.4	M9x0.6	7.0	20.7	1.2	19.1	8.2	11
EGG	1B	14	15.8	M12x1.0	7.5	23.0	1.5	21.1	10.5	14
EGG	ХВ	16	19.0	M14x1.0	7.0	23.5	1.5	20.0	12.5	17
EGG	2B ²⁾	18	19.2	M15x1.0	8.5	26.7	1.8	24.6	13.5	17
EGG	3B	22	25.0	M18x1.0	11.5	30.7	2.0	28.1	16.5	22
EGG	4B	28	34.0	M25x1.0	12.0	35.7	2.5	34.1	23.5	30
EGG	5 B	40	40.0	M35x1.0	11.0	43.5	3.0	39.6	33.5	-

P1 Panel cut-out (page 157)

Note: The 5B series is delivered with a tapered washer and a round nut. **Note:** ¹⁾ maximum length with crimp contacts. ²⁾ EGG.2B.304.CLL and EGG.2B.307.CLL are UL 508A under file E119802.

ENG Fixed socket with earthing tag, nut fixing, key (G) or keys (A...M)

Refer	rence	Dimensions (mm)										
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3		
ENG	00	8	10.2	M7x0.5	6.0	15.5	1.0	13.7	6.3	9		
ENG	0B	10	12.4	M9x0.6	7.0	20.7	1.2	19.1	8.2	11		
ENG	1B ²⁾	14	15.8	M12x1.0	7.5	23.0	1.5	21.1	10.5	14		
ENG	2B	18	19.2	M15x1.0	8.5	26.7	1.8	24.6	13.5	17		
ENG	3B	22	25.0	M18x1.0	11.5	30.7	2.0	28.1	16.5	22		
ENG	4B	28	34.0	M25x1.0	12.0	35.7	2.5	34.1	23.5	30		

P1 Panel cut-out (page 157)

Note:

maximum length with crimp contacts.
 for the 1B series the earthing tag is on the same side of the key.

EHG Fixed socket, nut fixing, key (G) or keys (A...M and R), and protruding shell

Refe	rence	Dimensions (mm)									
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3	
EHG	00	8	10.2	M7x0.5	2.0	15.5	8.5	13.7	6.3	9	
EHG	0B	10	12.4	M9x0.6	2.0	19.5	12.5	19.1	8.2	11	
EHG	1B	14	15.8	M12x1.0	4.0	21.7	12.0	21.1	10.5	14	
EHG	2B	18	19.2	M15x1.0	5.1	22.7	12.5	24.6	13.5	17	
EHG	3B	22	25.0	M18x1.0	7.1	30.7	13.5	30.3	16.5	22	
EHG	5B	40	40.0	M35x1.0	2.5	43.5	28.0	38.5	33.5	-	

P1 Panel cut-out (page 157)

Note: The 5B series is delivered without locking washer or tapered washer and with a round nut.

Note: 1) maximum length with crimp contacts.

EEG Fixed socket, nut fixing, key (G) or keys (A...M and R) (back panel mounting)

Reference			Dimensions (mm)										
Model	Series	А	В	е	Е	L	М	N ¹⁾	Р	S1	S2		
EEG	00	10	9.5	M7x0.5	2.3	15.5	2.5	13.7	6.0	6.3	7.5		
EEG	0B	12	12.5	M9x0.6	2.4	20.7	2.5	19.1	6.3	8.2	9.0		
EEG	1B	16	16.0	M12x1.0	6.5	23.0	3.5	21.1	11.0	10.5	13.0		
EEG	2B	20	20.0	M15x1.0	4.3	26.7	3.5	24.6	9.0	13.5	15.0		
EEG	3B	24	25.0	M18x1.0	6.1	30.7	4.5	28.1	12.0	16.5	20.0		
EEG	4B	30	32.1	M25x1.0	10.6	35.7	4.5	34.1	16.5	23.5	26.0		
EEG	5 B	41	40.0	M35x1.0	13.5	43.5	5.0	39.6	19.5	33.5	38.0		

P1 Panel cut-out (page 157)

Note: The 3B, 4B and 5B series are delivered with a conical nut. The 5B series is delivered without locking washer or tapered washer.

Note: 1) maximum length with crimp contacts.

EFG Fixed socket, nut fixing, key (G) or keys (A...M), with two flats on the shell and O-ring (back panel mounting)

Refe	rence		Dimensions (mm)							
Model	Series	А	A B e E L M N ¹⁾ P						Ρ	S2
EFG	0B	12	12.5	M9x0.6	5.5	20.7	2.5	19.1	9	8

P2 Panel cut-out (page 157)

Note: 1) maximum length with crimp contacts.

ECG Fixed socket with two nuts, key (G) or keys (A...M and R) (back panel mounting)

Refe	rence	Dimensions (mm)									
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3	
ECG	00	10	10.2	M7x0.5	4.3	13.7	2.5	13.7	6.3	9	
ECG	0B	12	12.4	M9x0.6	5.5	20.7	2.5	19.1	8.2	11	
ECG	1B	16	15.8	M12x1.0	6.0	23.0	3.5	21.1	10.5	14	
ECG	XB	18	19.0	M14x1.0	6.0	23.5	3.5	20.0	12.5	17	
ECG	2B	20	19.2	M15x1.0	6.5	26.7	3.5	24.6	13.5	17	
ECG	3B	24	25.0	M18x1.0	9.0	30.7	4.5	28.1	16.5	22	
ECG	4B	30	34.0	M25x1.0	10.0	35.7	4.5	32.6	23.5	30	
ECG	5 B	41	40.0	M35x1.0	9.0	43.5	5.0	39.6	33.5	-	

P1 Panel cut-out (page 157)

Note: The 3B, 4B and 5B series are delivered with a conical nut. The 5B series is delivered with a tapered washer and a round nut. **Note:** ¹⁾ maximum length with crimp contacts.

ECG Fixed socket with two nuts, key (G) or keys (A...F and R) and straight contact for printed circuit (back panel mounting)

Refe	rence	Dimensions (mm)										
Model	Series	А	В	е	Е	М	Ν	S1	S3			
ECG	00	10	10.2	M7x0.5	4.3	2.5	13.7	6.3	9			
ECG	0B	12	12.4	M9x0.6	5.5	2.5	16.1	8.2	11			
ECG	1B	16	15.8	M12x1.0	6.0	3.5	19.8	10.5	14			
ECG	XB	18	19.0	M14x1.0	6.0	3.5	20.0	12.5	17			
ECG	2B	20	19.2	M15x1.0	6.5	3.5	21.8	13.5	17			
ECG	3B	24	25.0	M18x1.0	9.0	4.5	25.8	16.5	22			
ECG	4B	30	34.0	M25x1.0	10.0	4.5	29.8	23.5	30			
ECG	5 B	41	40.0	M35x1.0	9.0	5.0	36.8	33.5	-			

P1 Panel cut-out (page 157)

P15 PCB drilling pattern (page 160)

Note: The 3B, 4B and 5B series are delivered with a conical nut. The 5B series is delivered with a tapered washer and a round nut.

Note: This contact type is available for Eee socket models fitted with female contacts. Length «L» depends on the number of contacts, see table on page 163.

ECG Fixed socket with two nuts, key (G) or keys (A...F) with elbow (90°) contact for printed circuit (back panel mounting)

Refer	rence	Dimensions (mm)									
Model	Series	А	В	е	Е	М	N max	S1	S3		
ECG	0B	12	12.4	M9x0.6	5.5	2.5	18.3	8.2	11		
ECG	1B	16	15.8	M12x1.0	6.0	3.5	20.3	10.5	14		
ECG	2B	20	19.2	M15x1.0	6.5	3.5	22.3	13.5	17		
ECG	3B	24	25.0	M18x1.0	9.0	4.5	27.8	16.5	22		

P1 Panel cut-out (page 157)

P17 PCB drilling pattern (page 164)

Note: The 3B series is delivered with a conical nut.

Note: this female contact type is available for all back panel mounting socket models.

Length «L» depends on the number of contacts, see PCB drilling pattern on page 164. For male contacts, sockets are available upon request, with J, K or L keys.

EZG Straight socket for printed circuit, key (G) or keys (A, B)

	Refe	rence		Dimensions (mm)						
Ν	Model Series		А	В	Н	К	Ν			
E	EZG	00	6.8	7	5.08	7	14			

P15 + P16 PCB drilling pattern (pages 160 and 163)

EZG Straight socket for printed circuit, key (G) or keys (A...F)

Refer	rence	Dimensions (mm)							
Model	Series	Α	A B H K						
EZG	0B	9	10	7.62	8	15.0			
EZG	1B	11	12	7.62	8	19.0			
EZG	2B	14	15	10.16	9	22.5			

P15 + P16 PCB drilling pattern (pages 160 and 163)

Note: Length «L» depends on the number of contacts, see page 163. Add letter «B» at the end of the reference to order with integrated harpoon pins (1.6 mm PCB thickness) (only for 0B and 1B series).

EYG Fixed socket for printed circuit, nut fixing, key (G) or keys (A...F) (back panel mounting)

Refer	ence	Dimensions (mm)									
Model	Series	А	A B C D e					М	Ν	Ρ	S1
EYG	0B	12	10	12.5	7.62	M9x0.6	2.6	2.5	15.0	6.0	8.2
EYG	1B	14	12	16.0	7.62	M11x0.5	5.0	3.5	19.0	10.0	-
EYG	2B	20	15	19.5	10.16	M15x1.0	7.5	3.5	22.5	13.5	13.5

P1 Panel cut-out 0B and 2B series (page 157)

P10 Panel cut-out 1B series (page 157)

P15 + **P16** PCB drilling pattern (pages 160 and 163)

Note: Length «L» depends on the number of contacts, see page 163. Add letter «B» at the end of the reference to order with integrated harpoon pins (1.6 mm PCB thickness) (only for 0B and 1B series).

PHG Free socket, key (G) or keys (A...M and R), cable collet

Refer	rence	Dimensions (mm)						
Model	Series	А	L	S1	S2			
PHG	00 ¹⁾	6.8	26.0	5.5	5			
PHG	0B	9.5	35.5	8.0	7			
PHG	1B	12.5	40.5	10.0	9			
PHG	ХВ	13.0	46.0	11.0	10			
PHG	2B	16.5	47.0	13.0	12			
PHG	3B	19.0	56.0	15.0	14			
PHG	4B	26.0	73.0	21.0	20			
PHG	5B	36.0	99.0	31.0	30			

M1 Cable assembly (page 169)

Note: ¹⁾ the surface design of the 00 series is different.

PHG Free socket, key (G) or keys (A...M), cable collet and nut for fitting a bend relief ²)

PHG 00 ¹) 6.8 34.0 5.5 PHG 0B 9.5 34.5 8.0 PHG 1B 12.5 39.5 10.0	
PHG OB 9.5 34.5 8.0 PHG 1B 12.5 39.5 10.0	S2
PHG 1B 12.5 39.5 10.0	6
	7
	9
PHG XB 13.0 49.5 11.0	10
PHG 2B 16.5 46.0 13.0	12
PHG 3B 19.0 54.5 15.0	15
PHG 4B 26.0 69.0 21.0	20

M1 Cable assembly (page 169)

Note: $^{\mbox{1})}$ the surface design of the 00 series is different.

Note: $^{2)}$ to order, add a $^{\rm w}Z^{\rm w}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

Refe	rence	Dimensions (mm)							
Model	Series	А	A B L			S1	S2		
PNG	1B	12.4	18.4	40.5	140	10	9		
PNG	2B	16.5	22.5	47.0	160	13	12		
PNG	3B	19.0	26.0	56.0	190	15	14		
PNG	4B	26.0	33.0	73.0	230	21	20		
PNG	5 B	36.0	43.0	99.0	300	31	30		

M1 Cable assembly (page 169)

Note: cable material: stainless steel with Polyamide sheath.

PKG Fixed socket, nut fixing, key (G) or keys (A...M and R), cable collet

Refer	ence		Dimensions (mm)							
Model	Series	А	В	е	Е	L	М	S1	S2	S3
PKG	00	8	10.2	M7x0.5	6.5	26.0	1.0	6.3	5	9
PKG	0B	10	12.4	M9x0.6	7.0	35.5	1.2	8.2	7	11
PKG	1B	14	15.8	M12x1.0	7.5	40.5	1.5	10.5	9	14
PKG	2B	18	19.2	M15x1.0	8.5	47.0	1.8	13.5	12	17
PKG	3B	22	25.0	M18x1.0	11.5	56.0	2.0	16.5	14	22
PKG	4B	28	34.0	M25x1.0	12.0	73.0	2.5	23.5	20	30
PKG	5 B	40	40.0	M35x1.0	11.0	99.0	3.0	33.5	30	-

P1 Panel cut-out (page 157)

M1 Cable assembly (page 169)

Note: the 5B series is delivered with a tapered washer and a round nut.

PFG Fixed socket, with two nuts, key (G) or keys (A...M and R), cable collet (back panel mounting)

Refe	rence		Dimensions (mm)							
Model	Series	А	В	е	Е	L	М	S1	S2	S3
PFG	00	10	10.2	M7x0.5	5.3	26.0	2.5	6.3	5	9
PFG	0B	12	12.4	M9x0.6	5.0	35.5	2.5	8.2	7	11
PFG	1B	16	15.8	M12x1.0	5.0	40.5	3.5	10.5	9	14
PFG	2B	20	19.2	M15x1.0	6.5	47.0	3.5	13.5	12	17
PFG	3B	24	25.0	M18x1.0	9.0	56.0	4.5	16.5	14	22
PFG	4B	30	34.0	M25x1.0	11.0	73.0	4.5	23.5	20	30
PFG	5B	41	40.0	M35x1.0	10.0	99.0	5.0	33.5	30	_

P1 Panel cut-out (page 157)

M1 Cable assembly (page 169)

Note: the 3B, 4B and 5B series are delivered with a conical nut. The 5B series is delivered with a tapered washer and a round nut.

PEG Fixed socket, nut fixing, key (G) or keys (A...L), cable collet (back panel mounting)

Refe	rence	Dimensions (mm)									
Model	Series	А	A B e E L M P S1 S2 S						S4		
PEG	3B	24	25	M18x1.0	5.0	56	4.5	12	16.5	14	20
PEG	4B	32	34	M25x1.0	12.5	73	5.0	20	23.5	20	27

P1 Panel cut-out (page 157)

M1 Cable assembly (page 169)

Note: the 4B series has an o-ring on the flange.

Fixed coupler, nut fixing, key (G) or keys (A and J) at the flange end and keys (J, K or M) at the other end **R**••

Alignment key see page 36.

Refe	rence	Contacts			Dime	nsion	s (mm	ו)		
Model	Series	Туре	А	В	е	Е	L	М	S1	S3
RGG ¹⁾	0B	female – female	12	13.8	M10x0.75	8.0	34	2.0	9.0	12
RGG ²⁾	0B	female – female	12	13.8	M10x0.75	8.0	43	2.0	9.0	12
RJG	0B	male – female	12	13.8	M10x0.75	8.0	34	2.0	9.0	12
RGJ	0B	female – male	12	13.8	M10x0.75	8.0	34	2.0	9.0	12
RAK	0B	female – male	12	13.8	M10x0.75	8.0	34	2.0	9.0	12
RGM	0B	female – male	12	13.8	M10x0.75	8.0	34	2.0	9.0	12
RGG ³⁾	1B	female – female	16	19.2	M14x1.00	8.5	47	2.5	12.5	17
RJG	1B	male – female	16	19.2	M14x1.00	8.5	39	2.5	12.5	17
RGJ	1B	female – male	16	19.2	M14x1.00	8.5	39	2.5	12.5	17
RJG	2B	male – female	20	21.5	M16x1.00	12.0	44	4.0	15.0	19
RGJ	2B	female – male	20	21.5	M16x1.00	12.0	44	4.0	15.0	19
RGJ	3B	female – male	25	27.0	M20x1.00	32.0	53	4.0	18.5	24
RGJ	4B	female – male	34	34.0	M25x1.00	50.0	65	4.0	23.5	30

P4 Panel cut-out (page 157)

Note: ¹⁾ only available with two contacts. ²⁾ RGG.0B only available from 3 till 5 contacts. ³⁾ RGG.1B only available till 7 contacts.

For this fixed coupler, the first contact type mentioned is always the one at the flange end. On request, these couplers can be produced in other series, with other keys.

Technical Characteristics

Types

Note:

numbering sequence shown is for female contacts (G keying), for inverted contacts please contact factory.

Elbow socket models

Materials and Treatment

Component	Material	Surface Treat. (µm)			
		Cu	Ni	Au	
Housing	PPS	-			
nousing	Brass	0.5	3	-	
Metallic parts	Brass	0.5	3	-	
Earthing crown	Bronze	0.5	3	-	
Insulator	PEEK		-		
Female contact	Bronze	0.5	3	1.5	

Note:

The surface treatment standards are as follows:
 Nickel: SAE AMS QQ N 290. – Gold: ISO 27874

Electrical

Model	Series	Types	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ¹⁾ Contact-shell	Rated current (A) ¹⁾
EPG-XBG	00	302-303-304-305	1.00	1.00	2.0
EPG-EXG	0B	302	1.45	1.20	4.5
EPG-EXG	0B	303	1.70	1.60	4.5
EPG-EXG	0B	304	1.30	1.10	4.5
EPG-EXG	0B	305	1.25	1.20	4.5
EPG-EXG	0B	306	1.25	1.20	2.5
EPG-EXG	0B	307	1.00	1.00	2.0
EPG-EXG	0B	309	0.60	0.50	1.5
EPG-EXG	1B	302	1.70	1.45	4.5
EPG-EXG	1B	303	1.60	1.85	4.5
EPG-EXG	1B	304	1.70	1.80	4.5
EPG-EXG	1B	305	1.30	1.55	4.5
EPG-EXG	1B	306	1.35	1.45	4.5
EPG-EXG	1B	307	1.45	1.45	2.0
EPG-EXG	1B	308	1.30	1.30	2.0
EPG-EXG	1B	310	1.00	1.00	1.5
EPG	1B	314	1.00	1.30	1.0

Note:

¹⁾ see calculation method, caution and suggested standard on page 190.

P18 PCB drilling pattern (page 165)

P19 PCB drilling pattern (page 165)

LEMD

Elbow (90°) socket for printed circuit, key (G) or keys (A...F) (solder or screw fixing) **EPG**

Dort number	Dimensions (mm)									
Part number	Α	D	Н	Ι	K	L	Ν			
EPG.1B.314.NLN	11	21	7.7	14.3	19	36	15.4			

P20 PCB drilling pattern (page 165)

Note: to replace the 4 ground pins by 4 screws (M1.6) add an «S» to the end of the part number. (e.g.: EPG.1B.314.NLNS)

EPG Elbow (90°) socket for printed circuit, key (G) or keys (A...F) (solder, screw or harpoon fixing)

Part number			Di	mensio	ons (m	m)						
Part number	Α	D	Н	I	К	L	Ν	R				
EPG.00.302.HLN												
EPG.00.303.HLN	6.8	11.5	3.5	7.0	8.7	19	7.1	5.08				
EPG.00.304.HLN	0.0	11.5	5.5	7.0	0.7	19	7.1	5.08				
EPG.00.305.HLN												
EPG.0B.302.HLN												
EPG.0B.303.HLN												
EPG.0B.304.HLN							11.7	7.62				
EPG.0B.305.HLN	9.0	14.6	6.7	12.6	13.3	25						
EPG.0B.306.HLN												
EPG.0B.307.HLN												
EPG.0B.309.HLN												
EPG.1B.302.HLN												
EPG.1B.303.HLN												
EPG.1B.304.HLN												
EPG.1B.305.HLN	11.0	16.6	7.5	14.0	13.3	27	12.6	7.62				
EPG.1B.306.HLN	11.0	10.0	7.5	14.0	10.0	21	12.0	7.02				
EPG.1B.307.HLN												
EPG.1B.308.HLN												
EPG.1B.310.HLN												

Note: In the 0B and 1B series, it is possible to replace the 4 ground pins by 4 screws (M1.6) add an «S» to the end of the part number. (e.g.: EPG.0B.307.HLNS). A second alternative is to add an «B» at the end of the part number (EPG.0B.307.HLNB), the connector is delivered with integrated harpoon pins for rapidly assembly (1.6 mm PCB thickness).

P18 PCB drilling pattern 00 series (page 165)

P19 PCB drilling pattern 0B, 1B series (page 165)

- Elbow (90°) socket for printed circuit with two nuts, key (G) or keys (A...F) (solder, screw or harpoon fixing) **EXG** (back panel mounting)
- Elbow (90°) socket fixing nut for printed circuit, key (G) or keys (A, B) (back panel mounting) XBG

Note: In the 0B and 1B series, it is possible to replace the 4 ground pins by 4 screws (M1.6) add an «S» to the end of the part number. (e.g.: EXG.0B.307.HLNS). A second alternative is to add an «B» at the end of the part number (EXG.0B.307.HLNB), the connector is delivered with integrated harpoon pins for rapidly assembly (1.6 mm PCB thickness). thickness).

Destauration					Dim	ensi	ons (mm)					
Part number	A	В	D	е	Е	н	Ι	K	L	м	Ν	R	S3
XBG.00.302.HLN													
XBG.00.303.HLN	10	10.2 1 [.]	11.5	M7x0.5	2.1 3.5	5 7.0 8.7	19	19 2.5 7.	7.1	1 5.08	9		
XBG.00.304.HLN													
EXG.0B.302.HLN													
EXG.0B.303.HLN							6.7 12.6						
EXG.0B.304.HLN		12.4						13.3 25					
EXG.0B.305.HLN	12		14.6	M9x0.6	4.5	6.7			25	25 2.5	11.7	7.62	11
EXG.0B.306.HLN													
EXG.0B.307.HLN													
EXG.0B.309.HLN													
EXG.1B.302.HLN													
EXG.1B.303.HLN													
EXG.1B.304.HLN													
EXG.1B.305.HLN	14	15.0	16.6	M11x0.5	75	75	1/ 0	133	27	35	12.6	7 62	13
EXG.1B.306.HLN	14	15.0	10.0	111170.5	1.5	1.5	14.0	13.5	21	5.5	12.0	1.02	13
EXG.1B.307.HLN													
EXG.1B.308.HLN													
EXG.1B.310.HLN													
P2 Panel cut-out 00, 0B series (page 157)													

P10 Panel cut-out 1B series (page 157)

P18 PCB drilling pattern 00 series (page 165)

P19 PCB drilling pattern 0B, 1B series (page 165)

Plastic housing models

These connectors are particularly recommended for all applications requiring maximum electrical insulation when mated. The design, including a latch sleeve and a metal earthing crown, guarantees EMC screening efficiency to meet most requirements.

Technical Characteristics

Mechanical and Climatical

Characteristics		Value		Standard
Characteristics	PEEK	PSU	PPSU	Standard
Colour	natural (beige)	eige) white or grey cream		_
Endurance ¹⁾	> 5000 cycles	> 5000 cycles	> 5000 cycles	IEC 60512-5 test 9a
Humidity		up to 95% at 60° C		-
Temperature range	- 50° C/+ 250° C	- 50° C/+ 150° C	- 50° C/+ 180° C	-
Sterilization resistance ²⁾	> 200 cycles	~20 cycles	> 100 cycles	IEC 60601-1 § 44.7
Resistance to solvents	very good	limited	good	-

Note: 1) see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force. 2) Steam sterilization.

FGG Straight plug, key (G or J), cable collet, PEEK outer shell

Refe	rence	Dimensions (mm)					
Model	Series	А	L	М	S2		
FGG	0B	11.0	37.4	27.4	8		
FGG	1B	13.5	43.0	32.0	10		
FGG	3B	19.0	62.0	47.0	15		
FGG	4B	26.0	78.5	60.5	20		

M1 Cable assembly (page 169)

FGG Straight plug, key (G or J), cable collet, PEEK outer shell and nut for fitting a bend relief ¹⁾

Refe	rence	Di	mensio	ons (m	m)	Note on availability				
Model	Series	А	L	М	S2					
FGG	1B	13.5	42.2	31.2	10	for all collet type				
FGG	4B	26.0	83.2	65.2	20	only from collet M82 and up				

M1 Cable assembly (page 169)

Note: $^{1)}$ to order, add a ${\rm \, \ensuremath{\scriptscriptstyle x} Z^{,{\rm \tiny x}}}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

FGY Straight plug, keys (Y), cable collet and PSU or PPSU outer shell

FGY Straight plug, keys (Y), cable collet and PSU or PPSU outer shell and nut for fitting a bend relief ¹)

Refe	rence	Di	mensio	ons (m	m)	Noto on ovoilability				
Model	Series	А	L	Μ	S2	Note on availability				
FGY	2B	16.5	49.5	38.5	13	only for collet M42 and up				
FGY	3B	19.0	56.5	41.5	15	only for collet D62 and up				
FGY	4B	26.0	74.4	56.4	20	only for collet D82 and up				

M1 Cable assembly (page 169)

Note: $^{1)}$ to order, add a ${\rm \ll} Z^{\rm >}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

ENG Fixed socket with earthing tag, nut fixing, key (G or J), PEEK outer shell

F	Refer	rence		Dimensions (mm)										
Мо	del	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3			
EN	NG	0B	11	12.5	M9x0.6	6.4	20.7	1.8	16.5	8.2	11			
EN	IG	1B	14	15.8	M12x1.0	7.5	23.0	1.5	21.1	10.5	14			
EN	IG	3B	22	25.0	M18x1.0	11.5	30.7	2.0	28.1	16.5	22			
EN	NG	4B	28	34.0	M25x1.0	12.0	35.7	2.5	32.6	23.5	30			

P1 Panel cut-out (page 157)

Note: 1) maximum length with crimp contacts.

ENY Fixed socket with earthing tag, nut fixing, keys (Y), PSU or PPSU outer shell

	Refe	rence		Dimensions (mm)								
	Model	Series	Α	В	е	Е	L	М	N ¹⁾	S1	S3	
ĺ	ENY	2B	18	19.2	M15x1.0	8.5	26.7	1.8	24.6	13.5	17	
	ENY	3B	22	25.0	M18x1.0	11.5	30.7	2.0	28.1	16.5	22	
	ENY	4B	28	34.0	M25x1.0	12.0	35.7	2.5	32.6	23.5	30	

P1 Panel cut-out (page 157)

Note: 1) maximum length with crimp contacts.

Other models with plastic outer shell are available on request.

These plug, socket and coupler models allow the device on which they are fitted to reach a protection index of IP68 as per IEC 60529. They are fully compatible with plugs of the same series and are widely used for portable radios, military, laboratory equipment, aviation, etc.

These models are identified by a letter «P» at the end of the reference.

Most of these models are also available in a vacuumtight version. Such models are identified by an additional letter «V» at the end of the part number (certificate on request).

Epoxy resin is used to seal these models.

Technical Characteristics

Mechanical and Climatical

Characteristi	cs	Value	Standard	Characteristic	S	Value	Standard
Endurance ¹⁾		> 5000 cycles	IEC 60512-5 test 9a		00	60 bar	IEC 60512-7 test 14d
Humidity		up to 9	5% at 60° C		0B	60 bar	IEC 60512-7 test 14d
	00 to 1B	- 20° (C/+ 100° C		1B	60 bar	IEC 60512-7 test 14d
Temperature range	2B to 5B	- 20°	C/+ 80° C	Maximum operating pressure ³⁾	2B	40 bar	IEC 60512-7 test 14d
Salt spray corrosion	test ⁴⁾	>1000h	IEC 60512-6 test 11f		3B	30 bar	IEC 60512-7 test 14d
Climatical category		20/80/21	IEC 60068-1		4B	15 bar	IEC 60512-7 test 14d
Leakage rate (He) ²⁾		< 10 ⁻⁷ mbar.l.s ⁻¹	IEC 60512-7 test 14b		5B	5 bar	IEC 60512-7 test 14d

Note: ¹) see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force. ²) only for vacuumtight models. Residual traces of grease used during (He) leak testing are on the o-ring. Please contact us for further details. ³) this value corresponds to the maximum allowed pressure difference for the assembled socket. ⁴) for chrome plated product («C» material code).

YHG Fixed plug, nut fixing, non-latching, key (G) or keys (A...M)

Refe	rence		Dimensions (mm)									
Model	Series	А	В	е	Е	L	М	S1	S3			
YHG	0B	13	12.4	M9x0.6	2.4	24.1	14.2	8.2	11			
YHG	1B	16	15.8	M12x1.0	3.9	28.0	16.2	10.5	14			
YHG	2B	19	19.2	M15x1.0	5.5	33.1	17.8	13.5	17			
YHG	3B	22	25.0	M18x1.0	5.1	38.2	22.2	16.5	22			

P9 Panel cut-out (page 157)

Note: this model does not include an O-ring behind the flange, it ensures only IP61 protection index. Consequently, it is not vacuumtight. Water-tightness (when mated) is only ensured with HHG and HCG sockets.

HGG Fixed socket, nut fixing, key (G) or keys (A...M and R), watertight or vacuumtight

HNG Fixed socket, nut fixing, with earthing tag, key (G) or keys (A...M), watertight or vacuumtight

ſ	Refe	rence			Dime	nsion	s (mm)		
	Model	Series	А	В	е	Е	L	Μ	S1	S3
	HNG	0B	13	12.4	M9x0.6	7	21.5	3	8.2	11

P9 Panel cut-out (page 157)

HHG Fixed socket, nut fixing, key (G) or keys (A...M), watertight or vacuumtight (watertight when mated)

Refe	rence			Dime	nsion	s (mm)		
Model	Series	A B		е	Е	L	Μ	S1	S3
HHG	0B	13	12.4	M9x0.6	7.0	24.5	4.8	8.2	11
HHG	1B	18	15.8	M12x1.0	7.0	30.3	5.2	10.5	14
HHG	2B	22	19.2	M15x1.0	8.0	35.6	6.0	13.5	17
HHG	3B	25	25.0	M18x1.0	11.5	41.3	7.2	16.5	22

P9 Panel cut-out (page 157)

 $\ensuremath{\text{Note:}}$ this model ensures watertightness (IP66) in the mating area when mated with FGG or similar plug.

HCG Fixed socket, nut fixing, key (G) or keys (A...M), watertight or vacuumtight (watertight when mated) (back panel mounting)

Refer	rence				Dimensions (mm)							
Model	Series	А	В	С	е	e1	Е	F	L	М	Ρ	S1
HCG	0B	18	18	12.0	M14x1.0	M9x0.6	3.9	1.0	24.5	3.5	7.5	12.5
HCG	1B	20	20	14.5	M16x1.0	M12x1.0	6.2	2.0	30.3	3.5	10.0	14.5
HCG	2B	24	24	17.5	M19x1.0	M14x1.0	6.7	1.5	35.6	3.5	11.3	17.0

P3 Panel cut-out (page 157)

Note: this model ensures watertightness (IP66) in the mating area when mated with FGG or similar plug.

Refe	rence			Din	nensi	ons (n	וm)			
Model	Series	Α	В	е	Е	L	М	Р	S1	S2
HEG	00	10	11	M7x0.5	2.5	18.2	2.5	6.0	6.3	-
HEG	0B	12	13	M9x0.6	5.5	21.5	2.5	9.0	8.2	-
HEG	1B	16	18	M12x1.0	6.5	26.6	3.5	11.0	10.5	-
HEG	2B	20	20	M15x1.0	5.0	31.6	3.5	9.6	13.5	15

P9 Panel cut-out (page 157)

HMG Fixed socket with earthing tag, nut fixing, key (G) or keys (A...M), watertight or vacuumtight (back panel mounting)

Refer	rence	Dimensions (mm)										
Model	Series	A B		е	Е	L	М	Р	S1			
HMG	00	10	11	M7x0.5	2.5	18.0	2.5	6.0	6.3			
HMG	00 10 0B 12		13	M9x0.6	5.5	21.5	2.5	9.0	8.2			
HMG	1B	16	18	M12x1.0	5.5	26.6	3.5	11.0	10.5			
HMG	2B ¹⁾	20	20	M15x1.0	5.5	31.6	3.5	9.6	13.5			
HMG	3B	24	25	M18x1.0	7.5	36.1	4.5	14.0	16.5			

P9 Panel cut-out (page 157)

Note: 1) the surface design of the 2B series is different.

Note: The 3B series is delivered with a conical nut and without washer.

Soo Fixed coupler, nut fixing, key (G) or keys (A, B, J, K and L) at the flange end and key (G) or keys (A, B, J, K and L) at the other end, watertight or vacuumtight

Alignment key see page 36.

Refe	rence	Contacts			Dime	nsion	s (mm	ו)		
Model	Series	Туре	А	В	е	Е	L	M	S1	S3
SGJ	0B	female – male	14	13.8	M10x0.75	17	34	2.0	9.0	12
SJG	0B	male – female	14	13.8	M10x0.75	17	34	2.0	9.0	12
SGJ	1B	female – male	17	15.8	M12x1.00	28	39	2.5	10.5	14
SJG	1B	male – female	17	15.8	M12x1.00	28	39	2.5	10.5	14
SGJ	2B	female – male	20	21.5	M16x1.00	25	44	4.0	15.0	19
SJG	2B	male – female	20	21.5	M16x1.00	25	44	4.0	15.0	19
SGJ	3B	female – male	25	27.0	M20x1.00	30	53	4.0	18.5	24
SJG	3B	male – female	25	27.0	M20x1.00	30	53	4.0	18.5	24
SAK	3B	female – male	25	27.0	M20x1.00	30	53	4.0	18.5	24
SBL	3B	female – male	25	27.0	M20x1.00	30	53	4.0	18.5	24
SAK	4B	female – male	34	34.0	M25x1.00	50	65	4.0	23.5	30
SBL	4B	female – male	34	34.0	M25x1.00	50	65	4.0	23.5	30
SGJ	4B	female – male	34	34.0	M25x1.00	50	65	4.0	23.5	30
SJG	4B	male – female	34	34.0	M25x1.00	50	65	4.0	23.5	30
SGJ	5 B	female – male	45	40.0	M35x1.00	58	80	5.0	33.5	-
SJG	5B	male – female	45	40.0	M35x1.00	58	80	5.0	33.5	-
SKA	5B	male – female	45	40.0	M35x1.00	58	80	5.0	33.5	-
SLB	5B	male – female	45	40.0	M35x1.00	58	80	5.0	33.5	-
SAK	5 B	female – male	45	40.0	M35x1.00	58	80	5.0	33.5	-
SBL	5B	female – male	45	40.0	M35x1.00	58	80	5.0	33.5	-

P4 Panel cut-out (page 157)

P9 Panel cut-out 1B series (page 157)

Note: The 5B series is delivered with a round nut.

Note: for this fixed coupler, the first contact type mentioned is always the one at the flange end. On request these couplers can be produced in other series, with other keys.

Technical Characteristics

Mechanical and Climatical

Characteristics	Value	Standard		
Endurance ¹⁾	>1000 cycles	IEC 60512-5 test 9a		
Working temperature	maximum 90° C			

Note: 1) see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force.

Materials and Treatment

Component	Material	Surface treat. (µm)			
Component	Ivialenai	Cu	Ni	Cr	Au
Plastic housing	Polyamide	-			
Metallic parts	Brass	0.5	3	-	-
	Brass	0.5	3	0.3	_
Insulator	PEEK	-			
Male contact	Brass	0.5	3	_	1.0
Female contact	Bronze	0.5	3	-	1.5

Note: the surface treatment standards are as follows: – Nickel: SAE AMS QQ N 290, chrome: SAE AMS 2460, gold: ISO 27874

Note: the last letter of the part number indicates the colour of the housing. Ex. G (standard) is grey. To obtain another colour, replace this letter by the letter corresponding to the selected colour (see table on page 72).

Bridge models

Electrical

[7				
Characteristics	,	Value		Standard		
Contact resistance	< 6 m	Ω	IE	IEC 60512-2 test 2a		
						1
Part number	Series	Audio-Mono	Audio-Stereo	Test voltage (kV rms) ^{1) 2)}	Rated current (A)	
CFF.0B.302.PLCG	0B		-	1.0	5 4	
CRG.0B.302.PLEG	0B	•	-	1.0	5 4	
CFF.0B.303.PLCG	0B	•	-	0.80) 4	
CRG.0B.303.PLEG	0B	•	-	0.80	2 4	
CRG.0B.306.PLEG	0B	-	•	0.40) 2	
CFF.1B.303.PLCG	1B	•	-	1.28	5 5	
CRG.1B.303.PLEG	1B	•	-	1.2	5 5	
CFF.1B.306.PLCG	1B	-	•	0.80) 3	
CRG.1B.306.PLEG	1B	-		0.80) 3	

Note:

a) see calculation method, caution and suggested standard on page 190.
 a) lowest measured value; contact to contact or contact to shell.

Bridge plug with two non-latching plugs CFF

CRG Bridge plug with two non-latching plugs, and monitoring socket, key (G) or keys (A...M)

Model	Series	Dimensions (mm)					
woder		Α	В	Н	L	М	Ν
CFF-CRG	0B	13.5	14	27.5	37.2	27.2	22.5
CFF-CRG	1B	15.0	20	35.0	42.0	31.0	22.0

Note: in order to provide the user with a coding system, the bridge plug housing, the double panel washers and the bend reliefs are available in nine colours.

Threaded-latching models

FVG Straight plug, key (G) or keys (B), cable collet

Refe	rence		Dime	nsions	(mm)				
Model	Series	А	A L M S1 S2						
FVG	00	9	28.5	24	5	8			

Note: to be ordered with nut for fitting a bend relief to obtain the rating IP 64.

ESG Fixed socket with two round nuts, key (G) or keys (B), long threaded shell (back panel mounting)

FVB Straight plug, keys (B), short shell for special cable crimping and for fitting a bend relief

Refe	rence	Dime	nsions	(mm)
Model	Series	А	L	М
FVB	00	9	20	15.4

Note: part number for microphone applications: FVB.00.303.NLAE24. After assembly the special bend relief GMF.00.018.D• (to be ordered separately) is to be fitted.

XRB Elbow (90°) socket for printed circuit, keys (B), short shell with one nut, screw fixing (back panel mounting)

Refe	rence	Dimensions (mm)						
Model	Series	А	е	Ι	L	М	Ρ	
XRB	00	10	M7x0.5	7	14	2.5	7	

P2 Panel cut-out (page 157)

P18 PCB drilling pattern for contact only (page 165)

Note: ¹⁾ minimum length of free thread to ensure mating.

Alignment Key (B series)

Alignment Key and Polarized Keying System

B series connector model part numbers are composed of three letters. The LAST LETTER indicates the key position and the contact type (male or female).

Front view of a socket	Ref.	Nb of	Angles		Series		Ref.	Nb of	Angles			Series			Conta	ct type	Nata	
	nei.	keys	Ang	00	0B	1B	nei.	keys	keys	Ang	ХВ	2B	3B	4B	5B	Plug	Socket	Note
	G	1	-	0°	0°	0°	G	1	-	0°	0°	0°	0°	0°	male	female	•	
	Α	2	α	30°	30°	30°	Α	2	α	30°	30°	30°	30°	30°	male	female	•	
α	В	2	α	60°	60°	60°	В	2	α	-	45°	45°	45°	45°	male	female		
Res I	С	2	α	-	90°	90°	С	2	α	-	60°	60°	60°	60°	male	female	•	
	D	2	β	-	135°	135°	D	2	γ	-	95°	95°	95°	95°	male	female	0	
	E	2	β	-	145°	145°	E	2	β	120°	120°	120°	120°	120°	male	female	0	
	F	2	β	-	155°	155°	F	2	β	-	145°	145°	145°	145°	male	female	0	
	J	2	γ	45°	45°	45°	J	2	α	-	37.5°	37.5°	37.5°	37.5°	female	male		
-1-	К	2	γ	-	70°	70°	К	2	α	-	52.5°	52.5°	52.5°	52.5°	female	male	0	
	L	2	γ	-	80°	80°	L.	2	γ	-	70°	70°	70°	70°	female	male	0	
	М	2	δ	-	110°	-	М	2	-	-	-	-	-	-	female	male	0	
	Y	3	-	-	-	-	Y	3	β	-	112.5°	126°	112.5°	-	male	female	•1)	
	ľ	3	-	-	-	-		3	γ	-	100°	102°	147.5°	-	male	female	•1)	

Front view of a socket	Ref.	Nb of	ngles		Series		Ref.	Nb of	ngles			Series			Conta	ct type	Note
	TICI.	keys	Ang	00	0B	1B	nei.	keys	Ang	XB	2B	3B	4B	5B	Plug	Socket	Note
		5	α	_	_	-		5	α	-	-	-	-	95°	male	female	•
	R	5	β	-	-	-	R	5	β	-	-	-	-	115°	male	female	•
	n	5	γ	-	-	-	n	5	γ	-	-	-	-	20°	male	female	
		5	δ	-	-	-		5	δ	-	-	-	-	30°	male	female	•

Note: FTG, FGY, ENY models are not available with all the keys. Please consult pages corresponding to these models. For Ree models see explanation on page 24 and for See models see explanation on page 33.

Note: 1) only FGY and ENY models are available.

First choice alternative
 Special order alternative

free socket, fixed socket or coupler. All models of this series are watertight when mated to give a protection index of IP68 as per IEC 60529 standard (in mated condition) when correctly assembled to an appropriate cable (IP66 otherwise). K series connectors have the same insulators as the B series and have the following main features: – security of the Push-Pull latching system – watertight connection (IP 68/IP 66)

- security of the Push-Pull latching system
 multipole types 2 to 64 contacts
- keying system («G» key standard) for connector alignment
- 360° screening for full EMC shielding
- rugged housing for extreme working conditions.
- solder, crimp or print (straight or elbow) contacts

- multiple key options to avoid cross mating of similar connectors
- high packing density for space savings

Part Numbering System

FGG.3K.310.CLAC65 = straight plug with key (G) and cable collet, 3K series, multipole type with 10 contacts, outer shell in chromeplated brass, PEEK insulator, male solder contacts, C type collet for 6.5 mm diameter cable.

PHG.3K.310.CLLC65Z = free socket with key (G) and cable collet, 3K series, multipole type with 10 contacts, outer shell in chromeplated brass, PEEK insulator, female solder contacts, C type collet for 6.5 mm diameter cable and nut for fitting a bend relief.

EGG.3K.310.CYM = fixed socket, nut fixing, with key (G), 3K series, multipole type with 10 contacts, outer shell in chrome-plated brass, PEEK extended insulator, female crimp contacts.

SLG.3K.310.TLAPV = fixed coupler, nut fixing, keys (L) on the flange end and key (G) at the other end, 3K series, multipole type with 10 contacts, outer shell in stainless steel, PEEK insulator, male-female contacts, vacuumtight.

Part Section Showing Internal Components

Technical Characteristics

Mechanical and Climatical

Characteristics	Value	Standard
Endurance ¹⁾	> 5000 cycles	IEC 60512-5 test 9a
Humidity	up to 98	5% at 60° C
Temperature range ²⁾	- 55° C	C, + 200° C
Resistance to vibrations	10-2000 Hz, 15g	IEC 60512-4 test 6d
Shock resistance	100 g, 6 ms	IEC 60512-4 test 6c
Salt spray corrosion test ⁴⁾	>1000h	IEC 60512-6 test 11f
Protection index (mated) ³⁾	IP 68/IP 66	IEC 60529
Climatical category	50/175/21	IEC 60068-1

Metal housing models

Electrical

Charac	teristics	Value	Standard
Shielding	at 10 MHz	> 95 dB	IEC 60169-1-3
efficiency	at 1 GHz	>80 dB	IEC 60169-1-3

Note:

the various tests have been carried out with FGG and EGG connector pairs, with chrome-plated brass shell, PEEK insulator and silicone O-ring. Detailed electrical characteristics, as well as materials and treatment are presented in the chapter Technical Characteristics on page 182. ¹⁾ see page 189, contact resistance after mating cycles. See page 185,

mechanical endurance latching force.

²⁾ minimum operating temperature is -20°C for sockets fitted with an FPM (Viton®) O-ring. ³⁾ IP68 achieved providing that the cable is perfectly circular and that

assembly process ensures a high integrity seal.

4) for chrome plated product (« C » material code).

FGG Straight plug, key (G) or keys (A to F, L and R), cable collet

Refe	rence	Di	mensio	ons (m	m)
Model	Series	А	L	М	S2
FGG	0K	11	34	23.0	8
FGG	1K	13	42	28.0	9
FGG	2K	16	52	36.0	12
FGG	ЗК	19	61	41.0	15
FGG	4K	25	71	50.5	19
FGG	5K	38	92	67.0	30

M1 Cable assembly (page 172)

Straight plug, key (G) or keys (A to F, L and R), cable collet and oversize cable collet ¹⁾ FGG

Refe	rence		Dimensions (mm)								
Model	Series	А	В	L	М	S1	S2				
FGG	1K	13	14.5	60.0	46	12	12				
FGG	2K	16	17.0	68.0	52	15	15				
FGG	ЗК	19	22.0	85.0	65	19	19				
FGG	4K	25	36.0	119.5	99	30	32				

M2 Cable assembly (page 173)

Note: ¹⁾ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 68).

FGG Straight plug, key (G) or keys (A to F, L and R), cable collet and nut for fitting a bend relief ¹⁾

Refe	rence	Di	mensio	ons (m	m)
Model	Series	А	L	Μ	S2
FGG	0K	11	34	23.0	7
FGG	1K	13	42	28.0	9
FGG	2K	16	52	36.0	12
FGG	ЗК	19	60	40.0	15
FGG	4K	25	71	50.5	19

M1 Cable assembly (page 172)

Note: $^{1)}$ to order, add a ${\rm \, {\scriptstyle e}Z^{\rm >}}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

FNG Straight plug, key (G) or keys (A to F and L), cable collet and lanyard release

Refe	rence		Dimensions (mm)							
Model	Series	А	В	L	М	Ν	S2			
FNG	2K	16	22	52	36.0	160	12			
FNG	4K	25	32	71	50.5	230	19			

M1 Cable assembly (page 172)

Note: cable material: stainless steel with Polyamide sheath

FXG Fixed plug with round flange, key (G) or keys (A to F, L and R) and screw fixing

Refe	rence			Di	mensio	ons (m	m)		
Model	Series	А	В	G	Н	L	М	Ρ	S2
FXG	ЗК	38	22.5	3.4	20.6	61	10.0	30.0	15
FXG	4K	47	28.5	3.4	27.0	71	11.0	32.0	19
FXG	5K	65	42.5	4.4	38.0	100	12.5	38.5	30

P6 Panel cut-out (page 159)

Note: this model does not include an O-ring behind the flange, it allows the device on which it is fitted to reach only IP50 protection index. It does not have a cable collet.

FAG Fixed plug, nut fixing, non-latching, key (G) or keys (A to F, L and R)

Refe	rence			Din	nensi	ons (r	nm)			
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3
FAG	1K	20	21.5	M16x1.0	2.3	22.6	16.0	22.5	14.5	19
FAG	2K	25	27.0	M20x1.0	4.5	33.6	18.0	28.3	18.5	24
FAG	ЗK	31	34.0	M24x1.0	4.0	34.3	22.5	33.8	22.5	30
FAG	4K	37	40.5	M30x1.0	4.0	35.3	23.0	36.3	28.5	36
FAG	5K	55	54.0	M45x1.5	4.0	43.5	28.5	42.3	42.5	-

P1 Panel cut-out (page 159)

Note: The 1K series is delivered with a locking washer. The 5K series is delivered with a round nut.

Note: 1) maximum length with crimp contacts.

FPG Elbow (90°) plug, key (G) or keys (A to F, L and R), cable collet

FHG Elbow (90°) plug, key (G) or keys (A to F, L and R), cable collet

Refe	rence			Di	mensio	ons (m	m)		
Model	Series	А	D	Н	L	М	S1	S2	S3
FHG	ЗК	21.0	11.5	47	60	40.0	18	15	15
FHG	4K	27.5	15.5	57	72	51.5	24	19	20

M3 Cable assembly (page 172)

EGG Fixed socket, nut fixing, key (G) or keys (A to F, L and R)

Refe	rence			Din	nensi	ons (r	nm)			
Model	Series	Α	В	е	Е	L	М	N ¹⁾	S1	S3
EGG	0K	18	19.2	M14x1.0	6	21.7	4.0	20.1	12.5	17
EGG	1K	20	21.5	M16x1.0	9	27.0	4.5	25.1	14.5	19
EGG	2K	25	27.0	M20x1.0	9	30.7	5.0	28.6	18.5	24
EGG	ЗК	31	34.0	M24x1.0	11	36.2	6.0	33.6	22.5	30
EGG	4K	37	40.5	M30x1.0	9	40.2	6.5	38.6	28.5	36
EGG	5K	55	54.0	M45x1.5	10	47.5	9.0	43.6	42.5	-

P1 Panel cut-out (page 159)

Note: The 5K series is delivered with a round nut.

Note: 1) maximum length with crimp contacts.

ENG Fixed socket, nut fixing, key (G) or keys (A to F, L and R) and earthing tag

Refe	rence			Dir	nensi	ons (r	nm)			
Model	Series	Α	В	е	Е	L	М	N ¹⁾	S1	S3
ENG	3K	31	31 34 M24x1.0 11.3 36.2 6 33.6 22.5 30							30

P1 Panel cut-out (page 159)

Note: 1) maximum length with crimp contacts.

EEG Fixed socket, nut fixing, key (G) or keys (A to F, L and R) (back panel mounting)

Refe	rence			Din	nensi	ons (r	nm)			
Model	Series	Α	В	е	Е	L	М	N ¹⁾	Р	S1
EEG	0K	18.0	18	M14x1.0	3.4	21.7	3.5	20.1	7.0	12.5
EEG	1K	20.0	20	M16x1.0	6.2	27.0	3.5	25.1	10.0	14.5
EEG	2K	25.0	25	M20x1.0	5.0	30.7	3.5	28.6	10.0	18.5
EEG	ЗК	30.0	31	M24x1.0	7.5	36.2	4.5	33.6	12.0	22.5
EEG	4K	41.5	37	M30x1.0	6.0	40.2	7.0	38.6	13.5	28.5

P1 Panel cut-out (page 159)

Note: The 3K and 4K series are delivered with a conical nut. **Note:** ¹⁾ maximum length with crimp contacts.

EEG Fixed socket, nut fixing, key (G) or keys (A to F and R) with straight print contacts for printed circuit (back panel mounting)

Refe	rence	Dimensions (mm)										
Model	Series	Α	В	е	Е	Μ	Ν	Ρ	S1			
EEG	0K	18.0	18	M14x1.0	3.4	3.5	17.6	7.0	12.5			
EEG	1K	20.0	20	M16x1.0	6.2	3.5	23.8	10.0	14.5			
EEG	2K	25.0	25	M20x1.0	5.0	3.5	25.8	10.0	18.5			
EEG	ЗК	30.0	31	M24x1.0	7.5	4.5	31.3	12.0	22.5			
EEG	4K	41.5	37	M30x1.0	6.0	7.0	34.3	13.5	28.5			

P1 Panel cut-out (page 159)

P15 PCB drilling pattern (page 160)

Note: The 3K and 4K series are delivered with a conical nut.

Note: this contact type is available for E●● socket models fitted with female contact. Length «L» depends on the number of contacts, see table page 163.

EEG Fixed socket, nut fixing, key (G) or keys (A to F and R) with elbow (90°) contacts for printed circuit (back panel mounting)

Refe	rence			Dime	nsion	s (mn	ו)		
Model	Series	Α	В	е	Е	М	Ν	Ρ	S1
EEG	0K	18	18	M14x1.0	3.4	3.5	19.3	7	12.5
EEG	1K	20	20	M16x1.0	6.2	3.5	24.3	10	14.5
EEG	2K	25	25	M20x1.0	5.0	3.5	26.6	10	18.5
EEG	3K	30	31	M24x1.0	7.5	4.5	31.3	12	22.5

P1 Panel cut-out (page 159)

P17 PCB drilling pattern (page 164)

 $\ensuremath{\textbf{Note:}}$ length «L» depends on the number of contacts, see PCB drilling pattern page 164.

Note: The 3K series is delivered with a conical nut.

EBG Fixed socket with square flange, key (G) or keys (A to F, L and R) and screw fixing

Refe	rence			Di	mensio	ons (m	m)		
Model	Series	А	В	F	G	Н	L	М	N ¹⁾
EBG	ЗК	29	23	3	3.4	23	36.2	6.0	32.6
EBG	4K	37	30	3	3.4	29	40.2	6.5	36.6
EBG	5K	54	45	4	4.4	44	47.5	8.0	42.1

P7 Panel cut-out (page 159)

Note: ¹⁾ maximum length with crimp contacts.

EDG Fixed socket with square flange, key (G) or keys (A to F, L and R), protruding shell and earthing tag, screw fixing

Refe	rence				Dimer	nsions	(mm)			
Model	Series	А	A B C F G H L M N ¹)							
EDG	ЗK	29	18	23	3	3.4	23	36.2	22.5	32.6

P7 Panel cut-out (page 159)

Note: 1) maximum length with crimp contacts.

Refe	rence			D	imer	nsions	(mm)			
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S3	S4
EHG	0K	18	19.2	M14x1.0	1.5	21.7	10.5	20.1	12.5	17	15
EHG	1K	20	21.5	M16x1.0	1.5	27.0	15.5	25.1	14.5	19	17
EHG	2K	25	27.0	M20x1.0	1.5	30.7	17.0	27.1	18.5	24	20

P1 Panel cut-out (page 159)

Note: $^{1)}\xspace$ maximum length with crimp contacts.

Refe	rence	Dime	nsions	(mm)
Model	Series	А	L	S2
PHG	0K	13	34.0	8
PHG	1K	15	45.0	9
PHG	2K	19	54.0	12
PHG	ЗК	23	65.0	15
PHG	4K	29	75.5	19
PHG	5K	42	95.0	30

M1 Cable assembly (page 172)

PHG Free socket, key (G) or keys (A to F, L and R), cable collet and oversize cable collet 1)

Refer	rence		Dime	nsions	(mm)	
Model	Series	А	В	L	S1	S2
PHG	1K	15	14.5	63	12	12
PHG	2K	19	17.0	70	15	15
PHG	ЗК	23	22.0	89	19	19
PHG	4K	29	36.0	124	30	32

M2 Cable assembly (page 173)

Note: ¹⁾ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 68).

Refe	rence	Dime	nsions	(mm)
Model	Series	А	L	S2
PHG	0K	13	34.0	7
PHG	1K	15	45.0	9
PHG	2K	19	54.0	12
PHG	ЗK	23	64.0	15
PHG	4K	29	75.5	19

M1 Cable assembly (page 172)

Note: ^1) to order, add a "Z" at the end of the reference. The bend relief must be ordered separately (see page 145).

PKG Fixed socket, nut fixing, key (G) or keys (A to F, L and R), cable collet

Refe	rence		Dimensions (mm)							
Model	Series	А	В	е	Е	L	М	S1	S2	S3
PKG	0K	18	19.2	M14x1.0	9.0	35.2	4.0	12.5	8	17
PKG	1K	20	21.5	M16x1.0	9.5	46.2	4.5	14.5	9	19
PKG	2K	25	27.0	M20x1.0	9.0	54.5	5.0	18.5	12	24
PKG	ЗК	31	34.0	M24x1.0	11.5	65.7	6.0	22.5	15	30
PKG	4K	37	40.5	M30x1.0	9.0	75.5	6.5	28.5	19	36
PKG	5K	55	54.0	M45x1.5	15.0	98.0	9.0	42.5	30	-

P1 Panel cut-out (page 159)

M1 Cable assembly (page 172)

Note: the 5K series is delivered with a round nut.

PBG Fixed socket, key (G) with square flange, cable collet and screw fixing

Refe	rence	Dimensions (mm)								
Model	Series	А	В	С	F	G	Н	L	М	S2
PBG	ЗK	29	19	23	3	3.4	23	65	22.5	15
P7 Pa	nel cut-ou	it (pag	e 159)							

M1 Cable assembly (page 172)

Watertight or vacuumtight models

These socket and coupler models allow the device on which they are fitted to reach a protection index of IP68 as per IEC 60529. They are fully compatible with plugs of the same series and are widely used for portable radios, military, laboratory equipment, aviation, etc.

These models are identified by a letter «P» at the end of the reference.

Most of these models are also available in a vacuumtight version. Such models are identified by an additional letter «V» at the end of the part number (certificate on request).

Epoxy resin is used to seal these models.

Technical Characteristics

Mechanical and Climatical

Characteristi	cs	Value	Standard		
Endurance ¹⁾		> 5000 cycles IEC 60512-5 tes			
Humidity		up to 9	5% at 60° C		
Temperature range	0K-1K	- 20° C/+ 100° C			
remperature range	2K to 5K	- 20°	C/+ 80° C		
Salt spray corrosion	test ⁴⁾	>1000h	IEC 60512-6 test 11f		
Climatical category		20/80/21	IEC 60068-1		
Leakage rate (He) ²⁾		< 10 ⁻⁷ mbar.l.s ⁻¹	IEC 60512-7 test 14b		

Characteristic	s	Value	Standard
	0K	60 bar	IEC 60512-7 test 14d
	1K	60 bar	IEC 60512-7 test 14d
Maximum operating	2K	40 bar	IEC 60512-7 test 14d
pressure ³⁾	ЗK	30 bar	IEC 60512-7 test 14d
	4K	15 bar	IEC 60512-7 test 14d
	5K	5 bar	IEC 60512-7 test 14d

Note: ¹) see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force. ²) only for vacuumtight models. Residual traces of grease used during (He) leak testing are on the o-ring. Please contact us for further details. ³) this value corresponds to the maximum allowed pressure difference for the assembled socket. ⁴) for chrome plated product («C» material code).

HGG Fixed socket, nut fixing, key (G) or keys (A to F and L), watertight or vacuumtight

HEG Fixed socket, nut fixing, key (G) or keys (A to F and L), watertight or vacuumtight (back panel mounting)

Refe	rence		Dimensions (mm)						
Model	Series	А	В	е	Е	L	М	Ρ	S1
HEG	0K	18	18	M14x1.0	3.4	23.0	3.5	7	12.5
HEG	1K	20	20	M16x1.0	6.2	30.0	3.5	10	14.5
HEG	2K	25	25	M20x1.0	5.0	33.7	3.5	10	18.5

P1 Panel cut-out (page 159)

HMG Fixed socket with earthing tag, nut fixing, key (G) or keys (A to F and L), watertight or vacuumtight (back panel mounting)

Refe	rence	Dimensions (mm)							
Model	Series	А	В	е	Е	L	Μ	Ρ	S1
HMG	1K	20	20	M16x1.0	6.2	30.0	3.5	10	14.5
HMG	2K	25	25	M20x1.0	5.0	33.7	3.5	10	18.5

P1 Panel cut-out (page 159)

Soo Fixed coupler, nut fixing, key (G) or keys (L) at the flange end, and key (G) or keys (C or L) at the other end, watertight or vacuumtight

Refer	rence	Contacts		Dimensions (mm)									
Model	Series	Туре	А	В	е	Е	L	М	S1	S3			
SGL	2K	female – male	25	27.0	M20x1.0	25	52.4	5.0	18.5	24			
SLG	2K	male – female	25	27.0	M20x1.0	25	52.4	5.0	18.5	24			
SLG	ЗK	male – female	31	34.0	M24x1.0	33	64.0	6.0	22.5	30			
SLG	4K	male – female	37	40.5	M30x1.0	48	74.0	6.5	28.5	36			
SLC	4K	male – female	37	40.5	M30x1.0	48	74.0	6.5	28.5	36			
SLG	5K	male – female	55	54.0	M45x1.5	58	88.0	9.0	42.5	-			
SLC	5K	male – female	55	54.0	M45x1.5	58	88.0	9.0	42.5	-			

P1 Panel cut-out (page 159)

Note: for this fixed coupler, the first contact type mentioned is always the one at the flange end. On request, these couplers can be produced in other series, with other keys.

Note: The 5K series is delivered with a round nut.

Alignment Key (K series)

Alignment Key and Polarized Keying System

K series connector model part numbers are composed of three letters. The LAST LETTER indicates the key position and the contact type (male or female).

Front view of a socket	Ref.	Nb of	Angles			Sei	ries			Conta	ct type	Note
α	nei.	keys	Ang	0K	1K	2K	зк	4K	5K	Plug	Socket	Note
$\langle \rightarrow \rangle$	G	1	-	0°	0°	0°	0°	0°	0°	male	female	•
	Α	2	α	30°	30°	30°	30°	30°	30°	male	female	•
	В	2	α	45°	45°	45°	45°	45°	45°	male	female	
	С	2	α	60°	60°	60°	60°	60°	60°	male	female	•
$\langle \rangle$	D	2	γ	95°	95°	95°	95°	95°	95°	male	female	0
γ	E	2	β	120°	120°	120°	120°	120°	120°	male	female	0
	F	2	β	145°	145°	145°	145°	145°	145°	male	female	0
	L.	2	γ	75°	75°	75°	75°	75°	75°	female	male	•

Front view of a socket	Ref.	Nb of	Angles			Sei	ries			Conta	ct type	Note
	TICI.	keys	Ang	0K	1K	2K	ЗK	4K	5K	Plug	Socket	Note
		5	α	-	-	-	95°	-	-	male	female	•
t-	-	5	β	-	-	-	115°	-	-	male	female	•
1	R	5	γ	-	-	-	35°	-	-	male	female	
		5	δ	-	-	-	25°	-	-	male	female	•

Note: See and TGL models are not available with all the keys. For See models see explanation on page 48. Please consult the pages corresponding to these models.

First choice alternative
 Special order alternative

○ Special order alternative

Part Section Showing Internal Components

Part Numbering System

FGG.1T.306.CLAC40Z = Straight plug with key (G) and cable collet for bend relief, 1T series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, male solder contacts, C type collet for 4.0 mm diameter cable and nut for fitting a bend relief.

EGG.1T.306.CLL = fixed socket, nut fixing, with key (G), 1T series, multipole type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, female solder contacts.

Alignment Key

Note: 1) for 2T and 3T series.

Technical Characteristics

Mechanical and Climatical

Characteristics	Value	Standard
Endurance 1)	> 3000 cycles	IEC 60512-5 test 9a
Humidity	up to 98	5% at 60° C
Temperature range ²⁾	- 55° C, + 200°	C / (-20°C, +80°C)
Resistance to vibrations	10-2000 Hz, 15g	IEC 60512-4 test 6d
Shock resistance	100 g, 6 ms	IEC 60512-4 test 6c
Salt spray corrosion test 6)	> 1000h	IEC 60512-6 test 11f
Protection index (mated) 3)	IP 68/IP 66	IEC 60529
Latching retention force 4) 5)	From 85 I	N up to 300 N
Climatical category	50/175/21	IEC 60068-1

Electrical

Metal housing models

Chara	cteristics	Value	Standard
Shielding	at 10 MHz	> 75 dB	IEC 60169-1-3
efficiency	at 1 GHz	> 40 dB	IEC 60169-1-3

Note:

the various tests have been carried out with FGG and EGG connector pairs, with chrome-plated brass shell and PEEK insulator. Detailed electrical characteristics, as well as materials and treatment are presented in the chapter Technical Characteristics on page 182.

Note: ¹⁾ see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force. ²⁾ operating temperature is -20°C, +80°C for watertight or vacuumtight models fitted with an FPM (Viton®) o-ring and Epoxy.

³⁾ IP68 achieved providing that the cable is perfectly circular and that assembly process ensures a high integrity seal.

4) average value ⁵⁾ depending of the size.

⁶⁾ for chrome plated product («C» material code).

FGG Straight plug, cable collet

Refer	rence		Dime	Cable ø				
Model	Series	А	L	М	S1	S2	min.	max.
FGG	т	7.0	33.2	25.2	5.5	5	2.4	3.0
FGG	ОТ	9.5	39.0	29.0	7.5	7	1.0	5.0
FGG	1T	12.0	46.0	35.0	11.0	9	1.3	6.5
FGG	2Т	15.0	55.0	43.0	14.0	12	1.3	8.5
FGG	ЗТ	18.8	64.0	49.0	16.0	14	2.6	10.5

M1 Cable assembly (page 174)

FGG Straight plug, cable collet and nut for fitting a bend relief ¹⁾

Refe	rence		Dime	nsions	(mm)		Cable ø		
Model	Series	А	L	М	S1	S2	min.	max.	
FGG	TT	7.0	32.7	24.7	5.5	6	2.4	3.0	
FGG	0Т	9.5	38.0	28.0	7.5	7	1.0	5.0	
FGG	1T	12.0	45.0	34.0	11.0	9	1.3	6.5	
FGG	2T	15.0	54.0	42.0	14.0	12	1.3	8.5	
FGG	ЗТ	18.8	62.0	47.0	16.0	15	2.6	10.5	

M1 Cable assembly (page 174)

Note: 1) to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see page 145).

FFG Straight plug, non latching, cable collet

Refer	rence		Dime	Cable ø				
Model	Series	А	L	М	S1	S2	min.	max.
FFG	TT	7.0	33.2	25.2	5.5	5	2.4	3.0
FFG	0Т	9.5	39.0	29.0	8.0	7	1.0	5.0
FFG	1T	12.0	46.0	35.0	10.0	9	1.3	6.5
FFG	2T	15.0	55.0	43.0	13.0	12	1.3	8.5
FFG	ЗТ	18.8	64.0	49.0	16.0	14	2.6	10.5

M1 Cable assembly (page 174)

FSG Adjustable right angle plug

Reference Dimensions (mm) Cable ø S2 Series А Н L Μ S1 Model min. max. 20.0 28.5 FSG ТΤ 8 20.5 5 7.5 2.4 3.0 FSG 0Т 10 23.0 36.0 26.0 7 9.5 1.0 5.0 FSG 1T 13 30.0 43.5 32.5 9 12.0 1.3 6.5 FSG 2Т 37.5 54.0 42.0 12 16.0 1.3 17 8.5

PHG Free socket, cable collet

Refe	erence	Di	mensio	Cable ø			
Mode	Series	А	L	S1 S2		min.	max.
PHG	TT	7.0	32.0	5.5	5	2.4	3.0
PHG	0Т	9.5	38.0	8.0	7	1.0	5.0
PHG	1T	12.0	43.5	10.0	9	1.3	6.5
PHG	2T	15.0	52.0	14.0	12	1.3	8.5
PHG	3Т	18.8	61.5	16.0	14	2.6	10.5

M1 Cable assembly (page 174)

PHG Free socket, cable collet and nut for fitting a bend relief ¹⁾

Refe	rence	Di	mensio	Dimensions (mm)					
Model	Series	А	L	S1	S2	min.	max.		
PHG	TT	7.0	31.5	5.5	6	2.4	3.0		
PHG	ОТ	9.5	37.0	8.0	7	1.0	5.0		
PHG	1T	12.0	42.5	10.0	9	1.3	6.5		
PHG	2T	15.0	51.0	14.0	12	1.3	8.5		
PHG	ЗT	18.8	60.0	16.0	15	2.6	10.5		

M1 Cable assembly (page 174)

Note: $^{1)}$ to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see page 145).

EGG Fixed socket, nut fixing

Refer	ence	Dimensions (mm)								
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S2
EGG	тт	10.0	10.2	M7x0.5	5.5	16.0	1.2	13.5	6.3	9
EGG	ОТ	12.0	12.5	M9x0.6	6.0	21.0	1.5	19.1	8.2	11
EGG	1T	15.5	16.0	M12x1.0	6.0	23.0	1.8	21.5	10.5	14
EGG	2Т	18.5	19.6	M15x1.0	7.5	26.5	1.8	24.6	13.5	17
EGG	ЗТ	23.5	25.1	M18x1.0	9.6	30.1	2.5	25.0	16.5	22

P1 Panel cut-out (page 157)

Note: 1) maximum length with crimp contacts.

Refer	rence		Dimensions (mm)								
Model	Series	А	В	е	Е	L	N ¹⁾	Ρ	S1		
EEG	тт	10.0	10.0	M7x0.5	4.5	16.0	13.5	7	6.3		
EEG	ОТ	12.0	12.0	M9x0.6	6.5	21.0	19.1	9	8.2		
EEG	1T	15.5	16.0	M12x1.0	6.5	23.0	21.5	10	10.5		
EEG	2Т	18.5	20.0	M15x1.0	7.5	26.5	24.6	11	13.5		
EEG	ЗТ	23.5	24.0	M18x1.0	7.5	30.1	25.0	12	16.5		

P1 Panel cut-out (page 157)

Note: 1) maximum length with crimp contacts.

Watertight or vacuumtight models

These models are identified by a letter «P» at the end of the reference. Most of these models are also available in a vacuumtight version. Such models are identified by an additional letter «V» at the end of the part number (certificate on request). Epoxy resin is used to seal these models. The temperature range is -20°C / +80°C.

Part Number Example

HGG.0T.305.CLLP (5 contacts, resin potted) HGG.0T.305.CLLPV (5 contacts, resin potted and vacuumtight tested)

Technical Characteristics

Mechanical and Climatical

Characteristics	Value	Standard
Endurance 1)	> 3000 cycles	IEC 60512-5 test 9a
Humidity	up to 98	5% at 60° C
Temperature range ²⁾	-20°	C, +80°C
Resistance to vibrations	10-2000 Hz, 15g	IEC 60512-4 test 6d
Shock resistance	100 g, 6 ms	IEC 60512-4 test 6c
Salt spray corrosion test 6)	> 1000h	IEC 60512-6 test 11f
Protection index (mated) 3)	IP 68/IP 66	IEC 60529
Latching retention force 4) 5)	From 85 I	N up to 300 N
Climatical category	50/175/21	IEC 60068-1
Leakage rate (He)	< 10 ⁻⁷ mbar.l.s ⁻¹	IEC 60512-7 test 14b

Characteristic	s	Value	Standard
	ΤТ	60 bar	IEC 60512-7 test 14d
Maximum operating	0T	60 bar	IEC 60512-7 test 14d
pressure ⁷⁾	1T	60 bar	IEC 60512-7 test 14d
	2T	40 bar	IEC 60512-7 test 14d

Note:

- ¹⁾ see page 189, contact resistance after mating cycles. See page 185,
- ²⁾ operating temperature is -20°C, +80°C for watertight or vacuumtight models fitted with an FPM (Viton®) o-ring and Epoxy.
 ³⁾ IP68 achieved providing that the cable is perfectly circular and that
- assembly process ensures a high integrity seal.
- ⁴⁾ average value.
- 5) depending of the size.
- ⁶⁾ for chrome plated product («C» material code).
- 7) this value corresponds to the maximum allowed pressure difference for the assembled socket.

HGG Fixed socket, nut fixing, watertight or vacuumtight

Refer	rence		Dimensions (mm)									
Model	Series	А	В	е	Е	L	М	N ¹⁾	S1	S2		
HGG	TT	10.0	10.2	M7x0.5	5.5	18.0	1.2	15.0	6.3	9		
HGG	0Т	12.0	12.5	M9x0.6	6.5	22.0	1.5	18.5	8.2	11		
HGG	1T	15.5	16.0	M12x1.0	6.0	26.0	1.8	21.5	10.5	14		
HGG	2T	18.5	19.6	M15x1.0	8.0	30.5	1.8	25.0	13.5	17		

P9 Panel cut-out (page 157)

Fixed socket, nut fixing, watertight or vacuumtight, back panel mounting HEG

-N►		
	0 B +	
[lana]ù	<u>↓</u> ↓	
╘┥─┤╼╶│	\ <u>S1</u>	

Refer	rence		Dimensions (mm)								
Model	Series	А	В	е	Е	L	Ν	Ρ	S1		
HEG	TT	10.0	10.0	M7x0.5	4.5	18.0	15.0	7	6.3		
HEG	0Т	12.0	12.0	M9x0.6	6.5	22.0	18.5	9	8.2		
HEG	1T	15.5	16.0	M12x1.0	6.5	26.0	21.5	10	10.5		
HEG	2T	18.5	20.0	M15x1.0	7.5	30.5	25.0	11	13.5		

P9 Panel cut-out (page 157)

HMG Fixed socket with earthing tag, nut fixing, watertight or vacuumtight, back panel mounting

Refer	rence			Dime	nsion	s (mr	ו)		
Model	Series	А	В	е	Е	L	Ν	Ρ	S1
HMG	TT	10.0	10.0	M7x0.5	4.5	18.0	15.0	7	6.3
HMG	0Т	12.0	12.0	M9x0.6	6.5	22.0	18.5	9	8.2
HMG	1T	15.5	16.0	M12x1.0	6.5	26.0	21.5	10	10.5
HMG	2T	18.5	20.0	M15x1.0	7.5	30.5	25.0	11	13.5

P9 Panel cut-out (page 157)

Plastic housing models

EGG Fixed socket, nut fixing, POM outer shell

Refe	rence	Di	mensio	ons (m	m)	Cab	ole ø
Model	Series	А	L	М	S2	min.	max.
FGG	ОТ	9.7	38.5	28.5	8	1.0	5.0
FGG	1T	13.0	45.0	34.0	10	1.3	6.5

M1 Cable assembly (page 174)

Note: $^{1)}$ to order, add a $^{\rm w}Z^{\rm w}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

Refe	rence			Dir	nensi	ons (r	nm)			
Model	Series	А	В	e	Е	L	М	N ¹⁾	S1	S2
EGG	ОТ	12.0	12.5	M9x0.6	6.0	21.0	1.5	19.1	8.2	11
EGG	1T	15.5	16.0	M12x1.0	6.0	23.0	1.8	21.5	10.5	14

P1 Panel cut-out (page 157)

Note: $^{\mbox{1}\mbox{}}$ maximum length with crimp contacts.

Insert configuration (B, K and T series)

Multipole

	Solder of	contacts					Con typ	tact be			AWG		Sol con	der tact	Cri	mp tact	
											Cri	mp	1s) ¹⁾	1s) ⁴⁾	1s) ¹⁾	1s) ⁴⁾	
	Crimp c	ontacts	Reference	õ	Contact ø (mm)	er	0	Print (straight)	Print (elbow)	Solder (max.)			Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ⁴⁾ Contact-shell	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ⁴⁾ Contact-shell	Rated current (A) ¹⁾
			Refe	Series	Conta	Solder	Crimp	Print	Print	Solde	min.	max.	Test y Conta	Test Conta	Test y Conta	Test y Conta	Rateo
2				00-TT	0.5	•	•	•	•	30	32	28	1.00	0.95	1.15	1.20	3.5
				0B-0K-0T	0.9	•	•	•	•	20	32	20	1.00	1.05	1.45	1.20	10.02)
		$\left(\mathbf{Q} \right)$	302	1B-1K-1T	1.3	•	•	•	•	20	26	18	1.50	1.35	1.70	1.45	15.0 ³⁾
		\bigcirc		2B-2K-2T	2.0	•	•	•	•	16	18	12	2.10	1.75	2.85	2.70	25.0 ³⁾
				3B-3K-3T	3.0	•	•	0	-	12	14	10	2.10	1.55	2.30	1.80	35.0
				5B-5K	6.0	•	-	-	-	8	-	-	3.60	2.95	-	-	50.0
3				00-TT	0.5	•	•	•	•	30	32	28	0.80	0.95	1.35	1.10	3.0
		$\overline{\mathbf{O}}$		0B-0K-0T	0.9	•	•	•	•	20	32	20	1.20	0.90	1.70	1.60	8.02)
			303	1B-1K-1T	1.3	•	•	•	•	20	26	18	1.30	1.55	1.60	1.85	12.0
				2B-2K-2T	1.6	•	•	•	•	18	22	14	2.40	1.85	1.90	1.90	17.0 ³⁾
				3B-3K-3T	2.0	•	•	•	0	16	18	12	1.90	1.50	3.20	2.65	25.0
4				00-TT	0.5	•	•	•	•	30	32	28	0.80	0.65	1.05	1.05	2.0
				0B-0K-0T	0.7	•	•	•	•	22	32	22	0.85	0.70	1.35	1.10	7.02)
				1B-1K-1T	0.9	•	•	•	•	22	32	20	1.35	1.45	1.70	1.80	10.0 ²⁾
			304	2B-2K-2T	1.3	•	•	•	•	20	26	18	1.85	1.85	2.20	2.20	15.0 ³⁾
				3B-3K-3T	2.0	•	•	•	•	16	18	12	1.45	1.25	2.50	2.20	19.0
				4B-4K	3.0	•	•	0	-	12	14	10	2.10	1.50	1.80	1.20	30.0
				5B-5K	4.0	•	•	0	-	10	12	10	2.95	2.65	3.20	2.40	35.0
5																	
		$\begin{bmatrix} 6 \\ 0 \end{bmatrix}$	305	00-TT	0.35	•	-	•	-	30	-	-	0.70	1.00	-	-	1.7

First choice alternative
 Special order alternative

Note: ¹⁾ see calculation method, caution and suggested standard on page 190.
 ²⁾ rated current = 6A for socket with elbow (90°) contact for printed circuit.
 ³⁾ rated current = 12A for socket with elbow (90°) contact for printed circuit.
 ⁴⁾ test voltage (kV) contact-shell is slightly lower for K and T series (values here are for B series).

	Solder o	contacts					Con typ				AWG		Sol con		Cri con	mp tact	
											Cri	mp	s) ¹⁾	s) ⁵⁾	s) ¹⁾	s) ⁵⁾	
	Crimp c	ontacts	Reference	Series	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ⁵⁾ Contact-shell	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ⁵⁾ Contact-shell	Rated current (A) ¹⁾
E				0B-0K-0T	0.7	•	•	•	•	22	32	22	1.00	0.70	1.25	1.20	6.5 ²⁾
5		00		1B-1K-1T	0.9	•	•	•	•	22	32	20	1.25	1.15	1.30	1.55	9.0 ²⁾
			305	2B-2K-2T	1.3	•	•	•	•	20	26	18	1.75	1.60	2.15	2.15	14.0 ³⁾
				3B-3K-3T	1.6	•	•	•	•	18	22	14	1.90	1.25	2.40	1.75	19.0
6																	
		6	306	0B-0K-0T	0.5	•	_4)	•	•	28	32	28	0.85	0.65	1.40	1.20	2.5
				1B-1K-1T	0.7	•	•	•	•	22	32	22	1.05	1.20	1.35	1.45	7.02)
6				00-TT	0.35	•	-	-	-	30	-	-	0.60	0.75	-	-	1.5
		$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}\right)$	306	2B-2K-2T	1.3	•	•	•	•	20	26	18	1.35	1.45	2.00	2.35	12.0
				3B-3K-3T 4B-4K	1.6 2.0	•	•	•	_	18 16	22 18	14 12	1.60 2.00	1.15 1.75	1.90 2.75	1.80 2.40	17.0 24.0
				0B-0K-0T	0.5		4)	•		28	32	28	0.80	0.70	1.40	1.20	2.5
7				1B-1K-1T	0.7		•	•	•	22	32	22	0.95	1.05	1.45	1.45	7.0 ²⁾
			307	2B-2K-2T	1.3	•	•	•	•	20	26	18	1.75	1.60	1.95	2.15	11.0
				3B-3K-3T	1.6	•	•	•	0	18	22	14	1.70	1.25	2.00	2.05	15.0
				4B-4K	2.0	•	•	0	-	16	18	12	2.00	1.80	1.50	1.35	20.0
8																	
		669	308	1B-1K-1T	0.7		•	•	•	22	32	22	0.95	1.15	1.30	1.30	5.0
		KO Y															
8																	
			308	2B-2K-2T	0.9	•	•	•	•	22	32	20	1.50	1.25	1.95	1.95	10.0 ²⁾
				3B-3K-3T	1.3	•	•	•	•	20	26	18	1.65	1.15	1.85	1.75	13.0

First choice alternative
 Special order alternative

Note: ¹⁾ see calculation method, caution and suggested standard on page 190.
²⁾ rated current = 6A for socket with elbow (90°) contact for printed circuit.
³⁾ rated current = 12A for socket with elbow (90°) contact for printed circuit.
⁴⁾ available only for connectors fitted with male contacts.
⁵⁾ test voltage (kV) contact-shell is slightly lower for K and T series (values here are for B series).

	Solder o						Con typ	tact be			AWG		Sol	der tact	Cri con	mp tact	
											Cri	mp	1) ¹⁾	IS) ⁴⁾	1) ¹⁾	IS) ⁴⁾	
	Crimp c	ontacts	Reference	Series	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ⁴⁾ Contact-shell	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ⁴⁾ Contact-shell	Rated current (A) ¹⁾
9																	
			309	0B-0K-0T	0.5	•	_3)	•	•	28	32	28	0.60	0.50	1.00	0.85	2.0
9																	
			309	3B-3K-3T	8x1.3 1x2.0	•	•	•	-	20 16	26 18	18 12	1.35	1.05	1.10	1.05	6.0 15.0
10				1B-1K-1T	0.5	•	3)	•	•	28	32	28	0.90	1.50	1.20	1.80	2.5
		688		2B-2K-2T	0.9	•	•	•	•	22	32	20	1.45	1.30	1.80	2.10	8.0 ²⁾
		600	310	3B-3K-3T 4B-4K	1.3 1.6	•	•	•	•	20 18	26 22	18 14	1.25 1.85	0.90 1.30	1.50 1.90	1.80 1.95	12.0 17.0
	Ŭ			5B-5K	3.0	•	•	0	_	12	14	10	2.35	2.30	2.65	3.20	20.0
12																	
		633	312	0B-0K-0T	0.35	•	_	•	_	30	_	_	0.80	1.00	_	-	1.5
12																	
		633	312	ХВ	0.7	•	-	•	_	22	32	22	1.35	1.65	-	-	5.0
10																	
12		683		2B-2K-2T	0.7	•	•	•	•	22	32	22	1.25	1.35	1.65	2.00	7.02)
	le e e e	6000	312	3B-3K-3T 4B-4K	0.9 1.3	•			•	22 20	32 26	20 18	1.45 1.45	1.00 1.60	1.65 1.90	1.85 1.85	9.0 12.0
				4D-4N	1.3		•	•	-	20	20	10	1.45	1.00	1.90	1.65	12.0

• First choice alternative O Special order alternative

Note: 1) see calculation method, caution and suggested standard on page 190.
 2) rated current = 6A for socket with elbow (90°) contact for printed circuit.
 3) available only for connectors fitted with male contacts.
 4) test voltage (kV) contact-shell is slightly lower for K and T series (values here are for B series).

	Solder o						Con typ	tact be			AWG		Sol con	der tact	Cri	mp tact	
											Cri	mp	1) ¹⁾	IS) ⁴⁾	1) ¹⁾	IS) ⁴⁾	
	Crimp c	ontacts	Reference	Series	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ⁴⁾ Contact-shell	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ⁴⁾ Contact-shell	Rated current (A) ¹⁾
14				1B-1K-1T	0.5	•	•3)	•	•	28	32	28	0.80	1.20	0.95	1.60	2.0
			314	2B-2K-2T	0.7	•	•	•	•	22	32	22	1.15	1.35	1.55	1.55	6.5 ²⁾
		2009		3B-3K-3T	0.9	•	•	•	•	22	32	20	1.20	1.20	1.80	1.65	9.0 ²⁾
				5B-5K	2.0	•	•	0	-	16	18	12	2.10	2.00	2.85	2.95	18.0
16		000															
		6633	316	1B-1K-1T	0.5	•	3)	•	0	28	32	28	0.80	1.25	0.95	1.60	1.5
		Rood															
16				2B-2K-2T	0.7	•	•	•	•	22	32	22	0.95	1.25	1.55	1.75	6.0
		6283	316	3B-3K-3T	0.9	•	•	•	•	22	32	20	1.20	0.85	1.80	1.50	8.0
		6600	510	4B-4K	0.9	•	•	•	-	22	32	20	1.35	1.50	2.30	2.10	10.0
				5B-5K	2.0	•	•	0	-	16	18	12	1.85	1.95	2.45	3.05	12.0
18																	
		66.33	318	2B-2K-2T	0.7		•	•		22	32	22	0.85	1.20	1.45	2.10	5.5
		0000		3B-3K-3T	0.9	•	•	•	•	22	32	20	1.20	1.05	1.85	1.60	7.0
19		6900															
		66633	319	2B-2K-2T	0.7	•	•	•	•	22	32	22	0.95	1.25	1.55	1.65	5.0
20																	
			320	3B-3K-3T	0.7	•	•	•	•	22	32	22	1.00	0.90	1.35	1.55	6.0
		Keese															

First choice alternative
 Special order alternative

Note: ¹⁾ see calculation method, caution and suggested standard on page 190.
²⁾ rated current = 6A for socket with elbow (90°) contact for printed circuit.
³⁾ available only for connectors fitted with male contacts.
⁴⁾ test voltage (kV) contact-shell is slightly lower for K and T series (values here are for B series).

	Solder o	contacts					Con ty	tact ce			AWG		Sol con	der tact	Cri con	mp tact	
											Cri	mp	1) ¹⁾	IS) ²⁾	1) ¹⁾	IS) ²⁾	
	Crimp c	ontacts	Reference	Serries	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ²⁾ Contact-shell	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ²⁾ Contact-shell	Rated current (A) ¹⁾
20		000															
			320	4B-4K	0.9	•	•	•	-	22	32	20	1.35	1.00	1.05	0.95	8.0
				5B-5K	1.6		•	0	-	18	22	14	1.90	1.70	2.20	2.40	10.0
00																	
22		00000		N.D.	0.5								0.50				
		<u> </u>	322	XB	0.5	•	-	•	-	28	-	-	0.50	0.90	-	-	1.5
22																	
			322	3B-3K-3T	0.7	•	•	•	•	22	32	22	1.00	0.90	1.70	1.45	5.5
24																	
			324	3B-3K-3T	0.7	•	•	•	•	22	32	22	0.95	0.80	1.35	1.35	4.0
		60000	024	4B-4K	0.9	•	•	•	-	22	32	20	1.20	1.45	1.80	2.05	7.0
[]																	
26		0000		2B-2K-2T	0.5		_			28		_	0.95	1.30		_	2.0
			326	3B-3K-3T	0.7	•		•	•	22	- 32	22	0.95	0.70	- 1.50	_ 1.30	4.0
30					0.7					00	20	00	0.00	0.70	1.05	1.00	0.5
		66000	330	3B-3K-3T 4B-4K	0.7 0.9	•	•	•	-	22 22	32 32	22 20	0.80 0.95	0.70 0.85	1.35 1.75	1.20 1.45	3.5 5.0
		000000	000	5B-5K	1.3	•	•	0	-	20	26	18	1.45	1.60	2.05	2.45	8.0
								-									

First choice alternative
 Special order alternative

Note: ¹⁾ see calculation method, caution and suggested standard on page 190. ²⁾ test voltage (kV) contact-shell is slightly lower for K and T series (values here are for B series).

		ontacts					Con typ	tact be			AWG		Sol con	der tact	Cri con	mp tact	
											Cri	mp	ms) ¹⁾	ms) ²⁾	ms) ¹⁾	ms) ²⁾	_
	Crimp co	ontacts			(mm)			ght)	(M	ax.)			ge (kV ri ontact	ge (kV ri iell	ge (kV ri ontact	ge (kV ri iell	ent (A) ¹
			Reference	Series	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ²⁾ Contact-shell	Test voltage (kV rms) ¹⁾ Contact-contact	Test voltage (kV rms) ²⁾ Contact-shell	Rated current (A) ¹⁾
32		0000															
			332	2B-2K-2T	0.5	•	-	•	•	28	-	-	0.80	1.20	-	-	1.5
32		0903															
			332	3B-3K	0.7	•	0	•	•	22	32	22	0.75	0.70	-	-	3.0
		Read															
40																	
			340	4B-4K	0.7	•	•	•	-	22	32	22	0.90	0.90	1.30	1.30	2.0
		Proceeding and a second		5B-5K	1.3		•	•	-	20	26	18	1.30	1.45	2.00	1.95	7.0
48																	
		666555333	348	4B-4K	0.7	•	•	•	_	22	32	22	0.70	0.70	1.00	1.00	1.5
48																	
			348	5B-5K	1.3	•	•	•	-	20	26	18	1.20	1.10	2.00	1.55	6.0
50		ALL															
			350	5B-5K	0.9	•	•	•	-	22	32	20	1.30	1.60	1.20	1.45	6.0
	A CONTRACTOR	Notes and the second se															

First choice alternative
 Special order alternative

Note: ¹⁾ see calculation method, caution and suggested standard on page 190. ²⁾ test voltage (kV) contact-shell is slightly lower for K and T series (values here are for B series).

	Solder	contacts					Con typ				AWG		Sol			mp tact	
											Cri	mp	s) ¹⁾	s) ²⁾	rms) ¹⁾	s) ²⁾	
	2 Crimp c	contacts			(mm)			ght)	()	(.x.)			je (kV rms) ¹⁾ intact	je (kV rms) ²⁾ iell		je (kV rms iell	ent (A) ¹⁾
		¢	Reference	Series	Contact ø	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test voltage (kV Contact-contact	Test voltage (kV Contact-shell	Test voltage (kV Contact-contact	Test voltage (kV rms) ²⁾ Contact-shell	Rated current (A) ¹⁾
54																	
			354	5B-5K	0.9	•	•	•	-	22	32	20	1.15	1.55	2.00	2.10	5.0
64																	
			364	5B-5K	0.9	•	•	•	_	22	32	20	1.30	1.55	1.35	1.85	3.0
	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE																
	 First choice alte Special order al 		Note	²⁾ test vol	culatio tage (k	n meth V) cor	nod, ca ntact-s	ution hell is	and su slightly	iggeste y lowe	ed stai r for K	ndard o and T	on page series (190. values	here ar	e for B	series).

Housings (B, K and T series)

Ref.	Outer shell a	and collet nut	Latch sleeve +	earthing crown	Other metalli	c components	Remarks	Note
	Material	Surf. treatment	Material	Surf. treatment	Material	Surf. treatment		
С	Brass	chrome	brass/bronze	nickel ²⁾	brass	nickel		
Ν	Brass	nickel	brass/bronze	nickel ²⁾	brass	nickel		0
К	Brass	black chrome 3)	brass/bronze	nickel ²⁾	brass	nickel		•
S	Stainless steel	-	brass/bronze	nickel ²⁾	brass	nickel		•
т	Stainless steel	-	stainless steel	-	brass	nickel		0
U	Stainless steel	-	stainless steel	-	stainless steel	-		0
L	Aluminium alloy	anodized	brass/bronze	nickel ²⁾	brass	nickel	1)	0
X	Aluminium alloy	nickel anthracite	brass/bronze	nickel ²⁾	brass	nickel		0
G	PEEK (natural)	-	brass/bronze	nickel ²⁾	brass	nickel	Only for FGG and ENG (B series)	•
Р	PSU	-	brass/bronze	nickel ²⁾	brass	nickel	Only for FGY and ENY (B series) 1)	•
R	PPSU	-	brass/bronze	nickel ²⁾	brass	nickel	Only for FGY and ENY (B series) 1)	•
н	PPS/brass	–/nickel	brass/bronze	nickel ²⁾	brass	nickel	Only for elbow sockets (B series)	•
Р	PA.6	-	brass/bronze	nickel ²⁾	brass	nickel	Only for CRF and CRG bridge plug 1)	•

Note: detailed characteristics of these materials and treatments are presented on page 182.

see «variant» for the colour.
 in the K series, the latch sleeve is chrome-plated.

³⁾ surface not conductive use socket with earthing tag (EN• and HM• model) to carry shield.

Insulators (B, K and T series)

Ref.	Material	Contact type	Remarks	Note
Y	PEEK	Crimp	extended design, with contacts that recess into insulator	
L	PEEK	Solder or print		

Note: detailed characteristics of these materials are presented on page 187.

Soldering characteristics

- no need to order specific tools, a simple soldering iron is sufficient
- ideal for very small and fragile conductors
- contacts with solder cups to allow the solder to flow

Note: see page 188 for more information.

Crimping characteristics

- practical, quick contact fixing outside the insulator
- possible use at high temperature

Contacts (B, K and T series)

- need to order specific tools
- no risk of heating the insulator during the conductorcontact fixing
- high tensile strength
- totally lead-free solution

First choice alternative

○ Special order alternative

Contacts reference for couplers Ree, See and TGL

Ref.	Contact type	Remarks
Α	Male - Female	contact configuration is explained on page 24, 33, 48
L	Female - Male	contact configuration is explained on page 24, 33, 48
М	Female - Female	contact configuration is explained on page 24

Contacts reference for plugs, free or fixed sockets

	Refe	rence		Contact				Conc	luctor				
Contact type					_		olid Section	AV	Strar	Sectior	1 (mm ²)	$F_{r}^{(1)}$ (N)	Notes
	Male	Female	ø A (mm)	ø C (mm)	Form per fig.	AWG max.	max. (mm ²)	min.	max.	min.	max.	(14)	
Solder			0.35	0.40	-	28	0.09	-	30	-	0.05	-	
			0.52)	0.402)	-	28	0.09	-	30	-	0.05	-	
			0.5	0.456)	-	28	0.09	-	28	-	0.09	-	
0 A 0 C			0.7	0.80	-	22	0.34	-	22 ³⁾	-	0.34	-	
			0.9	0.805)	-	22 ⁵⁾	0.345)	-	223)5)	-	0.34 ⁵⁾	-	
	Α	L	1.3	1.00	-	20	0.50	-	20 ³⁾	-	0.50	-	•
			1.6	1.40	-	16	1.00	-	18	-	1.00	-	
t t			2.0	1.80	-	14	1.50	-	16	-	1.50	-	
			3.0	2.70	-	10	4.00	-	12	-	4.00	-	
			4.0	3.70	-	10	6.00	-	10	-	6.00	-	
			6.0	5.20	-	-	-	-	8	-	10.00	-	
Crimp	С	М	0.54)	0.45	1	-	-	32	28	0.035	0.09	12	•
fig. 1	С	М	0.7	0.80	1	-	-	26	22 ³⁾	0.140	0.34	22	
	В	Р	0.7	0.45	2	-	-	32	28	0.035	0.09	22	0
	С	М	0.9	1.10	1	-	-	24	20	0.250	0.50	30	
	В	Р	0.9	0.80	2	-	-	26	22 ³⁾	0.140	0.34	30	0
	G	U	0.9	0.45	2	-	-	32	28	0.035	0.09	30	0
	С	М	1.3	1.40	1	-	-	20	18	0.500	1.00	40	•
	В	Р	1.3	1.10	2	-	-	24	20	0.250	0.50	40	0
fig. 2	G	U	1.3	0.80	2	-	-	26	22 ³⁾	0.140	0.34	40	0
	С	М	1.6	1.90	1	-	-	18	14 ³⁾	1.000	1.50	50	•
	В	Р	1.6	1.40	2	-	-	22	18	0.340	1.00	50	0
Ø A Ø C	С	М	2.0	2.40	1	-	-	16	12 ³⁾	1.500	2.50	65	•
	В	Р	2.0	1.90	2	-	-	18	14	1.000	1.50	65	0
	С	М	3.0	3.20	1	-	-	14	10 ³⁾	2.500	4.00	75	•
	С	М	4.0	4.00	1	-	-	12	10	4.000	6.00	90	•

Note: 1) contact retention force in the insulator (according to IEC 60512-8 test 15 a).

¹⁾ contact retention force in the insulator (according to FEC 00012-0 test 10 d).
 ²⁾ for 00/TT multipole series.
 ³⁾ for a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than Ø C.
 ⁴⁾ for 00 /TT multipole series or for 0B/0T and 1B/1T series with male contacts.
 ⁵⁾ for 0B.302/0B.303, 0K.302/0K.303 and 0T.302/0T.303 Ø C = 1.0 mm, AWG max 20, section max (mm²) 0.50.
 ⁶⁾ for 00/TT and 1B/1K/1T series, according to manufacturing and plating tolerance Ø C min = 0.43 mm.

• First choice alternative O Special order alternative

Contacts reference for plugs, free or fixed sockets

• First choice alternative O Special order alternative

ł

D and M type collets for B series

	D type								
	M type	M type							
	Refer	rence	Col	let ø	Cab	ole ø	ø Ø Notes		
	Туре	Code	øΑ	øΒ	max.	min.	Notes		
00	D	22	2.2	-	2.2	1.4			
00	D	27	2.7	-	2.7	> 2.2			
	D	35	3.5	2.8	3.5	> 2.7	8)		
0 B	D	22	2.1	-	2.2	1.4	2)		
UD	D	32	3.2	-	3.2	> 2.2			
	D	42	4.2	-	4.2	> 3.2			
	D	52	5.2	4.7	5.2	> 4.2	8)		
	D	56	5.6	4.7	5.6	> 5.2	1) 8)		
1B	М	27	2.7	-	2.7	> 2.2			
Ю	М	31	3.1	-	3.1	> 2.7			
	D	42	4.2	-	4.2	3.1			
	D	52	5.2	-	5.2	> 4.2			
	D	62	6.2	-	6.2	> 5.2			
	D	72	7.2	6.2	7.2	> 6.2	8)		
	D	76	7.6	6.9	7.6	> 7.2	1) 8)		
ХВ	D	52	5.2	7.2	5.0	4.4			
	D	62	6.2	7.2	6.0	5.4			
	D	72	7.2	7.2	7.0	6.4			
	D	82	8.2	7.2	8.0	7.4	1)		
	М	21	2.1	-	2.2	1.4	3)		
2B	М	32	3.1	-	3.2	> 2.2	3)		
	D	42	4.2	-	4.2	> 3.2			
	D	52	5.2	-	5.2	> 4.2			
	D	62	6.2	-	6.2	> 5.2			
	D	72	7.2	-	7.2	> 6.2			
	D	82	8.2	-	8.2	> 7.2			
	D	92	9.2	8.6	9.2	> 8.2	8)		
	D	99	9.9	8.6	9.9	> 9.2	1) 8)		

	Refer	rence	Coll	let ø	Cab	ole ø	
	Туре	Code	ø A	øΒ	max.	min.	Notes
3B	М	52	5.2	-	5.2	> 4.2	4)
30	D	62	6.2	-	6.2	4.9	
	D	72	7.7	-	7.7	> 6.2	
	D	92	9.2	-	9.2	> 7.7	
	D	10	10.2	-	10.0	> 9.2	
	D	11	11.0	-	11.0	> 10.1	
	D	12	12.0	10.2	11.9	10.8	1)
	М	62	6.2	-	6.2	> 5.2	5)
4B	М	72	7.2	-	7.2	> 6.2	5)
	М	82	8.2	-	8.2	> 7.2	5)
	М	92	9.2	8.6	9.2	> 8.2	6)
	D	10	10.8	-	10.5	9.1	
	D	12	12.3	-	12.0	10.6	
	D	13	13.8	12.5	13.5	12.1	
	D	15	15.3	12.5	15.0	13.6	7)
	D	16	16.3	12.5	16.0	15.1	1)
5D	D	11	11.8	-	11.5	9.6	
5 B	D	13	13.8	-	13.5	11.6	
	D	15	15.8	-	15.5	13.6	7)
	D	17	17.8	-	17.5	15.6	1)
	D	19	19.8	-	19.5	17.6	1)
	D	21	21.8	-	21.5	19.6	1)
	D	23	23.8	21.8	23.5	21.6	1)
	D	25	25.3	21.8	25.0	23.6	1)

Collets (B, K and T series)

Note: all dimensions are in millimetres.

these collets cannot be used for connector models with nut for fitting a bend relief. No bend relief available for this cable size.
 the inner diameter of the smallest bend relief available is 2.5 mm (in TPU) / 1.7 mm (in silicone).

a) for OB bend relief.
b) for 1B bend relief.
c) for 2B bend relief.
c) for 2B bend relief.

6) for 4B bend relief.

⁷⁾ the inner diameter of the largest bend relief available is 14.5 mm.

⁸ for FSG model, standard cable diameter reduced as follow: 0B series (D52) = 4.7 mm, 2B series (D92) = 8.6 mm. For larger diameter use a "K" type collet, please check online Part Search for additional details.

C and K type collets for K series

	C type							
	K type oversize cable c)0 :T			
	Refe	rence	Col	let ø	Cab	ole ø		
	Туре	Code	ø A	øΒ	max.	min.	Notes	
	С	10	1.6	-	1.2	1.0	1)	
0K	С	15	1.6	-	1.5	1.3	1)	
	С	20	2.1	-	2.0	1.6	1)	
	С	25	3.1	-	2.5	2.1		
	С	30	3.1	-	3.0	2.6		
	С	35	4.2	4.2	3.5	3.1		
	С	40	4.2	4.2	4.0	3.6		
	С	45	5.2	5.2	4.5	4.1		
	С	50	5.2	5.2	5.0	4.6		
	С	15	1.6	-	1.5	1.3		
1K	С	20	2.2	-	2.0	1.6		
	С	25	3.2	-	2.5	2.1		
	С	30	3.2	-	3.0	2.6		
	С	35	4.2	-	3.5	3.1		
	С	40	4.2	-	4.0	3.6		
	С	45	5.2	-	4.5	4.1		
	С	50	5.2	-	5.0	4.6		
	С	55	6.2	6.2	5.5	5.1		
	С	60	6.2	6.2	6.0	5.6		
	С	65	7.2	6.7	6.5	6.1		
	К	70	7.2	-	7.0	6.6	3)	
	К	75	8.2	8.2	7.5	7.1	3)	
	К	80	8.2	8.2	8.0	7.6	3)	
	К	85	9.2	8.6	8.5	8.1	3)	
or	С	15	2.2	-	1.5	1.3		
2K	С	20	2.2	-	2.0	1.6		
	С	25	3.2	-	2.5	2.1		
	С	30	3.2	-	3.0	2.6		
	С	35	4.2	-	3.5	3.1		
	С	40	4.2	-	4.0	3.6		
	С	45	5.2	-	4.5	4.1		
	С	50	5.2	-	5.0	4.6		
	С	55	6.2	-	5.5	5.1		
	С	60	6.2	-	6.0	5.6		
	С	65	7.2	-	6.5	6.1		

	Refer	rence	Col	let ø	Cab	ole ø	Natas
	Туре	Code	ø A	øΒ	max.	min.	Notes
2K	С	70	7.2	-	7.0	6.6	
	С	75	8.2	8.2	7.5	7.1	
	С	80	8.2	8.2	8.0	7.6	
	С	85	9.2	8.6	8.5	8.1	
	К	90	9.2	-	9.0	8.6	4)
	К	95	10.2	10.2	9.5	9.1	4)
	К	10	10.2	10.2	10.0	9.6	4)
	К	11	11.2	10.6	10.5	10.1	4)
ЗК	С	30	3.2	-	3.0	2.6	
JA	С	35	4.2	-	3.5	3.1	
	С	40	4.2	-	4.0	3.6	
	С	45	5.2	-	4.5	4.1	
	С	50	5.2	-	5.0	4.6	
	С	55	6.2	-	5.5	5.1	
	С	60	6.2	-	6.0	5.6	
	С	65	7.2	-	6.5	6.1	
	С	70	7.2	-	7.0	6.6	
	С	75	8.2	-	7.5	7.1	
	С	80	8.2	-	8.0	7.6	
	С	85	9.2	-	8.5	8.1	
	С	90	9.2	-	9.0	8.6	
	С	95	10.2	10.2	9.5	9.1	
	С	10	10.2	10.2	10.0	9.6	
	С	11	11.2	10.6	10.5	10.1	
	К	11	12.3	-	12.0	10.6	5)
	К	12	13.8	13.8	12.8	12.1	5)
	К	13	13.8	13.8	13.5	12.9	5)
	к	14	15.3	15.3	14.0	13.6	5)
	к	15	15.3	15.3	15.0	14.1	2)

Note: all dimensions are in millimetres.
¹⁾ the inner diameter of the smallest bend relief available is 2.5 mm (in TPU) / 1.7 mm (in silicone).
²⁾ the inner diameter of the largest bend relief available is 14.5 mm.
³⁾ for 2B bend relief.
⁴⁾ for 3B bend relief.
⁵⁾ for 4B bend relief.

C and K type collets for K series

	C type	0	0 :0	টুর (
	K type oversize cable co) 0 :0		
	Refe	rence	Coll	et ø	Cab	le ø	
	Туре	Code	ø A	øΒ	max.	min.	Notes
4K	С	50	6.3	-	5.0	4.8	
41	С	55	6.3	-	5.5	5.1	
	С	60	6.3	-	6.0	5.6	
	С	65	7.3	-	6.5	6.1	
	С	70	7.3	-	7.0	6.6	
	С	75	8.3	-	7.5	7.1	
	С	80	8.3	-	8.0	7.6	
	С	85	9.3	-	8.5	8.1	
	С	90	9.3	-	9.0	8.6	
	С	95	10.8	-	9.5	9.1	
	С	10	10.8	-	10.5	9.6	
	С	11	12.3	-	12.0	10.6	
	С	12	13.8	13.8	12.8	12.1	
	С	13	13.8	13.8	13.5	12.9	
	С	14	15.3	15.3	14.0	13.6	
	С	15	15.3	15.3	15.0	14.1	2)
	К	16	17.8	-	16.5	15.6	1)
	K	17	17.8	-	17.5	16.6	1)
	К	18	19.8	-	18.5	17.6	1)
	К	19	19.8	-	19.5	18.6	1)
	К	20	21.8	-	20.5	19.6	1)
	К	21	21.8	-	21.5	20.6	1)
	К	22	23.8	23.8	22.5	21.6	1)
	К	23	23.8	23.8	23.5	22.6	1)

C type

	Refe	rence	Coll	et ø	Cable ø		Natas
	Туре	Code	ø A	øΒ	max.	min.	Notes
5K	С	10	11.8	-	10.5	9.6	
JK	С	11	11.8	-	11.5	10.6	
	С	12	13.8	-	12.5	11.6	
	С	13	13.8	-	13.5	12.6	
	С	14	15.8	-	14.5	13.6	
	С	15	15.8	-	15.5	14.6	1)
	С	16	17.8	-	16.5	15.6	1)
	С	17	17.8	-	17.5	16.6	1)
	С	18	19.8	-	18.5	17.6	1)
	С	19	19.8	-	19.5	18.6	1)
	С	20	21.8	-	20.5	19.6	1)
	С	21	21.8	-	21.5	20.6	1)
	С	22	23.8	23.8	22.5	21.6	1)
	С	23	23.8	23.8	23.5	22.6	1)

Note: all dimensions are in millimetres. ¹⁾ these collets cannot be used for connector models with nut for fitting a bend relief. No bend relief available for this cable size. ²⁾ the inner diameter of the largest bend relief available is 14.5 mm.

C type

C and K type collets for T series

ReferCallMathMathTCodmaxminTC2.02.02.0C313.02.710C101.01.01.0C101.01.01.0C102.01.01.0C102.02.01.0C302.02.02.0C303.02.02.0C303.02.02.0C303.03.02.0C303.03.02.0C4004.03.02.0C4006.03.02.0C4006.03.02.0C4006.05.02.0C6006.05.02.0C2002.02.02.0C6006.03.02.0C3003.02.02.0C3003.03.02.0C3003.03.02.0C3003.03.02.0C4006.03.03.0C5005.03.03.0C6006.05.03.0C6006.05.03.0C6006.05.03.0C6006.06.03.0C6006.03.03.0<		C type		00 (0 (3	
TypeCodemax.min.IC272.62.4IC313.02.7IC101.21.01)IC151.51.31)IC202.01.61)IC202.01.61)IC202.01.61)IC303.02.61.6IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC404.03.62.1IC454.53.12.1IK505.55.12.1IK606.56.12.1IK202.52.12.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.53.12.1IC555.55.12.1IC555.55.12.1IC555.55.13.1IC555.55.13.1IC555.55.13.1IC555.55.13.1<		Refe	rence	Cable	ø (mm)	
TTIC313.002.77IC101.21.001)IC101.21.001)IC202.001.331)IC202.001.611)IC202.001.611)IC3003.002.6110IC3003.002.6110IC3003.002.6120IC4004.003.6020IC4505.505.1120IC6606.005.6120IC1006.005.6120IC1001.001.001.00IC2002.001.6120IC1003.002.011.01IC1003.002.011.01IC1003.003.012.01IC3003.003.012.01IC4004.003.603.01IC1005.005.011.01IC6006.005.013.01IC6006.005.013.01IC1005.005.013.01IC6006.005.013.01IC6006.005.013.01IC6006.005.013.01IC6006.005.013.01IC6006.005.013.01IC		Туре	Code	max.	min.	Notes
C313.02.7C101.21.01)C151.31)C202.01.61)C252.52.11C303.02.61C303.02.61C303.02.61C303.02.61C404.03.62C454.12K505.55.12K606.05.02K606.56.12K606.56.12K603.02.62K603.02.62K303.02.62C303.02.62C303.02.62C303.02.62C303.02.63C4504.54.12C606.05.65.1C606.05.63K757.57.13K858.58.13K858.58.13K303.02.63K303.02.13K303.03.13K303.03.03.1K <t< th=""><th></th><th>С</th><th>27</th><th>2.6</th><th>2.4</th><th></th></t<>		С	27	2.6	2.4	
C151.51.31)IC202.01.61)IC202.01.61)IC303.02.62.1IC353.53.11IC404.03.62.1IC404.03.62.1IC404.03.62.1IC455.55.12.1IK606.05.62.1IK656.55.12.1IC151.51.32.1IC202.01.62.1IC202.01.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.02.62.1IC303.03.63.1IC505.55.11.1IC655.55.13.1IC655.55.13.1IC655.55.13.1IC655.55.13.1IC655.55.13.1IC655.55.13.1IC655.55.13.1IC808.5<		С	31	3.0	2.7	
C151.31.31)C202.01.61)C252.52.1C303.02.6C353.53.1C404.03.6C454.54.1K505.04.6K606.05.6K606.56.1K606.56.1C151.51.3C202.01.6C303.02.6C303.02.6C303.02.6C303.02.6C303.02.6C303.02.6C303.02.6C555.55.1C505.05.1C666.56.1C656.55.1K707.06.6K808.07.6K858.58.1K858.58.1C151.51.3K808.07.6K808.58.1 <th>от</th> <th>С</th> <th>10</th> <th>1.2</th> <th>1.0</th> <th>1)</th>	от	С	10	1.2	1.0	1)
IC252.52.1IC303.02.6IC353.53.1IC404.03.6IC454.54.1IK505.04.62)IK606.05.62)IK606.05.62)IK656.56.12)IC151.31.3IC202.01.6IC303.02.6IC303.02.6IC303.02.6IC303.02.6IC303.02.6IC303.02.6IC303.02.6IC303.02.6IC655.55.1IC606.05.6IC656.56.1IC555.55.1IC656.56.1IC656.56.1IC656.56.1IC656.56.1IK707.06.6IK808.07.6IC151.33.1IC252.52.1IC202.01.6IC353.53.1IC353.53.1IC303.02.6IC252.52.1IC <th>UI</th> <th>С</th> <th>15</th> <th>1.5</th> <th>1.3</th> <th>1)</th>	UI	С	15	1.5	1.3	1)
IC303.02.6IC353.53.1IC404.03.6IC454.54.1IK505.04.62)IK606.05.62)IK656.55.12)IK656.56.12)IC151.51.32)IC202.01.62)IC252.52.12)IC303.02.62)IC303.02.62)IC305.04.62)IC305.05.11.13IC303.02.62)IC305.05.11.13IC505.05.11.13IC505.05.11.13IC505.05.11.13IC606.05.63)IC656.55.11.13IC606.05.63)IK707.06.63)IK808.07.63)IC151.51.3IC202.01.6IC202.01.6IC303.02.6IC303.02.6IC303.02.6IC303.02.6IC303.0 </th <th></th> <th>С</th> <th>20</th> <th>2.0</th> <th>1.6</th> <th>1)</th>		С	20	2.0	1.6	1)
IC353.53.1IC404.03.6IC454.1IIK505.04.62)IK555.12)1IK606.05.02)IK656.56.12)IK601.51.32)IC202.01.62)IC202.01.61.3IC202.01.61.6IC303.02.61.6IC353.53.11.3IC404.03.61.6IC404.03.61.6IC505.04.61.6IC505.04.61.6IC606.05.61.1IC606.05.63.1IC6555.55.13.1IC6656.56.13.1IK707.06.63.1IK808.07.63.1IC151.51.31.5IC202.01.61.6IC252.52.11.6IC202.01.61.6IC252.52.11.6IC303.02.62.1IC303.02.61.6IC252.52.11.6<		С	25	2.5	2.1	
C404.03.6C454.54.1K505.04.62)K555.55.12)K606.05.62)K656.56.12)K202.01.32)C202.01.32)C202.01.62)C252.52.12)C303.02.62)C353.53.12)C4004.03.62)C4504.54.12)C5505.55.12)C6006.05.62)C6506.55.12)C6506.55.13)K7507.57.13)K8508.58.13)K8508.58.13)C2002.01.63)K303.02.63.1C2002.01.63.1C2002.01.63.1C3003.02.63.1C3003.02.63.1C3003.02.63.1C3003.02.63.1C3003.02.63.1C3003.02.63.1 <th></th> <th>С</th> <th>30</th> <th>3.0</th> <th>2.6</th> <th></th>		С	30	3.0	2.6	
IC454.54.1K505.04.62)K555.55.12)K606.05.62)K656.56.12)TC202.01.6C252.52.11C303.02.61C353.53.11C404.03.61C454.54.11C505.55.11C505.55.11C606.05.61C655.55.11C606.05.63K707.06.63)K808.07.63)K858.58.13)C252.52.11C303.07.63)K808.07.63)K858.58.13)C252.52.11C303.02.61C303.02.61C353.53.11		С	35	3.5	3.1	
K505.04.62)K555.12)K606.05.62)K656.56.12)TC151.31.3C202.01.62)C202.01.62)C303.02.62.1C303.02.62.1C303.02.62.1C303.02.62.1C4004.03.62.1C4004.03.62.1C4005.05.11.3C5505.55.12.1C6006.05.63.1C6506.56.13.1K8008.07.63.1K8008.07.63.1C1501.31.33.1C1501.51.33.1C2502.52.13.1C2002.01.63.1K8008.07.63.1C2002.01.63.1C2002.01.63.1C2002.01.63.1C2002.01.63.1C2002.01.63.1C2002.01.63.1C2002.02.11.3 </th <th></th> <th>С</th> <th>40</th> <th>4.0</th> <th>3.6</th> <th></th>		С	40	4.0	3.6	
K555.55.12)K606.05.62)K656.12)K651.51.32)ITC202.01.62)IC202.01.62)IC202.01.62)IC303.02.62)IC353.12)IC404.03.6IC454.12)IC505.14.1IC555.14.1IC555.15.1IC606.05.6IC6555.55.1IC6656.56.1IC6656.56.1IC6657.13)IK808.07.6IC151.3IC252.5IC202.0IC151.3IC151.3IC252.5IC202.0IC202.0IC202.1IC202.1IC202.1IC202.1IC202.1IC202.1IC202.1IC30IC30IC30IC30IC30IC30IC30 <th></th> <th>С</th> <th>45</th> <th>4.5</th> <th>4.1</th> <th></th>		С	45	4.5	4.1	
K6006.05.62)K6556.12)TC151.31.3C202.01.62C252.52.11.3C3003.02.62C3003.02.62.1C3003.02.62C3003.02.62.1C4004.03.62C4004.03.62C4005.04.62C5505.14.12C6006.05.61C6506.56.13K7007.06.63)K8008.07.63)K8008.11.3C2002.01.6C2002.01.6K8008.13)C2002.01.6C2002.01.6C3003.02.1C2002.01.6C3003.02.1C2002.01.6C3003.02.1C2002.01.6C3003.02.1C3003.02.1C3003.02.1C3003.02.1C3003.02.1		К	50	5.0	4.6	2)
K656.62)ITC151.32)IC202.01.62)IC252.52.12)IC303.02.62)IC353.53.12)IC404.03.62)IC454.12)IC505.04.6IC555.15.1IC666.56.1IC666.05.6IC6656.56.1IC6656.56.1IC6657.13)IC151.33)IC151.33)IC252.52.1IC202.01.6IC308.1IC303.1IC303.1IC303.1IC303.1IC303.1		К	55	5.5	5.1	2)
IC 15 1.3 1.3 IC 20 2.0 1.6 1.6 IC 20 2.0 1.6 1.6 IC 25 2.5 2.1 1.6 IC 300 3.0 2.6 1.6 IC 30 3.0 2.6 1.6 IC 30 3.0 2.6 1.6 IC 30 3.0 2.6 1.6 IC 40 4.0 3.6 1.6 IC 40 4.0 3.6 1.6 IC 50 5.0 4.6 1.6 IC 50 5.5 5.1 1.6 IC 660 6.0 5.6 3.1 IK 70 7.0 6.6 3) IK 80 8.0 7.6 3) IK 80 8.0 1.3 1.5 IC 20 2.0 1.6 1.6		К	60	6.0	5.6	2)
IT C 20 2.0 1.6 C 25 2.5 2.1 C 30 3.0 2.6 C 35 3.5 3.1 C 40 4.0 3.6 C 45 4.5 4.1 C 50 5.0 4.6 C 55 5.5 5.1 C 60 6.0 5.6 C 65 6.5 6.1 C 65 6.5 3.1 K 70 7.0 6.6 3) K 80 8.0 7.6 3) K 85 8.5 8.1 3) K 85 8.5 8.1 3) C 15 1.5 1.3		К	65	6.5	6.1	2)
C 20 2.0 1.6 C 25 2.5 2.1 C 30 3.0 2.6 C 35 3.5 3.1 C 40 4.0 3.6 C 45 4.5 4.1 C 50 5.0 4.6 C 55 5.5 5.1 C 60 6.0 5.6 C 65 6.5 6.1 K 70 7.0 6.6 3) K 80 8.0 7.6 3) K 85 8.5 8.1 3) K 85 8.5 1.3 3) C 15 1.5 1.3 3) C 25 2.5 2.1 3) C 30 3.0 2.6 3) C 30 3.0 2.6 3)		С	15	1.5	1.3	
C303.02.6C353.53.1C404.03.6C454.1C505.04.6C555.1C606.05.6C656.1K707.06.63)K808.07.13)K858.13)C1.51.3C202.01.6C303.02.1C303.02.1C303.03.1	11	С	20	2.0	1.6	
C 35 3.5 3.1 C 40 4.0 3.6 C 45 4.5 4.1 C 50 5.0 4.6 C 55 5.5 5.1 C 60 6.0 5.6 C 65 6.5 6.1 C 65 7.5 7.1 K 70 7.0 6.6 3) K 80 8.0 7.6 3) K 85 8.5 8.1 3) C 15 1.5 1.3 1.5 C 20 2.0 1.6 1.5 C 25 2.5 2.1 1.5 C 30 3.0 2.6 1.5 C 30 3.0 2.6 1.5 C 30 3.0 2.1 1.5 C 30 3.0 3.1 1.5		С	25	2.5	2.1	
C404.03.6C454.1.C505.04.6C555.1.C606.05.6C656.1.C657.13)K757.57.13)K808.07.63)K858.58.13)C151.3.C202.01.6C303.02.1C303.02.1C353.53.1		С	30	3.0	2.6	
C 45 4.5 4.1 C 50 5.0 4.6 C 55 5.5 5.1 C 60 6.0 5.6 C 65 6.5 6.1 C 65 6.5 6.1 K 70 7.0 6.6 3) K 80 8.0 7.6 3) K 85 8.5 8.1 3) C 15 1.5 1.3 1.5 C 20 2.0 1.6 1.5 C 25 2.5 2.1 1.5 C 30 3.0 2.6 1.5 C 35 3.5 3.1 1.5		С	35	3.5	3.1	
C 50 5.0 4.6 C 55 5.5 5.1 C 60 6.0 5.6 C 60 6.0 5.6 C 65 6.5 6.1 K 70 7.0 6.6 3) K 80 8.0 7.1 3) K 85 8.5 8.1 3) C 15 1.5 3) 3) C 20 2.0 1.6 3) C 30 8.5 8.1 3) C 20 2.0 1.6 3) C 30 3.0 2.1 3) C 30 3.0 2.1 3)		С	40	4.0	3.6	
C 55 5.1 C 60 5.0 5.1 C 60 5.0 5.1 C 60 5.0 5.1 C 60 6.0 5.6 C 65 6.1 6.1 K 70 7.0 6.6 3) K 80 8.0 7.6 3) K 85 8.5 8.1 3) C 15 1.3 1.3 1.3 C 25 2.5 2.1 1.3 C 30 3.0 3.0 2.1 C 30 3.0 3.0 3.1		С	45	4.5	4.1	
C 60 6.0 5.6 C 65 6.5 6.1 K 70 7.0 6.6 3) K 75 7.5 7.1 3) K 80 8.0 7.6 3) K 85 8.5 8.1 3) C 15 1.5 1.3 1.5 C 20 2.0 1.6 1.5 C 25 2.5 2.1 1.5 C 30 3.0 2.0 1.6 C 30 3.0 3.0 2.1		С	50	5.0	4.6	
C 65 6.1 (1) K 70 7.0 6.6 3) K 75 7.5 7.1 3) K 80 8.0 7.6 3) K 80 8.0 7.6 3) K 85 8.5 8.1 3) C 15 1.5 1.3 (1) C 20 2.0 1.6 (1) C 30 3.0 2.1 (1) C 30 3.0 2.6 (1) C 30 3.0 3.0 (2)		С	55	5.5	5.1	
K 70 7.0 6.6 3) K 75 7.5 7.1 3) K 80 8.0 7.6 3) K 80 8.0 7.6 3) K 85 8.5 8.1 3) 21 C 15 1.5 1.3 C 20 2.0 1.6 . C 25 2.5 2.1 . C 30 3.0 3.0 . C 30 3.0 3.0 . C 30 30 3.0 . C 30 30 3.0 . C 30 30 . .		С	60	6.0	5.6	
K 75 7.5 7.1 3) K 80 8.0 7.6 3) K 85 8.1 3) K 85 1.5 1.3 C 20 2.0 1.6 C 25 2.1 2.1 C 30 3.0 3.0 C 30 3.0 3.0 C 30 3.0 3.0 C 30 3.0 3.0		С	65	6.5	6.1	
K 80 8.0 7.6 3) K 85 8.5 8.1 3) C 15 1.5 1.3 . C 20 2.0 1.6 . C 25 2.5 2.1 . C 30 . . . C 20 2.0 1.6 . C 30 3.0 2.1 . C 30 3.0 3.0 . C 30 30 3.0 . C 30 30.0 3.0 . C 30 30.0 30.0 .		К	70	7.0	6.6	3)
K 85 8.5 8.1 3) C 15 1.5 1.3 C 20 2.0 1.6 C 25 2.5 2.1 C 30 30 2.6 C 30 30 3.0 2.6 C 30 3.0 3.1		К	75	7.5	7.1	3)
C 15 1.5 1.3 C 20 2.0 1.6 C 25 2.5 2.1 C 30 3.0 2.6 C 35 3.5 3.1		К	80	8.0	7.6	3)
C 20 2.0 1.6 C 25 2.5 2.1 C 30 3.0 2.6 C 35 3.5 3.1		К	85	8.5	8.1	3)
C 20 2.0 1.6 C 25 2.5 2.1 C 30 3.0 2.6 C 35 3.5 3.1		С	15	1.5	1.3	
C 30 3.0 2.6 C 35 3.5 3.1	21	С	20	2.0	1.6	
C 35 3.5 3.1		С	25	2.5	2.1	
		С	30	3.0	2.6	
C 40 4.0 3.6		С	35	3.5	3.1	
		С	40	4.0	3.6	

	Refer	rence	Cable ø (mm		
	Туре	Code	max.	min.	Notes
от	С	45	4.5	4.1	
2 T	С	50	5.0	4.6	
	С	55	5.5	5.1	
	С	60	6.0	5.6	
	С	65	6.5	6.1	
	С	70	7.0	6.6	
	С	75	7.5	7.1	
	С	80	8.0	7.6	
	С	85	8.5	8.1	
	К	90	9.0	8.6	4)
	К	95	9.5	9.1	4)
	К	10	10.0	9.6	4)
	К	11	10.5	10.1	4)
от	С	30	3.0	2.6	
3Т	С	35	3.5	3.1	
	С	40	4.0	3.6	
	С	45	4.5	4.1	
	С	50	5.0	4.6	
	С	55	5.5	5.1	
	С	60	6.0	5.6	
	С	65	6.5	6.1	
	С	70	7.0	6.6	
	С	75	7.5	7.1	
	С	80	8.0	7.6	
	С	85	8.5	8.1	
	С	90	9.0	8.6	
	С	95	9.5	9.1	
	С	10	10.0	9.6	
	С	11	10.5	10.1	
	К	11	12.0	10.6	
	К	12	12.8	12.1	
	К	13	13.5	12.9	
	К	14	14.0	13.6	
	К	15	15.0	14.1	5)

Note: all dimensions are in millimetres. ¹⁾ the inner diameter of the smallest bend relief available is 2.5 mm (in TPU) / 1.7 mm (in silicone). ²⁾ for 1B bend relief. ³⁾ for 2B bend relief. ⁴⁾ for 3B bend relief. ⁵⁾ the inner diameter of the largest bend relief available is 14.5 mm.

Bend relief for B series models with collet

			`	Need to be ordered	
	Ref.		llet	Need to be ordered separately	
		Туре	Code	(see pages 145 and 146)	
00	z	D	22 to 35	GMA.00 GMB.00	
0B	z	D	22 to 52	GMA.0B	
1B	z	М	27 and 31	GMA.1B	
П	2	D	42 to 72	GMA.1B	
ХВ	z	D	52 to 72	GMA.1B	
2B	z	М	21 and 32	GMA.0B	
20	2	D	42 to 92	GMA.2B	
3B	z	М	52	GMA.1B	
30	-	D	62 to 10	GMA.3B.•••.••	
4B		М	62 to 82	GMA.2B	
	Z	М	92	GMA.4B	
		D	10 to 15 ¹⁾	GMA.4B.•••.••	
5B	z	D	11 to 15 ¹⁾	GMA.4B	

Bend relief for K series models with collet						
				Need to be ordered		
	Def	Co	llet	Need to be ordered		
	Ref.	Туре	Code	separately (see pages 145 and 146)		
0K	z	С	10 to 50	GMA.0B		
1K	z	С	15 to 65	GMA.1B		
IR		К	70 to 85	GMA.2B		
2K	z	С	15 to 85	GMA.2B		
21	2	К	90 to 10	GMA.3B.•••.••		
3K	z	С	30 to 10	GMA.3B		
JK	2	К	11 to 15 ²⁾	GMA.4B		
4K	z	С	50 to 15 ³⁾	GMA.4B		
5K	z	С	10 to 14	GMA.4B		

Note: all dimensions are in millimetres. ¹⁾ for D15 see page 67. ²⁾ for K15 see page 68. ³⁾ for C15 see page 69.

Bend relief for T series models with collet

		Nee		
	Ref.	Co	llet	Ν
	Rel.	Туре	Code	(see
тт	z	С	27 and 31	
ОТ	z	С	10 to 45	
U	2	К	50 to 65	
1T	z	С	15 to 65	
	2	К	70 to 85	

Need to be ordered

Need to be ordered				
separately				
(see pages 145 and 146)				

GMB.00
GMA.0B
GMA.1B
GMA.1B
GMA.2B

	Ref.	Collet			
		Туре	Code		
2 T	z	С	15 to 85		
		К	90 to 10		
эт	z	С	30 to 10		
3 T		К	11 to 15 ⁴⁾		

Need to be ordered separately (see pages 145 and 146)
GMA.2B
GMA.3B
GMA.3B
GMA.4B

Note: all dimensions are in millimetres. ⁴⁾ for K15 see page 70.

Bend relief for K series models with collet

Variant (B, K and T series)

			lug and pla	stic shell	Aluminium alloys		
Ref.	Colour	PSU	PPSU	PA.6	Anodized colour	Anodized colour for bend relief collet nut	
Α	blue			•	•		
В	white	•		•			
G	grey	•		•			
J	yellow			•	•		
М	brown			•			
Ν	black			•	•		
R	red			•	•		
S	orange			•			
т	natural				•		
V	green			•	•		
L	black					•	
X	natural					•	
F	cream		•				

Colour of the bridge plug shells and connectors shell made of plastic material and aluminium alloys

Note: other anodizing colours are available for connectors with collet nut for bend relief. Please consult us.

Watertight and vacumtight socket and coupler models (B, K and T series)

	Refe	rence	Model	
Watertight		Vacuumtight	Widder	
В	Ρ	PV	YH•, HG•, HN•, HH•, HC•, HE•, HM•, S••	
К	Ρ	PV	HG•, HE•, S••	
т	Р	PV	HG●, HE●, HM●	

O-ring and gasket material (K and T series)

Standard connectors are delivered with silicone o-ring and gaskets. The vacuumtight models, identified with the letter «PV», are delivered with Viton[®] gaskets. Other gaskets material can be delivered upon special request.

Ref.	O-ring material
н	FPM (Viton [®])
E	EPDM
D	FPM (Viton®) and collet nut for bend relief

Π

S Series

solder or print contacts (straight or elbow)

polarisation by stepped insert (half-moon) fitted with male and female contacts

- S series connectors have main features as follows: security of the Push-Pull self-latching system
- unipole types transmitting current up to 230 A and multipole types with up to 106 contacts
 360° screening for full EMC shielding.

Part Numbering System

FFA.1S.304.CLAC32 = straight plug with cable collet, 1S series, multipole type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, 2 male and 2 female solder contacts, C type collet for a 3.2 mm diameter cable.

PCA.1S.304.CLLC32Z = free socket, with cable collet, 1S series, multipole type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, 2 female and 2 male solder contacts, C type collet for a 3.2 mm diameter cable and nut for fitting a bend relief.

ERA.1S.304.CLL = fixed socket, nut fixing, 1S series, multipole type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, 2 female and 2 male solder contacts.

RAD.1S.304.CLL = straight coupler, nut fixing, 1S series, multipole type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, 2 female and 2 male contacts each end.

Part Section Showing Internal Components

Technical Characteristics Mechanical and Climatical

Characteristics	Value	Standard	
Endurance ¹⁾	> 5000 cycles	IEC 60512-5 test 9a	
Humidity	up to 98	5% at 60° C	
Temperature range	- 55° C, + 250° C		
Resistance to vibrations	10-2000 Hz, 15g	IEC 60512-4 test 6d	
Shock resistance	100 g, 6 ms	IEC 60512-4 test 6c	
Salt spray corrosion test ²⁾	>1000h	IEC 60512-6 test 11f	
Protection index (mated)	IP 50	IEC 60529	
Climatical category	55/175/21	IEC 60068-1	

FFA Straight plug, cable collet

Reference		Dimensions (mm)			
Model	Series	А	L	Μ	S2
FFA	00	6.4	26.0	18.0	4.5
FFA	0S	9.0	34.5	24.5	6.5
FFA	1S	12.0	42.5	31.5	8.5
FFA	2S	14.8	52.0	40.0	11.0
FFA	3S	17.8	61.0	46.0	14.0
FFA	4S	24.8	77.0	59.0	19.0
FFA	5S	35.0	103.0	78.0	29.0
FFA	6S	46.0	106.0	81.0	38.0

M1 Cable assembly (pages 175 to 177)

FFA Straight plug with oversize cable collet ¹⁾

Refe	rence	Dimensions (mm)							
Model	Series	А	A B L N			S1	S2		
FFA	00	6.4	8.0	34.0	26.0	7.0	6.5		
FFA	0S	9.0	10.0	45.5	35.5	9.0	8.5		
FFA	1S	12.0	13.0	57.0	46.0	12.0	11.0		
FFA	2S	14.8	18.0	67.0	55.0	14.0	14.0		
FFA	3S	17.8	21.0	85.0	70.0	19.0	19.0		
FFA	4S	24.8	31.8	107.0	89.0	28.5	29.0		
FFA	FA 5S		41.8	138.0	113.0	37.5	38.0		

M2 Cable assembly (pages 175 and 178)

Note: ¹⁾ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 115).

Metal housing models

Electrical

ł

Chara	acteristics	Value	Standard
Shielding efficiency	at 10 MHz	> 75 dB	IEC 60169-1-3
	at 1 GHz	> 40 dB	IEC 60169-1-3

Note: The various tests have been carried out with FFA and ERA connector pairs, with chrome-plated brass shell and PEEK insulator. Detailed electrical characteristics, as well as materials and treatment are

presented in the chapter Technical Characteristics on page 182.
 see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force.
 for chrome plated product («C» material code).

Straight plug, cable collet and nut for fitting a bend relief ¹⁾ **FFA**

Refer	rence	Dimensions (mm)						
Model	Series	А	A L		S2			
FFA	00	6.4	26.0	18.0	6			
FFA	0S	9.0	34.5	24.5	7			
FFA	1S	12.0	42.5	31.5	9			
FFA	2S	14.8	52.0	40.0	12			
FFA	3S	17.8	61.0	46.0	14			
FFA	4S	24.8	77.0	59.0	20			

M1 Cable assembly (pages 175 and 176)

Note: 1) to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see page 145).

S2

6.5

8.5

FFB Straight plug, cable collet and safety locking ring

Straight plug, cable collet, front seal and nut for fitting a bend relief ¹) (protected to IP54 when mated) FFE

Refe	rence	Dimensions (mm)						
Model	Series	А	L	М	S2			
FFE	00	7.4	7.4 26.0		6			
FFE	0S	10.0	34.5	24.5	7			
FFE	1S	13.0	42.5	31.5	9			
FFE	2S	16.0	52.0	40.0	12			
FFE	3S	19.0	61.0	46.0	14			

M1 Cable assembly (pages 175 and 176)

Note: 1) to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see page 145).

FFF Straight plug, non-latching, cable collet

Refe	rence	Dimensions (mm)						
Model	Series	А	L	М	S2			
FFF	00	6.4	26.0	18.0	4.5			
FFF	0S	9.0	34.5	24.5	6.5			
FFF	1S	12.0	42.5	31.5	8.5			
FFF	2S	14.8	52.0	40.0	11.0			

M1 Cable assembly (pages 175 and 176)

FFS Straight plug for cable crimping

Refe	rence	Dimensions (mm)						
Model	Series	А	L	М	S1	S2		
FFS 00		6.4	31	23	5.5	5.5		

M5 Cable assembly (page 175)

Note: Model available only with crimp backnut E31 similar to 00.250 series.

FAA Fixed plug non-latching, nut fixing

Refer	rence	Dimensions (mm)								
Model	Series	А	В	е	Е	L	L1)	М	S1	S3
FAA	00	8	10.2	M7x0.5	2.0	-	15.5	9.0	6.3	9
FAA	0S	10	12.4	M9x0.6	2.0	18.5	18.0	11.2	8.2	11
FAA	1S	14	15.8	M12x1.0	2.5	22.5	21.7	12.5	10.5	14
FAA	2S	18	19.2	M15x1.0	4.0	25.0	25.3	13.8	13.5	17
FAA	3S	22	25.0	M18x1.0	4.0	31.0	29.0	17.0	16.5	22
FAA	4S	28	34.0	M25x1.0	2.5	35.5	39.0	20.5	23.5	30
FAA	5 S	40	40.0	M35x1.0	2.5	45.0	-	28.0	33.5	_
FAA	6S	54	54.0	M48x1.5	2.5	45.0	-	28.0	-	-

P1 Panel cut-out (page 158)

P2 Panel cut-out 6S series (page 158)

Note: 1) unipole model

FLC/FLM Elbow (90°) plug, cable collet

Refe	rence		Dimensions (mm)							
Model	Series	А	Н	L	М	S1	S2			
FLC	00	7.5	16.5	19.5	11.5	4.5	6			
FLM	0S	9.5	5 23.0 30.0		20.0	7.0	8			
FLM	1S	12.0	29.0	36.0	25.0	9.0	10			
FLM	2S	14.8	35.0	41.5	29.5	12.0	13			

M3 Cable assembly (pages 175 to 177)

Note: FLC.00 model is used for the unipole type. For 0S, 1S and 2S series use «D» type collet, see page 67.

FLA Elbow (90°) plug, cable collet

FLS Elbow (90°) plug for cable crimping

Refe	rence	Dimensions (mm)							
Model	Series	Α	A1	Н	L	М	S1	S2	
FLA	3S	21	21	44.0	38.5	23.5	15	14	
FLA	4S	28	28	56.0	49.0	31.0	20	19	
FLA	5S	_	37	76.5	65.0	40.0	30	29	
FLA	6S	-	48	94.0	81.0	56.0	40	38	

M3 Cable assembly (pages 175 to 177)

Note: fig. 1 is used for the unipole type, fig. 2 is used for the multipole type.

Maximum operating temperature: 120°C

Refe	rence	Dimensions (mm)					
Model	Series	А	Н	L	М		
FLS	00	9	16	17.5	9.5		

M6 Cable assembly (page 175)

Note: Model available only with crimp backnut E31 similar to 00.250 series.

Maximum operating temperature: 120°C

ERN

ERA Fixed socket, nut fixing

Refe	rence	Dimensions (mm)								
Model	Series	А	В	е	Е	L	L1)	М	S1	S3
ERA	00	8	10.2	M7x0.5	5.5	-	14.5	1.0	6.3	9
ERA	0S	10	12.4	M9x0.6	7.0	17.5	18.0	1.2	8.2	11
ERA	1S	14	15.8	M12x1.0	7.5	21.0	20.5	1.5	10.5	14
ERA	2S	18	19.2	M15x1.0	8.5	24.5	23.5	1.8	13.5	17
ERA	3S	22	25.0	M18x1.0	11.5	29.0	27.5	2.0	16.5	22
ERA	4S	28	34.0	M25x1.0	12.0	34.0	33.5	2.5	23.5	30
ERA	5 S	40	40.0	M35x1.0	15.5	45.0	78.5	3.0	33.5	-
ERA	6S	54	54.0	M48x1.5	16.0	45.0	-	3.5	45.5	-

P1 Panel cut-out (page 158)

Note: 1) unipole model.

Note: The 5S series is delivered with a tapered washer and a round nut. The 6S series is delivered without a locking washer and with a round nut.

Contraction of the second seco

Fixed socket, nut fixing, with earthing tag

Refer	rence	Dimensions (mm)								
Model	Series	s A B e		е	Е	L	L ¹⁾	М	S1	S3
ERN	0S	10	12.4	M9x0.6	7.0	19.3	19.3	1.2	8.2	11
ERN	1S	14	15.8	M12x1.0	7.5	22.4	22.4	1.5	10.5	14
ERN	2S	18	19.2	M15x1.0	8.5	26.3	26.3	1.8	13.5	17
ERN	3 S	22	25.0	M18x1.0	11.5	29.8	29.8	2.0	16.5	22

P1 Panel cut-out (page 158)

Note: 1) unipole model

Ref	erence			D	imen	sions	s (mm)			
Mode	Series	А	В	е	Е	F	L	L1)	М	S1	S3
ERC	00	8	10.2	M7x0.5	5.5	1.6	-	14.5	1.0	6.3	9
ERC	0S	10	12.4	M9x0.6	7.0	2.0	17.5	18.0	1.2	8.2	11
ERC	1S	14	15.8	M12x1.0	7.5	2.5	20.2	20.5	1.5	10.5	14

P1 Panel cut-out (page 158)

Note: 1) unipole model.

EHP Fixed socket, nut fixing, protruding shell

Refe	rence		Dimensions (mm)										
Model	Series	А	В	е	Е	L	L1)	М	S1	S3			
EHP	0S	10	12.4	M9x0.6	2.0	20.5	18.0	12.5	8.2	11			
EHP	1S	14	15.8	M12x1.0	3.5	20.2	20.5	12.0	-	14			
EHP	3S	22	25.0	M18x1.0	4.0	29.0	29.0	18.7	-	22			

P1 Panel cut-out 0S series (page 158)

P2 Panel cut-out (page 158)

Note: 1) unipole model

Refe	rence		Dimensions (mm)									
Model	Series	А	В	е	Е	L	L1)	Μ	Ρ	S1	S2	
EEP	1S	16	16.0	M12x1.0	6.5	20.2	20.5	3.5	11	10.5	13	
EEP	2S	20	19.5	M15x1.0	4.3	24.5	23.5	3.5	9	13.5	15	

P1 Panel cut-out (page 158)

Note: 1) unipole model.

è ø

<u>S 1/E max</u>

Refe	rence	Dimensions (mm)										
Model	Series	А	В	е	Е	L	L1)	М	S1	S3		
ERD	0S	12	12.4	M9x0.6	5.5	17.5	18.0	2.5	8.2	11		
ERD	1S	16	15.8	M12x1.0	6.0	20.2	20.5	3.5	10.5	14		
ERD	2S	20	19.2	M15x1.0	6.5	24.5	23.5	3.5	13.5	17		
ERD	3S	24	25.0	M18x1.0	9.0	29.0	27.5	4.5	16.5	22		
ERD	4S	30	34.0	M25x1.0	10.0	34.0	33.5	4.5	23.5	30		

P1 Panel cut-out (page 158)

Note: 1) unipole model.

Note: The 3S and 4S series are delivered with a conical nut.

EEP Fixed socket, nut fixing (back panel mounting)

ECP Fixed socket with two nuts, long threaded shell (back panel mounting)

Refe	rence			Dir	nensi	ons (n	nm)			
Model	Series	А	В	е	Е	L	L ¹⁾	М	S1	S3
ECP	0S	12	12.4	M9x0.6	8.5	17.5	18.5	2.5	8.2	11
ECP	1S	16	15.8	M12x1.0	10.0	20.2	20.5	3.5	10.5	14
ECP	2S	20	19.2	M15x1.0	11.0	24.5	26.0	3.5	13.5	17
ECP	3S	24	25.0	M18x1.0	14.0	29.0	30.0	4.5	16.5	22

P1 Panel cut-out (page 158)

Note: 1) unipole model.

Note: The 3S series is delivered with a conical nut.

ECP Fixed socket with two nuts, long threaded shell, straight contact for printed circuit (back panel mounting)

Refer	rence	Dimensions (mm)										
Model	Series	А	В	е	Е	М	Ν	S1	S3			
ECP	0S	12	12.4	M9x0.6	8.5	2.5	15.0	8.2	11			
ECP	1S	16	15.8	M12x1.0	10.0	3.5	17.5	10.5	14			
ECP	2S	20	19.2	M15x1.0	11.0	3.5	20.0	13.5	17			
ECP	3S	24	25.0	M18x1.0	14.0	4.5	24.0	16.5	22			

P1 Panel cut-out (page 158)

P21 PCB drilling pattern (page 166)

Note: The 3S series is delivered with a conical nut.

Note: this contact type is available for all Eee socket models. See page 167 for table of available types. Length «L» depends on the number of contacts, see table on page 167.

ECP Fixed socket with two nuts, long threaded shell, elbow (90°) contacts for printed circuit (back panel mounting)

Refe	rence	Dimensions (mm)										
Model	Series	А	В	е	Е	М	Ν	S1	S3			
ECP	0S	12	12.4	M9x0.6	8.5	2.5	15.0	8.2	11			
ECP	1S	16	15.8	M12x1.0	10.0	3.5	17.5	10.5	14			
ECP	2S	20	19.2	M15x1.0	11.0	3.5	20.0	13.5	17			
ECP	3S	24	25.0	M18x1.0	14.0	4.5	24.0	16.5	22			

P1 Panel cut-out (page 158)

P24 PCB drilling pattern (page 168)

Note: The 3S series is delivered with a conical nut.

Note: this contact type is available for all back panel mounting socket types. See page 168 for available types. Length «L» depends on the number of contacts, see PCB drilling pattern on page 168.

PCA Free socket, cable collet

Refe	rence	Dime	nsions	(mm)
Model	Series	А	L	S2
PCA	00	6.5	25.0	4.5
PCA	0S	8.9	33.5	6.5
PCA	1S	11.9	40.5	8.5
PCA	2S	14.8	50.0	11.0
PCA	3S	17.8	59.0	14.0
PCA	4S	24.8	75.0	19.0
PCA	5S	34.7	99.0	29.0
PCA	6S	46.0	102.0	38.0

M1 Cable assembly (pages 175 to 177)

PCA Free socket with oversize cable collet ¹⁾

Refe	rence	Dimensions (mm)								
Model	Series	А	В	L	S1	S2				
PCA	00	6.5	8.0	33.0	7.0	6.5				
PCA	0S	8.9	10.0	44.5	9.0	8.5				
PCA	1S	11.9	13.0	55.0	12.0	11.0				
PCA	2S	14.8	18.0	65.0	14.0	14.0				
PCA	3S	17.8	21.0	83.0	19.0	19.0				
PCA	4S	24.8	31.8	105.0	28.5	29.0				

M2 Cable assembly (pages 175 and 178)

Note: ¹⁾ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 115).

PCA Free socket, cable collet and nut for fitting a bend relief ¹⁾

Refe	rence	Dime	nsions	(mm)
Model	Series	А	L	S2
PCA	00	6.5	25.0	6
PCA	0S	8.9	33.5	7
PCA	1S	11.9	40.5	9
PCA	2S	14.8	50.0	12
PCA	3S	17.8	59.0	14
PCA	4S	24.8	75.0	20

M1 Cable assembly (pages 175 and 176)

PSA Fixed socket, nut fixing, cable collet

Refer	rence	Dimensions (mm)										
Model	Series	Α	в	е	Е	L	М	S1	S2	S3		
PSA	00	8	10.2	M7x0.5	5.5	25.0	1.0	6.3	4.5	9		
PSA	0S	10	12.4	M9x0.6	7.0	33.5	1.2	8.2	6.5	11		
PSA	1S	14	15.8	M12x1.0	7.5	40.5	1.5	10.5	8.5	14		
PSA	2S	18	19.2	M15x1.0	8.5	50.0	1.8	13.5	11.0	17		
PSA	3S	22	25.0	M18x1.0	11.5	59.0	2.0	16.5	14.0	22		
PSA	4S	28	34.0	M25x1.0	12.0	75.0	2.5	23.5	19.0	30		
PSA	5S	40	40.0	M35x1.0	15.5	99.0	3.0	33.5	29.0	-		
PSA	6S	54	54.0	M48x1.5	16.0	102.0	3.5	45.5	38.0	-		

M1 Cable assembly (pages 175 to 177)

P1 Panel cut-out (page 158)

Note: the 5S series is delivered with a tapered washer and a round nut. The 6S series is delivered without a locking washer and with a round nut.

Refer	rence		Dimensions (mm)										
Model	Series	А	В	е	Е	L	м	S1	S2	S3			
PSP	2S	18	19.2	M15x1.0	8.5	50.0	1.8	13.5	11.0	17			
PSP	3S	22	25.0	M18x1.0	11.5	59.0	2.0	16.5	14.0	22			
PSP	4S	28	34.0	M25x1.0	12.0	75.0	2.5	23.5	19.0	30			

M1 Cable assembly (pages 175 and 176)

P1 Panel cut-out (page 158)

Fixed socket, nut fixing for cable crimping

Refe	rence			Dir	nensio	ons (m	m)			
Model	Series	А	В	е	Е	L	М	S1	S2	S3
PSS	00	8	10.2	M7x0.5	5.5	30	1	6.3	5.5	9

M5 Cable assembly (page 175)

P1 Panel cut-out (page 158)

Note: Model available only with crimp backnut E31 similar to 00.250 series.

PSS

RMA Free coupler

Refe	rence	Dim. (mm)			
Model	Series	А	L		
RMA	00	6.4	22.0		
RMA	0S	8.9	25.0		
RMA	1S	11.9	28.5		
RMA	2S	14.8	31.5		
RMA	3S	17.8	38.5		
RMA	4S	24.8	46.5		
RMA	5S	34.7	60.5		

Note: see page 114 for the available plug and contact configurations and in order to ensure correct contact alignment.

RAD Fixed coupler, nut fixing

New design models

FGZ Straight plug, cable collet

Refe	rence		Dimensions (mm)					
Model	Series	А	L	М	S1	S2		
FGZ	0S	9.5	36	26	8	7		
FGZ	1S	12.0	43	32	10	9		
FGZ	2S	15.0	50	38	13	12		

M1 Cable assembly (page 169)

Note: D type collets of the B series are used in this model (see page 67).

FGZ Straight plug, cable collet and nut for fitting a bend relief ¹⁾

Refer	rence		Dimensions (mm)					
Model	Series	А	L	М	S1	S2		
FGZ	0S	9.5	35	25	8	7		
FGZ	1S	12.0	42	31	10	9		
FGZ	2S	15.0	49	37	13	12		

M1 Cable assembly (page 169)

Note: D type collets of the B series are used in this model (see page 67).

Note: $^{1)}$ to order, add a ${\rm \tiny \ll Z^{, w}}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

PGZ Free socket, cable collet

Refe	rence	Dim. (mm)						
Model	Model Series		L	S1	S2			
PGZ	0S	9.5	35.5	8	7			
PGZ	1S	12.5	40.5	10	9			
PGZ	2S	15.0	49.0	13	12			

M1 Cable assembly (page 169)

Note: D type collets of the B series are used in this model (see page 67).

PGZ Free socket, cable collet and nut for fitting a bend relief ¹⁾

Refer	rence	Dim. (mm)					
Model	Series	А	L	S1	S2		
PGZ	0S	9.5	34.5	8	7		
PGZ	1S	12.5	39.5	10	9		
PGZ	2S	15.0	48.0	13	12		

M1 Cable assembly (page 169)

Note: D type collets of the B series are used in this model (see page 67).

Note: ¹) to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see page 145).

Technical Characteristics

Types

Elbow socket models

Materials and Treatment

Component	Material	Surface Treat. (µm)			
		Cu		Au	
Housing	PPS ¹⁾		-		
Housing	Brass	0.5	eat. (μ Νi 5 3 5 3 5 3 -	-	
Metallic parts	Brass	0.5	3	-	
Earthing crown	Bronze	0.5	3	-	
Insulator	PEEK		-		
Female contact	Bronze	0.5	3	1.5	

Note: 1) not used for all sizes.

The surface treatment standards are as follows:
Nickel SAE AMS QQ N 290
Gold: ISO 27874

Electrical

Model	Series	Types	Test voltage (kV rms) ¹⁾	Rated current (A)
EPL	0S	302-303-304	1.20	4.5
EXP	0S	002 000 004	1.20	4.5
EPL	1S	302-303-304	1.20	4.5
EXP	1S	302-303-304	1.20	4.5
EPL	1S	305-306	0.70	4.5
EXP	1S	303-300	0.70	4.5

Note: ¹⁾ see calculation method, caution and suggested standard on page 190.

EPL Elbow (90°) socket for printed circuit (solder or screw fixing)

Part number	Dimensions (mm)									
Fait number	A	D	Н	I	K	L	Ν			
EPL.0S.302.HLN		14.6			13.3	25	11.7			
EPL.0S.303.HLN	9		6.7	12.6						
EPL.0S.304.HLN										
EPL.1S.302.HLN						27				
EPL.1S.303.HLN										
EPL.1S.304.HLN	11	16.6	7.5	14.0	13.3		12.6			
EPL.1S.305.HLN										
EPL.1S.306.HLN										

Note: to replace the 4 ground pins by 4 screws (M1.6) add an «S» to the end of the part number. (e.g.: EPL.1S.303.HLNS)

P22 PCB drilling pattern (page 168)

EPL Elbow (90°) socket for printed circuit

Part number	Dimensions (mm)			
Part number	Α	Н	Ι	
EPL.00.113.NLN	6.8	10	7	

EPL Elbow (90°) socket for printed circuit

Part number		Dimensions (mm)								
T art number	Α	D	Н	Ι	К	L	Ν			
EPL.0S.116.DTL	8.8	16	12	9	7.7	22.7	9			

Note: available only in unipole version.

P23 PCB drilling pattern (page 168)

EXP Elbow (90°) socket for printed circuit with two nuts (solder or screw fixing)

Part number	Dimensions (mm)											
i art number	A	В	D	е	Е	Н	Ι	К	L	М	M N S3 2.5 11.7 11 3.5 12.6 13	S3
EXP.0S.302.HLN												
EXP.0S.303.HLN	12	12.4	14.6	4.6 M9x0.6	6.0	6.7	6.7 12.6	13.3 25	2.5 11.7	11.7	11	
EXP.0S.304.HLN												
EXP.1S.302.HLN						7.5 7.5	5 14.0 1					
EXP.1S.303.HLN												
EXP.1S.304.HLN	14	15.0	16.6	M11x0.5	7.5			13.3	27	3.5	12.6	13
EXP.1S.305.HLN												
EXP.1S.306.HLN												

Note: to replace the 4 ground pins by 4 screws (M1.6) add an ${\rm «S}{\rm »}$ to the end of the part number. (e.g.: EXP.1S.303.HLNS).

P2 Panel cut-out 0S series (page 158)

P10 Panel cut-out 1S series (page 158)

P22 PCB drilling pattern (page 168)

Plastic housing models

These connectors are particularly recommended for all applications requiring maximum electrical insulation when mated. The design, including a latch sleeve and a metal earthing crown, guarantees EMC screening efficiency to meet most requirements.

Technical Characteristics

Mechanical and Climatical

Characteristics		Va	lue		Standard	
Characteristics	PEEK	POM	PSU	PPSU	Standard	
Colour	natural (beige)	black	white or grey	cream	-	
Endurance ¹⁾	> 5000 cycles	> 5000 cycles	> 5000 cycles	> 5000 cycles	IEC 60512-5 test 9a	
Humidity		up to 95%	∕₀ at 60° C		-	
Temperature range	- 50° C/+ 250° C	- 50° C/+ 115° C	- 50° C/+ 150° C	- 50° C/+ 180° C	-	
Sterilization resistance ²⁾	> 200 cycles	none	~20 cycles	> 100 cycles	IEC 60601-1 § 44.7	
Resistance to organic solvents	very good	very good	limited	good	-	

Note: 1) see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force. 2) Steam sterilization

FFA Straight plug, cable collet, PEEK or POM outer shellFFP Straight plug, cable collet, PEEK or POM outer shell and inner anti-rotating device

Refe	rence	Dimensions (mm)						
Model	Series	А	L	М	S2			
FFA	00	7	33.5	25.5	6			
FFP	1S	12	42.5	31.5	10			
FFP	2S	15	52.0	40.0	12			
FFP	3S	18	61.0	46.0	14			

M1 Cable assembly (pages 175 and 176)

FFP Straight plug, cable collet, PEEK or POM outer shell, inner anti-rotating device and nut for fitting a bend relief ¹⁾

Refe	rence	Dimensions (mm)						
Model	Series A L		М	S2				
FFP	1S	12	41.5	30.5	10			
FFP	2S	15	51.0	39.0	12			
FFP	3S	18	61.0	46.0	14			

M1 Cable assembly (pages 175 and 176)

Note: $^{1)}$ to order, add a ${\rm \ll} Z{\rm \gg}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

FFL Straight plug, cable collet, with PSU and PPSU outer shell, inner anti-rotating device and nut for fitting a bend relief ¹)

Refe	rence	Dimensions (mm)						
Model	Series	А	A L		S2			
FFL	2S	16.5	51.5	39.5	13			

M4 Cable assembly (page 177)

Note: ¹⁾ to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see page 145).

Note: This model is fitted with a «D or M» type collet system. It is also adapted for crimp contacts. Available only for multipole.

ERN Fixed socket, nut fixing, with earthing tag, PEEK or POM outer shell

Refer	rence	Dimensions (mm)								
Model	Series	А	В	е	Е	L	L1)	М	S1	S3
ERN	00	9	10.2	M7x0.5	5.5	-	14.5	1.0	6.3	9
ERN	0S	11	12.4	M9x0.6	6.4	19.3	19.3	1.8	8.2	11
ERN	1S	14	15.8	M12x1.0	7.5	22.4	22.4	1.5	10.5	14
ERN	2S	18	19.2	M15x1.0	8.5	26.3	26.3	2.0	13.5	17
ERN	3 S	22	25.0	M18x1.0	11.5	29.8	29.8	2.0	16.5	22
P1 Par	P1 Panel cut-out (page 158)									

Note: 1) unipole model

Watertight or vacuumtight models

These socket or coupler models allow the device on which they are fitted to reach a protection index of IP68 as per IEC 60529. They are fully compatible with plugs of the same series and are widely used for portable radios, military, laboratory equipment, aviation, etc.

These models are identified by a letter «P» at the end of the reference.

Most of these models are also available in a vacuumtight version. Such models are identified by an additional letter «V» at the end of the part number (certificate on request).

Epoxy resin is used to seal these models.

Technical Characteristics

Mechanical and Climatical

Characteristi	Characteristics		Value Standard		Characteristic	s	Value	Standard
Endurance ¹⁾	urance ¹⁾ > 5000 c		IEC 60512-5 test 9a			0S	60 bar	IEC 60512-7 test 14d
Humidity		up to 95% at 60° C				1S	60 bar	IEC 60512-7 test 14d
	0S-1S	- 20° C	C/ + 100° C			2S	40 bar	IEC 60512-7 test 14d
Temperature range	2S-6S	- 20°	C/+ 80° C		Maximum operating pressure ³⁾	3S	30 bar	IEC 60512-7 test 14d
Salt spray corrosion	test ⁴⁾	>1000h	IEC 60512-6 test 11f			4S	15 bar	IEC 60512-7 test 14d
Climatical category	tical category 20/80/21		IEC 60068-1	C 60068-1		5S	5 bar	IEC 60512-7 test 14d
_eakage rate (He) ²⁾ < 10 ⁻⁷ mbar.l.s ⁻¹		IEC 60512-7 test 14b			6S	5 bar	IEC 60512-7 test 14d	

Note: ¹) see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force. ²) only for vacuumtight models. Residual traces of grease used during (He) leak testing are on the o-ring. Please contact us for further details. ³) this value corresponds to the maximum allowed pressure difference for the assembled socket. ⁴) for chrome plated product («C» material code).

HGP Fixed socket, nut fixing, watertight or vacuumtight

HGW Fixed socket, nut fixing, with back washer, watertight or vacuumtight

	S 3 C maxi M C mini/maxi
--	-----------------------------------

Refe	rence	Dimensions (mm)							
Model	Series	Α	В	е	E mini	E maxi	L	М	S3
HGW	0S	10	15	M9x0.6	2	3	20.5	1.2	11
HGW	1S	14	18	M12x1.0	2	4	25.0	1.5	14

P11 Panel cut-out (page 158)

Note: vacuumtight version is only available in the 0S series.

EWB Fixed socket, nut fixing, with two flats on the flange, watertight or vacuumtight

Refe	rence	Dimensions (mm)									
Model	Series	А	В	е	Е	L	L1)	М	S1	S3	S4
EWB	0S	18	15.8	M12x1.0	11.0	20.5	-	4.0	10.5	14	14
EWB	1S	20	19.2	M14x1.0	15.5	25.5	25.5	4.0	12.5	17	16
EWB	2S	20	21.5	M16x1.0	17.0	28.0	26.5	4.0	14.5	19	16
EWB	4S	34	34 34.0 M25x1.0 22.5 43.0 - 6.5 23.5 30 2							27	
P3 Pa	P3 Panel cut-out (page 158)										

Note: 1) unipole model

Refer	Reference		Dimensions (mm)						
Model	Series	А	В	е	Е	L	Μ	Р	S1
НСР	1S	18	20	M14x1.0	8.6	25.5	3.5	12.0	-
НСР	2S	20	20	M16x1.0	12.5	29.0	3.5	16.5	14.5
НСР	4S	27	34	M25x1.0	15.5	41.0	4.5	20.0	23.5

P3 Panel cut-out (page 158)

Note: the 2S and 4S series are delivered with a conical nut.

SWH Fixed coupler, nut fixing, watertight or vacuumtight

Refe	Reference		Dimensions (mm)						
Model	Series	А	В	е	Е	L	М	S1	S3
SWH	0S	14	13.8	M10x0.75	17	34	2.0	9.0	12
SWH	1S	17	15.8	M12x1.00	28	39	2.5	10.5	14
SWH	2S	20	21.5	M16x1.00	25	44	4.0	15.0	19
SWH	3 S	25	27.0	M20x1.00	30	53	4.0	18.5	24
SWH	4S	34	34.0	M25x1.00	50	65	4.0	23.5	30
SWH	5 S	45	40.0	M35x1.00	58	80	5.0	33.5	-
SWH	6S	58	54.0	M48x1.50	55	81	6.0	45.5	-

P4 Panel cut-out (page 158)

Note: The 5S and 6S series are delivered with a round nut.

Note: see page 114 for the available plug and contact configurations and in order to ensure correct contact alignment.

Ì b FFA

FFA

FFF

Fixed socket

Free coupler

Watertight or vacuumtight models (page 101) **Fixed sockets Fixed coupler** FRE HGP SWH

Note: * Contact LEMO for details.

Part Numbering System

FFA.1E.304.CLAC35 = straight plug with cable collet, 1E series, multipole type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, 2 male and 2 female solder contacts, C type collet for a 3.5 mm diameter cable.

PCA.1E.304.CLLC35Z = free socket with cable collet, 1E series, multipole type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, 2 female and 2 male solder contacts, C type collet for a 3.5 mm diameter cable and collet nut for fitting a bend relief.

ERA.1E.304.CLL = fixed socket, nut fixing, 1E series, multipole type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, 2 female and 2 male solder contacts.

RMA.1E.304.CLL = straight coupler, 1E series, multipole type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, 2 female and 2 male contacts each end.

Straight plug **Fixed socket** outer shell latch sleeve 5 2 8 7 6 9 8 2 3 6 10 12 13 1 5 2 1 inner shell outer shell 9 3 earthing crown retaining ring 4 2 collet nut retaining ring 6 3 hexagonal nut centre-piece 6 4 MM insulator insulator 5 male contact male contact 8 6 female contact female contact 9 7 earthing cone 8 o-ring 10 collet 1 gasket 12 **B** washer

Part Section Showing Internal Components

Technical Characteristics

Mechanical and Climatical

Characteristics	Value	Standard		
Endurance ¹⁾	> 5000 cycles	IEC 60512-5 test 9a		
Humidity	up to 98	5% at 60° C		
Temperature range ²⁾	- 55° C	C, + 200° C		
Resistance to vibrations	10-2000 Hz, 15g	IEC 60512-4 test 6d		
Shock resistance	100 g, 6 ms	IEC 60512-4 test 6c		
Salt spray corrosion test ⁴⁾	>1000h	IEC 60512-6 test 11f		
Protection index (mated) ³⁾	IP 68/IP 66	IEC 60529		
Climatical category	50/175/21	IEC 60068-1		

FFA Straight plug, cable collet

FFA Straight plug with oversize cable collet 1)

Metal housing models

Electrical

Chara	acteristics	Value	Standard
Shielding	at 10 MHz	>95 dB	IEC 60169-1-3
efficiency	at 1 GHz	> 80 dB	IEC 60169-1-3

Note: the various tests have been carried out with FFA and ERA connector pairs, with chrome-plated brass shell, PEEK insulator and silicone O-ring. Detailed electrical characteristics, as well as materials and treatment are presented in the chapter Technical Characteristics on page 182. ¹⁾ see page 189, contact resistance after mating cycles. See page 185, machine latching tarking the provided set of the provided set o

mechanical endurance latching force.
 ²⁾ minimum operating temperature is -20°C for sockets fitted with an FPM

(Viton®) O-ring. ³⁾ IP68 achieved providing that the cable is perfectly circular and that

assembly process ensures a high integrity seal. ⁴⁾ for chrome plated product («C» material code).

Refer	rence	Di	Dimensions (mm)					
Model	Series	А	L	Μ	S2			
FFA	0E	11	34	23.0	8			
FFA	1E	13	42	28.0	9			
FFA	2E	16	52	36.0	12			
FFA	3E	19	61	41.0	15			
FFA	4E	25	71	50.5	19			
FFA	5E	38	92	67.0	32			
FGG 1)	6E	47	118	89.0	38			

Note: 1) with key (G)

M1 Cable assembly (pages 179 to 181)

rence		Dimensions (mm)							
Series	А	В	L	Μ	S1	S2			
1E	13	14.5	55	41	12	12			
2E	16	17.0	65	49	15	15			
3E	19	22.0	80	60	19	19			
4E	25	36.0	118	84	30	32			
	Series 1E 2E 3E	Series A 1E 13 2E 16 3E 19	Series A B 1E 13 14.5 2E 16 17.0 3E 19 22.0	Series A B L 1E 13 14.5 55 2E 16 17.0 65 3E 19 22.0 80	Series A B L M 1E 13 14.5 55 41 2E 16 17.0 65 49 3E 19 22.0 80 60	Series A B L M S1 1E 13 14.5 55 41 12 2E 16 17.0 65 49 15 3E 19 22.0 80 60 19			

M2 Cable assembly (pages 179 and 181)

Note: 1) correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 119).

FFA Straight plug, cable collet and nut for fitting a bend relief ¹⁾

Refe	rence	Di	mensio	ons (m	m)
Model	Series	А	L	М	S2
FFA	0E	11	34	23.0	7
FFA	1E	13	42	28.0	9
FFA	2E	16	52	36.0	12
FFA	3E	19	60	40.0	15
FFA	4E	25	71	50.5	19

M1 Cable assembly (pages 179 and 180)

А

11

13

M1 Cable assembly (pages 179 and 180)

Note: $^{1)}$ to order, add a ${\ll}Z{\approx}$ at the end of the reference. The bend relief must be ordered separately (see page 145).

Dimensions (mm)

Μ

23

28

S2

8

9

L

34

42

FFF Straight plug non-latching cable collet

FAA Fixed plug non-latching, nut fixing

Reference Dimensions (mm) Model Series А В е Е L L1) Μ S1 S3 FAA 0E 18 19.2 M14x1.0 3.5 19.5 19.5 13.0 12.5 17 21.5 M16x1.0 3.5 23.0 23.0 16.0 14.5 FAA 1E 20 19 FAA 27.0 M20x1.0 27.0 27.0 18.0 18.5 2F 4.0 24 25 34.0 M24x1.0 4.5 32.5 32.5 22.5 22.5 FAA 3E 31 30

P1 Panel cut-out (page 159)

Note: 1) unipole model

Reference

Series

0E

1E

Model

FFF

FFF

FLM Elbow (90°) plug, cable collet

Refe	rence			Di	mensio	ons (mm)				
Model	Series	А	D	Н	L	М	S1	S2	S3	
FLM	0E	11	7.3	25	36	25	9	8	8	
FLM	1E	13	8.7	33	42	28	11	9	10	
FLM	2E	16	10.2	40	51	35	14	12	13	

M3 Cable assembly (pages 179 and 180)

Elbow (90°) plug, cable collet FLA

Fixed socket, nut fixing

Refer	rence			Di	mensio	ons (m	m)		
Model	Series	А	A D H L M S1 S2						S3
FLA	3E	21.0	11.5	47	60	40.0	18	15	15
FLA	4E	27.5	15.5	57	72	51.5	24	19	20

M3 Cable assembly (pages 179 and 180)

Refe	rence		Dimensions (mm)							
Model	Series	А	В	е	E	L	L1)	М	S1	S3
ERA	0E	18	19.2	M14x1.0	5.5	19.5	20.5	4.0	12.5	17
ERA	1E	20	21.5	M16x1.0	9.0	24.0	25.3	4.5	14.5	19
ERA	2E	25	27.0	M20x1.0	9.0	28.5	30.0	5.0	18.5	24
ERA	3E	31	34.0	M24x1.0	11.0	34.0	35.0	6.0	22.5	30
ERA	4E	37	40.5	M30x1.0	9.0	36.0	38.0	6.5	28.5	36
ERA	5E	55	54.0	M45x1.5	10.0	44.5	78.0	9.0	42.5	_
EGG 2)	6E	65	65.0	M55x2.0	10.5	48.5	-	10.0	52.0	-

P1 Panel cut-out (page 159)

Note: ¹⁾ unipole model. ²⁾ with key (G).

Note: The 5E and 6E series are delivered with a round nut.

Refe	rence			D	imen	sions	s (mm)			
Model	Series	А	В	е	Е	F	L	L1)	М	S1	S3
ERC	0E	18	19.2	M14x1.0	5.5	1.5	19.5	20.5	4.0	12.5	17
ERC	3E	31	34.0	M24x1.0	11.0	3.0	34.0	35.0	6.0	22.5	30
ERC	4E	37	40.5	M30x1.0	9.0	3.0	36.0	38.0	6.5	28.5	36

P1 Panel cut-out (page 159)

Note: 1) unipole model.

ERA

L maxi <u>S 3</u> M E maxi S 1

EEP Fixed socket, nut fixing (back panel mounting)

Refe	erence			Din	nensi	ons (r	nm)			
Model	Series	А	В	е	Е	L	L1)	М	Ρ	S1
EEP	0E	18	18	M14x1.0	3.5	19.5	20.5	3.5	7	12.5
EEP	1E	20	20	M16x1.0	6.5	24.0	25.3	3.5	10	14.5
EEP	2E	25	25	M20x1.0	6.5	28.5	30.0	3.5	10	18.5
EEP	3E	30	31	M24x1.0	7.5	34.0	35.0	4.5	12	22.5

P1 Panel cut-out (page 159)

Note: 1) unipole model

Note: the 3E series is delivered with a conical nut.

EEP Fixed socket, nut fixing, with straight contact for printed circuit (back panel mounting)

Refe	rence			Dime	nsion	s (mn	ו)		
Model	Series	А	В	е	Е	М	Ν	Ρ	S1
EEP	0E	18	18	M14x1.0	3.5	3.5	16.0	7	12.5
EEP	1E	20	20	M16x1.0	6.5	3.5	21.5	10	14.5
EEP	2E	25	25	M20x1.0	6.5	3.5	24.0	10	18.5
EEP	3E	30	31	M24x1.0	7.5	4.5	29.5	12	22.5

P1 Panel cut-out (page 159)

P21 PCB drilling pattern (page 166)

Note: The 3E series is delivered with a conical nut.

Note: this contact type is available for all **Eee** socket models. See page 167 for table of available types.

Length «L» depends on the number of contacts, see PCB drilling pattern on page 167.

EEP Fixed socket, nut fixing, with elbow (90°) contacts for printed circuit (back panel mounting)

Refe	rence			Dime	nsion	s (mn	ר)		
Model	Series	А	В	е	Е	М	Ν	Ρ	S1
EEP	1E	20	20	M16x1.0	6.5	3.5	21.5	10	14.5
EEP	2E	25	25	M20x1.0	6.5	3.5	24.0	10	18.5

P1 Panel cut-out (page 159)

P24 PCB drilling pattern (page 168)

Note: this contact type is available for all back panel mounting socket types. See page 168 for available types. Length «L» depends on the number of contacts, see PCB drilling pattern on page 168.

Note: 1) with key (G)

PCA Free socket, cable collet

Refe	rence	Dime	nsions	(mm)
Model	Series	А	L	S2
PCA	0E	13	34.0	8
PCA	1E	15	45.0	9
PCA	2E	19	54.0	12
PCA	3E	23	65.0	15
PCA	4E	29	75.5	19
PCA	5E	42	95.0	32
PHG 1)	6E	52	125.0	38

M1 Cable assembly (pages 179 to 181)

PCA Free socket with oversize cable collet ¹⁾

Refe	rence		Dime	nsions	(mm)	
Model	Series	А	В	L	S1	S2
PCA	1E	15	14.5	58.0	12	12
PCA	2E	19	17.0	67.0	15	15
PCA	3E	23	22.0	84.0	19	19
PCA	4E	29	36.0	109.0	30	32

M2 Cable assembly (page 181)

Note: ¹⁾ correspond to K type of collet, the fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up (see page 119).

PCA Free socket, cable collet and nut for fitting a bend relief ¹⁾

Refe	rence	Dime	nsions	(mm)
Model	Series	А	L	S2
PCA	0E	13	34.0	7
PCA	1E	15	45.0	9
PCA	2E	19	54.0	12
PCA	3E	23	64.0	15
PCA	4E	29	75.5	19

M1 Cable assembly (pages 179 and 180)

Note: $^{\rm 1)}$ to order, add a «Z» at the end of the reference. The bend relief must be ordered separately (see page 145).

PSA Fixed socket, nut fixing, cable collet

Refe	rence			Dir	nensi	ons (m	m)			
Model	Series	А	В	е	Е	L	М	S1	S2	S3
PSA	0E	18	19.2	M14x1.0	5.5	34.0	4.0	12.5	8	17
PSA	1E	20	21.5	M16x1.0	9.0	45.0	4.5	14.5	9	19
PSA	2E	25	27.0	M20x1.0	9.0	54.0	5.0	18.5	12	24
PSA	3E	31	34.0	M24x1.0	11.0	65.0	6.0	22.5	15	30
PSA	4E	37	40.5	M30x1.0	9.0	75.5	6.5	28.5	19	36
PSA	5E	51	54.0	I.0 M45x1.5		95.0	9.0	-	32	54
PKG 1)	6E	65	65.0 M55x2.0 10		10.5 125.0		10.0	-	38	-

P1 Panel cut-out (page 159)

M1 Cable assembly (pages 179 to 181)

Note: The 5E and 6E series are delivered with a round nut.

Note: 1) with key (G).

RMA Free coupler

Refe	rence	Dim.	(mm)
Model	Series	А	L
RMA	0E	14	30
RMA	1E	16	40
RMA	2E	20	44
RMA	3E	25	54
RMA	4E	30	57
RMA	5E	44	67

Note: see page 114 for the available plug and contact configurations and in order to ensure correct contact alignment.

Watertight or vacuumtight models

These socket or coupler models allow the device on which they are fitted to reach a protection index of IP 68 as per IEC 60529. They are fully compatible with plugs of the same series and are widely used for portable radios, military, laboratory equipment, aviation, etc.

These models are identified by a letter «P» at the end of the reference.

Most of these models are also available in a vacuum tight version. Such models are identified by an additional letter «V» at the end of the part number (certificate on request).

Epoxy resin is used to seal these models.

Technical Characteristics

Mechanical and Climatical

Characteristic	s	Value	Standard		Characteristic	s	Value	Standard
Endurance ¹⁾	up to 95% at 60° C			0E	60 bar	IEC 60512-7 test 14d		
Humidity			5% at 60° C			1E	60 bar	IEC 60512-7 test 14d
	0E-1E	- 20° C	C, + 100° C			2E	40 bar	IEC 60512-7 test 14d
	2E-6E	- 20° (C, + 80° C		Maximum operating pressure ³⁾	3E	30 bar	IEC 60512-7 test 14d
Salt spray corrosion to	est ⁴⁾	>1000h	IEC 60512-6 test 11f			4E	15 bar	IEC 60512-7 test 14d
Climatical category		20/80/21	IEC 60068-1			5E	5 bar	IEC 60512-7 test 14d
Leakage rate (He) ²⁾		< 10 ⁻⁷ mbar.l.s ⁻¹	IEC 60512-7 test 14b			6E	5 bar	IEC 60512-7 test 14d

Note: ¹) see page 189, contact resistance after mating cycles. See page 185, mechanical endurance latching force. ²) only for vacuumtight models. Residual traces of grease used during (He) leak testing are on the o-ring. Please contact us for further details. ³) this value corresponds to the maximum allowed pressure difference for the assembled socket. ⁴) for chrome plated product («C» material code).

HGP Fixed socket, nut fixing, watertight or vacuumtight

Refer	rence		Distribution A B e E L L ¹ M S1 18 19.2 M14x1.0 5.5 23.5 22.0 4.0 12.5 20 21.5 M16x1.0 9.0 29.5 28.0 4.5 14.5 25 27.0 M20x1.0 10.5 32.5 28.0 5.0 18.5 31 34.0 M24x1.0 15.5 39.5 38.5 6.0 22.5									
Model	Series	А	В	е	Е	L	L1)	М	S1	S3		
HGP	0E	18	19.2	M14x1.0	5.5	23.5	22.0	4.0	12.5	17		
HGP	1E	20	21.5	M16x1.0	9.0	29.5	28.0	4.5	14.5	19		
HGP	2E	25	27.0	M20x1.0	10.5	32.5	28.0	5.0	18.5	24		
HGP	3E	31	34.0	M24x1.0	15.5	39.5	38.5	6.0	22.5	30		
HGP	4E	37	40.5	M30x1.0	17.5	43.0	44.0	6.5	28.5	36		
HGP	5E	55	54.0	M45x1.5	20.0	52.0	76.0	9.0	42.5	-		
HGP 2)	6E	65	65.0	M55x2.0	20.5	52.0	-	10.0	52.0	-		

P1 Panel cut-out (page 159)

Note: 1) unipole model.

2) with key (G).

Note: The 5E and 6E series are delivered with a round nut.

EBR Fixed socket with round flange, watertight, protruding shell and screw fixing

Refe	rence				Dimer	nsions	(mm)			
Model	Series	А	В	С	H1	H2	L	L1)	М	Ν
EBR	2E	28	15	2.8	11.8	20.4	32.5	28	19	25

P6 Panel cut-out (page 159)

Note: 1) unipole model.

Note: This model is only available in a watertight version.

SWH Fixed coupler, nut fixing, watertight or vacuumtight

Refer	rence			Dime	nsion	s (mm	1)		
Model	Series	А	В	е	Е	L	М	S1	S3
SWH	0E	18	19.2	M14x1.0	22.5	36.0	4.0	12.5	17
SWH	1E	20	21.5	M16x1.0	30.5	47.0	4.5	14.5	19
SWH	2E	25	27.0	M20x1.0	28.0	52.4	5.0	18.5	24
SWH	3E	31	34.0	M24x1.0	33.0	64.2	6.0	22.5	30
SWH	4E	37	40.5	M30x1.0	44.5	70.0	6.5	28.5	36
SWH	5E	55	54.0	M45x1.5	47.0	81.0	9.0	42.5	-
SWH 1)	6E	65	65.0	M55x2.0	12.0	76.0	10.0	-	-

P1 Panel cut-out (page 159)

Note: 1) with key (G).

Note: The 5E and 6E series are delivered with a round nut.

Note: See page 114 for the available plug and contact configurations and in order to ensure correct contact alignment.

Insert configuration (S and E series)

Unipole

	Solder o	contacts		Se	ries			Cor ty	ntact pe			AWG				
Number of LV contacts	⇒₄∎		Reference	Standard	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	Cri		Test voltage (kV rms) ¹⁾	Test voltage (kV dc) ¹⁾	Rated current (A) ¹⁾
N			Ве	Ste	Ň	ပိ	So	Ċ	Pri	Pri	So	min.	max.	Te	Te	Ra
			110	00		1.0	_2)					00	10		1.0	0
			113	00	-	1.3	• 2)	•	-	-	20	26	18	0.8	1.2	8
			116	0S	0E	1.6	2)	_	_	_	18		_	1.5	2.1	12
			110	03	UE	1.0	2)	-	-	-	10	-	-	1.5	2.1	12
			120	1S	1E	2.0	_2)	_	_	_	16	_	_	1.9	2.7	18
			120	13	16	2.0	_/	-	_	_	10	-	-	1.9	2.1	10
4			130	1S	1E	3.0	•	-	-	-	12	-	-	1.5	2.1	25
1			130	2S	2E	3.0	•	_	-	-	12	-	-	2.1	3.0	30
				2S	2E	4.0	•	-	-	-	10	-	-	1.7	2.4	40
			140	3S 4S	3E _	4.0 4.0	•	-	-	-	10 10	-	-	2.3 3.0	3.3 4.2	43 46
														0.0		
				3S	ЗE	6.0	•	-	-	-	8	_	-	1.7	2.4	65
			160	4S	4E	6.0	•	-	-	-	8	_	-	2.7	3.9	70
			112	5S	5E	12.0	•	-	-	-	0	-	-	1.5	2.1	230

Note: 1) see calculation method, caution and suggested standard on page 190. 2) also available with inversed contacts: plug = female, socket = male.

Multipole

	Solder o	contacts		Sei	ries			Cor ty	tact ce			AWG				
Number of LV contacts	Crimp c	contacts				(mm)			jht)	()	x.)	Cri	mp	Test voltage (kV rms) ^{1) 2)}	Test voltage (kV dc) ^{1) 2)}	ent (A) ¹⁾
Number of		¢	Reference	Standard	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	тах.	Test voltag	Test voltag	Rated current (A) ¹⁾
2				0S	0E	0.9	•	•	•	•	22	32	20	1.1	1.6	10 ³⁾
				1S	1E	1.3	•	•	•	•	20	26	18	1.2	1.8	15 ³⁾
			302	2S	2E	1.6	•	0	•	0	18	22	14	1.7	2.4	204)
	2	2	502	3S	3E	2.0	•	-	0	-	16	-	-	3.0	4.2	23
				4S	4E	4.0	•	-	0	-	10	-	-	2.1	3.0	35
				5S	5E	6.0	•	-	-	-	8	-	-	3.7	5.2	50
3				0S	0E	0.7	•	•	•	•	26	32	22	1.0	1.5	73)
				1S	1E	0.9	•	•	•	•	22	32	20	1.2	1.8	10 ³⁾
			303	2S	2E	1.3	•	•	•	0	20	26	18	1.5	2.1	15 ⁴⁾
	30		303	3S	3E	2.0	•	-	0	-	16	-	-	1.5	2.1	20
				4S	4E	3.0	•	-	0	-	12	-	-	2.1	3.0	25
				5S	5E	1x6.0 2x4.0	•	-	-	-	8 10	-	-	3.7	5.2	50 35
3																
		$\begin{pmatrix} & & \\ & & \\ & & \\ & & & \end{pmatrix}$	303	-	6E	6.0	•	-	-	-	8	-	-	3.0	4.2	50
4				0S	0E	0.7	•	•	•	•	26	32	22	1.0	1.5	73)
4				1S	1E	0.9	•	•	•	•	22	32	20	1.2	1.8	10 ³⁾
				2S	2E	1.3	•	0	•	•	20	26	18	1.7	2.4	15 ⁴⁾
	$\left(\left(\begin{array}{c} 2 \\ \hline 3 \\ \hline \end{array} \\ \hline \end{array} \\ \left(\begin{array}{c} - \\ - \\ - \\ \hline \end{array} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$\begin{pmatrix} 1 & \bigcirc & \bigcirc \\ 4 & & & - & - \\ 4 & & & & 3 \end{pmatrix}$	304	3S	3E	2.0	•	-	0	-	16	-	-	1.5	2.1	18
				4S	4E	3.0	•	-	0	-	12	-	-	2.1	3.0	22
				5S	5E	4.0	•	-	-	-	10	-	-	3.7	5.2	35
				6S	-	8.0	•	-	-	-	4	-	-	3.0	4.2	60
4																
		$\begin{pmatrix} 1 & \bigcirc 2 \\ 4 & \bigcirc 3 \end{pmatrix}$	304	-	6E	8.0	•	-	-	-	4	-	-	3.0	4.2	60

Note: ¹⁾ see calculation method, caution and suggested standard on page 190. ²⁾ lowest measured value; contact to contact or contact to shell. ³⁾ rated current = 6A for socket with elbow (90°) contacts for printed circuit. ⁴⁾ rated current = 12A for socket with elbow (90°) contacts for printed circuit.

Multipole

	Solder			Se	ries			Cor ty	tact ce			AWG				
Number of LV contacts	Crimpo		-			(Cri	mp	Test voltage (kV rms) ^{1) 2)}	Test voltage (kV dc) ¹⁾²⁾	(A) ¹⁾
of LV			e		ŧ	ø (mn			aight)	(MOC	nax.)			age (I	age (I	urrent
Number			Reference	Standard	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test volt	Test volt	Rated current (A) ¹⁾
5				1S	1E	2x0.9 3x0.7	•	•	•	•	22 26	32	20 22	1.5	2.1	10 ³⁾ 7 ³⁾
				2S	2E	1.3	•	0	•	•	20	26	18	1.5	2.1	13 ⁴⁾
			305	3S	3E	2x2.0 3x1.3	•	_	0	-	16 20	_	-	1.5	2.1	18 14
	5	5		4S	4E	2x3.0 3x2.0	•	_	0	-	12 16	_	-	2.1	3.0	22 16
				5S	5E	2x4.0 3x3.0	•	_	-	-	10 12	_	-	3.0	4.2	35 25
6				1S	1E	0.7	•	•	•	•	26	32	22	1.2	1.7	73)
	3 • ²	² O 3		2S	2E	1.3	•	•4)	•	•	20	26	18	1.5	2.1	12
	$\begin{pmatrix} \bullet & \bullet & \bullet \\ -4 & \bullet & \bullet & \bullet \\ -4 & \bullet & \bullet & \bullet \end{pmatrix}$	$\left(\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	306	3S	3E	1.3	•	-	•	-	20	-	-	2.1	3.0	14
		6 • 5		4S	4E	2.0	•	-	0	-	16	-	-	2.1	3.0	16
				5S	5E	3.0	•	-	-	-	12	-	-	3.0	4.2	25
7																
1	3 22	20 30		2S	2E	3x1.3 4x0.9	•	0	•	•	20 22	26 32	18 20	0.8	1.2	12 ³⁾ 9 ³⁾
	$\begin{pmatrix} 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \end{pmatrix}$		307	3S	3E	1.3	•	_	•	-	20	-	-	1.0	1.5	12
				4S	4E	3x2.0 4x1.3	•	-	0	-	16 20	-	-	2.1	3.0	16 13
0																
8				2S	2E	0.9	•	0	•	•	22	32	20	0.8	1.2	93)
			308	3S	3E	1.3	•	-	•	0	20	-	-	1.0	1.5	10
				4S	4E	1.3	•	-	0	-	20	-	-	2.7	3.9	13
				5S	5E	3.0	•	-	-	-	12	-	-	2.1	3.0	22
•																
9		20304														
	$\begin{pmatrix} \bullet & - & - & \bullet & \bullet \\ \bullet & & & \bullet & \bullet \\ \bullet & & & \bullet & \bullet$	$\begin{pmatrix} 1 \bigcirc \\ \bullet \\ 9 \end{pmatrix} = \begin{pmatrix} \bullet \\ \bullet \\ 7 \end{pmatrix}$	309	4S	4E	1.3	•	-	0	-	20	-	-	2.1	3.0	12
		8														
10	3															
			310	2S	2E	0.9	•	0	•	•	22	32	20	0.8	1.2	73)
	10 10 0 60 70 8		510	3S	ЗE	1.3	•	_	•	•	20	_	-	1.0	1.5	9

Note: ¹⁾ see calculation method, caution and suggested standard on page 190. ²⁾ lowest measured value; contact to contact or contact to shell. ³⁾ rated current = 6A for socket with elbow (90°) contacts for printed circuit. ⁴⁾ only for FFL model.

Multipole

	Solder			Se	ries			Cor ty	tact ce			AWG				
Number of LV contacts			-			6						Cri	mp	Test voltage (kV rms) ^{1) 2)}	Test voltage (kV dc) ¹⁾²⁾	(A) ¹⁾
ir of LV		contacts	nce	p	ght	tø (mm			traight)	(wodl	(max.)			ltage (k	ltage (k	current
Numbe			Reference	Standard	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	тах.	Test vc	Test vo	Rated current (A) ¹⁾
10	4 0 3															
	$\begin{pmatrix} 5 & - 2 \\ \hline \theta \\ \theta \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{pmatrix} 2O & -O & -O \\ -O & -O & -O \\ 0 & -O & -$	310	4S	4E 5E	1.3	•	-	0	-	20	-	-	2.1	3.0	11
				5S	5	2.0	•	-	-	-	16	-	-	2.1	3.0	18
12																
			312	3S	3E	0.9	•	-	•	•	22	-	-	1.5	2.1	8
	R20001															
12		20304		4S	4E	1.3	•	_	0	-	20	_	_	2.1	3.0	9
	$\begin{pmatrix} 5 & \bullet_{11} & \bullet_{11} \\ \hline \bullet & 120 & 0 \\ \hline 70 & 0 & 0 \end{bmatrix}$	$\begin{pmatrix} 1 \bigcirc -1 \bigcirc \bigcirc \\ 0 & \overline{12} & \overline{0} \\ 10 & \overline{12} & \overline{0} \\ 10 & \overline{12} & \overline{0} \\ 10 & \overline{0} & \overline$	312	6S	-	4.0	•	-	-	-	10	-	-	2.1	3.0	22
		9 9 8		-	6E	5.0	•	-	-	-	8	-	-	2.1	3.0	22
12																
			312	5S	5E	2.0	•	-	-	-	16	-	-	2.1	3.0	18
13	3 •• •1	10-0-03														
	$\begin{pmatrix} 7 \bullet \bullet \bullet \bullet \bullet \\ 11 \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ 13 \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ 13 \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ 13 \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \\ 13 \circ \bullet \\ 13 \circ \bullet \\ 13 \circ \bullet $		313	3S	3E	0.9	•	-	•	0	22	-	-	1.5	2.1	8
13																
	$ \begin{pmatrix} 3 & 11 & 10 & 0 & 1 \\ -17 & -73 & -73 & -1 \\ 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 9 \end{pmatrix} $		313	4S	-	1.3	•	-	0	_	20	_	-	2.1	3.0	9
14	30-0-1															
	(7 4) $(10 - 0 - 0 - 0^8)$ $(14 - 0 - 0^{12})$		314	3S	3E	0.9	•	-	•	•	22	-	-	1.5	2.1	7

Note: 1) see calculation method, caution and suggested standard on page 190. 2) lowest measured value; contact to contact to shell.

	Solder			Sei	ries			Cor ty	tact ce			AWG				
Number of LV contacts		contacts	-			(u						Cri	mp	Test voltage (kV rms) ^{1) 2)}	kV dc) ¹⁾²⁾	(A) ¹⁾
nber of LV			Reference	Standard	Watertight	Contact ø (mm)	ler	d	Print (straight)	Print (elbow)	Solder (max.)			: voltage (I	Test voltage (kV dc) ¹⁾²⁾	Rated current (A) ¹⁾
			Ref	Star	Wat	Con	Solder	Crimp	Prin	Prin	Solc	min.	max.	Test	Test	Rate
14		20 ³ 0 4 10 ¹¹ 0 0 ¹² 0 ⁵														
			314	4S	4E	1.3	•	-	0	-	20	-	-	2.1	3.0	9
14						0.00					10					00
			314	5S	5E	2x3.0 12x2.0	•	_	-	-	12 16	-	-	1.8	2.4	20 15
16																
			316	3S 4S	3E 4E	0.9 0.9	•	-	•	•	22 22	-	-	1.0 2.1	1.5 3.0	7 7
	16 13	13 16		40	76	0.0					~~~			2.1	0.0	,
16																
			316	5S	5E	2.0	•	_	-	-	16	_	-	1.8	2.4	15
16		20 A														
L	$\begin{bmatrix} 4 & 1 & 10 & 10 \\ 1 & 12 & 0 & 10 \\ 5 & 13 & 16 & 16 \\ 14 & 15 & 8 \\ 6 & 7 & 7 \end{bmatrix}$	$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	316	-	6E	3.0	•	-	-	-	12	-	-	1.5	2.1	14
18		0-0-0		3S	3E	0.9	•	_	•	0	22	_	_	1.0	1.5	6
			318	4S	4E	0.9	•	-	0	-	22	-	-	2.1	3.0	7
18			318	5S	5E	2x3.0 16x1.6	•	_	_	_	12	_	_	1.8	2.4	18 11
						16X1.6					18					11

Note: 1) see calculation method, caution and suggested standard on page 190. 2) lowest measured value; contact to contact to shell.

	Solder	contacts		Se	ries			Cor ty	tact ce			AWG				
Number of LV contacts			_									Cri	mp	Test voltage (kV rms) ^{1) 2)}	/ dc) ¹⁾²⁾	4)1)
of LV o		contacts	ee	T	Ħ	(mm) ø			aight)	(woo	nax.)			age (kV	age (kV	urrent (/
Number			Reference	Standard	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	тах.	Test volt	Test voltage (kV dc) ¹⁾²⁾	Rated current (A) ¹⁾
18																
			318	6S	-	4.0	•	-	-	-	10	-	-	1.2	1.8	16
20																
	$\begin{pmatrix} 5 & 4 \\ 10 & 6 \\ 0 & 0 \\ 0$		320	4S	4E	0.9	•	_	0	-	22	_	_	2.1	3.0	7
20		000000														
			320	58	5E	1.6	•	-	-	-	18	-	-	1.8	2.4	11
20		00000														
			320	6S	_	3.0	•	-	-	-	12	-	-	1.5	2.1	14
20		00000 00000														
		$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	320	-	6E	3.0	•	-	-	-	12	-	-	1.5	2.1	14
22																
			322	4S	4E	0.9	•	-	•	-	22	_	-	2.1	3.0	7
22		00°0°000000000000000000000000000000000														
			322	5S	5E	2x3.0 20x1.6	•	-	-	-	12 18	-	-	1.8	2.4	16 9

Note: 1) see calculation method, caution and suggested standard on page 190. 2) lowest measured value; contact to contact to shell.

	Solder			Sei	ries			Con ty	itact ce			AWG				
Number of LV contacts			-									Cri	mp	Test voltage (kV rms) ^{1) 2)}	/ dc) ¹⁾²⁾	4) ¹⁾
of LV (contacts	e	_	ŧ	ø (mm)			aight)	(wo	nax.)			age (k/	age (k\	irrent (/
Number			Reference	Standard	Watertight	Contact ø (mm)	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	max.	Test volt	Test voltage (kV dc) ¹⁾²⁾	Rated current (A) ¹⁾
24				4S	4E	0.9	•	_	0	_	22	-	-	2.1	3.0	7
	$\begin{pmatrix} 12 & & & \\ 0 & - & - & - & 0 \\ 0 & - & - & - & 0 \\ 0 & - & 0 & - & 0 \\ 0 & - & 0 & - & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & -0 & -0 & -0 \\ 0 & -0 & -0 & -0 & -$	324	5S	5E	1.6	•	-	-	-	18	-	-	2.7	3.9	9
	24 22 18			6S	-	3.0	•	-	-	-	12	-	-	1.2	1.8	12
24		600														
	$ \begin{pmatrix} 7 & 10 & 13 & 2 \\ 8 & 20 & 17 & 1 \\ 8 & 21 & 24 & 16 \\ 8 & 21 & 24 & 16 \\ \end{pmatrix} $		324	-	6E	3.0	•	-	-	-	12	-	-	1.2	1.8	12
30																
			330	5S	5E	1.3	•	-	-	-	20	-	-	1.8	2.4	8
30		0-0-0														
			330	6S	6E	2.0	•	-	-	-	16	-	-	2.1	3.0	10
32		0000														
			332	-	6E	2.0	•	-	-	-	16	-	-	1.5	2.1	10
		<u>G</u> CC <u>C</u>														
36		00000														
L			336	5S	5E	1.3	•	-	_	-	20	-	-	1.8	2.4	7
	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$															
36																
		19 ● ● ● ● ● ● 92 29 ● ● ● ● ● 93 30 ● ● ● ● 93	336	6S	-	2.0	•	-	-	-	16	-	-	1.5	2.1	8
	80003	34000														

Note: 1) see calculation method, caution and suggested standard on page 190. 2) lowest measured value; contact to contact to shell.

	Solder o	contacts		Se	ries			Cor ty	itact pe			AWG				
Number of LV contacts			_									Cri	mp	Test voltage (kV rms) ^{1) 2)}	V dc) ¹⁾²⁾	A) ¹⁾
of LV	Crimp c		e		ŧ	(mm)			aight)	(mo	ах.)			age (k	age (k	rrent (
Number			Reference	Standard	Watertight	Contact ø	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	тах.	Test volta	Test voltage (kV dc) ¹⁾²⁾	Rated current (A) ¹⁾
36		000000 0000000 00000000000000000000000														
			336	-	6E	30x1.3 6x5.0	•	-	-	-	20 8	-	-	1.5	2.1	4 22
40		000000														
			340	5S	5E	1.3		-	-	-	20	-	-	1.2	1.8	7
	10000000			-	6E	2.0	•	-	-	-	16	-	-	1.5	2.1	8
44																
			344	5S	5E	1.3		_	_	_	20	_	_	1.2	1.8	6
	() 000000000 00000000 0000000 0000000 000000															
48		0000 0000000 00000000		5S	5E	1.3		_	_	_	20	_	_	1.2	1.8	6
			348	6S	6E	2.0	•	_	_	_	16	_	-	1.5	2.1	7
	00004															
60		000000														
			360	6S	6E	1.6	•	-	-	-	18	-	-	1.5	2.1	5

62																
02		0000000 0000000 00000000 000000000 00000	362		6E	1.6		_	_	_	18	_	_	1.5	2.1	5
		0000000000 000000000 000000000 000000	UUL													
64		000000														
	0000000000 0000000000 00000000000 000000		364	6S	6E	1.3	•	-	-	-	20	-	-	1.2	1.8	4

Note: 1) see calculation method, caution and suggested standard on page 190. 2) lowest measured value; contact to contact to shell.

	Solder	contacts		Ser	ries			Cor ty	ntact pe			AWG				
ontacts												Cri	mp	' rms) ^{1) 2)}	' dc) ^{1) 2)}	()1)
fLV c	Crimp c	contacts	n			(mm)			ght)	(M	(.хе			ge (kV	ge (kV	ent (A
Number of LV contacts			Reference	Standard	Watertight	Contact ø	Solder	Crimp	Print (straight)	Print (elbow)	Solder (max.)	min.	тах.	Test voltage (kV rms) ^{1) 2)}	Test voltage (kV dc) ¹⁾²⁾	Rated current (A) ¹⁾
72		6000000 60000000														
			372	6S	6E	1.3	•	-	-	-	20	_	-	1.2	1.8	4
	0000000															
106																
			106	-	6E	0.9	•	-	-	-	22	-	-	0.8	1.2	2
		10000000000000000000000000000000000000														
106		Concession Concession														
			106	6S	-	0.9	•	-	_	_	22	_	-	0.8	1.2	2

Note: 1) see calculation method, caution and suggested standard on page 190. 2) lowest measured value; contact to contact to shell.

Housings (S and E series)

Ref.	Outer shell a	and collet nut	Latch sleeve +	earthing crown	Other metalli	c components	Remarks	Note
	Material	Surf. treatment	Material	Surf. treatment	Material	Surf. treatment		
С	Brass	chrome	brass/bronze	nickel ²⁾	brass	nickel		•
D	Brass	gold-plated	brass/bronze	nickel ²⁾	brass	nickel		0
Ν	Brass	nickel	brass/bronze	nickel ²⁾	brass	nickel		0
К	Brass	black chrome 3)	brass/bronze	nickel ²⁾	brass	nickel		•
S	Stainless steel	-	brass/bronze	nickel ²⁾	brass	nickel		0
т	Stainless steel	-	stainless steel	-	brass	nickel		0
U	Stainless steel	-	stainless steel	-	stainless steel	-		0
L	Aluminium alloy	anodized	brass/bronze	nickel ²⁾	brass	nickel	1)	0
В	POM (black)	-	brass/bronze	nickel ²⁾	brass	nickel	Only for FFP, ERN and PCP (S series)	•
G	PEEK (natural)	-	brass/bronze	nickel ²⁾	brass	nickel	Only for FFP, ERN and PCP (S series)	•
Р	PSU	-	brass/bronze	nickel ²⁾	brass	nickel	Only for FFL (S series) 1)	•
R	PPSU	-	brass/bronze	nickel ²⁾	brass	nickel	Only for FFL (S series) 1)	•
н	PPS/brass	–/nickel	brass/bronze	nickel ²⁾	brass	nickel	Only for EPL and EXP (S series)	•

Note: detailed characteristics of these materials and treatments are presented on page 182.

¹⁾ see «variant» for the colour.

²⁾ in the E series, the latch sleeve is chrome-plated.

³⁾ surface not conductive use socket with earthing tag (ERN model) to carry shield.

Insulators (S and E series)

Ref.	Material	Contact type	Remarks	Note
L	PEEK	Solder or print		
Y	PEEK	Crimp		•
т	PTFE	Solder	only for unipole types	•
т	FEP	Solder	only for multipole types of the S or E series	0
V	PI	Solder	only for multipole types of the S or E series	0
Ν	PA6.6	Solder	material for 5S/5E and 6S/6E series multipole inserts	•

Note: detailed characteristics of these materials are presented on page 187.

First choice alternative

e O Special order alternative

Soldering characteristics

- no need to order specific tools, a simple soldering iron is sufficient
- ideal for very small and fragile conductors
- contacts with solder cups to allow the solder to flow

Note: see page 188 for more information.

Crimping characteristics

- practical, quick contact fixing outside the insulator
- possible use at high temperature

Contacts (S and E series)

- need to order specific tools
- no risk of heating the insulator during the conductorcontact fixing
- high tensile strength
- totally lead-free solution

First choice alternative

○ Special order alternative

Contacts reference for plugs, free or fixed sockets

	Refe	rence		Contact	:	S	olid	Conc	luctor Strai	nded			
Contact type			øΑ	øC	Form	AWG	Section	AV			ו (mm²)	F _r ¹⁾ (N)	Notes
	Male	Female	(mm)	(mm)	per fig.	max.	max. (mm²)	min.	max.	min.	max.		
Solder			0.5	0.45	-	28	0.09	-	28	-	0.09	-	
			0.7	0.60	-	24	0.25	-	26	-	0.14	-	
			0.9	0.80	-	22	0.34	-	22 ²⁾	-	0.34	-	
			1.3	1.00	-	20	0.50	-	20 ²⁾	-	0.50	-	
<u>ø A</u> <u>ø C</u>			1.6	1.40	-	16	1.00	-	18	-	1.00	-	
	^		2.0	1.80	-	14	1.50	-	16	-	1.50	-	•
<u>ø A</u> <u>ø C</u>	Α	L	3.0	2.70	-	10	4.00	-	12	-	4.00	-	
			4.0	3.70	-	10	6.00	-	10	-	6.00	-	
			5.0	5.20	-	-	-	-	8	-	10.00	-	
			6.0	5.20	-	-	-	-	8	-	10.00	-	
			8.0	7.00	-	-	-	-	4	-	21.00	-	
			12.0	11.50	-	-	-	-	0	-	50.00	-	
Crimp	С	М	0.7	0.80	1	-	-	26	22 ²⁾	0.140	0.34	22	
fig. 1	В	Р	0.7	0.45	2	-	-	32	28	0.035	0.09	22	0
	С	М	0.9	1.10	1	-	-	24	20	0.250	0.50	30	
	В	Р	0.9	0.80	2	-	-	26	22 ²⁾	0.140	0.34	30	0
	G	U	0.9	0.45	2	-	-	32	28	0.035	0.09	30	0
+ +	С	М	1.3	1.40	1	-	-	20	18	0.500	1.00	40	•
fig. 2	В	Р	1.3	1.10	2	-	-	24	20	0.250	0.50	40	0
@ A @ C	G	U	1.3	0.80	2	-	-	26	22 ²⁾	0.140	0.34	40	0
	С	М	1.6	1.90	1	-	-	18	142)	1.000	1.50	50	
	В	Р	1.6	1.40	2	-	-	22	18	0.340	1.00	50	0
	С	М	2.0	2.40	1	-	-	16	12 ²⁾	1.500	2.50	65	•
	В	Р	2.0	1.90	2	-	-	18	14	1.500	1.50	65	0
Print	D	N		L dimen	nsions ar	nd C are o	letailed in See pa	the secti ge 167.	on on PC	B drilling	pattern.		•
Print (elbow)	v	v		L dimen	nsions ar	nd C are o	letailed in See pa	the secti ge 168.	on on PC	B drilling	pattern.		•

Note: ¹⁾ contact retention force in the insulator (according to IEC 60512-8 test 15 a).
 ²⁾ for a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than ø C.

Contacts reference for coupler and plug with socket

Ref.	Contact type	Remarks
Α	Male - Female	contact configuration is explained below
L	Female - Male	contact configuration is explained below
М	Female - Female	contact configuration is explained below

Contacts reference for fixed and free couplers RMA, RAD and SWH

Use of plugs for mating with RAD, RMA and SWH couplers

Unipole type:

Reference M for coupling two identical plugs fitted with male contact (contact reference A).

- Reference L for coupling a plug fitted with male contacts (contact reference A) at the flange end for RAD and SWH and an inverted plug fitted with female contacts (contact reference L) at the other end.
- Reference A for the inverted version of code L.

Multipole type:

Reference L for coupling a standard plug (contact reference A) at the flange end for RAD and SWH and an inverted plug (contact reference as indicated in the above table) at the other end. Reference M for coupling two standard plugs (contact type A).

Only available for RAD and RMA models.

Note: ¹⁾ this connector combination does not allow for contact numbering. One of the plugs has to be cable mounted in a way to ensure correct signal continuity.

C type	
K type oversize cable collet	
L type (non EMC)	

	Refe	rence	Coll	let ø	Cab	ole ø	Natas
	Туре	Code	ø A	øΒ	max.	min.	Notes
00	С	17	1.7	1.5	1.7	1.3	
00	С	22	2.2	-	2.2	> 1.7	
	С	27	2.7	-	2.7	> 2.2	
	С	31	3.1	2.7	3.1	> 2.7	
	К	37	3.7	-	3.7	> 3.2	
	К	42	4.2	3.7	4.4	> 3.7	
	L L	27	2.7	-	2.6	2.2	2)
	L	31	3.1	-	3.0	2.6	2)
00	С	22	2.2	-	2.2	1.3	3)
0S	С	32	3.2	-	3.2	> 2.2	
	С	37	3.7	-	3.7	> 3.2	
	С	44	4.4	3.7	4.4	> 3.7	
	К	52	5.2	-	5.2	> 4.2	
	К	57	5.7	5.2	5.7	> 5.2	
	К	62	6.2	5.2	6.2	> 5.7	
	L	22	2.2	-	2.2	1.3	2)
	L L	32	3.2	-	3.2	> 2.2	2)
	L	37	3.7	-	3.7	> 3.2	2)
	L L	44	4.4	-	4.3	3.5	1) 2)
	L L	48	4.8	-	4.8	4.4	1) 2)
10	С	22	2.2	-	2.2	1.4	
1S	С	32	3.2	-	3.2	> 2.2	
	С	42	4.2	-	4.2	> 3.2	
	С	52	5.2	-	5.2	> 4.2	
	С	57	5.7	5.2	5.7	> 5.2	
	С	62	6.2	5.2	6.2	> 5.7	
	К	72	7.2	-	7.2	> 6.2	
	К	82	8.2	6.7	8.2	> 7.2	
	К	87	8.7	6.7	8.7	> 8.2	

	Refe	rence	Col	et ø	Cab	ole ø	Natas
	Туре	Code	ø A	øΒ	max.	min.	Notes
1S	L	22	2.2	-	2.2	1.2	2)
13	L	32	3.2	-	3.2	> 2.2	2)
	L	42	4.2	-	4.2	> 3.2	2)
	L	52	5.2	-	5.2	> 4.2	2)
	L	62	6.2	-	6.2	> 5.2	2)
	L	66	6.6	-	6.5	5.9	1) 2)
20	С	27	2.7	-	2.7	1.3	
2S	С	32	3.2	-	3.2	> 2.5	
	С	42	4.2	-	4.2	> 3.2	
	С	52	5.2	-	5.2	> 4.2	
	С	62	6.2	-	6.2	> 5.2	
	С	72	7.2	6.7	7.2	> 6.2	
	С	82	8.2	6.7	8.2	> 7.2	
	С	87	8.7	6.7	8.7	> 8.2	
	К	97	9.7	9.0	9.7	> 8.7	
	К	11	10.5	9.0	10.5	> 9.5	
	L	32	3.2	-	3.2	2.5	2)
	L	42	4.2	-	4.2	> 3.2	2)
	L	52	5.2	-	5.2	> 4.2	2)
	L	62	6.2	-	6.2	> 5.2	2)
	L	72	7.2	-	7.2	> 6.2	2)
	L	82	8.2	-	8.2	> 7.2	2)
	L	87	8.7	-	8.7	> 8.2	1) 2)

Collets (S and E series)

Note: All dimensions are in millimetres. ¹⁾ these collets cannot be used for connectors models with nut for fitting a bend relief. ²⁾ these collets cannot be used for elbow connectors. ³⁾ the inner diameter of the smallest bend relief available is 2.5 mm.

	Reference		Col	let ø	Cab	Notes	
	Туре	Code	ø A	øΒ	max.	min.	Notes
20	С	42	4.2	7.7	4.2	2.6	
3S	С	57	5.7	7.7	5.7	4.3	
	С	72	7.2	7.7	7.2	5.8	
	С	87	8.7	8.7	8.7	7.3	
	С	97	9.7	9.0	9.7	8.8	
	С	11	10.5	9.0	10.5	9.8	
	К	12	12.2	-	12.0	11.1	
	К	13	13.2	12.2	13.0	12.1	
	L	42	4.2	-	4.2	2.6	2)
	L	57	5.7	-	5.7	> 4.2	2)
	L	72	7.2	-	7.2	> 5.7	2)
	L	87	8.7	-	8.7	> 7.2	2)
	L	97	9.7	-	9.7	> 8.7	2)
	L L	11	10.7	-	10.7	> 9.7	1) 2)
4S	С	52	5.2	-	5.0	4.1	
45	С	62	6.2	-	6.0	5.1	
	С	72	7.2	-	7.0	6.1	
	С	82	8.2	-	8.0	7.1	
	С	92	9.2	-	9.0	8.1	
	С	10	10.2	-	10.0	9.1	
	С	11	11.2	-	11.0	10.1	

	Refe	rence	Coll	et ø	Cab	le ø	Notes
	Туре	Code	ø A	øΒ	max.	min.	notes
4S	С	12	12.2	-	12.0	11.1	
45	С	13	13.2	12.2	13.0	12.6	
	К	14	14.2	-	14.0	13.1	1)
	К	15	15.2	-	15.0	14.1	1)
	К	16	16.2	-	16.0	15.1	1)
	К	17	17.2	-	17.0	16.1	1)
	К	18	18.2	-	18.0	17.1	1)
	К	19	19.2	-	19.0	18.1	1)
	К	К 20	20.2	19.7	20.0	19.1	1)
	К	21	21.2	19.7	21.0	20.1	1)
	К	22	22.2	19.7	22.0	21.1	1)
	L	52	5.2	-	5.0	4.1	2)
	L	62	6.2	-	6.0	5.1	2)
	L	72	7.2	-	7.0	6.1	2)
	L	82	8.2	-	8.0	7.1	2)
	L	92	9.2	-	9.0	8.1	2)
	L	10	10.2	-	10.0	9.1	2)
	L	11	11.2	-	11.0	10.1	2)
	L	12	12.2	-	12.0	11.1	2)
	L	13	13.2	-	13.0	12.6	2)

Note: All dimensions are in millimetres. ¹⁾ these collets cannot be used for connectors models with nut for fitting a bend relief. ²⁾ these collets cannot be used for elbow connectors.

	Refe	rence	Coll	let ø	Cab	le ø	Notes
	Туре	Code	ø A	øΒ	max.	min.	Notes
5S	С	72	7.2	-	7.0	6.1	1)
55	С	82	8.2	-	8.0	7.1	1)
	С	92	9.2	-	9.0	8.1	1)
	С	10	10.2	-	10.0	9.1	1)
	С	11	11.2	-	11.0	10.1	1)
	С	12	12.2	-	12.0	11.1	1)
	С	13	13.2	-	13.0	12.1	1)
	С	14	14.2	-	14.0	13.1	1)
	С	15	15.2	-	15.0	14.1	1)
	С	16	16.2	-	16.0	15.1	1)
	С	17	17.2	-	17.0	16.1	1)
	С	18	18.2	-	18.0	17.1	1)
	С	19	19.2	-	19.0	18.1	1)
	С	20	20.2	19.7	20.0	19.1	1)
	С	21	21.2	19.7	21.0	20.1	1)
	С	22	22.2	19.7	22.0	21.1	1)
	К	23	23.2	-	23.0	22.1	1)
	К	24	24.2	-	24.0	23.1	1)
	К	2 5	25.2	-	25.0	24.1	1)

	Reference		Coll	et ø	Cab	Natas	
	Туре	Code	ø A	øΒ	max.	min.	Notes
5S	К	26	26.2	-	26.0	25.1	1)
55	К	27	27.2	-	27.0	26.1	1)
	К	28	28.2	27.2	28.0	27.1	1)
	К	29	29.2	27.2	29.0	28.1	1)
	К	30	30.2	27.2	30.0	29.1	1)
	L	92	9.2	-	9.0	8.1	1) 2)
	L.	10	10.2	-	10.0	9.1	1) 2)
	L	11	11.2	-	11.0	10.1	1) 2)
	L	12	12.2	-	12.0	11.1	1) 2)
	L	13	13.2	-	13.0	12.1	1) 2)
	L	14	14.2	-	14.0	13.1	1) 2)
	L	15	15.2	-	15.0	14.1	1) 2)
	L	16	16.2	-	16.0	15.1	1) 2)
	L	17	17.2	-	17.0	16.1	1) 2)
	L	18	18.2	-	18.0	17.1	1) 2)
	L	19	19.2	-	19.0	18.1	1) 2)
	L	20	20.2	-	20.0	19.1	1) 2)
	L	21	21.2	-	21.0	20.1	1) 2)

Note: All dimensions are in millimetres. The 5S.112 is only available with L type of collet. ¹⁾ these collets cannot be used for connectors models with nut for fitting a bend relief. ²⁾ these collets cannot be used for elbow connectors.

	Refe	Reference		let ø	Cab	ole ø	Notes	
	Туре	Code	øΑ	øΒ	max.	min.	Notes	
6 S	С	12	12.2	-	12.0	11.1	1)	
03	С	13	13.2	-	13.0	12.1	1)	
	С	14	14.2	-	14.0	13.1	1)	
	С	15	15.2	-	15.0	14.1	1)	
	С	16	16.2	-	16.0	15.1	1)	
	С	17	17.2	-	17.0	16.1	1)	
	С	18	18.2	-	18.0	17.1	1)	
	С	19	19.2	-	19.0	18.1	1)	
	С	20	20.2	-	20.0	19.1	1)	
	С	21	21.2	-	21.0	20.1	1)	
	С	22	22.2	-	22.0	21.1	1)	
	С	23	23.2	-	23.0	22.1	1)	
	С	24	24.2	-	24.0	23.1	1)	
	С	25	25.2	-	25.0	24.1	1)	
	С	26	26.2	-	26.0	25.1	1)	
	С	27	27.2	-	27.0	26.1	1)	
	С	28	28.2	27.2	28.0	27.1	1)	
	С	29	29.2	27.2	29.0	28.1	1)	
	С	30	30.2	27.2	30.0	29.1	1)	

	Refer	rence	Coll	et ø	Cab	le ø	Notaa
	Туре	Code	ø A	øΒ	max.	min.	Notes
6S	L	12	12.2	-	12.0	11.1	1) 2)
03	L	13	13.2	-	13.0	12.1	1) 2)
	L	14	14.2	-	14.0	13.1	1) 2)
	L	15	15.2	-	15.0	14.1	1) 2)
	L	16	16.2	-	16.0	15.1	1) 2)
	L	17	17.2	-	17.0	16.1	1) 2)
	L	18	18.2	-	18.0	17.1	1) 2)
	L	19	19.2	-	19.0	18.1	1) 2)
	L	20	20.2	-	20.0	19.1	1) 2)
	L	21	21.2	-	21.0	20.1	1) 2)
	L	22	22.2	-	22.0	21.1	1) 2)
	L	23	23.2	-	23.0	22.1	1) 2)
	L	24	24.2	-	24.0	23.1	1) 2)
	L	25	25.2	-	25.0	24.1	1) 2)
	L	26	26.2	-	26.0	25.1	1) 2)
	L	27	27.2	-	27.0	26.1	1) 2)
	L	28	28.2	-	28.0	27.1	1) 2)
	L	29	29.2	-	29.0	28.1	1) 2)
	L	30	30.2	-	30.0	29.1	1) 2)

Note: All dimensions are in millimetres. ¹⁾ these collets cannot be used for connectors models with nut for fitting a bend relief. ²⁾ these collets cannot be used for elbow connectors..

C and K type collets for E series

	C type								
	K type oversize cable c)0 :16				
	Refer	rence	Col	let ø	Cab	le ø			
	Туре	Code	øΑ	øΒ	max.	min.	Notes		
	С	10	1.6	_	1.2	1.0	1)		
0E	С	15	1.6	-	1.5	1.3	1)		
	С	20	2.1	-	2.0	1.6	1)		
	С	25	3.1	-	2.5	2.1			
	С	30	3.1	-	3.0	2.6			
	С	35	4.2	4.2	3.5	3.1			
	С	40	4.2	4.2	4.0	3.6			
	С	45	5.2	5.2	4.5	4.1			
	С	50	5.2	5.2	5.0	4.6			
	С	15	1.6	-	1.5	1.3			
1E	С	20	2.2	-	2.0	1.6			
	С	25	3.2	-	2.5	2.1			
	С	30	3.2	-	3.0	2.6			
	С	35	4.2	-	3.5	3.1			
	С	40	4.2	-	4.0	3.6			
	С	45	5.2	-	4.5	4.1			
	С	50	5.2	-	5.0	4.6			
	С	55	6.2	6.2	5.5	5.1			
	С	60	6.2	6.2	6.0	5.6			
	С	65	7.2	6.7	6.5	6.1			
	К	70	7.2	-	7.0	6.6	3)		
	К	75	8.2	8.2	7.5	7.1	3)		
	К	80	8.2	8.2	8.0	7.6	3)		
	К	85	9.2	8.6	8.5	8.1	3)		
0	С	15	2.2	-	1.5	1.3			
2E	С	20	2.2	-	2.0	1.6			
	С	25	3.2	-	2.5	2.1			
	С	30	3.2	-	3.0	2.6			
	С	35	4.2	-	3.5	3.1			
	С	40	4.2	-	4.0	3.6			
	С	45	5.2	-	4.5	4.1			
	С	50	5.2	-	5.0	4.6			
	С	55	6.2	-	5.5	5.1			
	С	60	6.2	-	6.0	5.6			
	С	65	7.2	-	6.5	6.1			

	Refer	rence	Col	let ø	Cab	ole ø	
	Туре	Code	øΑ	øΒ	max.	min.	Notes
2E	С	70	7.2	-	7.0	6.6	
26	С	75	8.2	8.2	7.5	7.1	
	С	80	8.2	8.2	8.0	7.6	
	С	85	9.2	8.6	8.5	8.1	
	К	90	9.2	-	9.0	8.6	4)
	К	95	10.2	10.2	9.5	9.1	4)
	К	10	10.2	10.2	10.0	9.6	4)
	К	11	11.2	10.6	10.5	10.1	4)
25	С	30	3.2	-	3.0	2.6	
3E	С	35	4.2	-	3.5	3.1	
	С	40	4.2	-	4.0	3.6	
	С	45	5.2	-	4.5	4.1	
	С	50	5.2	-	5.0	4.6	
	С	55	6.2	-	5.5	5.1	
	С	60	6.2	-	6.0	5.6	
	С	65	7.2	-	6.5	6.1	
	С	70	7.2	-	7.0	6.6	
	С	75	8.2	-	7.5	7.1	
	С	80	8.2	-	8.0	7.6	
	С	85	9.2	-	8.5	8.1	
	С	90	9.2	-	9.0	8.6	
	С	95	10.2	10.2	9.5	9.1	
	С	10	10.2	10.2	10.0	9.6	
	С	11	11.2	10.6	10.5	10.1	
	К	11	12.3	-	12.0	10.6	5)
	К	12	13.8	13.8	12.8	12.1	5)
	К	13	13.8	13.8	13.5	12.9	5)
	К	14	15.3	15.3	14.0	13.6	5)
	К	15	15.3	15.3	15.0	14.1	2)

Note: all dimensions are in millimetres. ¹⁾ the inner diameter of the smallest bend relief available is 2.5 mm. ²⁾ the inner diameter of the largest bend relief available is 14.5 mm. ³⁾ for 2B bend relief. ⁴⁾ for 3B bend relief. ⁵⁾ for 4B bend relief.

C and K type collets for E series

	C type														
	K type oversize cable ce	e O)) (C type	00)0 :10				
	Refe	rence	Coll	et ø	Cab	le ø			Reference		Collet ø		Cab	le ø	
	Туре	Code	ø A	øΒ	max.	min.	Notes		Туре	Code	ø A	øΒ	max.	min.	Notes
4E	С	50	6.3	-	5.0	4.8		5E	С	10	11.8	-	10.5	9.6	
40	С	55	6.3	-	5.5	5.1		JE	С	11	11.8	-	11.5	10.6	
	С	60	6.3	-	6.0	5.6			С	12	13.8	-	12.5	11.6	
	С	65	7.3	-	6.5	6.1			С	13	13.8	-	13.5	12.6	
	С	70	7.3	-	7.0	6.6			С	14	15.8	-	14.5	13.6	
	С	75	8.3	-	7.5	7.1			С	15	15.8	-	15.5	14.6	1)
	С	80	8.3	-	8.0	7.6			С	16	17.8	-	16.5	15.6	1)
	С	85	9.3	-	8.5	8.1			С	17	17.8	-	17.5	16.6	1)
	С	90	9.3	-	9.0	8.6			С	18	19.8	-	18.5	17.6	1)
	С	95	10.8	-	9.5	9.1			С	19	19.8	-	19.5	18.6	1)
	С	10	10.8	-	10.5	9.6			С	20	21.8	-	20.5	19.6	1)
	С	11	12.3	-	12.0	10.6			С	21	21.8	-	21.5	20.6	1)
	С	12	13.8	13.8	12.8	12.1			С	22	23.8	23.8	22.5	21.6	1)
	С	13	13.8	13.8	13.5	12.9			С	23	23.8	23.8	23.5	22.6	1)
	С	14	15.3	15.3	14.0	13.6		6E	С	14	14.2	-	14.0	13.0	1)
	С	15	15.3	15.3	15.0	14.1	2)	UE	С	15	15.2	-	15.0	14.1	1)
	К	16	17.8	-	16.5	15.6	1)		С	16	15.7	-	15.5	14.6	1)
	К	17	17.8	-	17.5	16.6	1)		С	17	16.7	-	16.5	15.6	1)
	К	18	19.8	-	18.5	17.6	1)		С	18	18.2	-	18.0	17.1	1)
	К	19	19.8	-	19.5	18.6	1)		С	21	23.2	-	21.5	20.6	1)
	К	20	21.8	-	20.5	19.6	1)		С	22	23.2	-	22.0	21.1	1)
	К	21	21.8	-	21.5	20.6	1)		С	23	23.2	-	23.0	22.1	1)
	К	22	23.8	23.8	22.5	21.6	1)		С	27	27.2	-	27.0	26.1	1)
	К	23	23.8	23.8	23.5	22.6	1)		L	30	30.2	-	30.0	29.5	1)

Note: all dimensions are in millimetres. ¹⁾ these collets cannot be used for connector models with nut for fitting a bend relief. No bend relief available for this cable size. ²⁾ the inner diameter of the largest bend relief available is 14.5 mm.

Bend relief for S series models with collet

Need to be ordered Collet Ref. Туре Code С 17 to 31 00 Ζ κ 37 to 42 L 27 to 31 С 32 to 44 **0S** z Κ 52 to 62 32 to 48 L С 32 to 62 **1S** z κ 72 to 87 L 32 to 66 С 42 to 87 **2S** z κ 97 to 11 L 42 to 87

С

Κ

L

С

L

3S

4S

z

Ζ

57 to 97

12 to 13

57 to 97 82 to 13

82 to 13

=A	Č <u> </u>
()) 1	

Need to be ordered separately (see pages 145 and 146)
GMA.00.0
GMA.0B.0●●.D●
GMA.00.0●●.D●
GMA.0B.0●●.D●
GMA.1B.0●●.D●
GMA.0B.0ee.De
GMA.1B.0●●.D●
GMA.2B.0●●.D●
GMA.1B.0
GMA.2B.0●●.D●
GMA.3B.0●●.D●
GMA.2B.0
GMA.3B.0
GMA.4B.0
GMA.3B.0
GMA.4B.0
GMA.4B.0

Bend r	Bend relief for E series models with collet										
				Need to be ordered							
	Ref.	Co	llet	Need to be ordered							
	Rei.	Туре	Code	separately (see pages 145 and 146)							
0E	z	С	10 to 50	GMA.0B							
10	z	С	15 to 65	GMA.1B							
1E	2	К	70 to 85	GMA.2B.•••.••							
2E	z	С	15 to 85	GMA.2B							
26	2	К	90 to 10	GMA.3B.•••.••							
3E	z	С	30 to 10	GMA.3B.•••.••							
JE	-	К	11 to 15 ¹⁾	GMA.4B.•••.••							
4E	z	С	50 to 15 ²⁾	GMA.4B							
5E	z	С	10 to 14	GMA.4B							

Note: all dimensions are in millimetres. ¹⁾ for K15 see page 119. ²⁾ for C15 see page 120.

ries models with collet Dand valiation E

Variant (S and E series)

Need to be ordered separately see pages 145 and 146) GMA.0B.... GMA.1B.... GMA.2B.... GMA.2B.... GMA.3B.... GMA.3B....

www.lemo.com

			Plastic shel	I	Alur	ninium alloys
Ref.	Colour	PSU	PPSU	PA.6	Anodized colour	Anodized colour for bend relief collet nut
Α	blue			•	•	
В	white	•		•		
G	grey	•		•		
J	yellow			•	•	
М	brown			•		
Ν	black			•	•	
R	red			•	•	
S	orange			•		
т	natural				•	
V	green			•	•	
L	black					•
Х	natural					•
F	cream		•			

Colour of connectors shell made of plastic material and aluminium alloys

Note: other anodizing colours are available for connectors with collet nut for bend relief. Please consult us.

Watertight and vacumtight socket and coupler models (S and E series)

	Refei	rence	Model		
	Watertight Vacuumtight		Model		
S	Ρ	PV	EWB, HCP, HGP, HGW, SWH		
Е	Р	PV	EBR, HGP, SWH		

O-ring and gasket material (E series)

Standard connectors are delivered with silicone o-ring and gaskets. The vacuumtight models, identified with the letter «PV», are delivered with Viton® gaskets. Other gaskets material can be delivered upon special request.

Ref.	O-ring material
н	FPM (Viton®)
E	EPDM
D	FPM (Viton®) and collet nut for bend relief

The M Series connector offers a new innovative design for avionics, aerospace, military, security, motorsport and heavy duty applications.

Made of high-strength aluminium, this connector is one of the lightest and most compact of the LEMO product line. A one-grip ratchet screw system enables quick and secure coupling of the connectors. The arctic grip makes it easy to manipulate the connector while wearing gloves or when the connector is located in a difficult to access area.

Features

- Ratchet-coupling mechanism
 Compact design for space savings
- Oil and fuel resistant
- 360° screening for full EMC shielding
- Colour coding / keying
- Scoop proof
- Threaded for MIL-DTL-38999L backshell

- Quick mating: less than 3/4 turn to seat

- Lightweight
- High vibration and shock resistance
- Sealed to IP68 when mated
- Reverse gender configuration
- Pin configuration from 2 to 114 contacts

Part Numbering System

FMN.1M.305.XLC = straight plug with key (N), 1M series, multipole type with 5 contacts, outer shell in anthracite nickel-plated aluminium alloy, PEEK insulator, male crimp contacts

FGN.1M.305.XLCM = straight plug with key (N), arctic grip, 1M series, multipole type with 5 contacts, outer shell in anthracite nickelplated aluminium alloy, PEEK insulator, male crimp contacts and with MIL-DTL-38999L thread for additional backshell (not supplied).

PMN.1M.305.XLMT = free socket with key (N), 1M series, multipole type with 5 contacts, outer shell in anthracite nickel-plated aluminium alloy, PEEK insulator, female crimp contacts and mold stop.

HEN.1M.305.XLNP = fixed socket, nut fixing, with key (N), 1M series, multipole type with 5 contacts, outer shell in anthracite nickelplated aluminium alloy, PEEK insulator, female print contacts, watertight.

Note: 1) anthracite colour / 48 hours salt fog resistance. 2) anthracite colour / 500 hours salt fog resistance RoHS 2/REACH.

Part Section Showing Internal Components

More informations on: https://www.lemo.com/catalog/ROW/UK_English/M_series.pdf

F Series

The F series connectors have been specially developed to meet the most demanding requirements in terms of dimensions, weight and watertightness. Our manufacturing programme includes now 8 series. This series provides customers with many features and benefits including:

- push-pull self-latching system for safe connection
- sealed to IP67 for environmental protection when mated according to IEC 60529
 compact scoop-proof design and use of aluminium alloy
- high shock and vibration resistance
- multipole types with 2 to 68 contacts or multifibre optic or mixed FO + LV in 2F series
- crimp or print contacts (straight or elbow)
- keys ensuring ease of blind mating
- colour coded key options for system security.

The F series connectors are available in 3 different materials:

- for high shock and vibration resistance, LEMO recommends using Y code material (with beryllium copper latch sleeve).
 for environmental resistance and latching cycle endurance, LEMO recommends using the C code material
- (brass outershell).
- for lightweight and latching cycle endurance, LEMO recommends using X code material (aluminium shell).
- for lightweight and salt spray corrosion resistance, LEMO recommends using I code material (aluminium shell).

Each series includes several models of plugs and sockets available in contact configurations adapted to all round cables, including up to 68 conductors, and a maximum diameter of 34 mm. Since LEMO connectors are perfectly screened and designed to guarantee very low resistance to shell electrical continuity, they are particularly adapted to applications where electromagnetic compatibility (EMC) is important. A large number of accessories as well as tooling for cable assembly are available.

Part Numbering System

FGN.0F.305.YLC = straight plug with key (N), 0F series, multipole type with 5 contacts, outer shell in anthracite nickel-plated aluminium alloy, beryllium copper latch sleeve, PEEK insulator, male crimp contacts.

PHN.0F.305.XLM = free socket with key (N), 0F series, multipole type with 5 contacts, outer shell in anthracite nickel-plated aluminium alloy, PEEK insulator, female crimp contacts.

HEN.0F.305.XLNP = fixed socket, nut fixing, with key (N), 0F series, multipole type with 5 contacts, outer shell in anthracite nickel-plated aluminium alloy, PEEK insulator, female print contacts, watertight.

Note: 1) for straight plug only. 2) with shell material code X or Y. 3) potting for HE• only. 4) HE• available only with print contacts (straight or elbow). 5) connectors for fibre-optic are delivered without the fibre optic contacts, they must be ordered separately.

Part Section Showing Internal Components

More informations on: https://www.lemo.com/catalog/ROW/UK_English/f_series.pdf

SPARE PARTS

Spare parts for crimp contacts

	_	Insulator p	art number	ø (r	nm)		Cond.	AWG	Contact part number	
	Types	Male contact	Female contact	А	С	Fig.	min.	max.	Male	Female
00 TT	302/303/304	FGG.00.30•.YL	EGG.00.40•.YL	0.5	0.45	1	32	28	FGG.00.554.ZZC	EGG.00.654.ZZM
0B 0K 0T	302/303	FGG.0B.30e.YL	EGG.0B.40•.YL	0.9	1.10 0.80 0.45	1 2 2	24 26 32	20 22 28	FGG.0B.560.ZZC FGG.0B.561.ZZC FGG.0B.562.ZZC	EGG.0B.660.ZZM EGG.0B.661.ZZM EGG.0B.662.ZZM
	304/305	FGG.0B.30•.YL	EGG.0B.40•.YL	0.7	0.80 0.45	1 2	26 32	22 28	FGG.0B.555.ZZC FGG.0B.556.ZZC	EGG.0B.655.ZZM EGG.0B.656.ZZM
	306/307/309	FGG.0B.30e.YL	-	0.5	0.45	1	32	28	FGG.0B.554.ZZC	-
0 S	302	-	-	0.9	1.10 0.80 0.45	1 2 2	24 26 32	20 22 28	FGG.0B.560.ZZC FGG.0B.561.ZZC FGG.0B.562.ZZC	EGG.0B.660.ZZM EGG.0B.661.ZZM EGG.0B.662.ZZM
	303/304	-	-	0.7	0.80 0.45	1 2	26 32	22 28	FGG.0B.555.ZZC FGG.0B.556.ZZC	EGG.0B.655.ZZM EGG.0B.656.ZZM
1B 1K	302/303	FGG.1B.30e.YL	EGG.1B.40•.YL	1.3	1.40 1.10	1 2	20 24	18 20	FGG.1B.565.ZZC FGG.1B.566.ZZC	EGG.1B.665.ZZM EGG.1B.666.ZZM
1T	304/305	FGG.1B.30.YL	EGG.1B.40•.YL	0.9	1.10 0.80	1 2	24 26	20 22	FGG.1B.560.ZZC FGG.1B.561.ZZC	EGG.1B.660.ZZM EGG.1B.661.ZZM
	306/307/308	FGG.1B.30•.YL	EGG.1B.40•.YL	0.7	0.80 0.45	1 2	26 32	22 28	FGG.1B.555.ZZC FGG.1B.556.ZZC	EGG.1B.655.ZZM EGG.1B.656.ZZM
	310/314/316	FGG.1B.3YL	-	0.5	0.45	1	32	28	FGG.1B.554.ZZC	-
1S	302	-	-	1.3	1.40 1.10	1 2	20 24	18 20	FGG.1B.565.ZZC FGG.1B.566.ZZC	EGG.1B.665.ZZM EGG.1B.666.ZZM
	304	-	-	0.9	1.10 0.80	1 2	24 26	20 22	FGG.1B.560.ZZC FGG.1B.561.ZZC	EGG.1B.660.ZZM EGG.1B.661.ZZM
2B 2K	302	FGG.2B.302.YL	EGG.2B.402.YL	2.0	2.40 1.90	1 2	16 18	12 14	FGG.2B.575.ZZC FGG.2B.576.ZZC	EGG.2B.675.ZZM EGG.2B.676.ZZM
2 T	303	FGG.2B.303.YL	EGG.2B.403.YL	1.6	1.90 1.40	1 2	18 22	14 18	FGG.2B.570.ZZC FGG.2B.571.ZZC	EGG.2B.670.ZZM EGG.2B.671.ZZM
	304/305 306/307	FGG.2B.30•.YL	EGG.2B.40•.YL	1.3	1.40 1.10 0.80	1 2 2	20 24 26	18 20 22	FGG.2B.565.ZZC FGG.2B.566.ZZC FGG.2B.567.ZZC	EGG.2B.665.ZZM EGG.2B.666.ZZM EGG.2B.667.ZZM
	308/310	FGG.2B.3YL	EGG.2B.4YL	0.9	1.10 0.80 0.45	1 2 2	24 26 32	20 22 28	FGG.2B.560.ZZC FGG.2B.561.ZZC FGG.2B.562.ZZC	EGG.2B.660.ZZM EGG.2B.661.ZZM EGG.2B.662.ZZM
	312/314/316 318/319	FGG.2B.3YL	EGG.2B.4YL	0.7	0.80 0.45	1 2	26 32	22 28	FGG.2B.555.ZZC FGG.2B.556.ZZC	EGG.2B.655.ZZM EGG.2B.656.ZZM

Tools for crimp contacts

	Types	Positioners p	part number ³⁾	Extractors part number for male/
	Types	Male contact	Female contact	female contacts
00 TT	302/303/304	DCE.91.050.0VC	DCE.91.050.0VM	DCF.91.050.2LT
0B 0K 0T	302/303	DCE.91.090.BVC DCE.91.090.AVC	DCE.91.090.BVM DCE.91.090.AVM	DCF.91.090.2LT
	304/305	DCE.91.070.BVC	DCE.91.070.BVM	DCF.92.070.3LT
	306/307/309	DCE.91.050.BVC	DCE.91.050.BVM	DCF.91.050.2LT
0 S	302	DCE.91.090.BVC DCE.91.090.AVC	DCE.91.090.BVM DCE.91.090.AVM	DCF.93.090.4LT
	303/304	DCE.91.070.BVC	DCE.91.070.BVM	DCF.91.070.2LT
1B 1K	302/303	DCE.91.131.BVC	DCE.91.131.BVM	DCF.91.131.2LT
1T	304/305	DCE.91.091.BVC	DCE.91.091.BVM	DCF.91.090.2LT
	306/307/308	DCE.91.071.BVC	DCE.91.071.BVM	DCF.91.070.2LT
	310/314/316	DCE.91.051.BVC	DCE.91.051.BVM	DCF.91.050.2LT
1S	302	DCE.91.131.BVC	DCE.91.131.BVM	-
	304	DCE.91.091.BVC	DCE.91.091.BVM	-
2B 2K	302	DCE.91.2	202.BVCM	DCC.91.202.5LA ¹⁾
2T	303	DCE.91.1	62.BVCM	DCF.91.162.2LT
	304/305 306/307	DCE.91.132.BVC	DCE.91.132.BVM	DCF.91.131.2LT
		DCE.91.132.CVC	DCE.91.132.CVM	
	308/310	DCE.91.092.BVC	DCE.91.092.BVM	DCF.91.090.2LT
	040/044/046	DCE.91.092.AVC	DCE.91.092.AVM	
	312/314/316 318/319	DCE.91.072.BVC	DCE.91.072.BVM	DCF.91.070.2LT ²⁾

Note: ¹⁾ this model is thumb-operated. ²⁾ for inverted contacts, please use DCF.92.070.3LT instead. ³⁾ please consult page 132 for the corresponding crimping tools.

FGG-EGG Crimp contacts

Note: a wide variation of strand number and diameter combinations are quoted as being AWG, some of which do not have a large enough cross section to guarantee a crimp as per either MIL-C-22520/1-01 or /7-01.

FGG-EGG Insulators

Note: each insulator can be used both for crimp contacts of normal shape (fig. 1) or with reduced crimp barrel (fig. 2).

DCE Positioners ø 0.5-0.7-0.9-1.3 mm ³⁾

These positioners are suitable for use with both manual and pneumatic crimping tools according to the MIL-C-22520/7-01 standard.

DCE Turret for ø 1.6-2.0-3.0-4.0 mm ³⁾

Note: these turrets can be used with manual crimping tool according to MIL-C-22520/1-01 standard.

DCF Automatic extraction tools

Note: (not valid for FA• and FW• models)

Spare parts for crimp contacts

	_	Insulator p	art number	ø (r	nm)		Cond.	AWG	Contact pa	art number
	Types	Male contact	Female contact	А	С	Fig.	min.	max.	Male	Female
2S					1.40	1	20	18	FGG.2B.565.ZZC	EGG.2B.665.ZZM
23	306	-	-	1.3	1.10	2	24	20	FGG.2B.566.ZZC	EGG.2B.666.ZZM
					0.80	2	26	22	FGG.2B.567.ZZC	EGG.2B.667.ZZM
3B 3K	302	FGG.3B.302.YL	EGG.3B.402.YL	3.0	3.20	1	14	10	FGG.3B.580.ZZC	EGG.3B.680.ZZM
3T	303/304/309	FGG.3B.30•.YL ¹⁾	EGG.3B.40•.YL ¹⁾	2.0	2.40	1	16	12	FGG.3B.575.ZZC	EGG.3B.675.ZZM
					1.90	2	18	14	FGG.3B.576.ZZC	EGG.3B.676.ZZM
	305/306/307	FGG.3B.30e.YL	EGG.3B.40e.YL	1.6	1.90	1	18	14	FGG.3B.570.ZZC	EGG.3B.670.ZZM
					1.40	2	22	18	FGG.3B.571.ZZC	EGG.3B.671.ZZM
	308/309/310	FGG.3B.3••.YL ¹⁾	EGG.3B.4	1.3	1.40	1	20	18	FGG.3B.565.ZZC	EGG.3B.665.ZZM
					1.10 1.10	2	24 24	20 20	FGG.3B.566.ZZC FGG.3B.560.ZZC	EGG.3B.666.ZZM EGG.3B.660.ZZM
	312/314	FGG.3B.3ee.YL	EGG.3B.4ee.YL	0.9	0.80	2	24	20	FGG.3B.561.ZZC	EGG.3B.661.ZZM
	316/318	TGG.3D.300.1L	LGG.3D.400.1L	0.9	0.80	2	32	22	FGG.3B.562.ZZC	EGG.3B.662.ZZM
	200 (200 (201				0.80	1	26	22	FGG.3B.555.ZZC	EGG.3B.655.ZZM
	320/322/324 326/330	FGG.3B.3YL	EGG.3B.4YL	0.7	0.45	2	32	28	FGG.3B.556.ZZC	EGG.3B.656.ZZM
						_				
4B 4K	304	FGG.4B.304.YL	EGG.4B.404.YL	3.0	3.20	1	14	10	FGG.4B.580.ZZC	EGG.4B.680.ZZM
	306/307	FGG.4B.30e.YL	EGG.4B.40•.YL	2.0	2.40	1	16	12	FGG.4B.575.ZZC	EGG.4B.675.ZZM
					1.90	2	18	14	FGG.4B.576.ZZC	EGG.4B.676.ZZM
	310	FGG.4B.310.YL	EGG.4B.410.YL	1.6	1.90	1	18	14	FGG.4B.570.ZZC	EGG.4B.670.ZZM
					1.40	2	22	18	FGG.4B.571.ZZC	EGG.4B.671.ZZM
	312	FGG.4B.312.YL	EGG.4B.412.YL	1.3	1.40	1	20	18	FGG.4B.565.ZZC	EGG.4B.665.ZZM
					1.10	2	24	20	FGG.4B.566.ZZC	EGG.4B.666.ZZM
	316/320 324/330	FGG.4B.3YL	EGG.4B.4YL	0.9	1.10 0.80	1	24 26	20 22	FGG.4B.560.ZZC FGG.4B.561.ZZC	EGG.4B.660.ZZM EGG.4B.661.ZZM
					0.80	2	26	22	FGG.4B.555.ZZC	EGG.4B.655.ZZM
	340/348	FGG.4B.3YL	EGG.4B.4YL	0.7	0.80	2	32	22	FGG.4B.556.ZZC	EGG.4B.656.ZZM
	1				0.40	~	02	20	100.40.000.220	Laa.+b.000.22IVI
5B 5K	304	FGG.5B.304.ML	EGG.5B.404.ML	4.0	4.00	1	12	10	FGG.5B.582.ZZC	EGG.5B.682.ZZM
	310	FGG.5B.310.YL	EGG.5B.410.YL	3.0	3.20	1	14	10	FGG.5B.580.ZZC	EGG.5B.680.ZZM
	314/316	FGG.5B.3YL	EGG.5B.4YL	2.0	2.40	1	16	12	FGG.5B.575.ZZC	EGG.5B.675.ZZM
	514/510	1 GG.55.500.1E	EGG.30.400.1E	2.0	1.90	2	18	14	FGG.5B.576.ZZC	EGG.5B.676.ZZM
	320	FGG.5B.320.YL	EGG.5B.420.YL	1.6	1.90	1	18	14	FGG.5B.570.ZZC	EGG.5B.670.ZZM
					1.40	2	22	18	FGG.5B.571.ZZC	EGG.5B.671.ZZM
					1.40	1	20	18	FGG.5B.565.ZZC	EGG.5B.665.ZZM
	330/340/348	FGG.5B.3YL	EGG.5B.4YL	1.3	1.10	2	24	20	FGG.5B.566.ZZC	EGG.5B.666.ZZM
					0.80	2	26	22	FGG.5B.567.ZZC	EGG.5B.667.ZZM
	350/354/364	FGG.5B.3	EGG.5B.4	0.9	1.10	1	24	20	FGG.5B.560.ZZC	EGG.5B.660.ZZM
	00070047004	- GG.00.000.TE-/		0.0	0.80	2	26	22	FGG.5B.561.ZZC	EGG.5B.661.ZZM

Note: ¹⁾ for 309 type the insulator part number is FGG.3B.309.ML (male contact) and EGG.3B.409.ML (female contact). ²⁾ for 350 type the insulator part number is FGG.5B.350.ML (male contact) and EGG.5B.409.ML (female contact).

Tools for crimp contacts

	_	Positioners p	art number ²⁾	Extractors part	
	Types	Male contact	Female contact	number for male/ female contacts	
25	306	DCE.91.132.BVC	DCE.91.132.BVM	_	
		DCE.91.132.CVC	DCE.91.132.CVM		
3E 3k	SUZ	DCE.91.3	03.BVCM	DCF.91.303.5LT	
31	303/304/309	DCE.91.2	03.BVCM	DCC.91.202.5LA ¹⁾	
	305/306/307	DCE.91.1	63.BVCM	DCF.91.163.5LT	
	308/309/310	DCE.91.133.BVC	DCE.91.133.BVM	DCF.91.133.5LT	
	312/314 316/318	DCE.91.093.BVC	DCE.91.093.BVM	DCF.91.093.5LT	
		DCE.91.093.BVG ³⁾	DCE.91.093.BVU ³⁾		
	320/322/324 326/330	DCE.91.073.BVC	DCE.91.073.BVM	DCF.92.070.3LT	
4E 4M		DCE.91.3	DCE.91.304.BVCM		
	306/307	DCE.91.204.BVCM		DCC.91.202.5LA ¹⁾	
	310	DCE.91.1	DCE.91.164.BVCM		
	312	DCE.91.134.BVC	DCE.91.134.BVM	DCF.91.133.5LT	
	316/320 324/330	DCE.91.094.BVC	DCE.91.094.BVM	DCF.91.093.5LT	
	340/348	DCE.91.074.BVC	DCE.91.074.BVM	DCF.91.073.5LT	
5E 5M		DCE.91.4	05.BVCM	DCF.91.405.5LT	
	310	DCE.91.3	05.BVCM	DCF.91.303.5LT	
	314/316	DCE.91.2	05.BVCM	DCC.91.202.5LA ¹⁾	
	320	DCE.91.165.BVCM		DCF.91.163.5LT	
	330/340/348	DCE.91.135.BVC	DCE.91.135.BVM	DCF.91.133.5LT	
		DCE.91.135.BVG	DCE.91.135.BVU		
	350/354/364	DCE.91.095.BVC	DCE.91.095.BVM	DCF.91.093.5LT	

Note: 1) this model is thumb-operated. 2) please consult page 132 for the corresponding crimping tools. 3) «G» and «U» positioners for reduced crimp barrel (see page 65 - fig. 2 for contact type

FGG-EGG Crimp contacts

Note: a wide variation of strand number and diameter combinations are quoted as being AWG, some of which do not have a large enough cross section to guarantee a crimp as per either MIL-C-22520/1-01 or /7-01.

FGG-EGG Insulators

Note: each insulator can be used both for crimp contacts of normal shape (fig. 1) or with reduced crimp barrel (fig. 2).

DCE Positioners ø 0.5-0.7-0.9-1.3 mm²⁾

These positioners are suitable for use with both manual and pneumatic crimping tools according to the MIL-C-22520/7-01 standard.

DCE Turret for ø 1.6-2.0-3.0-4.0 mm²)

Note: these turrets can be used with manual crimping tool according to MIL-C-22520/1-01 standard.

DCF Automatic extraction tools

Note: (not valid for FA• and FW• models)

Crimping tools for electrical contacts

Manual crimping tools

contact ø 0.5-0.7 0.9-1.3 (Fig. A)	contact ø 1.6-2.0 (Fig. B)	contact ø 3.0-4.0 (Fig. B)	Supplier
DPC.91.701.V ¹⁾	DPC.91.101.A ²⁾	DPC.91.102.V	LEMO
MH860 ¹⁾	AF8 ²⁾	M300BT	DANIELS
616336 ¹⁾	615708 ²⁾	-	ASTRO

¹⁾ According to specification MIL-C-22520/7-01.
 ²⁾ According to specification MIL-C-22520/1-01.

Pneumatic crimping tools

Part number	Supplier
DPC.91.701.C	LEMO
85230	BALMAR
621101	BUCHANAN

According to specification MIL-C-22520/7-01. For LEMO contacts ø 0.5-0.7-0.9-1.3 mm

DCF Automatic extraction tools for crimp contacts (for FA• and FW• models)

Extractors part number for male and female contacts	Series	Contact ø A (mm)
DCF.92.162.3LT		1.6
DCF.92.131.3LT	0B-0K	1.3
DCF.92.090.3LT	to 3B-3K	0.9
DCF.92.070.3LT		0.7

Note:

extractor for FAe of the 4B/4K and 5B/5K still need to be determinated.

Spare parts

GBA Locking washers

Material: Nickel-plated bronze (3 μm)

GBB Tapered washers

Part number	Series	Dimensions (mm)				
Faithumber	Series	Α	С	L		
GBA.00.250.FN	00-TT	9.5	7.1	1.0		
GBA.0S.250.FN	0S-0B-0T	12.5	9.1	1.0		
GBA.1S.250.FN	1S-1B-1T	16.0	12.1	1.0		
GBA.0E.250.FN	XB	19.6	14.1	1.2		
GBA.1E.250.FN	1E-1K	21.8	16.1	1.2		
GBA.2S.250.FN	2S-2B-2T	19.5	15.1	1.2		
GBA.3S.250.FN	3S-3B-3T	25.0	18.1	1.4		
GBA.4S.250.FN	4S-4B	32.0	25.1	1.4		

Note: to order this accessory separately, use the above part numbers.

Part number	Series	Dimensions (mm)			
r art number	Series	Α	С	L	
GBB.00.250.LN	00	9	7.1	2.0	
GBB.0S.250.LN	0S-0B	11	9.1	2.5	
GBB.1S.250.LN	1S-1B	15	12.1	3.5	
GBB.2S.250.LN	2S-2B	18	15.1	4.0	
GBB.3S.250.LN	3S-3B	22	18.1	4.5	
GBB.4S.250.LN	4S-4B	28	25.2	5.0	
GBB.5S.250.LN	5S-5B	40	35.2	7.5	

Note: sockets of series 5B and 5S are always supplied with a tapered washer. To order this accessory separately, use the above part numbers. The panel cut out diameters are larger when using tapered washer.

Part number	Madal	Dimensions (mm)				
Part number	Model	Α	В	е	L	
GEG.00.240.LC	1	8.6	10	M7 x 0.5	2.5	
GEG.0S.240.LC	1	10.5	12	M9 x 0.6	2.5	
GEG.0E.240.LC	1	15.8	18	M14 x 1.0	3.5	
GEG.1S.240.LC	1	14.0	16	M12 x 1.0	3.5	
GEG.1E.240.LC	2	17.5	20	M16 x 1.0	3.5	
GEG.1S.242.LC	1	12.1	14	M11 x 0.5	3.5	
GEG.2S.240.LC	2	17.5	20	M15 x 1.0	3.5	
GEG.2S.241.LC	2	20.5	24	M19 x 1.0	3.5	
GEG.2E.240.LC	2	22.5	25	M20 x 1.0	3.5	

• Material: Chrome-plated brass (Ni 3 μ m + Cr 0.3 μ m)

Note: 00, TT, 0B, 0T, 0S, 1B, 1T, 1S, 2B, 2T and 2S series fixed and free sockets for back panel mounting are always delivered with this notched nut. To order this accessory separately, use the above part numbers.

Material: Nickel-plated brass (3 μm)

GEG Notched nut

GEA Hexagonal nuts

			Dim	ensions (mm)	
Part number	Series		В	е	L
GEA.00.240.LN	00-TT	9	10.2	M7 x 0.50	2.0
GEA.0S.240.LN	0S-0B-0T	11	12.4	M9 x 0.60	2.0
GEA.0S.241.LN	0S-0B	12	13.8	M10 x 0.75	2.5
GEA.0E.240.LN	0E-0K	17	19.2	M14 x 1 00	25
GEA.UE.240.EN	1S-1B-XB	17	19.2	W14 X 1.00	2.5
GEA.1S.240.LN	1S-1B-1T	14	15.8	M12 x 1.00	2.5
GEA.1S.241.LN	1B	13	14.8	M11 x 0.50	2.5
GEA.1E.240.LN	1E-1K	19	21.5	M16 x 1.00	3.0
GEA.TE.240.EN	2S-2B	19	21.5		3.0
GEA.2S.240.LN	2S-2B-2T	17	19.2	M15 x 1.00	2.7
GEA.2E.240.LN	2E-2K	24	27.0	M20 x 1.00	4.0
GEA.3S.240.LN	3S-3B-3T	22	25.0	M18 x 1.00	3.0
GEA.3E.240.LN	3E-3K	30	34.0	M24 x 1.00	5.0
GEA.4S.240.LN	4S-4B	30	34.0	M25 x 1.00	5.0
GEA.4E.240.LN	4E-4K	36	40.5	M30 x 1.00	7.0

 Material: Nickel-plated brass (3 μm), natural anodized aluminium alloy, stainless steel

Note: to order this part separately, use the above part numbers. The last letters «LN» of the part number refer to the nut material and treatment. If a nut in aluminium alloy or stainless steel is desired, replace the last letters of the part number by «PT» or «AZ» respectively.

GEC Conical nuts

• Material: Chrome-plated brass (Ni 3 μ m + Cr 0.3 μ m)

Note: 3B, 3K, 3T, 3S, 3E, 4B, 4K, 4S, 4E, 5B, 5K, 5S, 5E, 6S and 6E series fixed and free sockets for back panel mounting are always delivered with a conical nut. To order this accessory separately, use the part numbers in the adjacent table.

Part number	Dimensions (mm)					
Fait number	А	В	е	L		
GEC.00.240.LC	8	10.0	M7 x 0.5	2.5		
GEC.0S.240.LC	10	12.0	M9 x 0.6	2.5		
GEC.0E.240.LC	16	18.0	M14 x 1.0	3.0		
GEC.1S.240.LC	13	16.0	M12 x 1.0	3.2		
GEC.1S.241.LC	17	20.0	M16 x 1.0	4.0		
GEC.1S.242.LC	12	14.0	M11 x 0.5	3.2		
GEC.2S.240.LC	17	20.0	M15 x 1.0	3.8		
GEC.2S.241.LC	20	24.0	M19 x 1.0	5.8		
GEC.2E.240.LC	22	25.0	M20 x 1.0	5.0		
GEC.3S.240.LC	20	24.0	M18 x 1.0	4.5		
GEC.3E.240.LC	27	30.0	M24 x 1.0	4.5		
GEC.4S.240.LC	27	30.0	M25 x 1.0	4.5		
GEC.4K.241.LC	32	35.5	M30 x 1.0	5.0		
GEC.5S.240.LC	37	41.0	M35 x 1.0	5.0		

GEB Round nuts

Part number	Model	Dimensions (mm)				
Faithumber	Model	Α	е	L		
GEB.00.240.LN	1	9.0	M7 x 0.50	4.0		
GEB.0S.240.LN	1	11.0	M9 x 0.60	4.0		
GEB.0E.240.LN	1	18.0	M14 x 1.00	5.0		
GEB.1S.240.LN	1	14.0	M12 x 1.00	5.0		
GEB.1E.240.LN	1	20.0	M16 x 1.00	5.0		
GEB.2S.240.LN	1	18.0	M15 x 1.00	5.5		
GEB.2B.240.LN	1	17.5	M15 x 0.75	2.5		
GEB.3S.240.LN	1	22.0	M18 x 1.00	5.5		
GEB.4S.240.LN	1	28.0	M25 x 1.00	6.0		
GEB.5S.240.LN	2	40.0	M35 x 1.00	8.0		
GEB.5E.240.LN	2	54.0	M45 x 1.50	8.0		
GEB.6S.241.LN	2	54.0	M48 x 1.50	8.0		
GEB.6E.240.LN	2	65.0	M55 x 2.00	9.0		

• Material: Nickel-plated brass (3 μm)

Note: 5B, 5K, 5S, 5E, 6S and 6E series sockets are always supplied with model 2 round nuts. To order this accessory separately, use the part numbers in the adjacent table.

Accessories

BFG Plug caps

- Body material: Polyoxymethylene (POM) grey (or black) Cord material: Polyamide 6, grey (or black) Gasket material: Silicone rubber Maximum operating temperature: 100°C Watertightness: IP51 according to IEC 60529

Dantaurahan	Carries	Dimensions (mm)						
Part number	Series	А	В	L	N ¹⁾			
BFG.00.100.PCSG	00	7.5	9.8	10.0	60			
BFG.0B.100.PCZG	0S-0B	9.5	12.0	12.2	85			
BFG.1B.100.PCZG	1S-1B	12.0	15.0	13.8	85			
BFG.2B.100.PCSG	2S-2B	15.0	18.0	15.0	85			
BFG.3B.100.PCSG	3S-3B	18.5	22.0	18.5	95			

Note: ¹⁾ the tolerance on this dimension is \pm 5 mm. This cap is available only with an alignment key (G). Upon request this cap can be supplied in black and the last letter «G» of the part number should be replaced with «N».

Fitting the cord

Slide the plug into the loop of the cord. Place the loop into the groove in front of the collet nut and tighten the loop.

