Precision Thick Film Chip Resistors ### **Precision Thick Film Chip Resistors** Type: ERJ XG, 1G ERJ 1R, 2R, 3R, 6R ERJ 3E, 6E, 8E, 14, 12, 1T 1001 #### **Features** - Small size and lightweight - High reliability Metal glaze thick film resistive element and three layers of electrodes - Compatible with placement machines Taping packaging available - Suitable for both reflow and flow soldering - Low Resistance Tolerance ERJXG, 1G, 2R, 3E, 6E, 8E, 14, 12, 1T Type: ±1 % ERJ1R, 2R, 3R, 6R Type: ±0.5 % - Reference Standards IEC 60115-8, JIS C 5201-8, EIAJ RC-2134B - AEC-Q200 qualified (Exemption ERJXG, ERJ1R) - RoHS compliant - As for Packaging Methods, Land Pattern, Soldering Conditions and Safety Precautions, Please see Data Files #### **Explanation of Part Numbers** • ERJ1R, 2R, 3R, 6R Type, ±0.5 % and the last one denotes number of zeros following. Example: $1002 \rightarrow 10k \Omega$ # **Panasonic** ### **Precision Thick Film Chip Resistors** ● ERJXGN, 1GN, 2RC, 2RK, 3EK, 6EN, 8EN, 14N, 12N, 12S, 1TN Type, ±1% #### **Dimensions in mm (not to scale)** | | Part No. | | Mass (Weight) | | | | | |--|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------| | | | L | W | а | b | t | [g/1000 pcs.] | | | ERJXG | 0.40 ^{±0.02} | 0.20 ^{±0.02} | 0.10 ^{±0.03} | 0.10 ^{±0.03} | 0.13 ^{±0.02} | 0.04 | | | ERJ1G, 1R | 0.60 ^{±0.03} | 0.30 ^{±0.03} | 0.10 ^{±0.05} | 0.15 ^{±0.05} | 0.23 ^{±0.03} | 0.15 | | | ERJ2R□ | 1.00 ^{±0.05} | 0.50 ^{±0.05} | 0.20 ^{±0.10} | 0.25 ^{±0.05} | 0.35 ^{±0.05} | 0.8 | | | ERJ3R□
ERJ3EK | 1.60 ^{±0.15} | 0.80+0.15 | 0.30 ^{±0.20} | 0.30 ^{±0.15} | 0.45 ^{±0.10} | 2 | | | ERJ6R□
ERJ6EN | 2.00 ^{±0.20} | 1.25 ^{±0.10} | 0.40 ^{±0.20} | 0.40 ^{±0.20} | 0.60 ^{±0.10} | 4 | | | ERJ8EN | 3.20+0.05 | 1.60+0.05 | 0.50 ^{±0.20} | 0.50 ^{±0.20} | 0.60 ^{±0.10} | 10 | | | ERJ14N | 3.20 ^{±0.20} | 2.50 ^{±0.20} | 0.50 ^{±0.20} | 0.50 ^{±0.20} | 0.60 ^{±0.10} | 16 | | | ERJ12N | 4.50 ^{±0.20} | 3.20 ^{±0.20} | 0.50 ^{±0.20} | 0.50 ^{±0.20} | 0.60 ^{±0.10} | 27 | | | ERJ12S | 5.00 ^{±0.20} | 2.50 ^{±0.20} | 0.60 ^{±0.20} | 0.60 ^{±0.20} | 0.60 ^{±0.10} | 27 | | | ERJ1TN | 6.40 ^{±0.20} | 3.20 ^{±0.20} | 0.65 ^{±0.20} | 0.60 ^{±0.20} | 0.60 ^{±0.10} | 45 | ## **Precision Thick Film Chip Resistors** #### Ratings <±0.5 %> | Part No. (inch size) | Power Rating
at 70 °C ⁽⁴⁾
(W) | Limiting Element
Voltage (1)
(V) | Maximum Overload
Voltage ⁽²⁾
(V) | Resistance
Tolerance
(%) | Resistance
Range
(Ω) | T.C.R.
