- Qualified for Automotive Applications
- Bidirectional Transceiver
- Meet or Exceed the Requirements of ANSI Standard RS-485 and ISO 8482:1987(E)
- High-Speed Low-Power LinBiCMOS™ Circuitry
- Designed for High-Speed Operation in Both Serial and Parallel Applications
- Low Skew
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Very Low Disabled Supply-Current Requirements . . . 200 μA Maximum
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capacity . . . ±60 mA
- Thermal-Shutdown Protection
- Driver Positive-and Negative-Current Limiting
- Open-Circuit Fail-Safe Receiver Design
- Receiver Input Sensitivity . . . ±200 mV Max
- Receiver Input Hysteresis . . . 50 mV Typ
- Operate From a Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection

Function Tables

DRIVER

INPUT	ENABLE	OUTI	PUTS
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
X	L	Z	Z

RECEIVER

DIFFERENTIAL INPUTS A-B	ENABLE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 V$	L	L
X	Н	Z
Open	L	Н

H = high level, L = low level, ? = indeterminate,

X = irrelevant, Z = high impedance (off)

description/ordering information

The SN65LBC176 differential bus transceiver is a monolithic, integrated circuit designed for bidirectional data communication on multipoint bus-transmission lines. It is designed for balanced transmission lines and meets ANSI Standard RS-485 and ISO 8482:1987(E).

ORDERING INFORMATION†

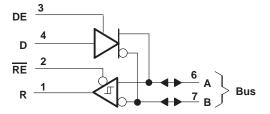
TA	PACK	AGE‡	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 125°C	SOIC - D	Tape and reel	SN65LBC176QDRQ1	L176Q1

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

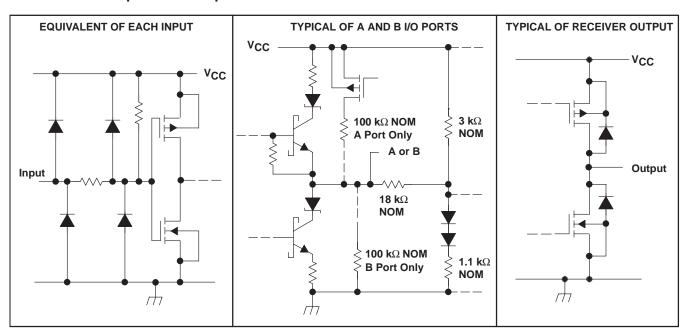
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS and LinASIC are trademarks of Texas Instruments Incorporated.

[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.


SGLS211A - OCTOBER 2003 - REVISED MAY 2008

description (continued)


The SN65LBC176 combines a 3-state, differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, which can externally connect together to function as a direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or V_{CC} = 0. This port features wide positive and negative common-mode voltage ranges, making the device suitable for party-line applications. Very low device supply current can be achieved by disabling the driver and the receiver. Both the driver and receiver are available as cells in the Texas Instruments LinASIC™ Library.

This transceiver is suitable for ANSI Standard RS-485 and ISO 8482:1987 (E) applications to the extent that they are specified in the operating conditions and characteristics section of this data sheet. Certain limits contained in the ANSI Standard RS-485 and ISO 8482:1987 (E) are not met or cannot be tested over the entire extended temperature range.

logic diagram (positive logic)

schematics of inputs and outputs

SGLS211A - OCTOBER 2003 - REVISED MAY 2008

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Voltage range at any bus terminal	10 V to 15 V
Input voltage, V _I (D, DE, R, or $\overline{\text{RE}}$)	\dots -0.3 V to V _{CC} + 0.5 V
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A SN65LBC176Q	40°C to 125°C
Storage temperature range, T _{stq}	65°C to 150°C
	260°C

DISSIPATION RATING TABLE

PACKAGE	AGE $T_A \le 25^{\circ}C$ DERATING FACTO		T _A = 70°C	T _A = 85°C	T _A = 125°C	
	POWER RATING ABOVE $T_A = 25^{\circ}$		POWER RATING	POWER RATING	POWER RATING	
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW	

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	Supply voltage, V _{CC}				V
Voltage at any bus terminal (separately or common mode), V _I or V _{IC}				12	.,
				-7	V
High-level input voltage, VIH	D, DE, and RE	2			V
Low-level input voltage, V _{IL}	D, DE, and RE			0.8	V
Differential input voltage, V _{ID} (see Note 2)				±12	V
	Driver			-60	mA
High-level output current, IOH	Receiver			-400	μΑ
	Driver			60	
Low-level output current, IOL	Receiver			8	mA
Operating free-air temperature, TA	SN65LBC176Q	-40		125	°C

NOTE 2: Differential input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS				MAX	UNIT
VIK	Input clamp voltage	I _I = –18 mA				-1.5	V
VO	Output voltage	IO = 0	0	6	V		
VOD1	Differential output voltage	IO = 0			1.5	6	V
V _{OD3}	Differential output voltage	$V_{test} = -7 V \text{ to } 12 V,$	See Figure 2,	See Note 3	1.1		V
V _{OD2}	Differential output voltage	$R_L = 54 \Omega$,	See Figure 1,	See Note 3	1.1		V
Δ V _{OD}	Change in magnitude of differential output voltage †					±0.2	V
		1					V
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	$L = 54 \Omega$ or 100 Ω , See Figure 1				
Δ Voc	Change in magnitude of common-mode output voltage [†]					±0.2	V
	Output summer!	Output disabled,	V _O = 12 V			1	4
10	Output current	See Note 4	V _O = -7 V		-0.8	mA	
lН	High-level input current	V _I = 2.4 V				-100	μΑ
IIL	Low-level input current	V _I = 0.4 V				-100	μΑ
		$V_0 = -7 \text{ V}$				-250	
	Object of a dead of a second	V _O = 0				-150	4
los	Short-circuit output current	AO = ACC				050	mA
		V _O = 12 V				250	
Icc	Supply current V _I = 0 or No load		Receiver disabled and driver enabled			1.75	mA
		INO IOdu	Receiver and driver of		0.25		

[†] Δ | V_{OD} | and Δ | V_{OC} | are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input changes from a high level to a low level.

NOTES: 3. This device meets the ANSI Standard RS-485 $V_{\mbox{OD}}$ requirements above 0°C only.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

	PARAMETER	TEST C	MIN	TYP†	MAX	UNIT	
t _d (OD)	Differential output delay time					31	ns
t _t (OD)	Differential output transition time	$R_L = 54 \Omega$, $C_L = 50 pF$, See Figure 3			12		ns
t _{sk(p)}	Pulse skew (td(ODH) -td(ODL))	- Goo'r igai'o o				6	ns
^t PZH	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 4			65	ns
tpZL	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 5			65	ns
tPHZ	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 4			105	ns
t _{PLZ}	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 5			105	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

^{4.} This applies for both power on and off; refer to ANSI Standard RS-485 for exact conditions.

SYMBOL EQUIVALENTS

DATA SHEET PARAMETER	RS-485
Vo	V _{oa} , V _{ob}
VOD1	V _O
V _{OD2}	$V_t (R_L = 54 \Omega)$
V _{OD3}	V _t (test termination measurement 2)
Δ V _{OD}	$ \vee_t - \overline{\vee}_t $
Voc	V _{os}
Δ V _{OC}	$ V_{OS} - \overline{V}_{OS} $
los	None
lo	I _{ia} , I _{ib}

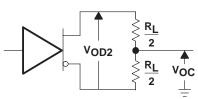
RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
VIT+	Positive-going input threshold voltage	V _O = 2.7 V,	$I_{O} = -0.4 \text{ mA}$				0.2	V
VIT-	Negative-going input threshold voltage	V _O = 0.5 V,	I _O = 8 mA		-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT-}) (see Figure 4)					50		mV
VIK	Enable-input clamp voltage	$I_{I} = -18 \text{ mA}$					-1.5	V
Vон	High-level output voltage	$V_{ID} = 200 \text{ mV},$	$I_{OH} = -400 \mu A$	See Figure 6	2.7			V
V _{OL}	Low-level output voltage	$V_{ID} = 200 \text{ mV},$	I _{OL} = 8 mA,	See Figure 6			0.45	V
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 \	/				±20	μΑ
		Other input = 0 V,	V _I = 12 V				1	
11	Line input current	See Note 5	V _I = -7 V				-0.8	mA
lіН	High-level enable-input current	V _{IH} = 2.7 V	V _{IH} = 2.7 V					μА
I _{IL}	Low-level enable-input current	V _{IL} = 0.4 V					-100	μΑ
r _l	Input resistance							kΩ
laa	0 1	$V_I = 0$ or V_{CC} ,	Receiver enabled a	nd driver disabled			3.9	mA
ICC	Supply current	No load	Receiver and driver	disabled			0.25	IIIA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

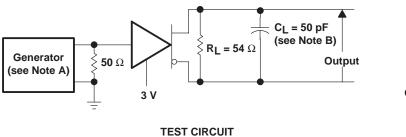
NOTE 5: This applies for both power on and power off. Refer to ANSI Standard RS-485 for exact conditions.