BFA Plug caps

- Body material: Nickel-plated brass (Ni 3µm) Lanyard material: Stainless steel Crimp ferrule material: Nickel-plated brass + polyolefin O-ring material: Silicone rubber or FPM Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) Watertightness: IP68 according to IEC 60529 for E series

Part number	Series	Dimensions (mm)					
Part number	Series	А	В	L	N ¹⁾		
BFA.0E.100.NAS	0E	14.0	6	12.5	85		
BFA.1E.100.NAS	1E	16.0	6	15.5	85		
BFA.2E.100.NAS	2E	19.5	6	17.5	85		
BFA.3E.100.NAS	3E	23.0	6	22.0	120		
BFA.4E.100.NAS	4E	29.0	10	22.5	120		
BFA.4S.100.NAS	4S	25.0	10	22.2	120		
BFA.5E.100.NAS	5E	44.0	10	27.0	150		
BFA.5S.100.NAS	5S	36.0	10	30.2	150		
BFA.6S.100.NAS	6S	46.0	10	33.0	150		

Note: ¹⁾ the tolerance on this dimension is \pm 5 mm. The last letter «S» of the part number stands for the material of the O-ring (silicone rubber). O-ring's made from FPM are also available; if required, replace the letter «S» by «V».

Dimensions (mm)

BFG Plug caps with key (G)

- Body material: Nickel-plated brass (Ni 3µm)
- Lanyard material: Stainless steel

- Crimp ferrule material: Nickel-plated brass + polyolefin O-ring material: Silicone rubber or FPM Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) Watertightness: IP68 according to IEC 60529 for E and K series

BHG Plug caps, nut fixing or flange

- Body material: Nickel-plated brass (Ni 3µm)
- Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass + polyolefin
- O-ring material: Silicone rubber or FPM Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) Watertightness: IP68 according to IEC 60529 for E and K series

Part number Series N¹⁾ А в Т BFG.0K.100.NAS 0K 14.0 6 12.5 85 BFG.1K.100.NAS 1K 16.0 6 15.5 85 **BFG.2K.100.NAS** 17.5 85 2K 19.5 6 BFG.3K.100.NAS 3K 23.0 6 22.0 120 **BFG.4B.100.NAS** 4B 25.0 10 20.2 120 **BFG.4K.100.NAS** 4K 29.0 10 22.5 120 **BFG.5B.100.NAS** 5B 36.0 10 27.2 150 **BFG.5K.100.NAS** 5K 44.0 10 27.0 150

Note: 1) the tolerance on this dimension is ± 5 mm.

6E

BFG.6E.100.NAS

This cap is available only with an alignment key (G). The last letter «S» of the part number stands for the material of the O-ring (silicone rubber). O-ring's made from FPM are also available; if required, replace the letter «S» by «V».

54.0

10

31.0

150

Daut avault av	Carias	Dimensions (mm)					
Part number	Series	А	В	L	N ¹⁾		
BHG.0K.100.NAS	0K	14.0	6	12.5	85		
BHG.1K.100.NAS	1K	16.0	6	15.5	85		
BHG.2K.100.NAS	2K	19.5	6	17.5	85		
BHG.3K.100.NAS	ЗK	23.0	6	22.0	120		
BHG.4B.100.NAS	4B	25.0	10	20.2	120		
BHG.4K.100.NAS	4K	29.0	10	22.5	120		
BHG.5B.100.NAS	5B	36.0	10	27.2	150		
BHG.5K.100.NAS	5K	44.0	10	27.0	150		
BHG.6E.100.NAS	6E	54.0	10	31.0	150		

Note: 1) the tolerance on this dimension is ± 5 mm.

This cap is available only with an alignment key (G). The last letter «S» of the part number stands for the material of the O-ring (silicone rubber). O-ring's made from FPM are also available; if required, replace the letter «S» by «V».

Part number	Cariaa	Dimensions (mm)			
	Series	А	L	N ¹⁾	
BFG.3K.100.EAN	ЗK	26	31	155	

Material: black ALCRYN®

Lanyard material: Stainless steel

Crimp ferrule material: Stainless steel AISI 304 + polyolefin

Note: 1) the tolerance on this dimension is ± 5 mm. These caps are suitable for use with any alignment key configuration.

BFG Plug cap

BHA Plug cap

Part number	I I	Dimensions (mm)			
	Series	А	L	N ¹⁾	
BHA.3K.100.EAN	ЗK	26	31	120	

Material: black ALCRYN® Lanyard material: Stainless steel Crimp ferrule material: Stainless steel AISI 304 + polyolefin

Note: 1) the tolerance on this dimension is ± 5 mm. These caps are suitable for use with any alignment key configuration.

Blanking caps for fixed sockets and free straight sockets BRA

- Body material: Polyoxymethylene (POM) grey (or black) Cord material: Polyamide 6, grey (or black) Gasket material: Silicone rubber Maximum operating temperature: 100°C Watertightness: IP61 according to IEC 60529

BRE Blanking caps for fixed sockets

- Body material: Nickel-plated brass (Ni 3 µm) Lanyard material: Stainless steel Crimp ferrule material: Nickel-plated brass + polyolefin O-ring material: Silicone rubber or FPM Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) Watertightness: IP61 according to IEC 60529 for S series

Part number	Series	Dimensions (mm)					
	Series	А	В	L	М	N ¹⁾	
BRA.00.200.PCSG	00	7.5	9.8	9.0	3.5	60	
BRA.0B.200.PCSG	0S-0B	10.0	12.5	11.0	4.8	60	
BRA.1B.200.PCSG	1S-1B	14.0	17.0	13.5	5.6	60	
BRA.2B.200.PCSG	2S-2B	18.0	21.0	14.5	6.0	60	
BRA.3B.200.PCSG	3S-3B	22.0	25.5	17.0	7.0	60	

Note: ¹⁾ the tolerance on this dimension is \pm 5 mm. These caps are suitable for use with any alignment key configuration. On request this cap can be supplied in black. If so, replace the last letter «G» of the part number by «N».

		Dimensions (mm)					
Part number	Series	Α	В	L	М	N ¹⁾	
BRE.00.200.NAS	00	8	7.5	8.8	3.5	60	
BRE.0S.200.NAS	0S-0B	10	9.5	10.5	4.5	85	
BRE.1S.200.NAS	1S-1B	14	11.0	12.5	5.0	85	
BRE.2S.200.NAS	2S-2B	18	12.0	14.0	6.0	85	
BRE.3S.200.NAS	3S-3B	22	14.0	18.0	8.0	120	
BRE.4S.200.NAS	4S-4B	28	20.0	23.0	10.0	120	
BRE.5S.200.NAS	5S-5B	40	22.0	30.0	12.0	150	
BRE.6S.200.NAS	6S	54	22.0	30.0	12.0	150	
BRE.6E.200.NAS	6E	57	24.0	31.5	14.0	150	

Note: ¹⁾ the tolerance on this dimension is ± 5 mm. These caps are suitable for use with any alignment key configuration. The last letter «S» of the part number stands for the O-ring material (silicone rubber). O-ring's made from FPM are also available; if required, replace the letter «S» by «V».

Blanking caps for fixed sockets BRE

- Body material: Nickel-plated brass (Ni 3 µm) Lanyard material: Stainless steel
- Ó
- Crimp ferrule material: Nickel-plated brass + polyolefin
- O-ring material: Silicone rubber or FPM Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) Watertightness: IP68 according to IEC 60529 •

BRA Blanking caps for fixed sockets

Part number	Series	Dimensions (mm)					
		А	В	L	М	N ¹⁾	
BRE.0K.200.NAS	0K-0E	15.0	10	15.0	4	85	
BRE.1K.200.NAS	1K-1E	17.0	12	20.0	6	85	
BRE.2K.200.NAS	2K-2E	20.5	14	24.0	8	85	
BRE.3K.200.NAS	3K-3E	24.0	14	28.0	8	120	
BRE.4K.200.NAS	4K-4E	30.0	20	30.5	10	120	
BRE.5K.200.NAS	5K-5E	44.0	22	37.0	12	150	

Note: 1) the tolerance on this dimension is \pm 5 mm.

These caps are suitable for use with any alignment key configuration. The last letter «S» of the part number stands for the O-ring material (silicone rubber). O-ring's made from FPM are also available; if required, replace the letter «S» by «V».

Part number	Series	Dimensions (mm)					
		А	L	М	N ¹⁾		
BRA.3K.200.EAN	ЗK	26	27	14.5	120		
BRA.4K.200.EAN	4K	31	31	17.0	120		

Material: black ALCRYN® Lanyard material: Stainless steel

õ Crimp ferrule material: Stainless steel AISI 304 + polyolefin

Note: ¹⁾ the tolerance on this dimension is \pm 5 mm. These caps are suitable for use with any alignment key configuration.

BRF Blanking caps for free sockets

Part number	Series	Dimensions (mm)				
		А	L	М	N ¹⁾	
BRF.3K.200.EAN	ЗK	26	27	14.5	155	

Material: black ALCRYN®

Lanyard material: Stainless steel

Crimp ferrule material: Stainless steel AISI 304 + polyolefin

Note: 1) the tolerance on this dimension is \pm 5 mm. These caps are suitable for use with any alignment key configuration.

Blanking caps for free sockets BRD

- Body material: Polyoxymethylene (POM) grey (or black) Cord material: Polyamide 6, grey (or black) Gasket material: Silicone rubber
- Õ
- Maximum operating temperature: 100°C Watertightness: IP61 according to IEC 60529

BRF Blanking caps for free sockets

- Body material: Nickel-plated brass (Ni 3 µm) Lanyard material: Stainless steel
- •
- Crimp ferrule material: Nickel-plated brass + polyolefin O-ring material: Silicone rubber or FPM Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) ĕ Watertightness: IP61 according to IEC 60529 for S series

Part number	Series	Dimensions (mm)					
		А	В	Г	М	N ¹⁾	
BRD.00.200.PCSG	00	7.5	9.8	9.0	3.5	85	
BRD.0B.200.PCSG	0S-0B	10.0	12.5	11.0	4.8	85	
BRD.1B.200.PCSG	1S-1B	14.0	17.0	13.5	5.6	85	
BRD.2B.200.PCSG	2S-2B	18.0	21.0	14.5	6.0	85	
BRD.3B.200.PCSG	3S-3B	22.0	25.5	17.0	7.0	95	

Note: $^{1)}$ the tolerance on this dimension is \pm 5 mm. On request this cap is available in black. If required, replace the last letter «G» of the part number by «N».

Fitting the cord

Slide the socket into the loop of the cord. Place the loop into the groove in front of the collet nut. Tighten the loop.

Part number	Series	Dimensions (mm)					
		А	В	L	М	N ¹⁾	
BRF.00.200.NAS	00	8	7.5	8.8	3.5	85	
BRF.0S.200.NAS	0S-0B	10	9.5	10.5	4.5	85	
BRF.1S.200.NAS	1S-1B	14	11.0	12.5	5.0	85	
BRF.2S.200.NAS	2S-2B	18	12.0	14.0	6.0	85	
BRF.3S.200.NAS	3S-3B	22	14.0	18.0	8.0	120	
BRF.4S.200.NAS	4S-4B	28	20.0	23.0	10.0	120	
BRF.5S.200.NAS	5S-5B	40	22.0	30.0	12.0	150	
BRF.6S.200.NAS	6S	54	22.0	30.0	12.0	150	

Note: ¹⁾ the tolerance on this dimension is \pm 5 mm. These caps are suitable for use with any alignment key configuration. The last letter «S» of the part number stands for the O-ring material (silicone rubber). O-ring's made from FPM are also available; if required, replace the letter «S» by «V».

BRF Blanking caps for free sockets

- Body material: Nickel-plated brass (Ni 3 µm) Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass + polyolefin
- O-ring material: Silicone rubber or FPM Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) Watertightness: IP68 according to IEC 60529 ŏ

Dert number	Series	Dimensions (mm)					
Part number	Series	А	В	L	М	N ¹⁾	
BRF.0K.200.NAS	0K-0E	15.0	10	15.0	4	85	
BRF.1K.200.NAS	1K-1E	17.0	12	20.0	6	85	
BRF.2K.200.NAS	2K-2E	20.5	14	24.0	8	85	
BRF.3K.200.NAS	3K-3E	24.0	14	28.0	8	120	
BRF.4K.200.NAS	4K-4E	30.0	20	30.5	10	120	
BRF.5K.200.NAS	5K-5E	44.0	22	37.0	12	150	

Note: 1) the tolerance on this dimension is \pm 5 mm.

These caps are suitable for use with any alignment key configuration. The last letter «S» of the part number stands for the O-ring material (silicone rubber). O-ring's made from FPM are also available; if required, replace the letter «S» by «V».

Spring loaded dust caps for ERA, ERN and EGe sockets or PSA and PKe fixed sockets BRR

Part number	Cariaa		C	Dimen	sions	(mm))	
Farthumber	Series	А	В	С	Е	L	М	Ν
BRR.0S.200.PZVG	0S-0B	11.0	13.3	9.0	5.8	5.0	1.2	15.3
BRR.1S.200.PZVG	1S-1B	14.2	17.1	12.0	6.0	6.3	1.5	20.3
BRR.2S.200.PZVG	2S-2B	18.6	22.4	15.2	6.5	8.2	2.0	26.2
BRR.3S.200.PZVG	3S-3B	22.5	26.5	18.2	9.0	8.8	2.5	30.8

Note: On request, this cap is available in black, blue or white. If so replace the last letter «G» of the part number by «N», «A» or «B».

- Body material: PSU
- Gasket material: FKM
- Spring material: Stainless steel
- Axes material: Nickel-plated brass Maximum operating temperature: 100°C Watertightness: IP61 according to IEC 60529

BRR Spring loaded dust cap for ED• and EB• fixed sockets

Dest sumber	Corioo	Dimensions (mm)					
Part number	Series	А	В	С	L	М	N
BRR.3K.200.PZSG	ЗK	29	29	23	8.1	3	33.2

Note: Use Allen key (0.9 mm flat) to secure cap on connector.

- Cap material: Polyoxymethylene (POM) grey Body material: Nickel-plated brass Gasket material: Silicone rubber Spring material: Stainless steel

- Ó Axes material: Nickel-plated brass
- Maximum operating temperature: 100°C Watertightness: IP61 according to IEC 60529

BFG Blanking caps for plugs (T series)

Dert number	Dii	mensio	ons (m	Part number			
Part number	Α	В	L	N ¹⁾	Part number		
BFG.TT.100.CAS	7.0	4.3	9.0	60	BHG.TT.100.CAS		
BFG.0T.100.CAS	9.5	5.0	11.0	85	BHG.0T.100.CAS		
BFG.1T.100.CAS	12.0	6.3	12.4	85	BHG.1T.100.CAS		
BFG.2T.100.CAS	15.0	6.4	13.8	85	BHG.2T.100.CAS		
BFG.3T.100.CAS	18.8	6.4	17.6	120	BHG.3T.100.CAS		

BRF Blanking caps for free sockets (T series)

Dentaurahan		Dime	nsions	(mm)		Deutaumhan
Part number	А	В	L	М	N ¹⁾	Part number
BRF.TT.200.CAZ	7.0	4.3	10.4	2.4	60	BRE.TT.200.CAZ
BRF.0T.200.CAZ	9.5	5.0	13.2	3.2	85	BRE.0T.200.CAZ
BRF.1T.200.CAZ	12.0	6.3	15.1	4.2	85	BRE.1T.200.CAZ
BRF.2T.200.CAZ	15.0	6.4	17.1	5.2	85	BRE.2T.200.CAZ
BRF.3T.200.CAZ	18.8	6.4	21.2	6.4	120	BRE.3T.200.CAZ

BHG Blanking caps for fixed plugs (T series)

- ŏ
- •
- Body material: Chrome-plated brass (Ni 3 µm) Lanyard material: Stainless steel Crimp ferrule material: Nickel-plated brass + polyolefin O-ring material: Silicone Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) Watertightness: IP68 according to IEC 60529 ĕ

Note: 1) the tolerance on this dimension is ± 5 mm.

BRE Blanking caps for sockets (T series)

- Body material: Chrome-plated brass (Ni 3 µm) Lanyard material: Stainless steel Crimp ferrule material: Nickel-plated brass + polyolefin Operating temperature: -50°/135°C (Silicone rubber & Polyolefine) Watertightness: IP68 according to IEC 60529
- Ò

Note: ¹⁾ the tolerance on this dimension is ± 5 mm.

GM• Bend relief (TPU)

Main characteristics

Material: TPU (Thermoplastic Polyurethane)
 Temperature range in dry atmosphere: -40°C +80°C

Destauration	Carias	Bend	relief	Cab	ole ø
Part number	Series	A	L	min.	max.
GMA.00.012.DG ¹⁾		1.2	22	1.1	1.4
GMA.00.018.DG ¹⁾		1.8	22	1.8	2.1
GMB.00.025.DG ¹⁾		2.5	22	2.5	2.8
GMB.00.028.DG ¹⁾	00 TT	2.8	22	2.8	3.1
GMB.00.032.DG ¹⁾	00-TT	3.2	22	3.2	3.5
GMD.00.025.DG ¹⁾		2.5	22	2.5	2.8
GMD.00.028.DG ¹⁾		2.8	22	2.8	3.1
GMD.00.032.DG ¹⁾		3.2	22	3.2	3.5
GMA.0B.025.DG		2.5	24	2.5	2.9
GMA.0B.030.DG	0B	3.0	24	3.0	3.4
GMA.0B.035.DG	0S	3.5	24	3.5	3.9
GMA.0B.040.DG ¹⁾	0E-0K-0T	4.0	24	4.0	4.4
GMA.0B.045.DG ¹⁾		4.5	24	4.5	5.2
GMA.1B.025.DG		2.5	30	2.5	2.9
GMA.1B.030.DG		3.0	30	3.0	3.4
GMA.1B.035.DG	1B-XB	3.5	30	3.5	3.9
GMA.1B.040.DG	1S	4.0	30	4.0	4.4
GMA.1B.045.DG	1E-1K-1T	4.5	30	4.5	4.9
GMA.1B.054.DG		5.4	30	5.4	6.0
GMA.1B.065.DG ¹⁾		6.5	30	6.5	7.0

A bend relief made from thermoplastic polyurethane elastomer can be fitted over LEMO plugs and sockets that are supplied with nut for fitting such bend relief.

They are available in nine different colours match with the GRA insulating washers (see page 149).

Use the part numbers shown below to order this accessory separately.

Dest suggior	Series	Bend	relief	Cable ø		
Part number	Series	А	L	min.	max.	
GMA.2B.040.DG		4.0	36	4.0	4.5	
GMA.2B.045.DG	2B	4.5	36	4.5	5.0	
GMA.2B.050.DG		5.0	36	5.0	5.5	
GMA.2B.060.DG	2S 2E-2K-2T	6.0	36	6.0	6.5	
GMA.2B.070.DG		7.0	36	7.0	7.7	
GMA.2B.080.DG ¹⁾		7.8	36	7.8	8.8	
GMA.3B.050.DG ¹⁾		4.5	42	4.5	5.2	
GMA.3B.060.DG	3S	6.0	42	6.0	6.9	
GMA.3B.070.DG	3B	7.0	42	7.0	7.9	
GMA.3B.080.DG	3E-3K-3T 4S	8.0	42	8.0	8.9	
GMA.3B.090.DG	45	9.0	42	9.0	10.0	
GMA.4B.080.DG ¹⁾	40	8.0	60	8.0	9.0	
GMA.4B.010.DG ¹⁾	4S	10.0	60	10.0	10.9	
GMA.4B.011.DG ¹⁾	4B 4E-4K 5E-5K	11.0	60	11.0	11.9	
GMA.4B.012.DG ¹⁾		12.0	60	12.0	13.0	
GMA.4B.013.DG ¹⁾		13.5	60	13.5	14.5	

Note: all dimensions are in millimetres.

Note: 1) Design may differ from other bend relief, model without stripes. The «GMD» are thin bend reliefs (for very flexible cables).

The last letter «G» of the part number indicates the grey colour of the bend relief. For ordering a bend relief with another colour, see table on page 146 and replace the letter «G» by the letter of the required colour. See also detailed information for each series: B series on page 71; K series on page 72; T series on page 71; S series on page 121; E series on page 121.

GMA Bend relief (Silicone)

Main characteristics

- Material: Silicone elastomer VMQ
- Temperature range in dry atmosphere: -60°C +200°C
- Temperature range in water steam: +140°C

Destauration	Series	Bend	Bend relief		ole ø
Part number	Series	А	L	min.	max.
GMA.0B.018.RG		1.7	27	1.7	2.4
GMA.0B.025.RG		2.5	27	2.5	2.9
GMA.0B.030.RG	0B	3.0	27	3.0	3.4
GMA.0B.035.RG	0S	3.5	27	3.5	3.9
GMA.0B.040.RG	0E-0K-0T	4.0	27	4.0	4.4
GMA.0B.045.RG		4.5	27	4.5	5.2
GMA.1B.025.RG		2.5	34	2.5	2.9
GMA.1B.030.RG		3.0	34	3.0	3.4
GMA.1B.035.RG	10	3.5	34	3.5	3.9
GMA.1B.040.RG	1B	4.0	34	4.0	4.4
GMA.1B.045.RG	1S	4.5	34	4.5	5.0
GMA.1B.051.RG	1E-1K-1T	5.1	34	5.1	5.6
GMA.1B.057.RG		5.7	34	5.7	6.2
GMA.1B.063.RG		6.3	34	6.3	7.0

Part number	Series	Bend relief		Cable ø	
Part number	Series	А	min.	max.	
GMA.2B.040.RG		4.0	41	4.0	4.4
GMA.2B.045.RG		4.5	41	4.5	5.0
GMA.2B.051.RG	2B	5.1	41	5.1	5.6
GMA.2B.057.RG	2S	5.7	41	5.7	6.2
GMA.2B.063.RG	2E-2K-2T	6.3	41	6.3	7.0
GMA.2B.071.RG		7.1	41	7.1	7.9
GMA.2B.080.RG		8.0	41	8.0	9.0

Note: The last letter «G» of the part number indicates the grey colour of the bend relief. For ordering a bend relief with another colour, see table on page 146 and replace the letter «G» by the letter of the required colour. See also detailed information for each series: B series on page 71; K series on page 71; T series on page 71; S series on page 121; E series on page 121.

Note: the selection of pigments, which should remain stable at high temperature, is limited by the new regulations. For this reason, some colours will be a shade different from those used for Desmopan bend reliefs. The selected solutions represent the best possible compromise.

Ref.	Colour	Ref.	Colour	Ref.	Colour
Α	blue	J	yellow	R	red
В	white	М	brown	S	orange
G	grey	Ν	black	V	green

A bend relief has been designed for connectors used in applications at high temperature or requiring vapour sterilization.

These bend reliefs are different from previous ones as for their material, a silicone elastomer which is noted for its retention of flexibility over a wide temperature range. They are available in nine colours.

Use the part numbers shown below to order this accessory separately.

GM• Overall bend relief for plugs and sockets

Overall bend reliefs, type GMF for plugs and GMP for sockets offer optimum protection against mechanical damage and give a protection index of IP65 according to IEC 60529 (mated position). These bend reliefs slide easily over the connector shell and are positioned by slightly pressing the bend relief backnut.

The special design of the bend relief for plug provides for easy use of the push-pull self-latching system.

GMF Bend relief for straight plug

Dartaurahan	Series	Bend	Cab	ble ø	
Part number	Series	A	L	min.	max.
GMF.0B.035.060EN	0S-0B	11.0	60.5	1.0	3.5
GMF.1B.062.072EN	1S-1B	16.0	72.0	2.5	6.2
GMF.2B.082.095EN	2S-2B	22.0	95.0	5.0	8.2

GMP Bend relief for free socket

Part number	Corioo	Bend	relief	Cab	Cable ø		
	Series	A	L	min.	max.		
GMP.0B.035.069EN	0S-0B	11.0	69.0	1.0	3.5		
GMP.1B.062.079EN	1S-1B	16.0	80.0	2.5	6.2		
GMP.2B.082.102EN	2S-2B	21.0	102.5	5.0	8.2		

Material: Elastomer rubber black colour
 Operating temperature: -30°C to +120°C

Material: Elastomer rubber black colour
 Operating temperature: -30°C to +120°C

- The overall bend relief shall be installed over plug or free socket fitted with a nut for bend relief.

- The typical applications are shown below.

- The overall bend relief can be cut at different length depending on cable diameter.

GMF Bend relief with cap for plug

Destaur	Part number Serie		For		admissible ø (mm)		
Part nur			For models	Cut	min.	max.	
			FFA	-	8.0	8.9	
		4E		А	9.0	9.9	
				В	10.0	11.4	
GMF.4K.080).EANZ			С	11.5	12.9	
		4K	FGG	D	13.0	14.9	
				Е	15.0	16.5	

Material: Black EPDM

Material: Black EPDM

GMP Bend relief with cap for free socket

Destauration	Carias	For	Cut	admissible ø (mm)			
Part number	Series	For models	Cui	min.	max.		
		PCA	-	8.0	8.9		
	4E		А	9.0	9.9		
			В	10.0	11.4		
GMP.4K.080.EANZ	4K		С	11.5	12.9		
		PHG	D	13.0	14.9		
			Е	15.0	16.5		

GSC Lead-through with cable collet

Part number	Dimensions (mm)									
Part number	Α	В	е	Е	L	М	S1	S2	S3	
GSC.00.290.CD.	6.5	8.1	M5x0.5	1.5	16	4.0	5	6	7	
GSC.1S.290.ND••	12.0	12.5	M9x0.6	5.0	26	7.5	11	9	11	
GSC.3S.290.ND	17.0	19.5	M15x1.0	8.1	30	12.0	-	14	17	

Note: •• = collet cable diameter of the B series. For cable diameter refer to page 67. Other surface treatment available. The cable collet system stands for both screened and unscreened cables. It can be delivered with a nut for fitting a bend relief it you add a «Z» at the end of the part number.

GCA Earthing washer

		Dort number	Cariaa	Di	mensio	ions (mm)	
		Part number	Series	Α	В	L	N
		GCA.00.255.LT	00-TT	9.5	7.1	0.4	18.2
		GCA.0S.255.LT	0S-0B-0T	13.0	9.1	0.4	22.0
	ø A	GCA.0E.255.LT	0E-0K	17.0	14.1	0.5	27.5
	-∞B -	GCA.1S.255.LT	1S-1B-1T	17.0	12.2	0.5	27.5
		GCA.1E.255.LT	1E-1K	20.0	16.2	0.5	32.0
		GCA.2S.255.LT	2S-2B-2T	20.0	15.2	0.5	32.0
\cap	ż	GCA.2E.255.LT	2E-2K	25.0	20.2	0.5	39.0
Q		GCA.3S.255.LT	3S-3B-3T	25.0	18.2	0.5	39.0
		GCA.3E.255.LT	3E-3K	31.0	24.0	0.5	43.0
		GCA.4S.255.LT	4S-4B	35.0	25.6	0.6	50.0
		GCA.4E.255.LT	4E-4K	35.0	30.6	0.6	50.0
		GCA.5S.255.LT	5S-5B	42.0	35.1	0.3	57.5
		Material: CuSnZ	In plated bra	ss (2 µ	m)		

GRA Insulating washers

Sockets or plugs mounted on panels can be fitted with insulating washers. The nine colours available combined with those for the bend reliefs makes colour coding possible.

Dart wurdt av	Carias	Dimensions (mm)								
Part number	Series	А	В	Е	L	М	S	Т		
GRA.00.269.GG	00	10.0	8.8	4.5	1.8	1.0	6.4	8.0		
GRA.0S.269.GG	0S-0B	12.0	10.8	6.0	1.8	1.0	8.3	9.9		
GRA.1S.269.GG	1S-1B	16.0	13.8	6.5	1.8	1.0	10.6	12.2		
GRA.2S.269.GG	2S-2B	21.1	17.9	7.3	2.3	1.3	13.6	16.2		
GRA.3S.269.GG	3S-3B	25.0	21.8	10.3	2.2	1.2	16.7	20.2		
GRA.4S.269.GG	4S-4B	31.9	28.7	10.5	2.5	1.5	23.6	27.1		

Note: insulating washers for series 5B are available on request.

Caution: these insulating washers can be used with fixed and free sockets with across flat dimension S1 equivalent to the S dimension of the washer.

- Material: Polyamide
 Maximum operating tem
- Maximum operating temperature: 90° C

Ref.	Colour	Ref.	Colour	Ref.	Colour
Α	blue	J	yellow	R	red
В	white	М	brown	S	orange
G	grey	Ν	black	V	green

Note: the last letter «G» of the part number indicates the colour grey for the insulating washer. To obtain an insulating washer of another colour, refer to the table above and change the letter «G» of the part number to the corresponding letter of the colour required. For the panel cut-out, please consult chapter «Panel cut-out» on page 158.

GRC Double panel washers

Double panel washers have been designed to make the drilling of panel holes easier for mounting fixed and free sockets. The combination of the nine different colours of the double panel washers and of the bend reliefs makes colour coding possible.

Part number	Series	Dimensions (mm)							
Part number		В	Е	н	L	М	N	R	S
GRC.0S.260.HG	0S-0B	10.9	5	14	2.5	1.5	26.5	12.5	8.3
GRC.1B.260.HG	1S-1B	13.9	5	20	3.3	1.8	34.5	14.5	10.6

Caution: these double panel washers can be used with fixed or free sockets with across flat dimension S1 equivalent to the S dimension of the washer.

Material: Polyamide Maximum operating temperature: 90° C

Note: the last letter «G» of the washer's part number indicates the colour grey. For other colours, refer to the above table and replace letter «G» by the one corresponding to the colour required. For the panel cut-out, please consult chapter «Panel cut-out» on page 158.

Tooling

DCG Spanners for hexagonal nuts

Part number	Dime	nsions	(mm)	Part number						
Fart number	В	L	Ν	of the nut						
DCG.91.149.0TN	14	40	50	GEA.00.240.LN						
DCG.91.161.1TN	16	45	52	GEA.0S.240.LN						
DCG.91.201.4TN	20	52	65	GEA.1S.240.LN						
DCG.91.231.7TN	23	62	68	GEA.2S.240.LN						
DCG.91.282.2TN	28	76	73	GEA.3S.240.LN						
 Material: blacket 	Material: blackened steel									

DCA Spanners for hexagonal nuts with locator for flats on socket thread

nax

Part number	Dime	nsions	(mm)	Part number
Fart number	В	L	Ν	of the nut
DCA.91.149.0TN	14	65	50	GEA.00.240.LN
DCA.91.161.1TN	16	73	52	GEA.0S.240.LN
DCA.91.201.4TN	20	85	65	GEA.1S.240.LN
DCA.91.231.7TN	23	100	68	GEA.2S.240.LN
DCA.91.282.2TN	28	120	73	GEA.3S.240.LN

DCB Spanners for round nuts

Part number	Dime	nsions	(mm)	Part number
Fait number	В	L	Ν	of the nut
DCB.91.119.0TN	11	40	50	GEB.00.240.LN
DCB.91.131.1TN	13	45	50	GEB.0S.240.LN
DCB.91.161.4TN	16	52	65	GEB.1S.240.LN
DCB.91.201.8TN	20	62	65	GEB.2S.240.LN
DCB.91.242.2TN	24	76	70	GEB.3S.240.LN

• Material: blackened steel

Material: blackened steel

DCH Spanners for conical nuts

Part number	Din	nensio	ons (n	Part number	
T art number	А	В	L	Ν	of the nut
DCH.91.101.PN	10.1	12.8	124	48.3	GEC.00.240.LC
DCH.91.121.PN	12.1	14.8	124	49.3	GEC.0S.240.LC
DCH.91.161.PN	16.1	21.0	124	51.9	GEC.1S.240.LC
DCH.91.201.PN	20.1	22.8	129	53.5	GEC.2S.240.LC

• Material: dark grey polyurethane

DCH Spanners for notched nuts

Part number	Din	nensio	ons (n	חm)	Part number	
Faithuindei	А	В	L	Ν	of the nut	
DCH.91.101.PA	10.1	12.8	124	48.3	GEG.00.240.LC	
DCH.91.121.PA	12.1	14.8	124	49.3	GEG.0S.240.LC	
DCH.91.181.PA	18.1	22.8	129	53.1	GEG.0E.240.LC	
DCH.91.161.PA	16.1	21.0	124	51.2	GEG.1S.240.LC	
DCH.91.201.PA	20.1	22.8	129	53.5	GEG.1E.240.LC	
DCH.91.141.PA	14.1	18.6	124	51.2	GEG.1S.242.LC	
DCH.91.201.PA	20.1	22.8	129	53.5	GEG.2S.240.LC	
DCH.91.241.PA	24.1	30.8	134	52.6	GEG.2S.241.LC	
DCH.91.251.PA	25.1	32.8	134	55.5	GEG.2E.240.LC	

• Material: blue polyurethane

DCP Flat spanners for collet nut

Part number	Dimensions (mm)									
i an number	L	М	Ν	S1						
DCP.99.040.TC	70	0.95	10.5	4.0						
DCP.99.045.TC	70	2.00	10.5	4.5						
DCP.99.050.TC	78	2.00	12.6	5.0						
DCP.99.055.TC	78	2.00	12.6	5.5						
DCP.99.060.TC	78	2.00	12.6	6.0						

Material: chrome-plated steel

DCP Set of flat spanners for collet nuts

Part number	Series	Dimensions (mm)										
Part number	Series	L	М	Ν	S1	S2						
DCP.91.001.TN	0B-0K	95	2.5	21	8.1	7.1						
DCP.91.001.1N	1B-1K	95	2.5	25	10.1	9.1						
DCP.91.023.TN	2B-2K	115	3.0	30	13.1	12.1						
DCP.91.025.11	3B-3K	115	3.0	35	15.1	14.1						
DCP.91.045.TN	4B	130	3.0	44	21.1	20.1						
DCP.91.045.1N	5B	130	3.0	54	31.1	30.1						

• Material: blackened steel

DCP Set of flat spanners for collet nuts

Part number	Series	Dimensions (mm)									
Part number	Series	L	М	Ν	S1	S2					
DCP.0T.110.TN	0T	95	2.5	21	7.55	7.05					
DCP.01.110.11	1T	95	2.5	25	11.05	9.05					
DCP.2T.110.TN	2T	115	3.0	30	14.05	12.05					
DCP.21.110.1N	3Т	115	3.0	35	16.05	14.05					

• Material: blackened steel

DCP Set of flat spanners for FS• retaining ring & collet nuts

Dort number	Series	Dimensions (mm)								
Part number	Series	L	М	N						
DCP.91.FSG.TN	00-0B-1B-2B	72	2	24						
Material: blackened steel										

DCP Set of flat spanners for FS• retaining ring & collet nuts

DCD Torque wrench for collet nut

Part number	Series	Torque (Nm)	S1 (mm)
DCD.00.003.PA045			4.5
DCD.00.003.PA050	00	0.25	5.0
DCD.00.003.PA060			6.0
DCD.0B.005.PA070	0B	0.50	7.0
DCD.0B.005.PA080	UВ	0.50	8.0
DCD.0E.007.PA070	0F/0K	0.70	7.0
DCD.0E.007.PA080	UE/UK	0.70	8.0
DCD.0S.005.PA065	0S	0.50	6.5
DCD.1B.015.PA090	1B	1.50	9.0
DCD.1E.008.PA090	1E/1K	0.80	9.0
DCD.1S.015.PA085	1S	1.50	8.5
DCD.2B.025.PA120	2B	2.50	12.0
DCD.2E.020.PA120	2E/2K	2.00	12.0
DCD.2S.025.PA110	2S	2.50	11.0
DCD.3B.040.PA140	3B	4.00	14.0
DCD.3B.040.PA150	зD	4.00	15.0
DCD.3E.030.PA150	3E/3K	3.00	15.0
DCD.4B.070.PA200	4B	7.00	20.0
DCD.4E.050.PA190	4E/4K	5.00	19.0

DCL Spanners for assembling plugs with 2 latches

Part number	Series	Dimensions (mm)						
Fait number	Series	В	L	Ν				
DCL.91.105.0TK	00	10	45	13.5				
DCL.91.127.0TK	0S	12	47	17.0				
DCL.91.149.0TK	1S	14	52	19.0				

Material: blackened steel

DCN Spanners for assembling plugs with 3 latches

Part number	Series	Dimensions (mm)						
T art number	Series	В	L	Ν				
DCN.91.905.0TK	00	9	42	12				
DCN.91.125.0TK	0S	12	47	17				
DCN.91.149.0TK	1S	14	53	19				
DCN.91.201.5TK	3S	20	74	22				

• Material: blackened steel

DCL Assembly tool for FVB.00.303.NLA plugs

Part number	Corioo	Dim.	(mm)
Fait number	Series	Α	L
DCL.91.516.5TK	00	5	165

DPF Pliers for assembling plugs (series K and E)

DPF.91.023.TA 2E-2K 3E-3K

Example for use

Part number

DPF.91.001.TA

The plug end must be held in the pliers whilst the nut is tightened with the flat spanner.

Dim. (mm)

В

-

12

_

18

А

10

_

15

_

Series

0E-0K

1E-1K

DTA Taps

Part number	Series	Thread
DTA.99.700.5Z	00	M7 x 0.5
DTA.99.900.6Z	0S-0B	M9 x 0.6

Panel cut-outs

P1-P3-P4-P9

B and **T** series

Series		P1		Р	2		P3			P4		Р	5		P6			P8			P9		P1	10
Series	ø A1)	В	L	øΑ	L	øΑ	В	L	øΑ	В	L	ø A2)	L	øΑ	В	Н	øΑ	В	С	øΑ	В	L	øΑ	L
00-TT	7.1	6.4	12.5	7.1	11.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.1	-	12	-	-
0B-0T	9.1	8.3	14.5	9.1	13.5	14.1	12.6	20.1	10.1	9.1	15.0	8.30	10.5	-	-	-	-	-	-	9.1	8.3	15	-	-
1B-1T	12.1	10.6	18.5	-	-	16.1	14.6	22.0	14.1	12.6	21.0	11.17	14.0	-	-	-	-	-	-	12.1	10.6	19	11.1	17
ХВ	14.1	12.6	21.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2B-2T	15.1	13.6	22.5	-	-	19.2	17.1	28.0	16.1	15.1	23.0	13.95	18.0	-	-	-	-	-	-	15.1	13.6	23	-	-
3B-3T	18.2	16.6	27.0	-	-	-	-	-	20.2	18.6	29.5	-	-	-	-	-	-	-	-	18.2	16.6	27	-	-
4B	25.2	23.6	36.0	-	-	-	-	-	25.2	23.6	36.1	-	-	-	-	-	-	-	-	25.2	23.6	36	-	-
5 B	35.2	33.6	44.0	-	-	-	-	-	35.2	33.6	47.1	-	-	3.3	35.2	34	2.8	35.2	47	35.2	33.6	47	-	-

Note: ¹⁾ when using the tapered washer (GBB) a round hole apply 00-TT: \emptyset 7.6 mm / 0B-0T: \emptyset 9.6 mm / 1B-1T: \emptyset 12.6 mm / 2B-2T: \emptyset 15.7 mm / 3B-3T: \emptyset 18.8 mm / 4B: \emptyset 26 mm / 5B: \emptyset 36 mm (tolerance: 0/+0.02). ²⁾ tolerance: 0/+0.02

Cut-out types

Model	Туре	Mode	Туре	Model	Туре	Model	Туре	Model	Туре
ECG	P1	EKG	P1	FAG	P1	HMG	P9	See	P4/P9 ³⁾
EEG	P1	ENG	P1	FWG	P9	HNG	P9	XBG	P2
EGG	P1	ENY	P1	HCG	P3	PEG	P1	XPF	P2
EFG	P2	ESG	P1/P2	HEG	P9	PFG	P1	XRB	P2
EHG	P1	EXG	P2/P10	HGG	P9	PKG	P1	YHG	P9
EJG	P5	EYG	P1/P10	HHG	P9	Ree	P4		

Note: 3) in series 1B use P9.

Mounting nut torque

Series	Torque	e (Nm)				
Series	Metal shell	Plastic shell4)				
00-TT	1.0	0.4				
0B-0T	2.5	0.4				
1B-1T	4.5	0.7				
XB	5.0	-				
2B-2T	6.0	0.8				
3B-3T	9.0	1.0				
4B	12.0	5.0				
5 B	17.0	-				

Note: ⁴⁾ these values apply when metal shell are mounted with insulating washer.

S series

Series		P1		Р	2		P3			P4		P	5		P6			P7		P1	0	P1	1
Series	ø A1)	В	L	øΑ	L	øΑ	В	L	øΑ	В	L	ø A ²⁾	L	øΑ	В	Н	øΑ	В	Н	øΑ	L	øΑ	L
00	7.1	6.4	12.5	7.1	11.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0S	9.1	8.3	14.5	9.1	13.5	12.1	10.6	20.0	10.1	9.1	15	-	-	-	-	-	-	-	-	-	-	9.1	16
1S	12.1	10.6	18.5	12.1	19.0	14.1	12.6	21.0	12.1	10.6	18	11.92	15.5	3.3	12.1	12.7	2.7	11.1	12.4	11.1	17	12.1	19
2S	15.1	13.6	22.5	15.1	21.5	16.1	14.6	22.0	16.1	15.1	23	-	-	3.3	15.1	15.5	-	-	-	-	-	-	-
3 S	18.2	16.6	27.0	18.2	27.0	20.2	18.6	30.0	20.2	18.6	29	-	-	3.3	18.2	18.0	-	-	-	-	-	-	-
4S	25.2	23.6	36.0	25.2	34.0	25.2	23.6	36.0	25.2	23.6	36	-	-	-	-	-	-	-	-	-	-	-	-
5 S	35.2	33.6	44.0	35.2	44.0	35.2	33.6	47.0	35.2	33.6	47	-	-	4.4	35.2	36.8	-	-	-	-	-	-	-
6S	48.3	45.6	58.0	48.3	58.0	48.3	45.6	60.0	48.3	45.6	60	-	-	-	-	-	-	-	-	-	-	-	-

Note: ¹) when using the tapered washer (GBB) a round hole apply 00: \emptyset 7.6 mm / 0S: \emptyset 9.6 mm / 1S: \emptyset 12.6 mm / 2S: \emptyset 15.7 mm / 3S: \emptyset 18.8 mm / 4S: \emptyset 26 mm / 5S: \emptyset 36 mm (tolerance: 0/+0.02). ²) tolerance: 0/+0.02

Cut-out types

Model	Туре	Model	Туре	Model	Туре	Model	Тур
EBC	P6	ERA	P1	EWB	P3	PSP	P1
EBD	P6	ERC	P1	FAA	P1/P2 ³⁾	PSS	P1
EBS	P7	ERD	P1	HCP	P3 ⁴⁾	RAD	P1/P2
ECP	P1	ERN	P1	HGP	P3	SWH	P4
EEP	P1	ERS	P2	HGW	P11		
EHP	P2/P1	EXP	P2/P10	PSA	P1	Note: 3)	in seri

Model	Туре
PSP	P1
PSS	P1
RAD	P1/P2 ⁵⁾
SWH	P4

) in series 6S use P2. ⁴) use only ø A in 1S series. ⁵) in series 4S and 5S use P2. Note:

Mounting nut torque

Series	Torque (Nm)				
Selles	Metal shell	Plastic shell6)			
0S	2.5	0.4			
1S	4.5	0.7			
2S	6.0	0.8			
3 S	9.0	1.0			
4S	12.0	5.0			
5S	17.0	-			
6S	22.0	-			

Note: $^{6)}$ these values apply when metal shell are mounted with insulating washer. 1 N = 0.102 kg

Panel cut-out for mounting with insulating washer (S-B series)

Series	Dim. (mm)				
Oche3	øΑ	В			
00	8.9	8.1			
0S-0B	10.9	10.0			
1S-1B	13.9	12.3			
2S-2B	18.0	16.3			
3S-3B	21.9	20.3			
4S-4B	29.1	27.4			

Panel cut-out for mounting with double panel washer (S-B series)

Series	Dimensions (mm)						
Series	øΑ	Н	L				
0S-0B	11	14	13.5				
1S-1B	14	20	17.0				

Note: for nut tightening torques please refer to the corresponding series in the table on page 157.

K series

Series	P1				P6		P7		
Selles	øΑ	В	L	øΑ	В	Н	øΑ	В	Н
0К	14.1	12.6	20.5	-	-	-	-	-	-
1K	16.1	14.6	22.5	-	-	-	-	-	-
2K	20.2	18.6	29.0	-	-	-	-	-	-
ЗК	24.2	22.6	35.5	3.5	22.6	20.6	3.5	23.1	23.0
4K	30.2	28.6	43.0	3.5	28.6	27.0	3.5	30.1	29.0
5K	45.2	42.6	57.0	4.5	42.6	38.0	4.5	45.1	44.0

Cut-out types

Model	Туре	Model	Туре	Model	Туре
EBG	P7	ENG	P1	HGG	P1
EDG	P7 ²⁾	EVG	P1	PBG	P7 ³⁾
EEG	P1	FAG	P1	PEG	P1
EGG	P1	FXG	P6	PKG	P1
EHG	P1	HEG	P1	See	P1

E series

Series		P1		P6			
Series	øΑ	В	L	øΑ	В	Н	
0E	14.1	12.6	20.5	-	-	-	
1E	16.1	14.6	22.5	-	-	-	
2E	20.2	18.6	29.0	2.9	15.1	11.8x20.4	
3E	24.2	22.6	35.5	-	-	-	
4E	30.2	28.6	43.0	-	-	-	
5E	45.2	42.6	57.0	-	-	-	
6E	55.3	52.1	68.0	-	-	-	

Cut-out types E series

Model	Туре	Model	Туре
EBR	P6	FAA	P1
EEP	P1	HGP	P1
EHP	P1	PSA	P1
ERA	P1	PSP	P1
ERB	P1	SWH	P1
ERC	P1		

Mounting nut torque

Torque (Nm)	
5	
7	
9	
12	
17	
22	1 N = 0.102 kg
	5 7 9 12 17

Note: ²⁾ for this model dimension B = 18.1. ³⁾ for this model dimension B = 19.1.

= 0.102 kg

	-	-
Series	Torque (Nm)	
0E	5	
1E	7	
2E	9	
3E	12	
4E	17	
5E	22	
6E	27	1 N

Mounting nut torque

PCB drilling pattern

Fixed socket with straight print contact (B-K-T series) P15

303

Series	Dimensions			
Selles	Α	В	С	
00-TT	0.6	1.35	120°	
0B-0K-0T	0.8	2.30	120°	
1B-1K-1T	0.8	3.00	120°	
2B-2K-2T	0.8	4.60	120°	
3B-3K-3T	0.8	5.60	120°	
Corioo	Dimensions			

305

Series В А 0.5 00-TT 1.7

Dimensions			
А	В	С	
0.6	3.0	60°	
0.8	3.7	60°	
	A 0.6	A B 0.6 3.0	

С

72°

Series	Dimensions			
Series	A	В		
00-TT	0.6	1.2		
0B-0K-0T	0.8	2.2		
1B-1K-1T	0.8	2.8		
2B-2K-2T	0.8	4.4		

305

306

0 B

Series	Dimensions				
Selles	Α	В	С		
00-TT	0.6	1.6	45°		
0B-0K-0T	0.6	2.5	45°		
1B-1K-1T	0.8	3.1	45°		
2B-2K-2T	0.8	5.0	45°		
3B-3K-3T	0.8	6.2	45°		
Series	Dimensions				
Jeiles	Α	В	С		
0B-0K-0T	0.6	2.8	72°		

0B-0K-0T	0.6	2.8	72°
1B-1K-1T	0.8	3.4	72°
2B-2K-2T	0.8	5.2	72°
3B-3K-3T	0.8	6.7	72°

Series	Dimensions			
Series	A	В	С	
2B-2K-2T	0.8	5.6	72°	
3B-3K-3T	0.8	7.1	72°	

	Sorioo	Dimension	ns	
	Series	A	В	
	1B-1K-1T	0.8	3.8	
+				

Series	Dimensions			
Selles	A	В	С	
0B-0K-0T	0.6	3.2	45°	
3B-3K-3T	0.8	7.5	45°	

306

307

0 B

308

Series	Dimensions			
Series	A	В	С	
0B-0K-0T	0.6	3.00	60°	
1B-1K-1T	0.8	3.70	60°	
2B-2K-2T	0.8	5.80	60°	
3B-3K-3T	0.8	7.08	60°	

Dimensions			
A	В	С	
0.8	6.4	45°	
0.8	7.5	45°	
	A 0.8	A B 0.8 6.4	

8-0K-0T	0.6	3.2	45°
8-3K-3T	0.8	7.5	45°

Note: contact numbering is for female contact version only.

D

Н

20° 1.25

Dimensions

С

40°

e B

314

316

റ്

ØA

0°

E°

ø A

ØE

с С

+0 B-

A Ø A

319

A Ø A

322

324

å

ØA

51°25

Series	Dimensions				
Selles	А	В	С	D	Н
1B-1K-1T	0.6	3.95	45°	22°30'	1.40
2B-2K-2T	0.8	6.30	45°	22°30'	2.15
3B-3K-3T	0.8	7.90	45°	22°30'	2.80

Series		Din	nensi	ons	
	А	В	С	D	Н
ХВ	0.8	5.40	45°	22°30'	2.40

Series	Dimensions							
Series	Α	В	D E		Н			
2B-2K-2T	0.8	6.6	32°44'	16°22'	3.10			
3B-3K-3T	0.8	8.4	32°44'	16°22'	3.86			
4B-4K	0.6	10.5	32°44'	16°22'	5.00			

Series		Dimensions							
	А	В	С	D	Е	Н			
2B-2K-2T	0.8	6.7	60°	30°	15°	3.5			

Series		Dimensions							
Series	Α	В	D	Е	Н				
XB	0.6	0.6 5.7 25°42' 12°51'							
ХВ	0.6	5.7	25°42'	12°	51'				

Cariaa		[Dime	ensions		
Series	А	В	С	D	Е	Н
3B-3K-3T	0.6	8.8	45°	25°43'	1.8	5.30
4B-4K	0.6	11.1	45°	25°43'	2.2	6.65

[Series		Dir	nensi	ons	
	Series	•	-	~	-	

В

3.3

А

0.5

Series

0B-0T

Series	Dimensions							
Selles	Α	В	С	D	Н			
2B-2K-2T	0.8	6.50	45°	22°30'	2.80			
3B-3K-3T	0.8	8.20	45°	22°30'	3.40			

Series		Dimensions							
Series	Α	В	D	Н					
1B-1K-1T	0.6	4.4	32°44'	2.00					

Dimensions

Series	Dimensions							
Series	Α	В	С	D	Е	Н		
2B-2K-2T	0.8	6.7	60°	30°	15°	3.50		
3B-3K-3T	0.8	8.4	60°	30°	15°	4.34		

Series		Dimensions								
Series	Α	В	С	D	Н					
3B-3K-3T	0.6	8.62	51°26'	27°42'	4.78					
4B-4K	0.6	11.00	51°26'	27°42'	6.00					

322 🔨	

	Series			Dim	ension	S	
		Α	В	С	D	Е	Н
	3B-3K-3T	0.6	8.8	45°	25°43'	22°30'	5

2B-2K-2T.326

Note: contact numbering is for female contact version only.

Note: all views are from the side of the socket.

Length of straight print contacts (for socket $E_{\bullet \bullet}$)

	Туре	Dimer	nsions
		øC	L
00 TT	302/303/304	0.5	3.0
0B	302/303	0.7	3.2
OK	304/305/306/307/309	0.5	3.2
0 T	312	0.4	3.0
1B 1K 1T	302/303/304/305/306/307/308	0.7	3.0
	310/314/316	0.5	4.0
VD	312	0.7	3.0
XB	322	0.5	3.0
2B 2K 2T	302/303/304/305/306/307 308/310/312/314/316/318/319	0.7	3.0
21	326/332	0.5	3.0
3B 3K 3T	303/304/305/306/307/308/309 310/312/314/316/318	0.7	3.0
51	320/322/324/326/330/332	0.5	5.0
4B 4K	316/320/324/330/340/348	0.5	5.0
5B	348	0.7	5.0
5K	350/354/364	0.5	5.0

Length of straight print contacts (for socket EZG/EYG/XPF)

		Models							
	Туре	EZG	/EYG	XPF					
		øC	L	øΟ	L				
	302/303	0.7	4.5	-	-				
0B	304/305	0.5	4.5	0.7	3.0				
	306/307/309	0.5	3.0	-	-				
10	302/303/304/305/306/307/308	0.7	3.8	-	-				
1B	310/314/316	0.5	3.8	-	-				
2B	302/303/304/305/306/307/308 310/312/314/316/318/319	0.7	5.5	-	-				

Note: This table does not apply for socket Hee; socket EHe and plugs FAe/FWe.

Fixed socket for printed circuit (B series) P16

Holes for fixing the housing

EYG-EZG	Series	Dimensions			
	Selles	Α	В		
ØB → ØA	00	0.81)	5.08		
Φ	0B	1.72)	7.62		
φ φ	1B	1.7 ²⁾	7.62		
	2B	1.7 ²⁾	10.16		

Note: Mounting torque for screws: 0.1 Nm. ¹⁾ to solder. ²⁾ to screw.

Series	Dimensions						
Series	Α	В					
0B	1.7	5.08					

Fixed socket with elbow print contact (B-K-T series) P17

Note: contact numbering is for female contact version only.

()11

⊕21

⊕ 26

€25

⊕17

⊕4

13

⊕26

⊕ 32

⊕ 30

⊕21

A5

⊕ 12

⊕ 25

⊕31

⊕ 22

6

2.54+2.54+2.54+2.54

⊕ 15 ⊕ 14

⊕28 ⊕27

⊕ 18 **⊕** 29

19 ⊕20

ωз **H**4

2.54+2.54+2.54+2.54+2.54

⊕ 10

⊕20

(19

(18

⊕5

۵,

⊕8

⊕7

⊕6

ø 0.7

⊕10

⊕9

⊕8

⊕1'

€24

€23

⊕7

12

⊕ 22

1 24

⊕ 16

⊕з

(13

@2

⊕ 14 ⊕ 23

—(1) **⊕** 15

1.27

3B-3K.332

16

17

•

⊕2

2.54

1.27

ø 0.6

2B-2K-2T.326

Fixed socket with elbow print contact (B-K-T series) P17

Note: contact numbering is for female contact version only.

Elbow socket (90°) for printed circuit (B series) P18 P19 P20

3B-3K-3T.324

11

⊕21

⊕ 23

€24

⊕17

0

2.54+2.54+2.54

⊕ 12

⊕ 22

15

① 16

⊕3

14

A 26

(19

A4

13

14

• 1

m2

2.54

⊕ 16 ⊕ 15

⊕ 17 ⊕ 27

⊕1 **⊕** 18

₽² ⊕з

1.27

1.27

2B-2K-2T.332

(10

⊕ 20

(19

(18

⊕5

⊕ 13 ⊕ 12

⊕ 25 ⊕ 24 ⊕ 11

⊕ 32 ⊕ 31 ⊕ 23

⊕ 29 ⊕ 30 ⊕ 22

⊕20 ⊕21 ⊕7

€⊕ Φe

2.54+2.54+2.54+2.54+2.54+2.54

⊕9

⊕8

⊕7

ø 0.7

Ø 0.6

(10

⊕9

⊕8

Note: ¹⁾ for the XRB.00 series the holes for shell fixing are different (see p. 35). ²⁾ the dimensions for the EPG.00.303.HLN and XBG.00.303.HLN models are given on page 26. For other models please contact factory.

Elbow socket (90°) for printed circuit (B series) P18 P19 P20

Fixed socket with straight print contact (S-E series) P21

Fixed socket with straight print contact (S-E series) P21

Note: all views are from the side of the socket.

Length of straight print contacts (for socket E...)

	Turpo	Dimer	nsions
	Туре	øC	L
0S	302	0.7	3.0
0E	303/304	0.5	3.0
1 S	302	0.7/1.5	3.0/5.0
1E	303/304/305	0.7	3.0
	305/306	0.5	3.0

	Tuno	Dimensions			
	Туре	øC	L		
2S 2E	303/304/305/306/307/308/310	0.7	3.0		
3S 3E	305/306/307/308/310 312/313/314/316/318	0.7	3.0		

Note: This table does not apply for HGP and EHP sockets and for FAA plugs.

Elbow socket (90°) for printed circuit (S series) P22 P23

Note: all dimensions are in millimetres.

Fixed socket with elbow print contact (S-E series) P24

Cable assembly (B, K, T, S and E series)

Cable stripping lengths (B series)

M1 straight plugs and sockets with cable collet, clamping type D or M (solder or crimp contacts)

M3 elbow plugs (90°) with cable collet, clamping type D or M (solder or crimp contacts)

		<	Cable stripping lengths (mm)											
	Туре	contact nm)			N	11			МЗ					
	1900	ø con (mm)		Solder			Crimp	-		Solder			Crimp	
		L	L	S	Т	L	S	Т	L	S	Т	L	S	Т
00	302/303/304	0.5	7.0	4	2.5	10.0	4	3.0	9.5	4	2.5	12.5	4	3.0
00	305/306	0.35	7.0	4	2.5	-	-	-	9.5	4	2.5	-	-	-
0B ¹⁾	302/303	0.9	14.5	7	3.5	17.0	7	4.0	19.5	7	3.5	22.0	7	4.0
UD	304/305	0.7	14.5	7	3.5	17.0	7	4.0	19.5	7	3.5	22.0	7	4.0
	306/307/309 ²⁾	0.5	14.0	7	2.5	18.0	7	3.0	19.0	7	2.5	23.0	7	3.0
	312	0.35	14.0	7	2.5	-	-	-	19.0	7	2.5	-	-	-
1B ¹⁾	302/303	1.3	14.5	8	3.5	18.0	8	4.0	25.5	8	3.5	28.0	8	4.0
ID'	304/305	0.9	14.5	8	3.0	18.0	8	4.0	25.5	8	3.0	28.0	8	4.0
	306/307/308	0.7	14.5	8	3.0	18.0	8	4.0	25.5	8	3.0	28.0	8	4.0
	310/314/316	0.5	16.5	8	2.5	-	-	-	27.5	8	2.5	-	-	-
ХВ	312	0.7	16.5	7.5	3.5	-	-	-	-	-	-	-	-	-
	322	0.5	17.5	8	4.0	-	-	-	-	-	-	-	-	-
2B	302	2.0	19.0	9	4.0	22.0	9	5.5	30.0	9	4.0	33.0	9	5.5
20	303	1.6	19.0	9	3.5	22.0	9	5.5	30.0	9	3.5	33.0	9	5.5
	304/305/306/307	1.3	18.0	9	3.5	20.0	9	4.0	29.0	9	3.5	31.0	9	4.0
	308/310	0.9	17.0	9	3.0	20.0	9	4.0	28.0	9	3.0	31.0	9	4.0
	312/314/316/318/319	0.7	17.0	9	3.0	20.0	9	4.0	28.0	9	3.0	31.0	9	4.0
	326/332	0.5	17.0	9	2.5	-	-	-	28.0	9	2.5	-	-	-
3B	302	3.0	24.0	10	4.5	28.0	10	5.5	35.0	10	4.5	39.0	10	5.5
30	303/304	2.0	23.0	10	4.0	27.0	10	5.5	34.0	10	4.0	38.0	10	5.5
	305/306/307	1.6	23.0	10	3.5	27.0	10	5.5	34.0	10	3.5	38.0	10	5.5
	308/310	1.3	22.0	10	3.5	25.0	10	4.0	33.0	10	3.5	36.0	10	4.0
	309	1.3 2.0	22.0	10	3.5 4.0	25.0	10	4.0 5.5	33.0	10	3.5 4.0	36.0	10	4.0 5.5
	312/314/316/318	0.9	21.0	10	3.0	25.0	10	4.0	32.0	10	3.0	36.0	10	4.0
	320/322/324/326/330/332	0.7	21.0	10	3.0	25.0	10	4.0	32.0	10	3.0	36.0	10	4.0

Note: ¹⁾ In 0B and 1B series, «L» and «S» dimensions shall be increased by 2 mm for the largest collet (D56 in 0B series; D76 in 1B series). The tolerances on these dimensions are: L: \pm 0.5 mm; C: \pm 0.5 mm; T: \pm 0.2 mm.

Cable stripping lengths (B series)

M1 straight plugs and sockets with cable collet, clamping type D or M (solder or crimp contacts)

M3 elbow plugs (90°) with cable collet, clamping type D or M (solder or crimp contacts)

		۲				С	able st	tripping	g lengtl	hs (mn	n)				
	Туре	contact m)			N	11					N	M3			
	Type	ø con (mm)		Solder			Crimp			Solder			Crimp		
		٥Ľ	L	S	Т	L	S	Т	L	S	Т	L	S	Т	
4B	304	3.0	33.0	12	4.5	36.0	12	5.5	41.0	12	4.5	45.0	12	5.5	
4D	306/307	2.0	32.0	12	4.0	36.0	12	5.5	41.0	12	4.0	45.0	12	5.5	
	310	1.6	32.0	12	3.5	36.0	12	5.5	39.0	12	3.5	43.0	12	5.5	
	312	1.3	32.0	12	3.5	36.0	12	4.0	39.0	12	3.5	43.0	12	4.0	
	316/320/324/330	0.9	32.0	12	3.0	34.0	12	4.0	39.0	12	3.0	43.0	12	4.0	
	340/348	0.7	32.0	12	3.0	34.0	12	4.0	39.0	12	3.0	43.0	12	4.0	
5B ¹⁾	302	6.0	42.0	18	7.5	-	-	_	70.0	18	7.5	-	-	—	
30	304	4.0	47.0	18	5.5	50.0	18	7.0	75.0	18	5.5	78.0	18	7.0	
	310	3.0	47.0	18	4.5	50.0	18	7.0	75.0	18	4.5	78.0	18	7.0	
	314/316	2.0	46.0	18	4.0	49.0	18	5.5	74.0	18	4.0	77.0	18	5.5	
	320	1.6	46.0	18	3.5	49.0	18	5.5	74.0	18	3.5	77.0	18	5.5	
	330/340/348	1.3	45.0	18	3.5	48.0	18	4.0	74.0	18	3.5	77.0	18	4.0	
	350/354/364	0.9	45.0	18	3.0	48.0	18	4.0	74.0	18	3.0	77.0	18	4.0	

Note: 1) In 5B series, «L» and «S» dimensions shall be increased by 13 mm for the largest collet (D25).

M5 elbow plugs (90°) with cable collet, clamping type D or M (solder or crimp contacts) (FSG model)

		A	С	able s	tripping	g lengt	hs (mr	n)	
	Туре	ntaci			N				
		ø contact A (mm)	L	Solder S	T	L	Crimp S	Т	
	302/303/304	0.5	12.0	4	2.5	15.0	5	3.0	
00	305/306	0.35	12.0	4	2.5	-	_	_	
	302/303	0.9	21.5	7	3.5	24.0	7	4.0	
0B	304/305	0.7	21.5	7	3.5	24.0	7	4.0	
	306/307/309 ¹⁾	0.5	21.0	7	3.5	24.0	7	3.0	⊲ —L—►
	312	0.35	21.0	7	3.5	-	-	-	-► T
1B	302/303	1.3	27.0	8	3.5	32.0	8	4.0	
П	304/305	0.9	27.0	8	3.5	32.0	8	4.0	
	306/307 ²⁾ /308	0.7	27.0	8	3.5	32.0	8	4.0	→ S -
	310/314/316 ³⁾	0.5	29.0	8	3.5	-	-	-	
2B	302	2.0	35.0	9	4.0	38.0	9	5.5	
20	303	1.6	35.0	9	4.0	38.0	9	5.5	
	304/305/306/307	1.3	34.0	9	4.0	36.0	9	4.0	
	308/310	0.9	33.0	9	4.0	36.0	9	4.0	
	312/314/316/318/319	0.7	33.0	9	3.5	36.0	9	4.0	
	326/332	0.5	33.0	9	3.5	-	-	-	

Note: ¹) center wire L = 16.5. ²) center wire L = 20.5. ³) 5 center wires L = 20.5. The tolerances on these dimensions are: L: \pm 0.5 mm; S: \pm 0.5 mm; T: \pm 0.2 mm.

Cable stripping lengths (B series)

		contact A Im)	С	able s	tripping	g lengt			
	Туре				N		L►		
				Solder		Crimp			T
		ø con (mm)	L	S	Т	L	S	Т	
	302/303	0.9	9.5	8	3.0	13.0	8	4.0	
0B	304/305	0.7	9.5	8	3.0	13.0	8	4.0	→ S →
	306/307/309 ²⁾	0.5	10.0	8	2.5	13.5	8	3.0	

M4 straight plug, short version, clamping type D or M (solder or crimp contacts)

		act A	Cable stripping lengths (mm)						
	Туре	ø contact (mm)		Solder	-		Crimp		
		<u>ه</u> ک	L	S	Т	L	S	Т	
10	302/303	1.3	39.5	8	3.5	43.0	8	4.0	
1B	304/305	0.9	39.5	8	3.0	43.0	8	4.0	≪−− L −→
	306/307/308	0.7	39.5	8	3.0	43.0	8	4.0	→ T ~
	310/314/316	0.5	42.0	8	2.5	-	-	-	
2B	302	2.0	49.0	9	4.0	53.0	9	5.5	
20	303	1.6	49.0	9	3.5	53.0	9	5.5	- S -
	304/305/306/307	1.3	48.0	9	3.5	50.0	9	4.0	
	308/310	0.9	47.0	9	3.0	49.0	9	4.0	
	312/314/316/318/319	0.7	47.0	9	3.0	49.0	9	4.0	
	326/332	0.5	47.0	9	2.5	-	-	-	

Note: ¹⁾ In 1B series, «L» and «S» dimensions shall be increased by 2 mm for the largest collet (D76 in 1B series). ²⁾ Crimp contacts are available only for connectors fitted with male contacts. The tolerances on these dimensions are: L: \pm 0.5 mm; S: \pm 0.5 mm; T: \pm 0.2 mm.

Cable stripping lengths (K series)

M1 straight plugs and sockets with cable collet, clamping type C (solder or crimp contacts)

M3 elbow plug (90°) with cable collet, clamping type C (solder or crimp contacts)

		< <u>Cable stripping lengths (mm)</u> ₩1 M3												
	Туре	contact m)		Solder			Crimp			Solder		-	Crimp	
		(mm)	L	Soluei	Т	L	S	Т	L	Soluei	Т	L	S	Т
	302/303	0.9	9.5	6	3.5	12.0	6	4.0	22.5	6	3.5	25.0	6	4.0
0K	304/305	0.7	9.5	6	3.5	12.0	6	4.0	22.5	6	3.5	25.0	6	4.0
	306/307/309 ¹⁾	0.5	9.0	6	2.5	13.0	6	4.0	22.0	6	2.5	26.0	6	4.0
	312	0.35	9.0	6	2.5	-	-	-	22.0	6	2.5	-		-
11/	302/303	1.3	11.0	7	3.5	14.5	7	4.0	27.5	7	3.5	31.0	7	4.0
1K	304/305	0.9	11.0	7	3.0	14.5	7	4.0	27.5	7	3.0	31.0	7	4.0
	306/307/308	0.7	11.0	7	3.0	14.5	7	4.0	27.5	7	3.0	31.0	7	4.0
	310/314/316	0.5	13.0	7	2.5	14.0	7	3.0	29.5	7	2.5	-	-	-
2K	302	2.0	16.5	8	4.0	19.5	8	5.5	36.0	8	4.0	39.0	8	5.5
21	303	1.6	16.5	8	3.5	19.5	8	5.5	36.0	8	3.5	39.0	8	5.5
	304/305/306/307	1.3	15.5	8	3.5	17.5	8	4.0	35.0	8	3.5	37.0	8	4.0
	308/310	0.9	14.5	8	3.0	17.5	8	4.0	34.0	8	3.0	37.0	8	4.0
	312/314/316/318/319	0.7	14.5	8	3.0	17.5	8	4.0	34.0	8	3.0	37.0	8	4.0
	326/332	0.5	14.5	8	2.5	-	-	-	34.0	8	2.5	-	-	-
3K	302	3.0	19.0	10	4.5	23.0	10	5.5	48.0	10	4.5	53.0	10	5.5
	303/304	2.0	18.0	10	4.0	22.0	10	5.5	48.0	10	4.0	52.0	10	5.5
	305/306/307	1.6	18.0	10	3.5	22.0	10	5.5	48.0	10	3.5	52.0	10	5.5
	308/310	1.3	17.0	10	3.5	20.0	10	4.0	47.0	10	3.5	50.0	10	4.0
	309	1.3 2.0	17.0	10	3.5 4.0	20.0	10	4.0 5.5	47.0	10	3.5 4.0	50.0	10	4.0 5.5
	312/314/316/318	0.9	16.0	10	3.0	20.0	10	4.0	46.0	10	3.0	50.0	10	4.0
	320/322/324/326/330	0.7	16.0	10	3.0	20.0	10	4.0	46.0	10	3.0	50.0	10	4.0
4K	304	3.0	22.0	11	4.5	25.0	11	5.5	52.0	11	4.5	55.0	11	5.5
41	306/307	2.0	21.0	11	4.0	25.0	11	5.5	51.0	11	4.0	55.0	11	5.5
	310	1.6	21.0	11	3.5	25.0	11	5.5	51.0	11	3.5	55.0	11	5.5
	312	1.3	21.0	11	3.5	25.0	11	4.0	51.0	11	3.5	55.0	11	4.0
	316/320/324/330	0.9	21.0	11	3.0	23.0	11	4.0	51.0	11	3.0	53.0	11	4.0
	340/348	0.7	21.0	11	3.0	23.0	11	4.0	51.0	11	3.0	53.0	11	4.0
5K	302	6.0	24.0	14	7.5	-	-	-	-	-	-	-	-	-
JI	304	4.0	29.0	14	5.5	32.0	14	7.0	-	-	-	-	-	-
	310	3.0	29.0	14	4.5	32.0	14	7.0	-	-	-	-	-	-
	314/316	2.0	28.0	14	4.0	31.0	14	5.5	-	-	-	-	-	-
	320	1.6	28.0	14	3.5	31.0	14	5.5	-	-	-	-	-	-
	330/340/348	1.3	27.0	14	3.5	30.0	14	4.0	-	-	-	-	-	-
	350/354/364	0.9	27.0	14	3.0	30.0	14	4.0	-	-	-	-	-	-

Note: ¹⁾ crimp contacts are available only for connectors fitted with male contacts. The tolerances on these dim. are: L: \pm 0.5 mm; S: \pm 0.5 mm; T: \pm 0.2 mm.

Ŧ.

Cable stripping lengths (K series)

 $\fbox{M2}$ straight plug and socket with oversize cable collet, clamping type K (solder or crimp contacts)

		it A	С	able s	trippin				
	Туре	ø contact A (mm)		Solder		12	Crimp		
		a cc	L	S	Т	L	S	Т	
	302/303	1.3	23.5	8	3.5	27.5	8	4.0	
1K	304/305	0.9	23.5	8	3.0	27.5	8	4.0	
	306/307/308	0.7	23.5	8	3.0	27.5	8	4.0	
	310/314/316	0.5	24.5	8	2.5	-	-	-	
	302	2.0	29.5	10	4.0	32.5	10	5.5	
2K	303	1.6	29.5	10	3.5	32.5	10	5.5	
	304/305/306/307	1.3	28.5	10	3.5	30.5	10	4.0	
	308/310	0.9	27.5	10	3.0	30.5	10	4.0	
	312/314/316/318/319	0.7	27.5	10	3.0	30.5	10	4.0	I ← L →
	326/332	0.5	27.5	10	2.5	-	-	-	- > T - -
	302	3.0	37.0	11	4.5	41.0	11	5.5	
3K	303/304	2.0	36.0	11	4.0	40.0	11	5.5	
	305/306/307	1.6	36.0	11	3.5	40.0	11	5.5	
	308/310	1.3	35.0	11	3.5	38.0	11	4.0	
	309	1.3 2.0	35.0	11	3.5 4.0	38.0	11	4.0 5.5	
	312/314/316/318	0.9	34.0	11	3.0	38.0	11	4.0	
	320/322/324/326/330	0.7	34.0	11	3.0	38.0	11	4.0	
	304	3.0	45.0	14	4.5	48.0	14	5.5	
4K	306/307	2.0	44.0	14	4.0	48.0	14	5.5	
	310	1.6	44.0	14	3.5	48.0	14	5.5	
	312	1.3	44.0	14	3.5	48.0	14	4.0	
	316/320/324/330	0.9	44.0	14	3.0	46.0	14	4.0	
	340/348	0.7	44.0	14	3.0	46.0	14	4.0	

Note: the tolerances on these dim. are: L: \pm 0.5 mm; S: \pm 0.5 mm; T: \pm 0.2 mm.

Cable stripping lengths (T series)

M1 straight plugs and sockets with cable collet, clamping type C (solder or crimp contacts)

			0						
		ct⊳	C	able s		g lengt	ns (mr	n)	
	Туре) nta		Oalda		11	Oring		
		ø contact A (mm)	L	Solder S	Т	L	Crimp S	т	
	302/303/304	0.5	L 7.0	4	2.5	10.0	4	3.0	
TT						10.0		5.0	
	305/306	0.35	7.0	4	2.5	-	-	-	
0 T	302/303	0.9	9.5	6	3.5	12.0	6	4.0	
0.	304/305	0.7	9.5	6	3.5	12.0	6	4.0	
	306/307/309 ¹⁾	0.5	9.0	6	2.5	13.0	6	3.0	
	312	0.35	9.0	6	2.5	-	-	-	
1T	302/303	1.3	11.0	7	3.5	14.5	7	4.0	
	304/305	0.9	11.0	7	3.0	14.5	7	4.0	
	306/307/308	0.7	11.0	7	3.0	14.5	7	4.0	 ∟
	310/314/316	0.5	13.0	7	2.5	14.0	7	3.0	→ T -
2 T	302	2.0	16.5	8	4.0	19.5	8	5.5	
21	303	1.6	16.5	8	3.5	19.5	8	5.5	
	304/305/306/307	1.3	15.5	8	3.5	17.5	8	4.0	S
	308/310	0.9	14.5	8	3.0	17.5	8	4.0	
	312/314/316/318/319	0.7	14.5	8	3.0	17.5	8	4.0	
	326/332	0.5	14.5	8	2.5	-	-	-	
3 T	302	3.0	19.0	10	4.5	23.0	10	5.5	
51	303/304	2.0	18.0	10	4.0	22.0	10	5.5	
	305/306/307	1.6	18.0	10	3.5	22.0	10	5.5	
	308/310	1.3	17.0	10	3.5	20.0	10	4.0	
	309	1.3 2.0	17.0	10	3.5 4.0	20.0	10	4.0 5.5	
	312/314/316/318	0.9	16.0	10	3.0	20.0	10	4.0	
	320/322/324/326/330	0.7	16.0	10	3.0	20.0	10	4.0	

Note: ¹⁾ crimp contacts are available only for connectors fitted with male contacts. The tolerances on these dim. are: L: \pm 0.5 mm; S: \pm 0.5 mm; T: \pm 0.2 mm.

Cable stripping lengths for unipole connectors (S series)

M1 straight plugs and sockets with cable collet, clamping type C (solder contacts)

M3 elbow plugs (90°) with cable collet, clamping type C (solder contacts)

M5 straight plugs and sockets with cable crimping type E (crimp contacts)

M6 elbow plugs (90°) with cable crimping type E (crimp contacts)

		A		Cable stripping lengths (mm)											
	Туре	ø contact A (mm)		M1			M5			М3			M6		
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	cor mm)	Solder		Crimp		Solder		Crimp						
		ØĽ	L	S	Т	L	S	Т	L	S	Т	L	S	Т	
00	113	1.3	9	4	4	19	5	7	7	4	2	17	5	7	
0S	116	1.6	11	5	4	-	-	-	8	5	2	-	-	-	∗ L►
10	120	2.0	13	8	5	-	-	-	13	8	2	-	-	-	→ T <
1S	130	3.0	13	8	5	-	-	-	13	8	2	-	-	-	
00	130	3.0	18	9	6	-	-	-	15	9	2	-	-	-	
2S	140	4.0	18	9	6	-	-	-	15	9	2	-	-	-	→ S
20	140	4.0	21	9	7	-	-	-	19	9	2	-	-	-	
3S	160	6.0	21	9	9	-	-	-	19	9	2	-	-	-	
40	140	4.0	25	9	7	-	-	-	23	9	2	-	-	-	
4S	160	6.0	25	9	9	-	-	-	23	9	2	-	-	-	
5S	112	12.0	12	15	12	_	_	_	_	_	_	_	_	-	

		A	Cab Ien	le strip gths (r	oping nm)	
	Туре	Itact		M2		
		ø contact A (mm)	L	Solder S	Т	
		Q.)	L	3	1	
00	113	1.3	16	4	4	
0S	116	1.6	19	5	4	- L → + T +
10	120	2.0	25	8	5	
1S	130	3.0	25	8	5	
00	130	3.0	34	9	6	-= S
2S	140	4.0	34	9	6	
	140	4.0	39	9	7	
3S	160	6.0	39	9	9	
40	140	4.0	50	9	7	
4S	160	6.0	50	9	9	

M2 straight plugs and sockets with oversize cable collet, clamping type K (solder contacts)

Cable stripping lengths for multipole connectors (S series)

M1 straight plugs and sockets with cable collet, clamping type C (solder or crimp contacts)

M3 elbow plugs (90°) with cable collet, clamping type C (solder or crimp contacts)

$ \begin{array}{ c c c c c c } \hline Figure F$) T
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
3020.910.053.51554.010.053.5155303/3040.710.053.51554.010.053.51551S3021.312.583.51784.014.583.5178303/3040.912.083.01784.014.083.01783050.90.712.083.01784.014.083.01783050.712.583.01784.014.083.01783060.712.583.01784.014.083.01783033040.712.583.01784.014.583.01783060.712.583.01784.014.083.01783063061.317.593.52295.517.093.5229303/304/305/3061.317.593.52294.017.593.5229308/3100.917.093.02294.017.593.522930530520.094.0	
OS 303/304 0.7 10.0 5 3.5 15 5 4.0 10.0 5 3.5 15 IS 302 1.3 12.5 8 3.5 17 8 4.0 14.5 8 3.5 17 8 IS 303/304 0.9 12.0 8 3.0 17 8 4.0 14.5 8 3.0 17 8 303/304 0.9 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 305 0.9 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 305 0.9 0.7 12.5 8 3.0 17 8 4.0 14.0 8 3.0 17 8 306 302 1.6 17.0 9 3.5 22 9 4.0 17.5 9 3.5 <t< th=""><th></th></t<>	
303/304 0.7 10.0 5 3.5 15 5 4.0 10.0 5 3.5 15 5 4.0 10.0 5 3.5 15 5 4.0 10.0 5 3.5 15 5 4.0 10.0 5 3.5 15 5 4.0 10.0 5 3.5 15 5 1S 302 1.3 12.5 8 3.5 17 8 4.0 14.0 8 3.0 17 8 303/304 0.9 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 4.0 14.0 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 4.0 14.0 8 3.0 17 8 2S 303 302 1.6 17.0	4.0
1S 303/304 0.9 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 305 0.9 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 305 0.9 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 305 0.9 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 4.0 14.5 8 3.0 17 8 303 302 1.6 17.0 9 3.5 22 9 5.5 17.0 9 3.5 22 9 303/304/305/306 1.3 17.5 9 3.5 22 9 4.0 17.5 9 3.5 22 9	4.0
303/304 0.9 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 305 0.9 0.7 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 305 0.9 0.7 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 4.0 14.5 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 4.0 14.5 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0 17 8 3.0	4.0
305 0.7 12.0 8 3.0 17 8 4.0 14.0 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 4.0 14.0 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 4.0 14.5 8 3.0 17 8 306 0.7 12.5 8 3.0 17 8 4.0 14.5 8 3.0 17 8 307 1.6 17.0 9 3.5 22 9 4.0 17.5 9 3.5 22 9 303/304/305/306 1.3 17.5 9 3.5 22 9 4.0 17.5 9 3.5 22 9 308/310 0.9 17.0 9 3.0 22 9 4.0 17.0 9 3.0 22 9 30 302/303/304 2.0 20.0 9 4.0 - - - - - <th>4.0</th>	4.0
302 1.6 17.0 9 3.5 22 9 5.5 17.0 9 3.5 22 9 303/304/305/306 1.3 17.5 9 3.5 22 9 4.0 17.5 9 3.5 22 9 303/304/305/306 1.3 17.5 9 3.5 22 9 4.0 17.5 9 3.5 22 9 307 1.3 0.9 17.5 9 3.5 22 9 4.0 17.5 9 3.5 22 9 308/310 0.9 17.0 9 3.0 22 9 4.0 17.0 9 3.0 22 9 303 302/303/304 2.0 20.0 9 4.0 -	4.0
2S 303/304/305/306 1.3 17.5 9 3.5 22 9 4.0 17.5 9 3.5 22 9 307 1.3 17.5 9 3.5 3.2 9 4.0 17.5 9 3.5 22 9 308/310 0.9 17.5 9 3.5 3.0 22 9 4.0 17.5 9 3.5 3.0 22 9 308/310 0.9 17.0 9 3.0 22 9 4.0 17.5 9 3.5 3.0 22 9 308/310 0.9 17.0 9 3.0 22 9 4.0 17.5 9 3.0 22 9 303 302/303/304 2.0 20.0 9 4.0 -	4.0
303/304/305/306 1.3 17.5 9 3.5 22 9 4.0 17.5 9 3.5 22 9 307 1.3 0.9 17.5 9 3.5 22 9 4.0 17.5 9 3.5 22 9 308/310 0.9 17.5 9 3.0 22 9 4.0 17.5 9 3.5 22 9 308/310 0.9 17.0 9 3.0 22 9 4.0 17.0 9 3.0 22 9 308/310 0.9 17.0 9 3.0 22 9 4.0 17.0 9 3.0 22 9 308/303/304 2.0 20.0 9 4.0 -<	5.5
307 0.9 17.5 9 3.0 22 9 4.0 17.5 9 3.0 22 9 308/310 0.9 17.0 9 3.0 22 9 4.0 17.5 9 3.0 22 9 308/310 0.9 17.0 9 3.0 22 9 4.0 17.0 9 3.0 22 9 303 302/303/304 2.0 20.0 9 4.0 -	4.0
302/303/304 2.0 20.0 9 4.0 -	4.0
3S 305 2.0 20.0 9 4.0 - <td< th=""><th>4.0</th></td<>	4.0
305 2.0 9 4.0 - </th <th>-</th>	-
	-
312/313/314/316/318 0.9 20.0 9 3.0	-
	-
302 4.0 25.0 9 7.0	-
4S 303/304 3.0 23.5 9 4.5	-
305 3.0 23.5 9 4.5	-
306 2.0 21.0 9 4.0	-
307 2.0 1.3 21.0 9 4.0	-
308/309/310/312/313/314 1.3 24.5 9 3.5	-
316/318/320/322/324 0.9 24.5 9 3.5	-

Cable stripping lengths for multipole connectors (S series)

M1 straight plugs and sockets with cable collet, clamping type C (solder contacts)

M3 elbow plugs (90°) with cable collet, clamping type C (solder contacts)

$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				∢	С	able s	tripping	g lengt	hs (mr	n)	
302 6.0 33.5 22 7.5 33.5 22 7.5 303 $\begin{pmatrix} 6.0\\ 4.0 \end{pmatrix}$ 33.5 22 7.5 33.5 22 7.5 303 $\begin{pmatrix} 6.0\\ 4.0 \end{pmatrix}$ 33.5 22 7.5 33.5 22 7.5 304 4.0 33.5 22 5.5 3.5 22 5.5 306/308 3.0 33.5 22 5.5 33.5 22 4.5 306/308 3.0 33.5 22 4.5 33.5 22 4.5 $306/308$ 3.0 33.5 22 4.5 33.5 22 4.5 $310/312/316$ 2.0 32.0 22 4.0 32.0 22 4.5 $318/322$ 3.0 33.5 22 4.5 33.5 22 4.5 $330/336/340/344/348$ 1.3 34.5 22 3.5 34.5 22 3.5 $6S$ 304 8.0 37.0 15 10.0 37.0 <th></th> <th></th> <th>Type</th> <th>tact</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>			Type	tact					-		
302 6.0 33.5 22 7.5 33.5 22 7.5 303 $\begin{pmatrix} 6.0\\ 4.0 \end{pmatrix}$ 33.5 22 7.5 33.5 22 7.5 303 $\begin{pmatrix} 6.0\\ 4.0 \end{pmatrix}$ 33.5 22 7.5 33.5 22 7.5 304 4.0 33.5 22 5.5 3.5 22 5.5 306/308 3.0 33.5 22 5.5 33.5 22 4.5 306/308 3.0 33.5 22 4.5 33.5 22 4.5 $306/308$ 3.0 33.5 22 4.5 33.5 22 4.5 $310/312/316$ 2.0 32.0 22 4.0 32.0 22 4.5 $318/322$ 3.0 33.5 22 4.5 33.5 22 4.5 $330/336/340/344/348$ 1.3 34.5 22 3.5 34.5 22 3.5 $6S$ 304 8.0 37.0 15 10.0 37.0 <th></th> <th></th> <th>Турс</th> <th>con</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			Турс	con							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_										
303 3.0 3.5 22 7.3 3.5 22 7.5 304 4.0 33.5 22 5.5 33.5 22 5.5 305 4.0 33.5 22 5.5 33.5 22 5.5 306/308 3.0 33.5 22 4.5 33.5 22 4.5 310/312/316 2.0 32.0 22 4.0 32.0 22 4.0 318/322 3.0 33.5 22 4.5 33.5 22 4.5 320/324 1.6 34.0 22 3.5 34.0 22 3.5 303 312/318 4.0 37.0 15 10.0 37.0 15 7.0 303/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 304 8.0 37.0 15 10.0 37.0 15 7.0 320/324 3.0 37.0 15 7.0 37.0 15 7.0 320/324 3.0 37.0 15		59	302	6.0	33.5	22	7.5	33.5	22	7.5	
	Ľ	55	303		33.5	22		33.5	22		
305 3.0 33.5 22 4.5 33.5 22 4.5 306/308 3.0 33.5 22 4.5 33.5 22 4.5 310/312/316 2.0 32.0 22 4.0 32.0 22 4.0 310/312/316 2.0 32.0 22 4.0 32.0 22 4.0 311/312/316 2.0 32.0 22 4.0 32.0 22 4.0 318/322 3.0 3.5 22 4.5 3.5 22 4.5 320/324 1.6 34.0 22 3.5 34.0 22 3.5 330/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 6S 312/318 4.0 37.0 15 10.0 37.0 15 10.0 320/324 3.0 37.0 15 6.0 37.0 15 6.0 330/336/348 2.0 37.0 15 6.0 37.0 15 7.0 360 1.6 37.0			304	4.0	33.5	22	5.5	33.5	22	5.5	
310/312/316 2.0 32.0 22 4.0 32.0 22 4.0 314 3.0 3.0 3.5 22 4.5 3.5 22 4.5 318/322 3.0 3.0 3.5 22 4.5 3.5 3.5 22 4.5 320/324 1.6 34.0 22 3.5 34.5 22 3.5 3.5 22 3.5 330/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 304 8.0 37.0 15 10.0 37.0 15 10.0 6S 312/318 4.0 37.0 15 7.0 37.0 15 7.0 320/324 3.0 37.0 15 7.0 37.0 15 7.0 312/318 4.0 37.0 15 6.0 37.0 15 6.0 330/336/348 2.0 37.0 15 6.0 37.0 15 7.0 360 1.6 37.0 15 4.5 37.0 15			305		33.5	22		33.5	22		
314 3.0 3.3.5 22 4.5 3.3.5 22 4.5 318/322 3.0 3.0 3.5 22 4.5 3.5 3.5 22 4.5 320/324 1.6 34.0 22 3.5 34.0 22 3.5 330/336/340/344/348 1.3 34.5 22 3.5 34.0 22 3.5 330/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 6S 312/318 4.0 37.0 15 10.0 37.0 15 10.0 330/336/340 4.0 37.0 15 7.0 37.0 15 7.0 312/318 4.0 37.0 15 7.0 37.0 15 7.0 330/336/348 2.0 37.0 15 6.0 37.0 15 6.0 330/336/348 2.0 37.0 15 7.0 37.0 15 7.0 360 1.6 37.0 15 37.0 15 4.5			306/308	3.0	33.5	22	4.5	33.5	22	4.5	
314 3.0 33.5 22 4.5 33.5 22 4.5 318/322 3.0 3.0 3.5 22 4.5 3.5 22 4.5 320/324 1.6 34.0 22 3.5 34.0 22 3.5 330/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 330/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 330/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 6S 312/318 4.0 37.0 15 10.0 37.0 15 7.0 330/336/348 2.0 37.0 15 6.0 37.0 15 6.0 330/336/348 2.0 37.0 15 7.0 37.0 15 7.0 360 1.6 37.0 15 4.5 37.0 15 4.5			310/312/316	2.0	32.0	22	4.0	32.0	22	4.0	
318/322 3.0 33.5 22 4.5 3.5 3.5 22 4.5 320/324 1.6 34.0 22 3.5 34.0 22 3.5 330/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 30/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 303 304 8.0 37.0 15 10.0 37.0 15 10.0 312/318 4.0 37.0 15 7.0 37.0 15 6.0 330/336/348 2.0 37.0 15 6.0 37.0 15 6.0 360 1.6 37.0 15 7.0 37.0 15 7.0			314		33.5	22		33.5	22		
330/336/340/344/348 1.3 34.5 22 3.5 34.5 22 3.5 6S 304 8.0 37.0 15 10.0 37.0 15 10.0 312/318 4.0 37.0 15 7.0 37.0 15 7.0 320/324 3.0 37.0 15 6.0 37.0 15 6.0 330/336/348 2.0 37.0 15 7.0 37.0 15 7.0 360 1.6 37.0 15 4.5 37.0 15 4.5			318/322		33.5	22		33.5	22		
304 8.0 37.0 15 10.0 37.0 15 10.0 312/318 4.0 37.0 15 7.0 37.0 15 7.0 320/324 3.0 37.0 15 6.0 37.0 15 6.0 330/336/348 2.0 37.0 15 7.0 37.0 15 7.0 360 1.6 37.0 15 4.5 37.0 15 4.5			320/324	1.6	34.0	22	3.5	34.0	22	3.5	
6S 312/318 4.0 37.0 15 7.0 37.0 15 7.0 320/324 3.0 37.0 15 6.0 37.0 15 6.0 330/336/348 2.0 37.0 15 7.0 37.0 15 7.0 360 1.6 37.0 15 4.5 37.0 15 4.5			330/336/340/344/348	1.3	34.5	22	3.5	34.5	22	3.5	
312/318 4.0 37.0 15 7.0 37.0 15 7.0 320/324 3.0 37.0 15 6.0 37.0 15 6.0 330/336/348 2.0 37.0 15 7.0 37.0 15 7.0 360 1.6 37.0 15 4.5 37.0 15 4.5		<u> </u>	304	8.0	37.0	15	10.0	37.0	15	10.0	
330/336/348 2.0 37.0 15 7.0 37.0 15 7.0 360 1.6 37.0 15 4.5 37.0 15 4.5		05	312/318	4.0	37.0	15	7.0	37.0	15	7.0	
360 1.6 37.0 15 4.5 37.0 15 4.5			320/324	3.0	37.0	15	6.0	37.0	15	6.0	
			330/336/348	2.0	37.0	15	7.0	37.0	15	7.0	
264/270 1.2 27.0 15 4.0 27.0 15 4.0			360	1.6	37.0	15	4.5	37.0	15	4.5	
304/3/2 1.3 37.0 15 4.0 37.0 15 4.0			364/372	1.3	37.0	15	4.0	37.0	15	4.0	
106 0.9 37.0 15 4.0 37.0 15 4.0			106	0.9	37.0	15	4.0	37.0	15	4.0	

M4 straight plug with cable collet, clamping type D or M (solder or crimp contacts)

			۲ ۲	C	able s	tripping	g lengt			
		Туре	ø contact (mm)				14			
			à E	Solder			Crimp			◄ ──L──►
			٥Ĕ	L	S	Т	L	S	Т	→ T <
Γ	20	302	1.6	47.0	9	3.5	52	9	5.5	
	2S	303/304/305/306	1.3	47.5	9	3.5	52	9	4.0	
		307	1.3 0.9	47.5	9	3.5 3.0	52	9	4.0	S
		308/310	0.7	47.0	9	3.0	52	9	4.0	

Cable stripping lengths for multipole connectors (S series)

M2 straight plugs and sockets with oversize cable collet, clamping type K (solder or crimp contacts)

		ct A	С	able s	tripping		hs (mr	n)	
	Туре	ø contact / (mm)		Solder		12	Crimp		
		ø cí	L	S	Т	L	S	Т	
0S	302	0.9	19.5	5	3.5	23	5	4.0	
03	303/304	0.7	20.0	5	3.5	23	5	4.0	
10	302	1.3	24.5	8	3.5	28	8	4.0	
1S	303/304	0.9	24.0	8	3.0	28	8	4.0	
	305	0.9 0.7	24.0	8	3.0	28	8	4.0	
	306	0.7	24.5	8	3.0	28	8	4.0	
	302	1.6	33.0	9	3.5	38	9	5.5	
2S	303/304/305/306	1.3	33.5	9	3.5	38	9	4.0	
	307	1.3 0.9	33.5	9	3.5 3.0	38	9	4.0	
	308/310	0.9	33.0	9	3.0	38	9	4.0	
20	302/303/304	2.0	38.0	9	4.0	-	-	-	
3S	305	2.0 1.3	38.0	9	4.0 3.5	-	-	-	
	306/307/308/310	1.3	38.5	9	3.5	-	-	-	 -
	312/313/314/316/318	0.9	38.0	9	3.0	-	-	-	- - T
10	302	4.0	50.0	9	7.0	-	-	-	
4S	303/304	3.0	48.5	9	4.5	-	-	-	
	305	3.0 2.0	48.5	9	4.5 4.0	-	-	-	
	306	2.0	49.0	9	4.0	-	-	-	
	307	2.0 1.3	49.0	9	4.0 3.5	-	-	-	
	308/309/310/312/313/314	1.3	49.5	9	3.5	-	-	-	
	316/318/320/322/324	0.9	49.0	9	3.0	-	-	-	
5S	302	6.0	68.5	22	7.5	-	-	-	
33	303	6.0 4.0	68.5	22	7.5 5.5	-	-	-	
	304	4.0	68.5	22	5.5	-	-	-	
	305	4.0 3.0	68.5	22	5.5 4.5	-	-	-	
	306/308	3.0	68.5	22	4.5	-	-	-	
	310/312/316	2.0	67.0	22	4.0	-	-	-	
	314	3.0 2.0	68.5	22	4.5 4.0	-	-	_	
	318/322	3.0 1.6	68.5	22	4.5 3.5	-	_	_	
	320/324	1.6	69.0	22	3.5	-	-	-	
	330/336/340/344/348	1.3	69.5	22	3.5	-	-	-	

s -

Cable stripping lengths for unipole connectors (E series)

M1 straight plugs and sockets with cable collet, clamping type C (solder contacts)

M3 elbow plugs (90°) with cable collet, clamping type C (solder contacts)

		۲	С	able s	tripping	g lengt	n)		
	Туре	itact		M1			М3		
	7 1	ø contact A (mm)	L	Solder S	T	L	Solder S	́Т	
		00	L	3	1		3		
0E	116	1.6	9	5	4	20	5	4	
1E	120	2.0	12	8	5	25	8	5	 L►
	130	3.0	13	8	5	25	8	5	+ T +
2E	130	3.0	16	9	6	33	9	6	
26	140	4.0	15	9	6	33	9	6	
3E	140	4.0	19	9	7	40	9	7	s
JE	160	6.0	20	9	9	40	9	9	
4E	160	6.0	23	9	9	50	9	9	
5E	112	12.0	12	15	12	-	-	_	

M2 straight plugs and sockets with oversize cable collet, clamping type K (solder contacts)

		A	Cab Ien	le strip gths (r	ping nm)	
	Туре	ø contact A (mm)		M2 Solder		
		ø c	L	S	Т	
4.5	120	2.0	25	8	5	
1E	130	3.0	26	8	5	→ T ~
2E	130	3.0	28	9	6	
26	140	4.0	27	9	6	
25	140	4.0	36	9	7	- → S - -
3E	160	6.0	37	9	9	
4E	160	6.0	50	9	9	

Cable stripping lengths for multipole connectors (E series)

M1 straight plugs and sockets with cable collet, clamping type C (solder or crimp contacts)

M3 elbow plugs (90°) with cable collet, clamping type C (solder or crimp contacts)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
3023020.943.61.25.4.01.95.3.52.35.4.0303/3040.79.043.51.25.4.03.51.25.4.03.54.0303/3040.91.563.51.58.4.02.58.3.52.58.4.0303/3040.91.563.01.58.4.02.58.3.52.58.3.52.53.5303/3040.90.71.56.3.01.58.4.02.58.3.02.53.5			act A			N		able s	tripping	g lengti	ns (mr		13		
3023020.943.61.25.4.01.95.3.52.35.4.0303/3040.79.043.51.25.4.03.51.25.4.03.54.0303/3040.91.563.51.58.4.02.58.3.52.58.4.0303/3040.91.563.01.58.4.02.58.3.52.58.3.52.53.5303/3040.90.71.56.3.01.58.4.02.58.3.02.53.5		Туре	m)		Solder			Crimp			Solder			Crimp	
Oe300/3040.00.00.40.50.10.50.20.20.30.40.31C30020.30.50.			۵ <u>۳</u>	L	S	Т	L	S	Т	L	S	Т	L	S	Т
100010001000100010001000100010001000100010001000303/3041000100	0E	302	0.9	9.0	4	3.5	12	5	4.0	19.5	5	3.5	23	5	4.0
1303/3040.90.56.63.0158.4.02.08.3.02.88.4.03050.710.56.3.0158.4.023.08.3.02.88.4.03060.710.56.3.015.8.4.023.08.3.02.88.4.0306303/304/305/3061.314.593.51994.03.04.03.53.03.03.03.04.0303/304/305/3061.314.593.51994.04.03.03.093.53.093.53.093.03.094.0303/303/3042.017.093.017.093.017.094.017.094.017.094.017.018.018.093.593.517.019.0305/307/306/3101.317.093.017.093.017.0<	UL	303/304	0.7	9.0	4	3.5	12	5	4.0	19.0	5	2.5	23	5	4.0
303/304 0.0 10.0	10	302	1.3	10.5	6	3.5	15	8	4.0	23.5	8	3.5	28	8	4.0
305 0.7 10.5 30 30 30 40 20.0 80		303/304	0.9	10.5	6	3.0	15	8	4.0	23.0	8	3.0	28	8	4.0
2030021.61.61.493.51.99.95.53.09.93.59.79.95.7303/304/305/3061.31.4.593.51.99.94.03.2.59.93.53.79.94.030071.314.593.0199.94.032.59.93.53.79.94.0300/303/3042.017.09.03.0199.01.09.01.01.01.01.0302/303/3042.017.09.03.01.0<		305		10.5	6	3.0	15	8	4.0	23.0	8	3.0	28	8	4.0
2303/304/305/3061.314.519.3.5194.03.293.53.79.94.03071.314.593.51994.03.59.93.5199.94.03.59.93.53.79.94.0308/3100.91.093.0199.94.09.03.09.03.5<		306	0.7	10.5	6	3.0	15	8	4.0	23.5	8	3.0	28	8	4.0
303/304/305/3061.31.31.41.91.91.91.91.03.2.1.93.03.03.1.3.0	05	302	1.6	14.0	9	3.5	19	9	5.5	32.0	9	3.5	37	9	5.5
initial 308/310initial initial 0initial 0initial 0initial 	ZE	303/304/305/306	1.3	14.5	9	3.5	19	9	4.0	32.5	9	3.5	37	9	4.0
302/303/3042.017.094.030.094.03053051.317.093.530.093.5306/307/308/3101.317.093.030.093.0312/313/314/316/3180.917.094.030.093.041300/3040.917.094.030.093.0303/3040.917.094.030.093.041303/3043021.021.094.030.094.042303/30430.021.021.094.048.594.043303/30430.021.021.094.0000094.00001.01.04430330.021.0		307		14.5	9		19	9	4.0	32.5	9		37	9	4.0
3E30520 1.317.094.0 3.57.07		308/310	0.9	14.0	9	3.0	19	9	4.0	32.0	9	3.0	37	9	4.0
305 2.0 17.0 9 4.0 5.	0	302/303/304	2.0	17.0	9	4.0	-	-	-	38.0	9	4.0	-	-	-
312/313/314/316/3180.91.7094.07.0 <th< th=""><th>3E</th><th>305</th><th></th><th>17.0</th><th>9</th><th></th><th>-</th><th>_</th><th>-</th><th>38.0</th><th>9</th><th></th><th>-</th><th>-</th><th>-</th></th<>	3E	305		17.0	9		-	_	-	38.0	9		-	-	-
AC3024.02.07.0		306/307/308/310	1.3	17.5	9	3.5	-	-	-	38.5	9	3.5	-	-	-
4E 303/304 3.0 21.5 9 4.5 - - 48.5 9 4.5 - - 305 3.0 21.5 9 4.5 - - 48.5 9 4.5 9 4.5 1 305 3.0 2.0 21.5 9 4.0 - - 48.5 9 4.5 4.0 - - 306 2.0 21.5 9 4.0 - - - 48.5 9 4.0 9 4.0 - - - 48.5 9 4.0 - - - 48.5 9 4.0 - - - 48.5 9 4.0 - - - 49.0 9 4.0 - - - 49.0 9 4.0 - - - - 9 3.0 - - - 49.0 90 3.0 - - - - 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.		312/313/314/316/318	0.9	17.0	9	4.0	-	-	-	38.0	9	3.0	-	-	-
303/3043.021.594.548.594.594.53053.021.594.54.048.594.504.53062.02.094.048.594.594.53072.02.094.049.094.094.0308/309/310/312/313/311.322.593.549.093.593.6308/309/310/312/313/3141.322.593.549.093.5316/318/320/322/3240.922.093.57.57.649.093.03.03036.046.5157.57.57.67.77.749.093.03.07.77.753036.046.5157.57.67.7	45	302	4.0	23.0	9	7.0	-	-	-	50.0	9	7.0	-	-	_
3052.02.194.04.0-48.594.03062.02.094.0-94.0-49.094.094.03072.02.094.094.049.093.54.0308/309/310/312/313/3141.322.593.549.093.593.0316/318/320/322/3240.922.093.57.57.5-49.09.03.07.07.07.05E308/309/310/312/313/3141.322.593.57.5<	4E	303/304	3.0	21.5	9	4.5	-	-	-	48.5	9	4.5	-	-	_
3072.0 1.322.0 2.593.5 3.549.0 4.093.6 3.5308/309/310/312/313/3141.322.593.51-1-49.093.51-1-316/318/320/322/3240.922.094.01-49.093.01-1-1-316/318/320/322/3240.922.094.01-1-49.093.01-1-1-3083026.046.5157.51-1-1-49.093.01-1-1-3036.046.5157.51-1-1-1-1-1-1-1-30440.46.5155.51-1-1-1-1-1-1-1-1-30530440.46.5155.51-1		305		21.5	9		-	-	-	48.5	9		-	-	-
307 1.3 22.0 9 3.5 - - 49.0 9 3.5 - - 308/309/310/312/313/314 1.3 22.0 9 3.5 - - 49.0 9 3.5 - 49.0 9 3.5 - - - 308/309/310/312/313/314 1.3 22.0 9 3.5 - - - 49.0 9 3.5 - - - 316/318/320/322/324 0.9 22.0 9 3.5 7.5 - - - 49.0 9 3.0 - - - 55 303 6.0 46.5 155 7.5 -		306	2.0	22.0	9	4.0	-	-	-	49.0	9	4.0	-	-	_
316/318/320/322/324 0.9 22.0 9 4.0 - - 49.0 9 3.0 - - - 302 6.0 46.5 15 7.5 -		307		22.0	9		-	-	-	49.0	9		-	-	-
302 6.0 46.5 15 7.5 - <th< th=""><th></th><th>308/309/310/312/313/314</th><th>1.3</th><th>22.5</th><th>9</th><th>3.5</th><th>-</th><th>-</th><th>-</th><th>49.5</th><th>9</th><th>3.5</th><th>-</th><th>-</th><th>-</th></th<>		308/309/310/312/313/314	1.3	22.5	9	3.5	-	-	-	49.5	9	3.5	-	-	-
SE 303 6.0 4.0 1.0 7.5 - <t< th=""><th></th><th>316/318/320/322/324</th><th>0.9</th><th>22.0</th><th>9</th><th>4.0</th><th>-</th><th>-</th><th>-</th><th>49.0</th><th>9</th><th>3.0</th><th>-</th><th>-</th><th>-</th></t<>		316/318/320/322/324	0.9	22.0	9	4.0	-	-	-	49.0	9	3.0	-	-	-
303 6.0 46.5 15 7.5 - <td< th=""><th>E E</th><th>302</th><th>6.0</th><th>46.5</th><th>15</th><th>7.5</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></td<>	E E	302	6.0	46.5	15	7.5	-	-	-	-	-	-	-	-	-
305 4.0 3.0 46.5 15 6.5 4.5 $ -$ <	JE	303		46.5	15		-	-	-	-	-	-	-	-	-
305 46.5 15 4.5 -		304	4.0	46.5	15	5.5	-	-	-	-	-	-	-	-	-
310/312/316 2.0 45.0 15 4.0 -		305		46.5	15		-	-	-	-	-	-	-	-	-
314 3.0 45.5 15 4.5 - <th< th=""><th></th><th>306/308</th><th>3.0</th><th>46.5</th><th>15</th><th>4.5</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></th<>		306/308	3.0	46.5	15	4.5	-	-	-	-	-	-	-	-	-
314 2.0 45.5 15 4.0 - <th< th=""><th></th><th>310/312/316</th><th>2.0</th><th>45.0</th><th>15</th><th>4.0</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th><th>-</th></th<>		310/312/316	2.0	45.0	15	4.0	-	-	-	-	-	-	-	-	-
318/322 1.6 45.5 15 3.5 -		314		45.5	15		-	-	-	-	-	-	-	-	-
		318/322		45.5	15		-	-	-	-	-	-	-	-	-
330/336/340/344/348 1.3 47.5 15 3.5		320/324	1.6	47.0	15	3.5	-	-	-	-	-	-	-	-	-
		330/336/340/344/348	1.3	47.5	15	3.5	-	-	-	-	-	-	-	-	-

Cable stripping lengths for multipole connectors (E series)

M1 straight plugs and sockets with cable collet, clamping type C (solder contacts)

M3 elbow plugs (90°) with cable collet, clamping type C (solder contacts)

		۲	С	able s	trippinę	g lengt			
	Туре	ø contact / (mm)		M1			М3		
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Solder			Solder		
		٥Ŀ	L	S	Т	L	S	Т	
6E	303	6.0	70	30	9.0	-	-	-	
OE	304	8.0	70	30	10.0	-	-	-	 ∟
	312	5.0	70	30	8.0	-	-	-	→ T -
	316/320/324	3.0	70	30	6.0	-	-	-	
	330/332/340/348	2.0	70	30	7.0	-	-	-	
	336	1.3 5.0	70	30	4.0 8.0	-	-	-	→ S -
	360/362	1.6	70	30	4.5	—	_	-	
	364/372	1.3	70	30	4.0	-	-	-	
	106	0.9	70	30	4.0	-	-	-	

M2 straight plugs and sockets with oversize cable collet, clamping type K (solder or crimp contacts)

		A	С	able s	tripping	g lengt	hs (mr	n)	
	Туре	tact			N	2			
	туре	log E		Solder			Crimp		
		ø contact A (mm)	L	S	Т	L	S	Т	
4.5	302	1.3	23.5	8	3.5	28	8	4.0	
1E	303/304	0.9	23.0	8	3.0	28	8	4.0	
	305	0.9 0.7	23.0	8	3.0	28	8	4.0	
	306	0.7	23.5	8	3.0	28	8	4.0	
2E	302	1.6	26.0	9	3.5	31	9	5.5	
26	303/304/305/306	1.3	26.5	9	3.5	31	9	4.0	
	307	1.3 0.9	26.5	9	3.5 3.0	31	9	4.0	←L
	308/310	0.9	26.0	9	3.0	31	9	4.0	→ T -
3E	302/303/304	2.0	34.0	9	4.0	_	-	-	
JE	305	2.0 1.3	34.0	9	4.0 3.5	-	-	_	+ 5 -
	306/307/308/310	1.3	34.5	9	3.5	-	-	-	
	312/313/314/316/318	0.9	34.0	9	3.0	-	-	-	
4E	302	4.0	50.0	9	7.0	-	—	-	
46	303/304	3.0	48.5	9	4.5	-	-	-	
	305	3.0 2.0	48.5	9	4.5 4.0	-	-	-	
	306	2.0	49.0	9	4.0	-	-	-	
	307	2.0 1.3	49.0	9	4.0 3.5	-	-	_	
	308/309/310/312/313/314	1.3	49.5	9	3.5	-	-	-	
	316/318/320/322/324	0.9	49.0	9	3.0	-	-	-	

Technical characteristics

Outer shell

Brass

In most cases, LEMO connectors have a brass outer shell which is suitable for most general purpose applications, including civilian and military. The brass outer shells have a chrome nickel-plated surface which ensures very good protection against industrial atmosphere, salt air and most corrosive agents.