(×10 ⁻⁶ /°C) | Category
Temperature Range
(°C) | AEC-Q200
Grade | |----------------------|--|--|---|--------------------------------|--|-----------------------------------|---------------------------------------|-------------------| | ERJ1RH
(0201) | 0.05 | 15 | 30 | ±0.5 | 1k to 1M
(E24, E96) | ±50 | -55 to +125 | _ | | ERJ2RH
(0402) | 0.063 | 50 | 100 | ±0.5 | 100 to 100k
(E24, E96) | ±50 | -55 to +155 | Grade 0 | | ERJ2RK
(0402) | 0.063 | 50 | 100 | ±0.5 | 10 to 97.6
102k to 1M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ3RB
(0603) | 0.1 | 50 | 100 | ±0.5 | 100 to 100k
(E24, E96) | ±50 | -55 to +155 | Grade 0 | | ERJ3RE
(0603) | 0.1 | 50 | 100 | ±0.5 | 10 to 97.6
102k to 1M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ6RB
(0805) | 0.1 | 150 | 200 | ±0.5 | 100 to 100k
(E24, E96) | ±50 | -55 to +155 | Grade 0 | | ERJ6RE
(0805) | 0.1 | 150 | 200 | ±0.5 | 10 to 97.6
102k to 1M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | <±1 %> | Part No. (inch size) | Power Rating
at 70 °C (4)
(W) | Limiting Element
Voltage (1)
(V) | Maximum Overload
Voltage ⁽²⁾
(V) | Resistance
Tolerance
(%) | Resistance
Range
(Ω) | T.C.R.
(×10 ⁻⁶ /°C) | Category
Temperature Range
(°C) | AEC-Q200
Grade | |----------------------|-------------------------------------|--|---|--------------------------------|--|-----------------------------------|---------------------------------------|-------------------| | ERJXGN
(01005) | 0.031 | 15 | 30 | ±1 | 10 to 1 M ⁽³⁾
(E24, E96) | <100 Ω : ±300
100 Ω ≤ : ±200 | -55 to +125 | _ | | ERJ1GN
(0201) | 0.05 | 25 | 50 | ±1 | 10 to 1 M ⁽³⁾
(E24, E96) | ±200 | -55 to +125 | Grade 1 | | ERJ2RC
(0402) | 0.1 | 50 | 100 | ±1 | 1 to 9.76
(E24, E96) | -100 to +600 | -55 to +155 | Grade 0 | | ERJ2RK
(0402) | 0.1 | 50 | 100 | ±1 | 10 to 1 M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ3EK
(0603) | 0.1 | 75 | 150 | ±1 | 10 to 1 M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ6EN
(0805) | 0.125 | 150 | 200 | ±1 | 10 to 2.2 M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ8EN
(1206) | 0.25 | 200 | 400 | ±1 | 10 to 2.2 M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ14N
(1210) | 0.5 | 200 | 400 | ±1 | 10 to 1 M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ12N
(1812) | 0.75 | 200 | 500 | ±1 | 10 to 1 M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ12S
(2010) | 0.75 | 200 | 500 | ±1 | 10 to 1 M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | | ERJ1TN
(2512) | 1 | 200 | 500 | ±1 | 10 to 1 M
(E24, E96) | ±100 | -55 to +155 | Grade 0 | - (1) Rated Continuous Working Voltage (RCWV) shall be determined from RCWV= $\sqrt{\text{Power Rating}} \times \text{Resistance Values}$, or Limiting Element Voltage listed above, whichever less. - (2) Overload Test Voltage (OTV) shall be determined from OTV=Specified Magnification (refer to performance) × RCWV or Maximum Overload Voltage listed above, whichever less. - (3) Please contact us when you need a type with a resistance of less than 10 Ω . - (4) Use it on the condition that the case temperature is below the upper category temperature. #### Power Derating Curve For resistors operated in ambient temperatures above 70 °C, power rating shall be derated in accordance with the figure on the right. ## **Precision Thick Film Chip Resistors** #### Perfomance #### ● ERJ1R, 2R, 3R, 6R Type, ±0.5%(D) | Test Item | Performance
Requirements | Test Conditions | |--------------------------------|-------------------------------|--| | Resistance | Within Specified
Tolerance | 20 °C | | T. C. R. | Within Specified
T. C. R. | +25 °C/+125 °C | | Overload | ±2% | Rated Voltage × 2.5, 5 s | | Resistance to Soldering Heat | ±1% | 270 °C, 10 s | | Rapid Change of
Temperature | ±1% | -55 °C (30min.) / +155 °C (ERJ1R : +125 °C) (30min.), 100 cycles | | High Temperature
Exposure | ±1% | +155 °C (ERJ1R : +125 °C) , 1000 h | | Damp Heat, Steady State | ±1% | 60 °C, 90% to 95 %RH, 1000 h | | Load Life in Humidity | ±2%
ERJ1R: ±3% | 60 °C, 90% to 95 %RH, Rated Voltage,
1.5 h ON/0.5 h OFF cycle, 1000 h | | Endurance at 70 °C | ±2%
ERJ1R: ±3% | 70 °C, Rated Voltage, 1.5 h ON/0.5 h OFF cycle, 1000 h | #### ● ERJXGN, 1GN, 2RC, 2RK, 3EK, 6EN, 8EN, 14N, 12N, 12S, 1TN Type, ±1%(F) | Test Item | Performance
Requirements | Test Conditions | | | | |--------------------------------|-------------------------------|--|--|--|--| | Resistance | Within Specified
Tolerance | 20 °C | | | | | T. C. R. | Within Specified
T. C. R. | +25 °C/+155 °C (ERJXG, ERJ1G : +25 °C/+125 °C) | | | | | Overload | ±2% | Rated Voltage × 2.5, 5 s | | | | | Resistance to Soldering Heat | ±1% | 270 °C, 10 s | | | | | Rapid Change of
Temperature | ±1% | -55 °C (30min.) / +155 °C (ERJXG, ERJ1G : +125 °C) (30min.), 100 cycles | | | | | High Temperature
Exposure | ±1% | +155 °C (ERJXG, ERJ1G : +125 °C) , 1000 h | | | | | Damp Heat, Steady State | ±1% | 60 °C, 90% to 95 %RH, 1000 h | | | | | Load Life in Humidity | ±2%
ERJXG, ERJ1G: ±3% | 60 °C, 90% to 95 %RH, Rated Voltage,
1.5 h ON/0.5 h OFF cycle, 1000 h | | | | | Endurance at 70 °C | ±2%
ERJXG, ERJ1G: ±3% | 70 °C, Rated Voltage, 1.5 h ON/0.5 h OFF cycle, 1000 h | | | | # Panasonic Surface Mount Resistors Safety precautions #### The following are precautions for individual products. Please also refer to the common precautions for Fixed Resistors in this catalog. - 1. Take measures against mechanical stress during and after mounting of Surface Mount Resistors (hereafter called the resistors) so as not to damage their electrodes and protective coatings. - Be careful not to misplace the resistors on the land patterns. Otherwise, solder bridging may occur. - 2. Keep the rated power and ambient temperature within the specified derating curve. - Some circuit boards, wiring patterns, temperatures of heat generated by adjacent components, or ambient temperatures can become factors in the rise of the temperature of the resistors, regardless of the level of power applied. Therefore, check the conditions before use and optimize them so as not to damage the boards and peripheral components. - Make sure to contact us before using the resistors under special conditions. - 3. If a transient load (heavy load in a short time) like a pulse is expected to be applied, check and evaluate the operations of the resistors when installed in your products before use. - Never exceed the rated power. Otherwise, the performance and/or reliability of the resistors may be impaired. - 4. Before using halogen-based or other high-activity flux, check the possible effects of the flux residues on the performance and reliability of the resistors. - 5. When soldering with a soldering iron, never touch the resistors'bodies with the tip of the soldering iron. When using a soldering iron with a high temperature tip, finish soldering as quickly as possible (within three seconds at 350 °C max.). - 6. As the amount of applied solder becomes larger, the mechanical stress applied to the resistors increases, causing problems such as cracks and faulty characteristics. Avoid applying an excessive amounts of solder. - 7. When the resistors' protective coatings are chipped, flawed, or removed, the characteristics of the resistors may be impaired. Take special care not to apply mechanical shock during automatic mounting or cause damage during handling of the boards with the resistors mounted. - 8. Do not apply shock to the resistors or pinch them with a hard tool (e.g. pliers and tweezers). Otherwise, the resistors' protective coatings and bodies may be chipped, affecting their performance. - 9. Avoid excessive bending of printed circuit boards in order to protect the resistors from abnormal stress. - 10. Do not immerse the resistors in solvent for a long time. Before using solvent, carefully check the effects of immersion. - 11. Transient voltage - If there is a possibility that the transient phenomenon (significantly high voltage applied in a short time) may occur or that a high voltage pulse may be applied, make sure to evaluate and check the characteristics of Fixed Metal (Oxide) Film Resistors mounted on your product rather than only depending on the calculated power limit or steady-state conditions to complete the design or decide to use the resistors. - 12. Do not apply excessive tension to the terminals. ## **Panasonic** #### △Safety Precautions (Common precautions for Fixed Resistors) - When using our products, no matter what sort of equipment they might be used for, be sure to make a written agreement on the specifications with us in advance. The design and specifications in this catalog are subject to change without prior notice. - Do not use the products beyond the specifications described in this catalog. - This catalog explains the quality and performance of the products as individual components. Before use, check and evaluate their operations when installed in your products. - Install the following systems for a failsafe design to ensure safety if these products are to be used in equipment where a defect in these products may cause the loss of human life or other significant damage, such as damage to vehicles (automobile, train, vessel), traffic lights, medical equipment, aerospace equipment, electric heating appliances, combustion/gas equipment, rotating equipment, and disaster/crime prevention equipment. - * Systems equipped with a protection circuit and a protection device - * Systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault #### (1) Precautions for use - These products are designed and manufactured for general and standard use in general electronic equipment (e.g. AV equipment, home electric appliances, office equipment, information and communication equipment) - These products are not intended for use in the following special conditions. Before using the products, carefully check the effects on their quality and performance, and determine whether or not they can be used. - 1. In liquid, such as water, oil, chemicals, or organic solvent - 2. In direct sunlight, outdoors, or in dust - 3. In salty air or air with a high concentration of corrosive gas, such as Cl2, H2S, NH3, SO2, or NO2 - 4. Electric Static Discharge (ESD) Environment - These components are sensitive to static electricity and can be damaged under static shock (ESD). - Please take measures to avoid any of these environments. - Smaller components are more sensitive to ESD environment. - 5. Electromagnetic Environment - Avoid any environment where strong electromagnetic waves exist. - 6. In an environment where these products cause dew condensation - 7. Sealing or coating of these products or a printed circuit board on which these products are mounted, with resin or other materials - These products generate Joule heat when energized. Carefully position these products so that their heat will not affect the other components. - Carefully position these products so that their temperatures will not exceed the category temperature range due to the effects of neighboring heat-generating components. Do not mount or place heat-generating components or inflammables, such as vinyl-coated wires, near these products. - Note that non-cleaning solder, halogen-based highly active flux, or water-soluble flux may deteriorate the performance or reliability of the products. - Carefully select a flux cleaning agent for use after soldering. An unsuitable agent may deteriorate the performance or reliability. In particular, when using water or a water-soluble cleaning agent, be careful not to leave water residues. Otherwise, the insulation performance may be deteriorated. #### (2) Precautions for storage The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of 5 °C to 35 °C and a relative humidity of 45 % to 85 %. Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures. - 1. In salty air or in air with a high concentration of corrosive gas, such as Cl2, H2S, NH3, SO2, or NO2 - 2. In direct sunlight #### <Package markings> Package markings include the product number, quantity, and country of origin. In principle, the country of origin should be indicated in English. ### **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: #### Panasonic: ``` ERJ-2RKF30R1X ERJ-3EKF10R0V ERJ-3EKF3480V ERJ-3EKF1741V ERJ-3EKF5231V ERJ-3EKF1022V ERJ- 3EKF2742V ERJ-6ENF49R9V ERJ-3EKF4642V ERJ-2RKF1100X ERJ-2RKF1300X ERJ-2RKF6653X ERJ- 14NF3092U ERJ-8ENF68R1V ERJ-2RKF1540X ERJ-2RKF17R4X ERJ-3EKF1621V ERJ-12SF3320U ERJ- 14NF3600U ERJ-6ENF1052V ERJ-6ENF1242V ERJ-6ENF1582V ERJ-6ENF7682V ERJ-2RKF7500X ERJ- 6ENF8061V ERJ-14NF20R0U ERJ-2RKF1623X ERJ-8ENF1742V ERJ-12SF20R0U ERJ-12SF30R9U ERJ- 6ENF4991V ERJ-3EKF2210V ERJ-3EKF2490V ERJ-3EKF2491V ERJ-3EKF2552V ERJ-3EKF2871V ERJ- 3EKF3920V ERJ-3EKF5112V ERJ-3EKF5361V ERJ-3EKF6811V ERJ-3EKF7151V ERJ-3EKF75R0V ERJ- 14NF1002U ERJ-14NF4751U ERJ-14NF1000U ERJ-3EKF1240V ERJ-12SF2490U ERJ-3EKF1132V ERJ- 3EKF9091V ERJ-2RKF7872X ERJ-6ENF1372V ERJ-2RKF1151X ERJ-2RKF33R2X ERJ-2RKF35R7X ERJ- 2RKF56R2X ERJ-2RKF61R9X ERJ-3EKF8062V ERJ-3EKF9532V ERJ-6ENF51R1V ERJ-6ENF2491V ERJ- 12NF1212U ERJ-12SF1004U ERJ-12SF6192U ERJ-8ENF1004V ERJ-3EKF1210V ERJ-12NF2001U ERJ- 2RKF22R0X ERJ-8ENF1103V ERJ-8ENF2491V ERJ-8ENF2493V ERJ-8ENF4423V ERJ-8ENF4993V ERJ- 14NF4750U ERJ-6ENF3921V ERJ-2RKF1583X ERJ-2RKF1693X ERJ-2RKF1820X ERJ-2RKF2943X ERJ- 2RKF3650X ERJ-2RKF71R5X ERJ-6ENF3401V ERJ-12SF1501U ERJ-6ENF3482V ERJ-8ENF5762V ERJ- 6ENF30R0V ERJ-6ENF30R1V ERJ-6ENF3000V ERJ-6ENF3001V ERJ-6ENF3002V ERJ-6ENF3012V ERJ- 6ENF3013V ERJ-6ENF3090V ERJ-6ENF3091V ERJ-6ENF3092V ERJ-6ENF3093V ERJ-6ENF31R6V ERJ- 6ENF3160V ERJ-6ENF2700V ERJ-6ENF3003V ERJ-6ENF2800V ```