<u>MOSFET</u> – Power, Dual N-Channel 60 V, 44 mΩ, 20 A

Features

- Small Footprint (5x6 mm) for Compact Designs
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- 175°C Operating Temperature
- NVMFD5485NLWF Wettable Flank Option for Enhanced Optical Inspection
- AEC–Q101 Qualified and PPAP Capable
- This is a Pb–Free Device

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

2	()		,		
Parar	neter		Symbol	Value	Unit
Drain-to-Source Voltag	e		V _{DSS}	60	V
Gate-to-Source Voltage	ə		V _{GS}	±20	V
Continuous Drain		$T_{C} = 25^{\circ}C$	۱ _D	19.5	А
Current R _{θJC} (Notes 1, 2, 4)	Steady	T _C = 100°C		13.8	
Power Dissipation	State	$T_{C} = 25^{\circ}C$	PD	38.5	W
R _{θJC} (Notes 1, 2)		$T_{C} = 100^{\circ}C$		19.2	
Continuous Drain		$T_A = 25^{\circ}C$	I _D	5.3	А
Current R _{θJA} (Notes 1, 3 & 4)	Steady	$T_A = 100^{\circ}C$		3.8	
Power Dissipation	State	T _A = 25°C	PD	2.9	W
$R_{\theta JA}$ (Notes 1 & 3)		T _A = 100°C		1.4	
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \ \mu s$		I _{DM}	113	А
Operating Junction and	Storage T	emperature	T _J , T _{stg}	–55 to 175	°C
Source Current (Body D	viode)		۱ _S	37	А
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 50 V, V _{GS} = 10 V, $I_{L(pk)} = 25 A$, L = 0.1 mH, R _G = 25 Ω)		E _{AS}	31	mJ	
Lead Temperature for S (1/8" from case for 10 s)		Purposes	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

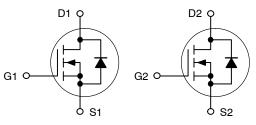
THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

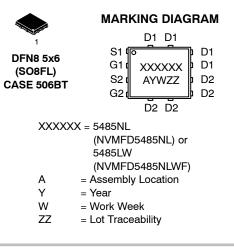
Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)		3.9	°C/W
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	52	

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted to an ideal (infinite) heat sink.

3. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.




ON Semiconductor®

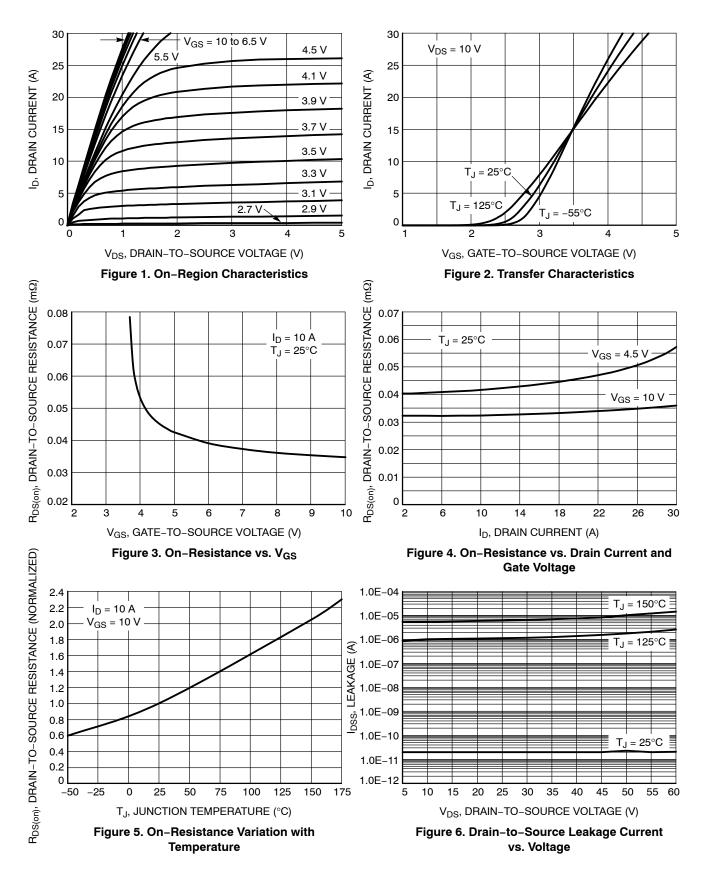
www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	44 mΩ @ 10 V	20 A
60 V	60 mΩ @ 4.5 V	20 A

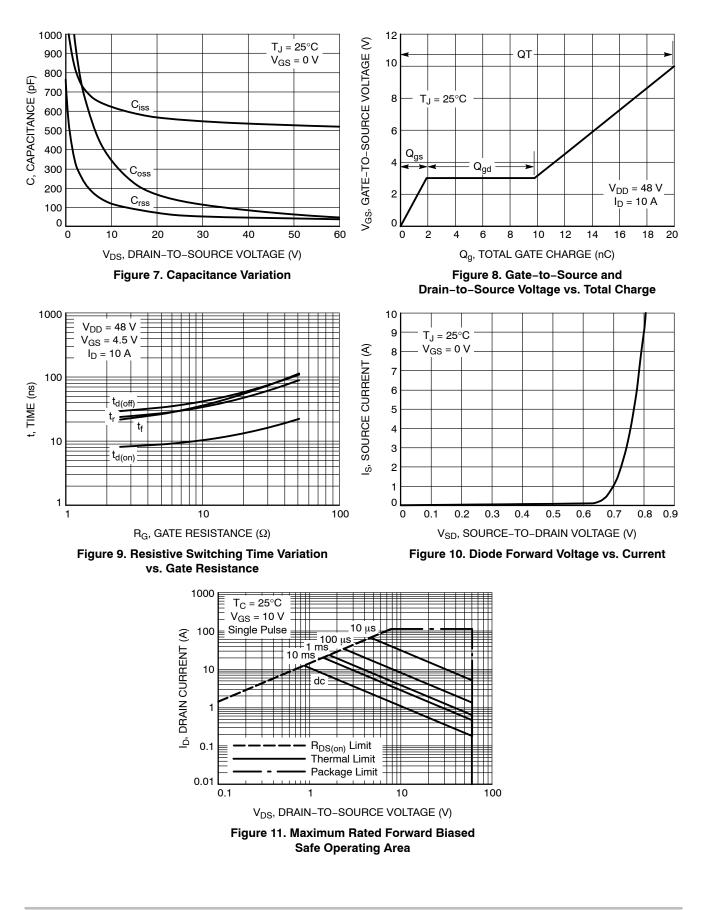
ORDERING INFORMATION

Device	Package	Shipping [†]		
NVMFD5485NLT1G	DFN8 (Pb-Free)	1500/ Tape & Reel		
NVMFD5485NLT3G	DFN8 (Pb-Free)	5000/ Tape & Reel		
NVMFD5485NLWFT1G	DFN8 (Pb-Free)	1500/ Tape & Reel		
NVMFD5485NLWFT3G	DFN8 (Pb-Free)	5000/ Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


4. Maximum current for pulses as long as 1 second are higher but are dependent on pulse duration and duty cycle.

ELECTRICAL CHARACTERISTICS	$(T_J = 25^{\circ}C \text{ unless otherwise specified})$
-----------------------------------	--


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	-				-	•	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 2	250 μA	60	l		V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	Reference to 25°C $I_D = 250 \mu A$			67		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		V _{DS} = 60 V	$T_J = 125^{\circ}C$			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	1.5		2.5	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	Reference to 2 I _D = 250 μA			-4.86		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	= 15 A		33	44	mΩ
		V _{GS} = 4.5 V, I _D =	= 10 A		42	60	1
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			560		pF
Output Capacitance	C _{oss}				126		1 !
Reverse Transfer Capacitance	C _{rss}				58		
Total Gate Charge	Q _{G(TOT)}				20		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} =	= 48 V,		0.52]
Gate-to-Source Charge	Q _{GS}	I _D = 10 Å			1.9		_
Gate-to-Drain Charge	Q _{GD}				7.9		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 48 V, I _D = 10 A			11.5		nC
SWITCHING CHARACTERISTICS (No	ote 6)						
Turn-On Delay Time	t _{d(on)}				9.5		ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS}	= 48 V,		26.6		
Turn-Off Delay Time	t _{d(off)}	I _D = 10 A, R _G =	2.5 Ω		27.8		
Fall Time	t _f				23.7		
DRAIN-SOURCE DIODE CHARACTE	ERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.93	1.2	V
		I _S = 15 A	T _J = 125°C		0.83		
Reverse Recovery Time	t _{RR}				28.9		ns
Charge Time	t _a	V_{GS} = 0 V, d_{IS}/d_t = 100 A/µs, I _S = 10 A			23.2		
Discharge Time	t _b				5.6		
Reverse Recovery Charge	Q _{RR}				35.5		nC
PACKAGE PARASITIC VALUES	-				-	•	-
Source Inductance	Ls	T _A = 25°C			0.93		nH
Drain Inductance	LD				0.005		1
Gate Inductance	L _G				1.84		1
Gate Resistance	R _G				12		Ω

 $\begin{array}{ll} \text{5. Pulse Test: pulse width = 300 } \mu\text{s, duty cycle} \leq 2\%. \\ \text{6. Switching characteristics are independent of operating junction temperatures.} \end{array}$

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

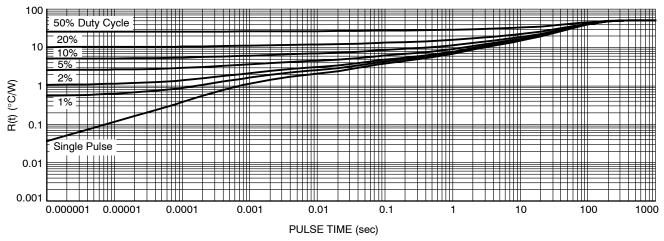
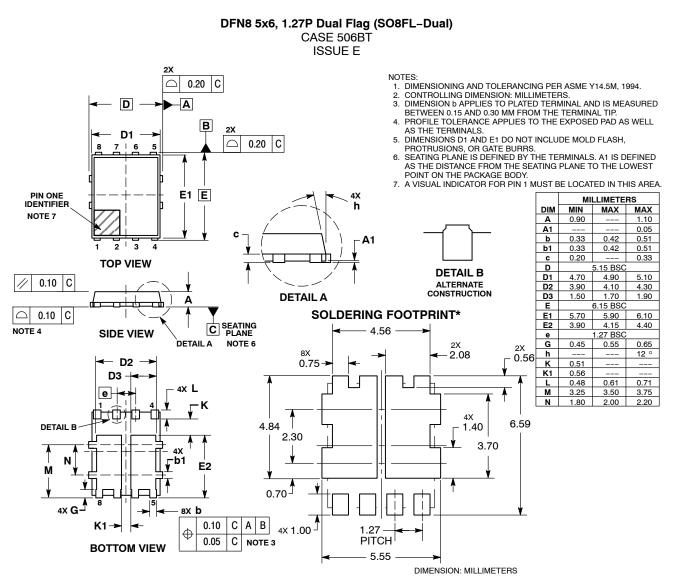



Figure 12. Thermal Response

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.om/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative