

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Fair-Rite Product's Catalog Part Data Sheet, 6578170121 Printed: 2013-07-03

- Part Number: 6578170121
- Frequency Range: Dimensions
- Description: 78 EP CORE
- Application: Inductive Components
- Where Used: Closed Magnetic Circuit
- Part Type: EP Cores
- Generic Name: EP17

Mechanical Specifications

Weight: 6.000 (g) per Set

Part Type Information

EP7, EP10, EP13, EP17, EP20

EP designs reduce the effect of residual air gap upon the effective permeability of the core, hence they minimize coil volume for a given inductance.

-EP cores can be supplied with the center post gapped to a mechanical dimension or an AL value.

-AL value is measured at 1 kHz, B < 10 gauss.

-Weight indicated is per pair or set.

Fair-Rite Products Corp. Your Signal Solution_®

Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

Ferrite Components for the Electronics Industry

Fair-Rite Product's Catalog Part Data Sheet, 6578170121 Printed: 2013-07-03

Mechanical Specifications

Dim	mm	mm	nominal	inch
		tol	inch	misc.
А	18.10	± 0.4	0.713	-
В	8.40	± 0.4	0.331	-
С	11.00	± 0.3	0.433	-
D	5.70	± 0.2	0.224	-
Е	12.00	± 0.4	0.472	-
F	5.70	± 0.2	0.224	-
G	-	-	-	-
Н	-	-	-	-
J	-	-	-	-
K	3.45	min	0.136	min

Electrical Specifications

Typical Impedance (🗘)		
Electrical Properties		
A _L (nH)	2250 ±25%	
Ae(cm ²)	0.33600	
ΣI/A(cm ⁻¹)	8.00	
l _e (cm)	2.68	
V _e (cm ³)	0.89900	
A _{min} (cm ²)	.252	

Land Patterns

\vee	W	Х	Υ	Z
	ref			
-	-	-	-	-
-	-	-	-	-

Winding Information

Turns	Wire	1st Wire	2nd Wire
Tested	Size	Length	Length
-	-	-	-

Reel Information

Tape Width	Pitch	Parts 7 "	Parts 13 "	Parts 14 "
mm	mm	Reel	Reel	Reel
-	-	-	-	-

Package Size

Pkg Size
-
(-)

Connector Plate

# Holes	# Rows
-	-

Legend

+ Test frequency

Preferred parts, the suggested choice for new designs, have shorter lead times and are more readily available.

The column H(Oe) gives for each bead the calculated dc bias field in oersted for 1 turn and 1 ampere direct current. The actual dc H field in the application is this value of H times the actual NI (ampere-turn) product. For the effect of the dc bias on the impedance of the bead material, see figures 18-23 in the application note How to choose Ferrite Components for EMI Suppression.

A $\frac{1}{2}$ turn is defined as a single pass through a hole.

I/A - Core Constant

Ae: Effective Cross-Sectional Area

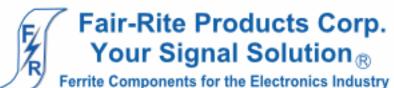
 A_{I} - Inductance Factor $\left(\frac{L}{N^{2}}\right)$

N/AWG - Number of Turns/Wire Size for Test Coil

I e: Effective Path Length

Ve: Effective Core Volume

NI - Value of dc Ampere-turns



Ferrite Material Constants

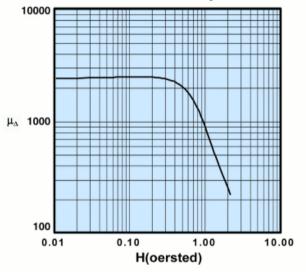
Specific Heat	0.25 cal/g/ºC
Thermal Conductivity	3.5 - 4.5 mW/cm - °C
Coefficient of Linear Expansion	8 - 10x10 ⁻⁶ /ºC
Tensile Strength	4.9 kgf/mm ²
Compressive Strength	42 kgf/mm ²
Young's Modulus	15x10 ³ kgf/mm ²
Hardness (Knoop)	650
Specific Gravity	\approx 4.7 g/cm ³
The above quoted properties are typical for Fair-Rit	e MnZn and NiZn ferrites.

See next page for further material specifications.

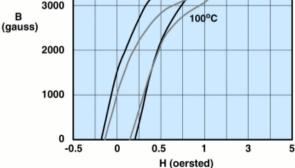
Fair-Rite Products Corp. PO Box J,One Commercial Row, Wallkill, NY 12589-0288 Phone: (888) 324-7748 www.fair-rite.com

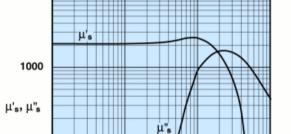
A MnZn ferrite specifically designed for power applications for frequencies up to 200 kHz.

RFID rods, toroids, U cores, and E&I cores are all available in 78 material.


Complex Permeability vs. Frequency

Fair-Rite Product's Catalog Part Data Sheet, 6578170121 Printed: 2013-07-03




78 Material Characteristics: Unit Property Symbol Value Initial Permeability 2300 μ, @ B < 10 gauss Flux Density 4800 gauss R @ Field Strength oersted н 5 **Residual Flux Density** 1500 gauss В, 0.20 **Coercive Force** oersted H_c 10-6 Loss Factor tan δ/μ. 4.5 @ Frequency MHz 0.1 Temperature Coefficient of %/°C 1.0 Initial Permeability (20 -70°C) **Curie Temperature** °C >200 T_e Resistivity Ω cm 2x10² ρ

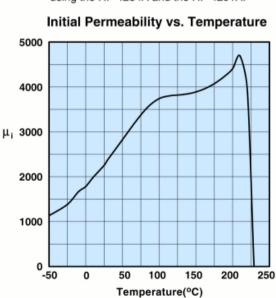
Incremental Permeability vs. H

Hysteresis Loop 5000 4000 3000 25°C 100°C

10000

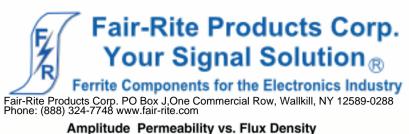
100

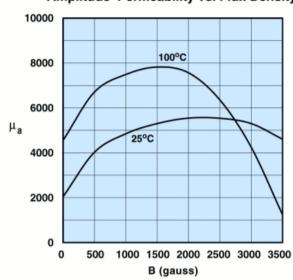
10 └ 10⁴

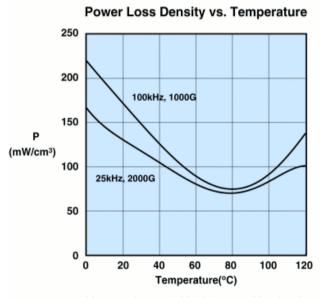

Measured on an 18/10/6mm toroid using the HP 4284A and the HP 4291A.

Frequency (Hz)

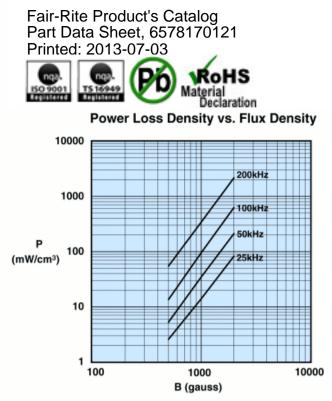
10⁶


107

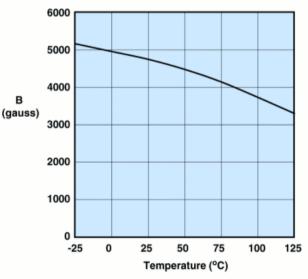

105


Measured on an 18/10/6mm toroid at 100kHz.

Measured on an 18/10/6mm toroid at 10kHz.



Measured on an 18/10/6mm toroid at 10kHz.



Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW.

Measured on an 18/10/6mm toroid using the Clarke Hess 258 VAW at 100°C

Flux Density vs. Temperature

Measured on an 18/10/6 mm toroid at 10kHz and H=5 oersted.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fair-Rite: 6578170121