Alternative protective coatings are available to satisfy other specific environmental conditions:

- electrolytic nickel
- nickel-gold
- nickel-black chrome. After the black chrome treatment, the part is coated with non conductive protective organic film.

Stainless steel

For applications where there are severe environmental conditions that may rapidly damage the surface finish, we recommend using stainless steel. The AISI 303 stainless steel is a material for general use adapted to most applications requiring a product made entirely of stainless metal.

For the nuclear industry where elements are subject to radiation and to vaporous nitric acid, we offer AISI 304 stainless steel.

Grade AISI 316L is recommended for medical applications, highly demanding with regard to non-corrosiveness. This material is also used for connector shells soldered by electronic beam onto a device made of the same stainless steel. These parts have no surface treatment.

Aluminium alloy

The aluminium alloy outer shells find numerous applications where light weight is a predominant factor; such as in the aeronautics and space industries, and for portable and mobile equipment.

These materials have high mechanical strength and excellent resistance to corrosion. The shell surface is protected by anodizing which is available in six colours: blue, yellow, black, red, green, and natural.

Plastic materials

Some connector model shells can be made of plastic. This solution offers optimum electrical insulating properties particularly suitable for medical applications. Black Polyoxymethylene (POM) is particularly adapted to products of the 00 or S series.

Grey or white polysulfone (PSU) and beige PEEK offers excellent mechanical properties and is suitable for gas or vapour sterilization.

Some models of the 2B and 3B series are available with an outer shell of cream-coloured polyphenylsulfone (PPSU). We recommend this material particularly for applications where products are to withstand hundreds of vapour sterilization cycles.

Bridge plug or plugs with parallel sockets are made of polyamide (PA.6) available in 9 colours: blue, white, grey, yellow, brown, black, red, orange and green.

Some elbow socket shells for printed circuits are overmoulded in polyphenilene sulfide (PPS).

Other metallic components

In general, most metallic components are manufactured in brass. However, bronze or beryllium copper are used where good elasticity is required (for example: earthing crown). Depending on the application, these parts have electrolytic nickel or nickel-gold plating.

These parts can also be manufactured in stainless steel.

Sealing gasket

In general, sealing gaskets are made of silicone rubber MQ/MVQ. However, for vacuumtight sockets and couplers, gaskets are made of fluorosilicone rubber (FPM).

Sealing resin

An epoxy resin is used to seal both watertight and vacuumtight socket and coupler models.

Materials and Treatments

							atmer		,			
Component	Material (Standard)	c Cu	hrom Ni	e Cr	nic Cu	kel Ni	Cu	gold Ni	Au	blacl Ni	c chr.	Notes
	Brass (UNS C 38500)	0.5	3	0.3	0.5	3	0.5	3	0.5	1	2	
	Stainless steel (AISI 303, 304 or 316L)	0.0	U	0.0			l ^{o.o} treatn	-	0.0	l .	-	
	Aluminium alloy (AA 6262A or AA 6023)		_		-	5				I _		1)
	Aluminium alloy (AA 6262A or AA 6023)						l dized					,
Outer shell,	POM (Delrin [®] or Ertacetal [®]), Polyoxymethylene, black					anto	_					2)
collet nut, conical nut or notched nut and oversized collet	PEEK, Polyether ethercetone, beige						_					3)
	PSU (Udel [®]), Polysulfone, grey or white						_					4)
	PPSU (Radel [®]), Polyphenylsulfone, cream						-					4)
	PA.6 (Grilon®), Polyamid						_					5)
	PPS (Ryton®), Polyphenilene sulfide, brown						-					6)
	Bronze (UNS C 54400) or special brass	-	-	-	0.5	3	0.5	3	1.0	-	-	7)
Earthing crown	Beryllium Copper (UNS C 17300)	-	-	-	0.5	3	0.5	3	1.0	-	-	8)
	Stainless steel (AISI 416 or 316L)				with	hout	treatn	nent				9)
Latch sleeve	Special brass	0.5	3	0.3	0.5	3	0.5	3	0.5	-	-	
Laton sleeve	Stainless steel (AISI 416 or 316L)				with	hout	treatn	nent				9)
Locking washer	Bronze (UNS C 52100)	-	-	-	0.5	3	0.5	3	0.5	-	-	
	Brass (UNS C 38500)	-	-	-	0.5	3	0.5	3	0.5	-	-	
Hexagonal or round nut	Stainless steel (AISI 303, 304 or 316L)				with	hout	treatn	nent				10)
	Aluminium alloy (AA 6262A or AA 6023)				and	odize	d nat	ural				10)
Other metallic components	Brass (UNS C 38500)	-	-	-	0.5	3	0.5	3	0.5	-	-	
Other metallic components	Stainless steel (AISI 303, 304 or 316L)				wit	hout	treatn	nent				
O-ring and gaskets	Silicone MQ/MVQ or FPM/FKM (Viton®)						-					11)
Sealing resin	Epoxy (Araldite® or Stycast®)						-					

Notes: standards for surface treatment are as follows: - chrome-plated: SAE AMS 2460 - nickel-plated: SAE AMS QQ N 290, or MIL DTL 32119 - gold-plated: ISO 27874

2)

- black chrome: MIL DTL 14538 with a minimum of 10 μm of lacquer protection
1) anthracite colour (other colours upon request)
2) for FFP, PCP and ERN models of the 0S to 3S series
3) for FFP, PCP and ERN models of the 0S to 3S series and FGG and ENG models of the 1B, 3B and 4B series
4) for the FGY and ENY models of the 2B and 3B series
5) for bidge pluge of the 2B and 3B series 3)

4)

5) 6) for bridge plugs of the B series for S and B series elbow sockets for printed circuits

7)

gold-plating for unipole types
 used in 00 series free and fixed sockets and couplers
 AISI 416 steel is used with shells made of AISI 303 or 304
 delivered with free and fixed sockets with aluminium alloy or stainless steel shell
 FPM/FKM (Viton®) o-ring and gaskets are installed upon special request. However standard for vacuumtight models.

Technical characteristics of plastic materials

Туре	Standard	Units	POM	PEEK	PSU	PPSU	PPS	PA.6	Silicone	FPM	Ероху
Density	ASTM D 792	-	1.4	1.3-1.4	1.24	1.3	1.67	1.14	~1.2	~1.9	1.58
Tensile strength (at 23°C)	ASTM D 638/ ISO R527	MPa	70-80	92-142	70	70	121	55	> 9	> 12	16
Flexurale strength (at 23°C)	ASTM D 790/ ISO R178	MPA	-	170	106	91	179	75	-	-	24
Dielectric strength	ASTM D 149/IEC 60243	kV/mm	60	19-25	17-20	15	17	35	18-30	-	15
Volume resis. at 50% HR and 23°C	ASTM D 257/IEC 60093	$\Omega \bullet CM$	10 ¹⁵	10 ¹⁶	5x10 ¹⁶	-	10 ¹⁶	10 ¹⁵	10 ¹⁴	-	10 ¹⁴
Surface resistivity	ASTM D 257	Ω	10 ¹³	10 ¹⁵	-	-	-	-	-	-	-
Thermal conductivity	ASTM C 177	W/K∎m	0.31	0.25	0.26	-	0.3	-	-	-	0.8
Comparative tracking index	IEC 60112	V	CTI 600	CTI 150	CTI 150	-	CTI 200	CTI 600	-	-	CTI>600
Maxi. continuous service temperature	UL 746	°C	90	250	140	180	220	80	200	200	80
Min. continuous service temperature	UL 746	°C	-50	-55	-60	-50	-60	-40	-50	-20	-20
Max. short-time service temperature	-	°C	140	300	160	200	250	150	> 250	300	120
Water absorption in 24h at 23°C	ASTM D 570/ISO R62A	%	0.85	0.12	0.3	0.37	< 0.05	> 3	-	-	0.25
Radiation resistance	-	Gy ¹⁾	8x10 ³	10 ⁷	10 ⁵	-	> 107	5x10 ³	10 ⁵	8x10 ⁴	2x10 ⁶
Flammability rating	ASTM D 635/UL 94	-	HB	V-0/1.5	V-0/4.4	V-0/1.6	V-0/5V	V-2	-	-	V-0/4
Resistance to steam sterilization	-	_	bad	excel.	good	excel.	excel.	bad	good	good	bad

Notes: ¹⁾ 1 Gy (Gray) = 100 rad.

ASTM = American Society for Testing Material ISO = International Standards Organisation

UL IEC

= Underwriters Laboratories= International Electrotechnical Commission

Mechanical latching characteristics

- F_v: average latching force.
- $\mathsf{F}_d:$ average unmating force with axial pull on the outer shell.
- Fa: average pull force with axial pull on the collet nut

Notes: forces were measured on outer shells **not fitted with contacts**. **Mechanical endurance:** 5000 cycles (3000 cycles for T series). The values were measured according to the standard IEC 60512-7 test 13a.

1N = 0.102 kg.

Electromagnetic compatibility (EMC) and shielding efficiency

The electromagnetic compatibility of a device can only be ensured by meeting a number of basic rules with the design of the device and by carefully selecting components, cables and connectors.

Electrical and electronic devices are to be designed to ensure the following:

- a) reduce the emission of generated electromagnetic disturbance to a level where radios and telecommunication and other devices can properly function;
- b) electromagnetic immunity against electromagnetic disturbance so that they can properly function.

When selecting a connector, screen or shielding efficiency and low resistance to electric continuity between the cable and the connector should be considered.

The design of LEMO connectors with metal shell and earthing crown guarantee optimum shielding efficiency in all applications where electromagnetic compatibility (EMC) is critical. The performance of a connector is measured through shielding efficiency, a value that represents the ratio between the electromagnetic field on the outside and the inside of the shell. Our measurements are carried out according to the IEC 60169-1-3 standard.

Standard series

Force		Series									
(N)	00	0S	1S	2S	3S	4S	5S	6S			
Fv	9	14	15	17	20	40	60	70			
Fd	7	9	10	11	14	25	40	55			
Fa	120	140	250	350	500	650	750	900			

Watertight series

Force		Series									
(N)	0E	1E	2E	3E	4E	5E	6E				
Fv	14	16	20	32	65	85	100				
Fd	9	10	13	25	40	60	75				
Fa	250	300	400	550	700	800	900				

Keyed series

Force	Series									
(N)	00	0B	1B	2B	3B	4B	5B			
Fv	9	10	14	15	17	39	48			
Fd	7	8	11	12	14	38	38			
Fa	100	180	300	300	400	600	800			

Keyed watertight series

Force		Series									
(N)	TT	0K	0T	1K	1T	2K	2T	ЗK	3T	4K	5K
Fv	14	14	15	16	16	20	20	32	28	65	85
Fd	12	9	13	10	14	13	15	25	24	40	60
Fa	80	250	130	300	250	400	250	550	400	700	800

The performance of S and B series connectors is comparable to the results of measurements carried out on a pair of FGG + PHG.1B connectors.

The performance of E and K series connectors is comparable to the results of measurements carried out on a pair of FGG + PHG.1K connectors.

Shell electrical continuity: (measured according to IEC 60512-2 test 2f)

Test current: 1A A = Ammeter mV = MillivoltmeterG = Generator

Standard series

Series	R ₁ (mΩ)	R ₂ (mΩ)
00	3.5	2.8
0S	2.8	1.6
1S	2.2	1.5
2S	1.8	1.2

Series	R ₁ (mΩ)	R ₂ (mΩ)
3S	1.6	1.2
4S	1.4	1.0
5 S	1.4	1.0
6S	1.0	0.5

 R_1 Values with earthing crown and latch sleeve or inner-sleeve nickel-plated.

 $$\mathsf{R}_2$$ Values with gold-plated earthing crown and nickel-plated latch sleeve or inner sleeve.

Keyed series

	Series	R ₁ (mΩ)	R ₂ (mΩ)	Series	R ₁ (mΩ)
	00	3.5	2.8	тт	3.5
	0B	3.5	1.3	ОТ	3.5
	1B	2.5	1.1	1T	2.5
	ХВ	2.5	1.1	2Т	2.2
	2B	2.2	0.9	ЗТ	2.2
	3B	2.2	0.7	4T	1.5
	4B	1.5	0.5	5T	1.5
	5 B	1.5	0.3		

Watertight series Keyed watertight series

Series	R ₁ (mΩ)	R ₂ (mΩ)
0E-0K	2.8	1.6
1E-1K	2.2	1.5
2E-2K	1.8	1.2
3E-3K	1.6	1.2
4E-4K	1.4	1.0
5E-5K	1.4	1.0
6E	1.0	0.5

Insulator

Plastic material used by LEMO for manufacturing insulators is selected according to the electric and thermal properties required for the various connector types. Characteristics examined for the two connector types are: Dielectric strength, Comparative tracking index, Surface and volume resistivity, Radiation resistance,

Continuous service temperature, Water absorption, Flammability rating, Resistance to hydrocarbon.

Mechanical and Electrical Properties

Mechanical characteristics of thermoplastics, such as PA 6.6, and PEEK, are improved by the addition of glass fibres. By adding glass fibres in the resin the performance of this material (mechanical strength and radiation resistance) is enhanced and water absorption rate is reduced. From an electric point of view, the addition of glass fibres improves dielectric strength.

Selection of the insulator

A number of thermoplastics have common characteristics, some of them are identical with other insulating materials. In this case, the insulator material is selected according to the specific difference in features to provide all the required parameters for the given type.

Note: technical data in this chapter provide general information on plastics used by LEMO as electrical insulators. LEMO reserves the right to propose new materials with better technical characteristics, and to withdraw, without notice, any material mentioned in the present catalogue or any other publications edited by LEMO S.A. and/or its subsidiaries. LEMO SA and its subsidiaries use only plastic granules, powder or bars supplied by specialized companies, and thus cannot in any case take responsibility with regard to this material.

Technical characteristics

Туре	Standard	Units	PA6.6	PEEK	PTFE	FEP	PI
Dielectric strength	ASTM D 149 / IEC 60243	kV/mm	15-17	19-25	17.2-24	20	22
Volume resistivity at 50% RH and 23°C	ASTM D 257 / IEC 60093	$\Omega \bullet cm$	5.8x10 ¹⁵	10 ¹⁶	10 ¹⁸	> 10 ¹⁶	> 10 ¹⁶
Surface resistivity	ASTM D 257 / IEC 60093	Ω	10 ¹²	10 ¹⁵	10 ¹⁷	> 10 ¹⁶	> 10 ¹⁵
Thermal conductivity	ASTM C 177	W/K ∙ m	0.21	0.25	0.23	0.24	0.35
Comparative tracking index	IEC 60112	V	CTI 600	CTI 150	CTI 500	-	-
Dielectric constant (10 ⁶ Hz)	ASTM D 150 / IEC 60250	-	4	3.2-3.5	2-2.1	2.1	3.6
Dissipation factor (10 ⁶ Hz)	ASTM D 150 / IEC 60250	-	-	< 0.005	< 0.0003	< 0.001	< 0.0034
Maximum continuous service temperature	UL 746	°C	120	250	260	200	350
Maximum short-time service temperature	-	°C	150	300	300	260	480
Minimum continuous service temperature	-	°C	-	-55	-200	-200	-
Water absorption in 24h at 23°C	ASTM D 570 / ISO R624	%	< 0.7	< 0.3	< 0.01	< 0.01	0.24
Radiation resistance	-	Gy	5x10 ³	10 ⁷	2x10 ²	2x10 ⁴	10 ⁶
Flammability rating	ASTM D 635 / UL 94	-	-	V-0/1.5	V-0	V-0	-

Designation Symbol		Standard	Unipole			Multipole						
chemical	commercial	Symbol	Stanuaru	00	S	E	00	S	E	В	К	Т
Polyamide (glass fitted)	Nylatron®	PA 6.6	-									
Polyether Ethercetone	Peek®	PEEK	-	0	0	0	•	•	•	•	•	•
Polytetrafluorethylene	-	PTFE	ASTM D 1457-83	•								
Tetrafluorethylene	-	FEP	ASTM D 2116-81					0	0			
Polyimide	Vespel®	PI	-					\circ	0			

Note: values of insulation resistance between contacts are given on page 189. www.lemo.com

First choice alternative
 Sp

Special order alternative

187

Electrical contact

Technical description

The secure reliable electromechanical connection achieved with LEMO female cylindrical contacts is mainly due to two important design features :

- 1. *Prod proof entry* on the mating side which ensures perfect concentric mating even with carelessly handled connectors.
- 2. *The pressure spring*, with good elasticity, maintains a constant even force on the male contact when mated. The leading edge of the pressure spring preserves the surface treatment (gold-plated) and prevents undue wear.

Contact material and treatment

LEMO female contacts are made of bronze beryllium (QQ-C-530) or bronze (UNS C 54400). These materials are chosen because of their high modulus of elasticity, their excellent electrical conductivity and a high mechanical strength.

- Notes: the standard surface treatment are as follows:
- nickel: SAE AMS QQ N 290 or MIL DTL 32119
 gold: ISO 27874.
- ¹⁾ minimum value
- ²⁾ for elbow print contacts
- ³⁾ treatment completed by 6 μ m Sn (lead free) tin-plating

LEMO male solder and print contacts are made of brass (UNS C 38500). Male crimp contacts are made of brass (UNS C 34500) or annealed brass (UNS C 38500) with optimum hardness (HV) for crimping onto the wire.

Туре	Material (standard)	Surf. treatment (µm)			
туре	Material (Standard)	Cu	Ni	Au ¹⁾	
Male crimp	Brass (UNS C 34500)	0.5	3	1.0	
Male chilip	Brass (UNS C 38500)	0.5	3	1.0	
Male print	Brass (UNS C 38500)	0.5	3	1.0	
Female crimp / print	Bronze (UNS C 54400) Cu-Be (FS QQ-C-530)	0.5	3	1.5	
01.0	Cu-Be (FS QQ-C-530)	-	-	-	
Clips	Stainless steel	-	-	-	
Connection wire ²⁾	Brass	-	3 3)	-	

Thickness comparison between the outside and the inside of female contacts

	G	old thicknes	SS		
Contact ø A		female			
(mm)	male (µm)	outside (µm)	inside (%)		
0.35	1.0	1.5	65		
0.50	1.0	1.5	65		
0.70	1.0	1.5	70		
0.90	1.0	1.5	75		
1.30	1.0	1.5	75		
1.60	1.0	1.5	75		
2.00	1.0	1.5	75		

	Gold thickness				
Contact ø A	mala	female			
(mm)	male (µm)	outside (µm)	inside (%)		
3.00	1.0	1.5	75		
4.00	1.0	1.5	75		
5.00	1.0	1.5	75		
6.00	1.0	1.5	75		
8.00	1.0	1.5	75		
12.00 ¹⁾	-	-	-		

Note: P = inspection point

Notes: 1) contacts are silver plated

Contact resistance with relation to the number of mating cyles

(measured according to IEC 60512-2 test 2a)

Average values measured after the mating cycles and the salt spray test according to IEC 60512-6 test 11f.

۸ «	Contact	t resistanc	ce (mΩ)	<u>۸</u> «	Contac	ct resistance (mΩ)				
Aø (mm)	1000 cycles	3000 cycles	5000 cycles	Aø (mm)	1000 cycles	3000 cycles	5000 cycles			
0.35	8.0	-	-	3.0	2.0	2.2	3.1			
0.5	7.5	8.3	8.7	4.0	1.6	2.0	2.8			
0.7	5.6	5.7	6.1	5.0	1.4	-	-			
0.9	4.1	4.2	4.8	6.0	1.2	-	-			
1.3	2.8	2.9	3.6	8.0	0.8	-	-			
1.6	2.9	3.1	3.5	12.0	0.7	-	-			
2.0	2.6	2.7	3.3							

Solder contacts

The conductor bucket of these contacts is machined at an angle to form a cup into which the solder can flow. See page 8 for the range of cable dimensions that can be soldered.

Crimp contacts

The square form crimp method is used (MIL-C-22520F, class I, type 2) photo 1 for unipole contacts.

For multipole contacts the standard four identer crimp method is used, MIL-C-22520F, class I, type 1), photo 2. The crimp method requires a controlled compression to obtain a symmetrical deformation of the conductor strand and of the contact material. The radial hole in the side of the contact makes it possible to check whether the conductor is correctly positioned within the contact. A good crimping is characterized by only slightly reduced conductor section and practically no gap.

For optimum crimping of bronze or brass contacts they are annealed to relieve internal stress and reduce material hardening during the crimping process.

Only the crimping zone is annealed with the help of an induction heating machine designed by the LEMO Research and Development Department (see photo 3).

Crimp contacts

The crimp contacts can be with two forms: a standard crimp barrel for large conductors (see fig. 1) or with a reduced crimp barrel for smaller conductors (see fig. 2).

Insulation resistance between the contacts and contact/shell

(measured according to IEC 60512-2 test 3a)

Insulating material	Multipole	Unipole
insulating material	PEEK	PTFE
new	$> 10^{12} \Omega$	$> 10^{12} \Omega$
after humidity test1)	$> 10^{10} \Omega$	$> 10^{10} \Omega$

Note: 1) 21 days at 95% RH according to IEC 60068-2-3.

Advantages of crimping

- practical, quick contact fixing outside the insulator
- possible use at high temperature
- no risk of heating the insulator during the conductorcontact fixing
- high tensile strength

Crimp contacts are available in standard version (form 1) for mounting maximum size conductors.

For some dimensions, these crimp contacts can be produced with reduced crimp barrels (form 2) for mounting reduced size conductors.

The range of cable dimensions that can be crimped into our contacts are indicated on the table on page 8.

Print contacts

Print contacts are available in straight or elbow versions for certain connector types, mostly for straight and elbow socket models. Connection is made on flexible or rigid printed circuits by soldering.

Straight print contacts are gold-plated which guarantees optimum soldering, even after long-term storage. However

Test voltage

Test voltage (Ue) :

(measured according to the IEC 60512-2 test 4a standard)

It corresponds to 75% of the mean breakdown voltage. Test voltage is applied at 500 V/s and the test duration is 1 minute.

This test has been carried out with a mated plug and socket, with power supply only on the plug end.

Operating voltage (Us) :

It is proposed according to the following ratio : Us = $\frac{Ue}{3}$

Caution:

For a number of applications, safety requirements for electrical appliances are more severe with regard to operating voltage.

In such cases operating voltage is defined according to creepage distance and air clearance) between live parts. Please consult us for the choice of a connector by indicating the safety standard to be met by the product.

Rated current

(measured according to IEC 60512-3 test 5a)

The specified rated current can be applied simultaneously to all the contacts.

It corresponds with an average temperature rise of 40° C of the connector.

The current values are indicated in the table of insulator types in each series.

For use at higher temperatures acceptable rated current will be lower. It tends towards zero as the material is used at the maximum operating temperature accepted for the insulator.

In most case the current depend on the conductor dimension (see table on page 196) or on the printed circuit dimension.

Caution:

In general, connectors should not be unmated while live.

for wave soldering, we recommend removal the gold-plating from the contact end on the printed circuit side before soldering according to the assembly procedures. Print elbow contacts include a tinned lead free brass wire crimped into a crimp contact.

Voltage values are given in the table on insulator types for each series.

They correspond with values measured at sea level. They are adapted to all applications up to an altitude of 2000 m.

In case a device is used at a higher altitude, air clearance between live parts has to be multiplied by the following coefficients.

It means also that test voltage has to be divided by this coefficient.

altitude (m)	coefficient
2000	1.00
3000	1.14
4000	1.29
5000	1.48

For connectors with PEEK insulator, maximum admissible current will follow the curve below depending on the operating temperature T.

Cable fixing

Cables are fixed into LEMO connectors with cable collet systems. These collets with latches have a design which is very similar to those used for tool machines. This solution guarantees excellent cable retention and ensures perfectly symmetrical deformation of the cable.

The 00 multipole series is also available with hexagonal crimping (MIL-C-22520F).

Material and treatment

		Surface treatment (µm)					
Component	Material (standard)	Nicl	kel1)	Gold			
		Cu	Ni	Cu	Ni	Au	
Center piece	Brass (UNS C 38500)	0.5	3	-	-	-	
Collet	Brass (UNS C 38500)	0.5	3	-	-	-	
Crimp ferrule	Copper (UNS C 18700)	0.5	3	0.5	3	0.5	
Reducer	Brass (UNS C 38500)	0.5	3	-	-	-	
Reducing cone	Brass (UNS C 38500)	0.5	3	-	-	-	
Earthing cone	Brass (UNS C 38500)	0.5	3	-	-	-	
Metal washer	Brass (UNS C 38500)	0.5	3	-	-	-	
Gasket	Silicone MQ/MVQ			-			
Gashei	FPM (Viton [®]) ²⁾	-					

Notes:

 standards for surface treatment are as follows: – nickel-plated: SAE AMS QQ N 290.
 available upon special request.

Cable clamping system

B series (D and M cable clamping)

See assembly instructions under www.lemo.com.

K series (C and K cable clamping)

See assembly instructions under www.lemo.com.

T series (C cable clamping)

See assembly instructions under www.lemo.com.

S series (C, L and K cable clamping)

See assembly instructions under www.lemo.com.

E series (C and K cable clamping)

See assembly instructions under www.lemo.com.

Maximum metal collet nut tightening torque

Standard series

				Sei	ries			
	00	0S	1S	2S	3S	4S	5S	6S
Torque (Nm)	0.25	0.5	1.5	2.5	3	8	10	12

Keyed series

				Sei	ries			
	00	0B	1B	XB	2B	3B	4B	5B
Torque (Nm)	0.25	0.5	1.5	2.0	2.5	4	7	10

Maximum elbow plug hex cap tightening torque **Keyed series**

		Series					
	00	0B	1B	2B	3B	4B	5B
Torque (Nm)	0.2	0.25	0.5	0.5	1.5	3	5

Watertight series

			;	Series	5		
	0E	1E	2E	3E	4E	5E	6E
Torque (Nm)	0.7	0.8	2	3	5	8	12

Watertight keyed series

					S	Series	3				
	TT	0K	0T	1K	1T	2K	2T	ЗK	3T	4K	5K
Torque (Nm)	0.25	0.7	0.7	0.8	0.8	2	2	3	3	5	8

Watertight series

			Sei	ries		
	0E	1E	2E	3E	4E	5E
Torque (Nm)	0.8	1	1.2	1.5	3	5

Watertight keyed series

	0K	1K	2K	ЗK	4K	5K	
Torque (Nm)	0.8	1	1.2	1.5	3	5	1N = 0.102

kg

Maximum plastic collet nut tightening torque 1)

		Series							
	00	0S	1S	2S	3S	1B	2B	3B	4B
Torque (Nm)	0.15	0.45	0.50	0.50	1.00	0.50	0.50	1.00	1.50

Note: ¹⁾ For applications subject to strong vibration, we recommend fixing the collet nut with epoxy resin. We recommend to tight to the maximum value. Optimal torque may depend on cable jacket design.

Wire section

(sq in)

(mm²)

Technical tables

Table of American Wire Gauge

	Constr	uction	ø wire	e max	Wire s	ection]		Constr	uction	
AWG	Strand nb	AWG/ strand	(mm)	(in)	(mm²)	(sq in)		AWG	Strand nb	AWG/ strand	
0	259	24	11.277	0.444	52.90	0.0820		20 ¹⁾	42	36	
1	817	30	9.702	0.382	41.40	0.0641		20	19	32	
2	259	26	8.89	0.35	33.20	0.0514		20	10	30	
4	133	25	6.9596	0.274	21.5925	0.0335		20	7	28	
6	133	27	5.5118	0.217	13.5885	0.0211		20	1	20	(
8	168	30	4.4450	0.175	8.5127	0.0132		22	19	34	(
8	133	29	4.3942	0.173	8.6053	0.0133		22	7	30	(
10	105	30	3.3020	0.13	5.3204	0.0082		22	1	22	(
10	37	26	2.9210	0.115	4.7397	0.0073		24 ¹⁾	42	40	(
10	1	10	2.6162	0.103	5.2614	0.0082		24	19	36	(
12	37	28	2.3114	0.091	2.9765	0.0046		24	7	32	(
12	19	25	2.3622	0.093	3.0847	0.0048		24	1	24	(
12 ¹⁾	7	20	2.5400	0.10	3.6321	0.0056		26	19	38	(
12	1	12	2.0828	0.082	3.3081	0.0051		26	7	34	(
14	41	30	2.0574	0.081	2.0775	0.0032		26	1	26	(
14	19	27	1.8542	0.073	1.9413	0.0030		28 ¹⁾	19	40	(
14 1)	7	22	2.0828	0.082	2.2704	0.0035		28	7	36	(
14	1	14	1.6510	0.065	2.0820	0.0032		28	1	28	
16 ¹⁾	65	34	1.5748	0.062	1.3072	0.0020		30	7	38	(
16	26	30	1.5748	0.062	1.3174	0.0020		30	1	30	(
16	19	29	1.4986	0.059	1.2293	0.0019		32	7	40	(
16 ¹⁾	7	24	1.5494	0.061	1.4330	0.0022		32	1	32	(
16	1	16	1.3208	0.052	1.3076	0.0020		34	1	34	(
18 ¹⁾	65	36	1.2700	0.05	0.8234	0.0013		36	1	36	
18 ¹⁾	42	34	1.2700	0.05	0.8447	0.0013		38	1	38	(
18	19	30	1.3208	0.052	0.9627	0.0015		40	1	40	(
18	16	30	1.2954	0.051	0.8107	0.0013		Note: 1) not incl	uded in t	he s
18	7	26	1.2700	0.05	0.8967	0.0014					
18	1	18	1.0414	0.041	0.8229	0.0013					

	nb	strand	()	(,	()	(•••
20 ¹⁾	42	36	1.0160	0.04	0.5320	8.2x10 ⁻⁴
20	19	32	1.0414	0.041	0.6162	0.0010
20	10	30	1.0160	0.04	0.5067	7.9x10 ⁻⁴
20	7	28	0.9906	0.039	0.5631	8.7x10 ⁻⁴
20	1	20	0.8382	0.033	0.5189	8.0x10 ⁻⁴
22	19	34	0.8382	0.033	0.3821	5.9x10 ⁻⁴
22	7	30	0.7874	0.031	0.3547	5.5x10 ⁻⁴
22	1	22	0.6604	0.026	0.3243	5.0x10 ⁻⁴
24 ¹⁾	42	40	0.6604	0.026	0.2045	3.2x10 ⁻⁴
24	19	36	0.6858	0.027	0.2407	3.7x10 ⁻⁴
24	7	32	0.6350	0.025	0.2270	3.5x10 ⁻⁴
24	1	24	0.5588	0.022	0.2047	3.2x10 ⁻⁴
26	19	38	0.5588	0.022	0.1540	2.4x10 ⁻⁴
26	7	34	0.5080	0.02	0.1408	2.2x10 ⁻⁴
26	1	26	0.4318	0.017	0.1281	2.0x10 ⁻⁴
28 ¹⁾	19	40	0.4318	0.017	0.0925	1.4x10 ⁻⁴
28	7	36	0.4064	0.016	0.0887	1.4x10 ⁻⁴
28	1	28	0.3302	0.013	0.0804	1.2x10 ⁻⁴
30	7	38	0.3302	0.013	0.0568	8.8x10 ⁻⁵
30	1	30	0.2794	0.011	0.0507	7.9x10 ⁻⁵
32	7	40	0.2794	0.011	0.0341	5.3x10 ⁻⁵
32	1	32	0.2286	0.009	0.0324	5.0x10 ⁻⁵
34	1	34	0.1693	0.007	0.0201	3.1x10 ⁻⁵
36	1	36	0.127	0.005	0.0127	2.0x10 ⁻⁵
38	1	38	0.1016	0.004	0.0081	1.3x10 ⁻⁵
40	1	40	0.078	0.003	0.0049	7.5x10 ⁻⁶
N 1						

ø wire max

(in)

(mm)

standard

Table of wire gauges according to IEC-60228 standard

Conductor no x Ø (mm)	Max Ø (mm)	Max Ø (in)	Section (mm²)	Section (sq in)	Conductor no x Ø (mm)	Max Ø (mm)	Max Ø (in)	Section (mm²)	Section (sq in)
196x0.40	7.50	0.295	25.00	0.0387	1x1.40	1.40	0.055	1.50	0.0023
7x2.14	6.10	0.240	25.00	0.0387	32x0.20	1.35	0.053	1.00	0.0015
125x0.40	6.00	0.236	16.00	0.0248	7x0.43	1.29	0.050	1.00	0.0015
7x1.72	4.90	0.192	16.00	0.0248	1x1.15	1.15	0.045	1.00	0.0015
1x4.50	4.50	0.177	16.00	0.0248	42x0.15	1.20	0.047	0.75	0.0011
80x0.40	4.70	0.155	10.00	0.0155	28x0.20	1.15	0.045	0.75	0.0011
7x1.38	3.95	0.155	10.00	0.0155	1x1.00	1.00	0.039	0.75	0.0011
1x3.60	3.60	0.141	10.00	0.0155	28x0.15	0.95	0.037	0.50	7.7x10 ⁻⁴
84x0.30	3.70	0.145	6.00	0.0093	16x0.20	0.90	0.035	0.50	7.7x10 ⁻⁴
7x1.50	3.15	0.124	6.00	0.0093	1x0.80	0.80	0.031	0.50	7.7x10 ⁻⁴
1x2.76	2.76	0.108	6.00	0.0093	7x0.25	0.75	0.029	0.34	5.2x10 ⁻⁴
56x0.30	2.80	0.110	4.00	0.0062	1x0.60	0.60	0.023	0.28	4.3x10 ⁻⁴
7x0.86	2.58	0.098	4.00	0.0062	14x0.15	0.75	0.029	0.25	3.8x10 ⁻⁴
1x2.25	2.25	0.082	4.00	0.0062	7x0.20	0.65	0.023	0.22	3.4x10 ⁻⁴
50x0.25	2.15	0.084	2.50	0.0038	18x0.10	0.50	0.019	0.14	2.1x10 ⁻⁴
7x0.68	2.04	0.080	2.50	0.0038	14x0.10	0.40	0.015	0.11	1.7x10 ⁻⁴
1x1.78	1.78	0.070	2.50	0.0038	21x0.07	0.40	0.015	0.09	1.3x10 ⁻⁴
30x0.25	1.60	0.062	1.50	0.0023	14x0.10	0.40	0.015	0.09	1.3x10 ⁻⁴
7x0.52	1.56	0.061	1.50	0.0023					

Maximum current rating for conductor

Maximum current on insulated conductors up to an ambiant temperature of 30° C (from VDE 0100, parts 430 and 532 as well as other VDE regulations).

Nominal section mm ²	Group 2 Intens. max. A	Group 3 Intens. max. A
0.08	1.0	1.5
0.14	2.0	3.0
0.25	4.0	5.0
0.34	6.0	8.0
0.50	9.0	12.0
0.75	12.0	15.0
1.00	15.0	19.0
1.50	18.0	24.0
2.50	26.0	32.0

Group 2 Multi-conductor, e. g. solid cable under sheath, shielded cable, lead-sheath cables, ...
 Group 3 Single conductor and single conductor cable laid on open air in a way to leave at least a space between them equal to their diameter

Some formulae		
Resistance R of a conductor: $R = \rho \cdot \frac{1}{A} [\Omega]$	Where	 ρ = conductor resistivity I = conductor length A = conductor cross-section
Impedance of coaxial line: $Z = \frac{138}{\sqrt{\epsilon_r}} \cdot \log \frac{D}{d} [\Omega]$	2]	ϵ_r = dielectric constant D = dielectric outer diameter d = center conductor outer diameter
Signal attenuation: Attenuation = $20 \cdot \log \frac{U_1}{U_2}$ [dl	B]	$U_1 = input signal voltage$ $U_2 = output signal voltage$
Conversion of some units:		
millimeters into inches:	1 mm = 0.0394 in	
inches into millimeters:	1 in = 25.4 mm	
centimeters into feet:	1 cm = 0.0328 ft	

centimeters into feet:	1 cm = 0.0328 ft
feet (12 in) into centimeters:	1 ft = 30.48 cm
square centimeters into square inches:	$1 \text{ cm}^2 = 0.155 \text{ sq in}$
square inches into square centimeters:	$1 \text{ sq in} = 6.4516 \text{ cm}^2$
bar into pounds per square inch:	1 bar = 14.51 psi
bar into Pascal:	1 bar = 10 ⁵ Pa
°C into °F:	°F = °C•1.8 + 32
newtonmeter (Nm) into inch pound (in \bullet lb)	1 Nm = 8.85 in•lb
mbar•I•s ⁻¹ into Torr•I•s ⁻¹	1 mbar•l•s ⁻¹ = 1.33 Torr•l•s ⁻¹

197

Product safety notice

PLEASE READ AND FOLLOW ALL INSTUCTIONS CAREFULLY AND CONSULT ALL RELEVENT NATIONAL AND INTERNATIONAL SAFETY REGULATIONS FOR YOUR APPLICATION. IMPROPER HANDLING, CABLE ASSEMBLY, OR WRONG USE OF CONNECTORS CAN RESULT IN HAZARDOUS SITUATIONS.

1. SHOCK AND FIRE HAZARD

Incorrect wiring, the use of damaged components, presence of foreign objects (such as metal debris), and / or residue (such as cleaning fluids), can result in short circuits, overheating, and / or risk of electric shock. Mated components should never be disconnected while live as this may result in an exposed electric arc and local overheating, resulting in possible damage to components.

2. HANDLING

Connectors and their components should be visually inspected for damage prior to installation and assembly. Suspect components should be rejected or returned to the factory for verification. Connector assembly and installation should only be carried out by properly trained personnel. Proper tools must be used during installation and / or assembly in order to obtain safe and reliable performance.

3. USE

Connectors with exposed contacts should never be live (or on the current supply side of a circuit). Under general conditions voltages above 30 VAC and 42 VDC are considered hazardous and proper measures should be taken to eliminate all risk of transmission of such voltages to any exposed metal part of the connector.

4. TEST AND OPERATING VOLTAGES

The maximum admissible operating voltage depends upon the national or international standards in force for the application in question. Air and creepage distances impact the operating voltage; reference values are indicated in the catalog however these may be influenced by PC board design and / or wiring harnesses. The test voltage indicated in the catalog is 75% of the mean breakdown voltage; the test is applied at 500 V/s and the test duration is 1 minute.

5. CE MARKING $C \in$

CE marking **C** means that the appliance or equipment bearing it complies with the protection requirements of one or several European safety directives.

CE marking CE applies to complete products or equipment, but not to electromechanical components, such as connectors.

6. PRODUCT IMPROVEMENTS

The LEMO Group reserves the right to modify and improve to our products or specifications without providing prior notification.

7. A WARNING (Prop 65 State of California)

Proposition 65 requires businesses to provide warnings to Californians about significant exposures to chemicals that cause cancer, birth defects or other reproductive harm. LEMO products are exempt from proposition 65 warnings because they are manufactured, marketed, and sold solely for commercial and industrial use. For further information, please visit https://www.lemo.com/guality/LEMO-Prop-65-compliance-declaration.pdf.

Disclaimers

LEMO works constantly to improve the quality of its products; the information and illustrations figuring in this document may therefore vary and are not binding. In any case, LEMO makes no specific warranty of merchantability, fitness for a particular purpose, third party components as such or included in assembly, non-infringement, title, accuracy, completeness, or security. The user is fully responsible for his products and applications using LEMO component.

In no event shall LEMO, its affiliates, officers, agents or employees be liable for any incidental, indirect, special or consequential damages in connection with the products or services provided by LEMO, including (without limitation) loss of profits or revenues, interruption of business, loss of use of the products or any associated equipment, materials, components or products, damages to associated equipment or in combination with other components, materials.

Reproduction of significant portions of LEMO information in LEMO data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. LEMO is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Notes

LEMO complete product range

Most frequently used in darker colour

• included in this catalogue

No reproduction or use without express permission of editorial or pictorial content, in any manner.

LEMO SA reserves the right to modify and improve specifications, at all times, without any notification.

LEMO HEADQUARTERS

SWITZERLAND LEMO SA Chemin des Champs-Courbes 28 - P.O. Box 194 - CH-1024 Ecublens Tel. (+41 21) 695 16 00 - Fax (+41 21) 695 16 02 - e-mail: info@lemo.com

LEMO SUBSIDIARIES

AUSTRIA LEMO Elektronik GesmbH Lemböckgasse 49/E6-3 1230 Wien Tel: (+43 1) 914 23 20 0 Fax:(+43 1) 914 23 20 11 salesAT@lemo.at

BRAZIL LEMO Latin America Ltda Av. José Rocha Bonfim, 214 Salas 224 / 225 Condomínio Praça Capital Ed. Chicago Campinas / SP - Brasil 13080-650 Tel: +55 (11) 98689 4736 info-la@lemo.com

CANADA LEMO Canada Inc 44 East Beaver Creek Road, unit 20 Richmond Hill, Ontario L4B 1G8 Tel: (+1 905) 889 56 78 Fax: (+1 905) 889 49 70 info-canada@lemo.com

CHINA / HONG KONG LEMO Electronics (Shanghai) Co., Ltd First Floor, Block E, 18 Jindian Road, Pudong Shanghai, China, 201206 Tel: (+86 21) 5899 7721 Fax: (+86 21) 5899 7727 cn.sales@lemo.com

DENMARK LEMO Denmark A/S Mandal Allé 16A 5500 Middelfart Tel: (+45) 45 20 44 00 Fax: (+45) 45 20 44 01 info-dk@lemo.com

FRANCE LEMO France Sàrl 24/28 Avenue Graham Bell Bâtiment Balthus 4 Bussy Saint Georges 77607 Marne la Vallée Cedex 3 Tel: (+33 1) 60 94 60 94 Fax: (+33 1) 60 94 60 90 info-fr@lemo.com

GERMANY LEMO Elektronik GmbH Hanns-Schwindt-Str. 6 81829 München Tel: (+49 89) 42 77 03 Fax: (+49 89) 420 21 92 info@lemo.de

HUNGARY REDEL Elektronika Kft Nagysándor József u. 6-12 1201 Budapest Tel: (+36 1) 421 47 10 Fax: (+36 1) 421 47 57 info-hu@lemo.com

ITALY LEMO Italia srl Viale Lunigiana 25 20125 Milano Tel: (+39 02) 66 71 10 46 Fax: (+39 02) 37 90 80 46 sales.it@lemo.com

LEMO DISTRIBUTORS

ARGENTINA, AUSTRALIA, BRAZIL, CHILE, COLOMBIA, CZECH REPUBLIC, GREECE, INDIA, ISRAEL, NEW ZEALAND, PERU, POLAND, RUSSIA, SOUTH AFRICA, SOUTH KOREA, TAIWAN, TURKEY, UKRAINE

JAPAN LEMO Japan Ltd 2-7-22, Mita, Minato-ku, Tokyo, 108-0073 Tel: (+81 3) 54 46 55 10 Fax: (+81 3) 54 46 55 11 info-jp@lemo.com

MIDDLE EAST LEMO Middle East Connectors LLC Concorde Tower 6th Floor, Dubai Media City, P.O. Box 126732 Dubai, United Arab Emirates Tel: +971 55 222 36 77 info-me@lemo.com

NETHERLANDS / BELGIUM LEMO Connectors Nederland B.V. Jacques Meuwissenweg 6 2031 AD Haarlem Tel. +31 23 206 07 01 info-nl@lemo.com

NORWAY / ICELAND LEMO Norway A/S Soerumsandvegen 69, 1920 Soerumsand Tel: (+47) 22 91 70 40 Fax: (+47) 22 91 70 41 info-no@lemo.com

SINGAPORE LEMO Asia Pte Ltd 4 Leng Kee Road, #06-09 SiS Building Singapore 159088 Tel: (+65) 6476 0672 Fax: (+65) 6474 0672 sg.sales@lemo.com

SPAIN / PORTUGAL IBERLEMO SAU Brasil, 45, 08402 Granollers Barcelona

SWEDEN / FINLAND LEMO Nordic AB Gunnebogatan 30, Box 8201 163 08 Spånga Tel: (+46 8) 635 60 60 Fax: (+46 8) 635 60 61 info-se@lemo.com

SWITZERLAND LEMO Verkauf AG Grundstrasse 22 B, 6343 Rotkreuz Tel: (+41 41) 790 49 40 ch.sales@lemo.com

UNITED KINGDOM LEMO UK Ltd 12-20 North Street, Worthing, West Sussex, BN11 1DU Tel: (+44 1903) 23 45 43 lemouk@lemo.com

USA LEMO USA Inc P.O. Box 2408 Rohnert Park, CA 94927-2408 Tel: (+1 707) 578 88 11 (+1 800) 444 53 66 Fax:(+1 707) 578 08 69 info-US@lemo.com