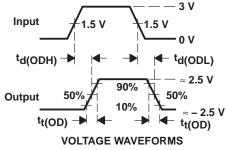


[‡] The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_1 = 15 pF$

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
^t PLH	Propagation delay time, low- to high-level single-ended output		11	37	ns
tPHL	Propagation delay time, high- to low-level single-ended output	V _{ID} = -1.5 V to 1.5 V, See Figure 7	11	37	ns
tsk(p)	Pulse skew ($ t_{d(ODH)} - t_{d(ODL)} $)	occ rigule 7		10	ns
tPZH	Output enable time to high level	Coo Firme 0		35	ns
tpzL	Output enable time to low level	See Figure 8		35	ns
tPHZ	Output disable time from high level	See Figure 8		35	ns
tPLZ	Output disable time from low level	See Figure 6		35	ns


PARAMETER MEASUREMENT INFORMATION



 V_{OD3} **60** Ω V_{test} 375 Ω

Figure 1. Driver VOD and VOC

Figure 2. Driver VOD3

375 Ω

Figure 3. Driver Test Circuit and Voltage Waveforms

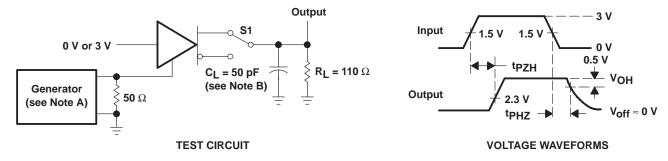


Figure 4. Driver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

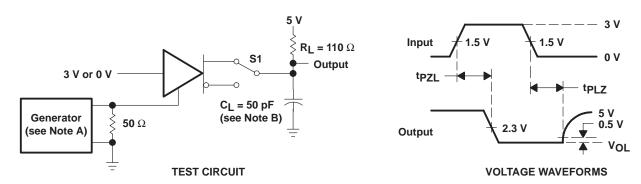


Figure 5. Driver Test Circuit and Voltage Waveforms

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{\Gamma} \leq$ 7 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 9 ns, $t_$
 - B. C_L includes probe and jig capacitance.

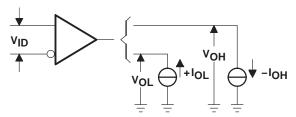
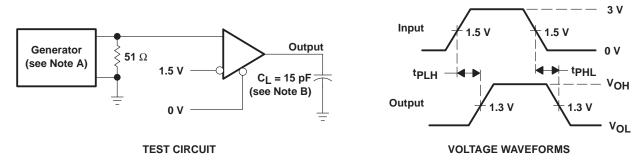



Figure 6. Receiver VOH and VOL

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{\Gamma} \leq$ 7 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 9 ns, $t_$
 - B. C_L includes probe and jig capacitance.

Figure 7. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

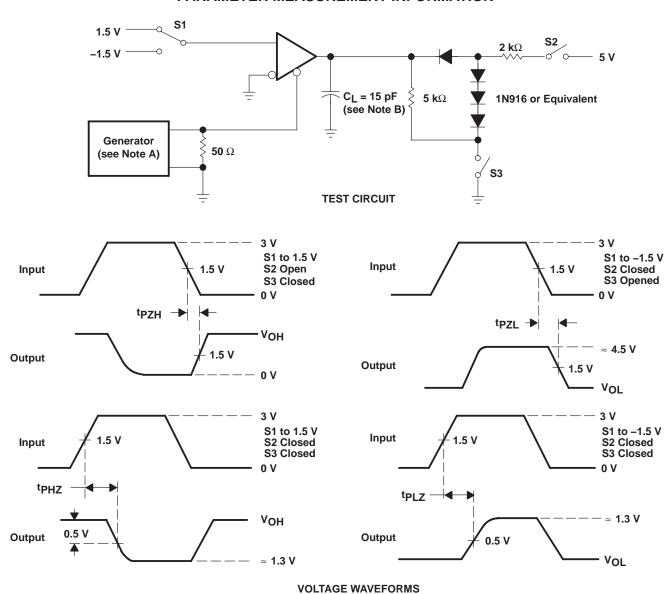


Figure 8. Receiver Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{\Gamma} \leq$ 7 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 9 ns, $t_$

B. C_L includes probe and jig capacitance.

PACKAGE OPTION ADDENDUM

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
SN65LBC176QDRG4Q1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	J176Q1	Samples
SN65LBC176QDRQ1	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 125	J176Q1	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

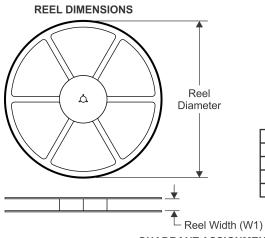
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

6-Feb-2020

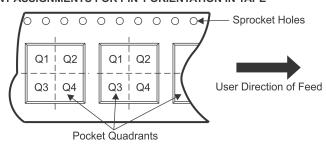
OTHER QUALIFIED VERSIONS OF SN65LBC176-Q1:


NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Mar-2013


TAPE AND REEL INFORMATION

Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LBC176QDRG4Q1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 14-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN65LBC176QDRG4Q1	SOIC	D	8	2500	340.5	338.1	20.6	

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated