

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X

16-Bit Microcontrollers and Digital Signal Controllers with High-Speed PWM, Op Amps and Advanced Analog

Operating Conditions

- 3.0V to 3.6V, -40°C to +85°C, DC to 70 MIPS
- 3.0V to 3.6V, -40°C to +125°C, DC to 60 MIPS
- 3.0V to 3.6V, -40°C to +150°C, DC to 40 MIPS

Core: 16-Bit dsPIC33E/PIC24E CPU

- Code Efficient (C and Assembly) Architecture
- Two 40-Bit Wide Accumulators
- Single Cycle (MAC/MPY) with Dual Data Fetch
- Single-Cycle, Mixed-Sign MUL plus Hardware Divide
- · 32-Bit Multiply Support

Clock Management

- 1.0% Internal Oscillator
- · Programmable PLLs and Oscillator Clock Sources
- Fail-Safe Clock Monitor (FSCM)
- Independent Watchdog Timer (WDT)
- Fast Wake-up and Start-up

Power Management

- · Low-Power Management modes (Sleep, Idle, Doze)
- Integrated Power-on Reset and Brown-out Reset
- 0.6 mA/MHz Dynamic Current (typical)
- 30 µA IPD Current (typical)

High-Speed PWM

- Up to Three PWM Pairs with Independent Timing
- Dead Time for Rising and Falling Edges
- 7.14 ns PWM Resolution
- PWM Support for:
 - DC/DC, AC/DC, Inverters, PFC, Lighting
- BLDC, PMSM, ACIM, SRM
- Programmable Fault Inputs
- Flexible Trigger Configurations for ADC Conversions

Advanced Analog Features

- · ADC module:
 - Configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H
 - Six analog inputs on 28-pin devices and up to 16 analog inputs on 64-pin devices
- Flexible and Independent ADC Trigger Sources
- Up to Three Op Amp/Comparators with Direct Connection to the ADC module:
 - Additional dedicated comparator
 - Programmable references with 32 voltage points
- Charge Time Measurement Unit (CTMU):
 - Supports mTouch[®] capacitive touch sensing
 - Provides high-resolution time measurement (1 ns)
 - On-chip temperature measurement

Timers/Output Compare/Input Capture

- 12 General Purpose Timers:
 - Five 16-bit and up to two 32-bit timers/counters
 - Four Output Compare (OC) modules, configurable as timers/counters
 - PTG module with two configurable timers/counters
 - 32-bit Quadrature Encoder Interface (QEI) module, configurable as a timer/counter
- Four Input Capture (IC) modules
- Peripheral Pin Select (PPS) to allow Function Remap
- Peripheral Trigger Generator (PTG) for Scheduling Complex Sequences

Communication Interfaces

- Two UART modules (17.5 Mbps):
- With support for LIN/J2602 protocols and IrDA[®]
 Two Four-Wire SPI modules (15 Mbps)
- Two Four-Wire SPI modules (15 Mbps)
- ECAN[™] module (1 Mbaud) CAN 2.0B Support
 Ture I²O modules (up to 1 Mbaud) with SMDus Support
- Two I²C modules (up to 1 Mbaud) with SMBus Support
- PPS to allow Function Remap
- Programmable Cyclic Redundancy Check (CRC)

Direct Memory Access (DMA)

- 4-Channel DMA with User-Selectable Priority Arbitration
- · UART, SPI, ADC, ECAN, IC, OC and Timers

Input/Output

- Sink/Source 12 mA or 6 mA, Pin-Specific for Standard VOH/VOL, Up to 22 or 14 mA, respectively for Non-Standard VOH1
- 5V Tolerant Pins
- Peripheral Pin Select (PPS) to allow Digital Function Remapping
- · Selectable Open-Drain, Pull-ups and Pull-Downs
- Up to 5 mA Overvoltage Clamp Current
- Change Notification Interrupts on All I/O Pins

Qualification and Class B Support

- AEC-Q100 REVG (Grade 1, -40°C to +125°C)
- AEC-Q100 REVG (Grade 0, -40°C to +150°C)
- Class B Safety Library, IEC 60730

Debugger Development Support

- In-Circuit and In-Application Programming
- Two Program and Two Complex Data Breakpoints
- IEEE 1149.2 Compatible (JTAG) Boundary Scan
- Trace and Run-Time Watch

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1 (General Purpose Families) and Table 2 (Motor Control Families). Their pinout diagrams appear on the following pages.

	s)	es)			Rer	nappa	ble Pe	eriphe	rals				â						
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbytes)	RAM (Kbyte)	16-Bit/32-Bit Timers	Input Capture	Output Compare	UART	SPI ⁽²⁾	ECAN TM Technology	External Interrupts ⁽³⁾	I ² C	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	PTG	I/O Pins	Pins	Packages
PIC24EP32GP202	512	32	4																
PIC24EP64GP202	1024	64	8																SPDIP,
PIC24EP128GP202	1024	128	16	5	4	4	2	2	—	3	2	1	6	2/3 ⁽¹⁾	Yes	Yes	21	28	SOIC, SSOP ⁽⁴⁾ ,
PIC24EP256GP202	1024	256	32																QFN-S
PIC24EP512GP202	1024	512	48																
PIC24EP32GP203	512	32	4	-			_	_		•	•		•	0/4	~	v	05		VTLA,
PIC24EP64GP203	1024	64	8	5	4	4	2	2	_	3	2	1	8	2/4	Yes	Yes	25	36	UQFN
PIC24EP32GP204	512	32	4																
PIC24EP64GP204	1024	64	8																VTLA ⁽⁴⁾ ,
PIC24EP128GP204	1024	128	16	5	4	4	2	2	—	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
PIC24EP256GP204	1024	256	32																UQFN
PIC24EP512GP204	1024	512	48																
PIC24EP64GP206	1024	64	8																
PIC24EP128GP206	1024	128	16	-	4		_	_		~	0		10	0/4	V	¥	50	64	TQFP,
PIC24EP256GP206	1024	256	32	5	4	4	2	2	_	3	2	1	16	3/4	Yes	Yes	53	64	QFN
PIC24EP512GP206	1024	512	48																
dsPIC33EP32GP502	512	32	4																
dsPIC33EP64GP502	1024	64	8																SPDIP,
dsPIC33EP128GP502	1024	128	16	5	4	4	2	2	1	3	2	1	6	2/3 ⁽¹⁾	Yes	Yes	21	28	SOIC, SSOP ⁽⁴⁾ .
dsPIC33EP256GP502	1024	256	32					1											QFN-S
dsPIC33EP512GP502	1024	512	48																
dsPIC33EP32GP503	512	32	4	-	4		~	_	1	0	0	4	0	0/4	Vee	Vee	05	20	VTLA,
dsPIC33EP64GP503	1024	64	8	5	4	4	2	2	1	3	2	1	8	2/4	Yes	Yes	25	36	UQFN
dsPIC33EP32GP504	512	32	4																
dsPIC33EP64GP504	1024	64	8																VTLA ⁽⁴⁾ ,
dsPIC33EP128GP504	1024	128	16	5	4	4	2	2	1	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP,
dsPIC33EP256GP504	1024	256	32															40	QFN, UQFN
dsPIC33EP512GP504	1024	512	48																
dsPIC33EP64GP506	1024	64	8																
	T	1			1	1	1	1	1					1	1	1		1	

TABLE 1: dsPIC33EPXXXGP50X and PIC24EPXXXGP20X GENERAL PURPOSE FAMILIES

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details. 2: Only SPI2 is remappable

3 2

2

2

2: Only SPI2 is remappable.3: INT0 is not remappable.

1024 128

1024 256

1024 512

16

32

48

5

4: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

4 4

dsPIC33EP128GP506

dsPIC33EP256GP506

dsPIC33EP512GP506

53 64

3/4

Yes Yes

16

1

TQFP,

QFN

TABLE 2: dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X MOTOR CONTROL FAMILIES

structions)		ytes)				Rer	nappa		eriphe	erals												
structions		Ŧ,																				
Page Erase Size (Instructions)		Program Flash Memory (Kbytes)	RAM (Kbytes)	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM ⁽⁴⁾ (Channels)	Quadrature Encoder Interface	UART	SPI ⁽²⁾	ECAN™ Technology	External Interrupts ⁽³⁾	I ² C	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	PTG	I/O Pins	Pins	Packages	
PIC24EP32MC202 51	12	32	4																			
PIC24EP64MC202 102	24	64	8																		SPDIP,	
PIC24EP128MC202 102	24	128	16	5	4	4	6	1	2	2	—	3	2	1	6	2/3 ⁽¹⁾	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,	
PIC24EP256MC202 102	24	256	32																		QFN-S	
PIC24EP512MC202 102	24	512	48																			
PIC24EP32MC203 51	12	32	4	_			-	,	_	6		6	6	,	~	0.11	~	~	07	0.0	VTLA,	
PIC24EP64MC203 102	24	64	8	5	4	4	6	1	2	2	—	3	2	1	8	2/4	Yes	Yes	25	36	UQFN	
PIC24EP32MC204 51	12	32	4														1					
PIC24EP64MC204 102	24	64	8																		VTLA ⁽⁵⁾ ,	
PIC24EP128MC204 102	24	128	16	5	5	4	4	6	1	2	2	—	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP,
PIC24EP256MC204 102	24	256	32													0, 1				48	QFN, UQFN	
PIC24EP512MC204 102	24	512	48																			
PIC24EP64MC206 102	24	64	8																			
PIC24EP128MC206 102	24	128	16	_								•			16	3/4 Yes		Yes		~ .	TQFP,	
PIC24EP256MC206 102	24	256	32	5	4	4	6	1	2	2	_	3	2	1			Yes		53	64	QFN	
PIC24EP512MC206 102	24	512	48																			
dsPIC33EP32MC202 51	12	32	4																			
dsPIC33EP64MC202 102	24	64	8																		SPDIP,	
dsPIC33EP128MC202 102	24	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3 ⁽¹⁾	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,	
dsPIC33EP256MC202 102	24	256	32													0/4					QFN-S	
dsPIC33EP512MC202 102	24	512	48																			
dsPIC33EP32MC203 51	12	32	4	_																	VTLA,	
dsPIC33EP64MC203 102	24	64	8	5	4	4	6	1	2	2	_	3	2	1	8	2/4	Yes	Yes	25	36	UQFN	
dsPIC33EP32MC204 51	12	32	4																			
dsPIC33EP64MC204 102	24	64	8																		VTLA ⁽⁵⁾ ,	
dsPIC33EP128MC204 102	24	128	16	5	4	4	6	1	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP,	
dsPIC33EP256MC204 102	24	256	32																	40	QFN, UQFN	
dsPIC33EP512MC204 102	24	512	48																			
dsPIC33EP64MC206 102	24	64	8																			
dsPIC33EP128MC206 102	24	128	16	F			6	4	_	~		~	~	4	10	2/4	Ve-	Ve-	50	64	TQFP,	
dsPIC33EP256MC206 102	24	256	32	5	4	4	6	1	2	2	_	3	2	1	16	3/4	Yes	Yes	53	64	QFN	
dsPIC33EP512MC206 102	24	512	48																			
dsPIC33EP32MC502 51	12	32	4																			
dsPIC33EP64MC502 102	24	64	8																		SPDIP,	
dsPIC33EP128MC502 102	24	128	16	5	4	4	6	1	2	2	1	3	2	1	6	2/3 ⁽¹⁾	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,	
dsPIC33EP256MC502 102	24	256	32																		QFN-S	
dsPIC33EP512MC502 102	24	512	48																			
dsPIC33EP32MC503 51	12	32	4	F	4	4	6	4	2	2	4	2	2	4	0	2/4	Vac	Vac	25	26	VTLA,	
dsPIC33EP64MC503 102	24	64	8	5	4	4	6	1	2	2	1	3	2	1	8	2/4	Yes	Yes	25	36	UQFN	

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details. 2: Only SPI2 is remappable.

3: INTO is not remappable.

4: Only the PWM Faults are remappable.

5: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

TABLE 2: dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X MOTOR CONTROL FAMILIES (CONTINUED)

						,															
	-	(se				Rei	mappa	ble P	eriphe	erals					-						
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbytes)	RAM (Kbytes)	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM ⁽⁴⁾ (Channels)	Quadrature Encoder Interface	UART	(5) SPI	ECAN™ Technology	External Interrupts ⁽³⁾	I ² C	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	PTG	I/O Pins	Pins	Packages
dsPIC33EP32MC504	512	32	4																		
dsPIC33EP64MC504	1024	64	8																		VTLA ⁽⁵⁾ ,
dsPIC33EP128MC504	1024	128	16	5	4	4	6	1	2	2	1	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
dsPIC33EP256MC504	1024	256	32																	10	UQFN
dsPIC33EP512MC504	1024	512	48																		
dsPIC33EP64MC506	1024	64	8																		
dsPIC33EP128MC506	1024	128	16	5	4	4	6	1	2	2	1	3	2	1	16	3/4	Vaa	Vaa	53	64	TQFP,
dsPIC33EP256MC506	1024	256	32	3	4	4	0	1	2	2		3	2	1	10	3/4	Yes	Yes	55	04	QFN
dsPIC33EP512MC506	1024	512	48																		

 Note 1:
 On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details.

 2:
 Only SPI2 is remappable.

3: INT0 is not remappable.

4: Only the PWM Faults are remappable.

5: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Table of Contents

Guidelines for Getting Started with 16-Bit Digital Signal Controllers and Microcontrollers CPU Memory Organization Flash Program Memory Resets Interrupt Controller Direct Memory Access (DMA) Oscillator Configuration Power-Saving Features	37 47 121 125 129 141 155 165 175 205
Memory Organization Flash Program Memory Resets Interrupt Controller Direct Memory Access (DMA) Oscillator Configuration Power-Saving Features I/O Ports Timer1 Timer2/3 and Timer4/5	47 121 125 129 141 155 165 175 205
Flash Program Memory Resets Interrupt Controller Direct Memory Access (DMA) Oscillator Configuration Power-Saving Features I/O Ports Timer1 Timer2/3 and Timer4/5	121 125 129 141 155 165 175 205
Resets Interrupt Controller Direct Memory Access (DMA) Oscillator Configuration Power-Saving Features I/O Ports Timer1 Timer4/5	125 129 141 155 165 175 205
Interrupt Controller Direct Memory Access (DMA) Oscillator Configuration Power-Saving Features I/O Ports Timer1 Timer2/3 and Timer4/5	129 141 155 165 175 205
Direct Memory Access (DMA) Oscillator Configuration Power-Saving Features I/O Ports Timer1 Timer2/3 and Timer4/5	141 155 165 175 205
Oscillator Configuration Power-Saving Features I/O Ports Timer1 Timer2/3 and Timer4/5	155 165 175 205
Power-Saving Features I/O Ports Timer1 Timer2/3 and Timer4/5	165 175 205
I/O Ports Timer1 Timer2/3 and Timer4/5	175 205
Timer1 Timer2/3 and Timer4/5	205
Timer2/3 and Timer4/5	
	209
Input Capture	
	215
High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	227
Serial Peripheral Interface (SPI)	267
Special Features	381
Instruction Set Summary	395
andix A: Revision History	521
0	
uct Identification System	543
	Output Compare High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) Serial Peripheral Interface (SPI) Inter-Integrated Circuit (I ² C) Universal Asynchronous Receiver Transmitter (UART) Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only) Charge Time Measurement Unit (CTMU) 10-Bit/12-Bit Analog-to-Digital Converter (ADC) Peripheral Trigger Generator (PTG) Module Op Amp/Comparator Module Programmable Cyclic Redundancy Check (CRC) Generator Special Features Instruction Set Summary Development Support

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPlC33/PlC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip website (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (www.microchip.com/DS70573)
- "CPU" (www.microchip.com/DS70359)
- "Data Memory" (www.microchip.com/DS70595)
- "dsPIC33/PIC24 Program Memory" (www.microchip.com/DS70000613)
- "Flash Programming" (www.microchip.com/DS70000609)
- "Interrupts" (www.microchip.com/DS70000600)
- "Oscillator" (www.microchip.com/DS70580)
- "Reset" (www.microchip.com/DS70602)
- "Watchdog Timer and Power-Saving Modes" (www.microchip.com/DS70615)
- "I/O Ports" (www.microchip.com/DS70000598)
- "Timers" (www.microchip.com/DS70362)
- "Input Capture with Dedicated Timer" (www.microchip.com/DS70000352)
- "Output Compare" (www.microchip.com/DS70000358)
- "High-Speed PWM" (www.microchip.com/DS70645)
- "Quadrature Encoder Interface (QEI)" (www.microchip.com/DS70000601)
- "Analog-to-Digital Converter (ADC)" (www.microchip.com/DS70621)
- "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/DS70000582)
- "Serial Peripheral Interface (SPI)" (www.microchip.com/DS70005185)
- "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195)
- "Enhanced Controller Area Network (ECAN™)" (www.microchip.com/DS70353)
- "Direct Memory Access (DMA)" (www.microchip.com/DS70348)
- "CodeGuard™ Security" (www.microchip.com/DS70634)
- "Programming and Diagnostics" (www.microchip.com/DS70608)
- "Op Amp/Comparator" (www.microchip.com/DS70000357)
- "Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS70346)
- "Device Configuration" (www.microchip.com/DS70000618)
- "Peripheral Trigger Generator (PTG)" (www.microchip.com/DS70000669)
- "Charge Time Measurement Unit (CTMU)" (www.microchip.com/DS70661)

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "*dsPIC33/ PIC24 Family Reference Manual*", which is available from the Microchip website (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
AN0-AN15	I	Analog	No	Analog input channels.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function.
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
REFCLKO	0		Yes	Reference clock output.
IC1-IC4	I	ST	Yes	Capture Inputs 1 through 4.
OCFA OCFB OC1-OC4	 0	ST ST —	Yes No Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare Outputs 1 through 4.
INT0	Ι	ST	No	External Interrupt 0.
INT1 INT2	1	ST ST	Yes Yes	External Interrupt 1. External Interrupt 2.
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD5, RD6, RD8	I/O	ST	No	PORTD is a bidirectional I/O port.
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.
T1CK	I	ST	No	Timer1 external clock input.
T2CK T3CK		ST ST	Yes No	Timer2 external clock input. Timer3 external clock input.
T4CK		ST	No	Timer4 external clock input.
T5CK	i	ST	No	Timer5 external clock input.
CTPLS	0	ST	No	CTMU pulse output.
CTED1	I	ST	No	CTMU External Edge Input 1.
CTED2	I	ST	No	CTMU External Edge Input 2.
U1CTS		ST	No	UART1 Clear-to-Send.
U1RTS U1RX	0	 ©T	No Voo	UART1 Ready-to-Send.
U1TX	0	ST —	Yes Yes	UART1 receive. UART1 transmit.
BCLK1	0	ST	No	UART1 IrDA [®] baud clock output.
Legend: CMOS = CI ST = Schmi PPS = Peri	itt Trigg	er input v	input vith CN	or output Analog = Analog input P = Power

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

TABLE 1-1: PINC		O DESC	RIPT	
Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
U2CTS	Ι	ST	No	UART2 Clear-to-Send.
U2RTS	0	_	No	UART2 Ready-to-Send.
U2RX	1	ST	Yes	UART2 receive.
U2TX	0	_	Yes	UART2 transmit.
BCLK2	0	ST	No	UART2 IrDA [®] baud clock output.
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.
SDI1	I	ST	No	SPI1 data in.
SDO1	0	—	No	SPI1 data out.
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.
SDI2	1	ST	Yes	SPI2 data in.
SDO2	0	_	Yes	SPI2 data out.
SS2	1/0	ST	Yes	SPI2 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	1/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	1/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	1/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	1/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	1/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS ⁽⁵⁾	1	ST	No	JTAG Test mode select pin.
TCK	i	ST	No	JTAG test clock input pin.
TDI	i	ST	No	JTAG test data input pin.
TDO	Ö	_	No	JTAG test data output pin.
C1RX ⁽²⁾	1	ST	Yes	ECAN1 bus receive pin.
C1TX ⁽²⁾	0		Yes	ECAN1 bus transmit pin.
FLT1 ⁽¹⁾ , FLT2 ⁽¹⁾	1	ST	Yes	PWM Fault Inputs 1 and 2.
FLT3 ⁽¹⁾ , FLT4 ⁽¹⁾		ST	No	PWM Fault Inputs 1 and 2.
ELT32 ^(1,3)		ST	No	
DTCMP1-DTCMP3 ⁽¹⁾		ST	Yes	PWM Fault Input 32 (Class B Fault).
PWM1L-PWM3L ⁽¹⁾	0		No	PWM Dead-Time Compensation Inputs 1 through 3. PWM Low Outputs 1 through 3.
PWM1L-PWM3L ⁽¹⁾	0	_		PWM Low Outputs 1 through 3.
SYNCI1 ⁽¹⁾		ST	No	
SYNCO1 ⁽¹⁾		31	Yes Yes	PWM Synchronization Input 1. PWM Synchronization Output 1.
		-		
NDX1 ⁽¹⁾		ST	Yes	Quadrature Encoder Index1 pulse input.
HOME1 ⁽¹⁾		ST	Yes	Quadrature Encoder Home1 pulse input.
QEA1 ⁽¹⁾		ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
(1)				external clock/gate input in Timer mode.
QEB1 ⁽¹⁾	I	ST	Yes	
o	_			external clock/gate input in Timer mode.
CNTCMP1 ⁽¹⁾	0	—	Yes	Quadrature Encoder Compare Output 1.
Legend: CMOS = CN	NOS co	ompatible	e input	or output Analog = Analog input P = Power
OT 0 1 '		• •		

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select
 Analog = Analog input O = Output TTL = TTL input buffer
 P = Power I = Input

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
C1IN1-	Ι	Analog	No	Op Amp/Comparator 1 Negative Input 1.
C1IN2-	I	Analog	No	Comparator 1 Negative Input 2.
C1IN1+	I	Analog	No	Op Amp/Comparator 1 Positive Input 1.
OA1OUT	0	Analog	No	Op Amp 1 output.
C1OUT	0	_	Yes	Comparator 1 output.
C2IN1-	I.	Analog	No	Op Amp/Comparator 2 Negative Input 1.
C2IN2-	I	Analog	No	Comparator 2 Negative Input 2.
C2IN1+	I	Analog	No	Op Amp/Comparator 2 Positive Input 1.
OA2OUT	0	Analog	No	Op Amp 2 output.
C2OUT	0	—	Yes	Comparator 2 output.
C3IN1-	I	Analog	No	Op Amp/Comparator 3 Negative Input 1.
C3IN2-	I	Analog	No	Comparator 3 Negative Input 2.
C3IN1+	I	Analog	No	Op Amp/Comparator 3 Positive Input 1.
OA3OUT	0	Analog	No	Op Amp 3 output.
C3OUT	0		Yes	Comparator 3 output.
C4IN1-	Ι	Analog	No	Comparator 4 Negative Input 1.
C4IN1+	I	Analog	No	Comparator 4 Positive Input 1.
C4OUT	0	—	Yes	Comparator 4 output.
CVREF10	0	Analog	No	Op amp/comparator voltage reference output.
CVREF20	0	Analog	No	Op amp/comparator voltage reference divided by 2 output.
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.
VCAP	Р	—	No	CPU logic filter capacitor connection.
Vss	Р	—	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-	I	Analog	No	Analog voltage reference (low) input.
Legend: CMOS = C	MOS co	ompatible	input	or output Analog = Analog input P = Power

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select TTL = TTL input buffer Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X **Devices Only**)" for more information.

O = Output

4: Not all pins are available in all package variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

I = Input

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip website (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVSS pins must be connected, independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the Printed Circuit Board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu$ F to $0.001 \ \mu$ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \ \mu$ F in parallel with $0.001 \ \mu$ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See Section 30.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 27.3 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3 or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- *"Using MPLAB[®] REAL ICE™ In-Circuit Emulator"* (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see Section 9.0 "Oscillator Configuration" for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to a certain frequency (see Section 9.0 "Oscillator Configuration") to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

FIGURE 2-7: INTERLEAVED PFC

FIGURE 2-8: BEMF VOLTAGE MEASURED USING THE ADC MODULE

3.0 CPU

Note 1:	This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to " CPU " (www.microchip.com/DS70359) in the "dsPIC33/PIC24 Family Reference Manual".
2:	Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

3.2 Instruction Set

The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space can be addressed as 64 Kbytes (32K words).

The Data Space includes two ranges of memory, referred to as X and Y data memory. Each memory range is accessible through its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Spaces have memory locations that are device-specific, and are described further in the data memory maps in Section 4.2 "Data Address Space".

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 32-Kbyte aligned program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to the "Data Memory" (www.microchip.com/DS70595) and "dsPIC33/PIC24 Program Memory" (www.microchip.com/DS70000613) sections in the "dsPIC33/PIC24 Family Reference Manual" for more details on EDS, PSV and table accesses.

On the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reversed Addressing.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

FIGURE 3-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X CPU BLOCK DIAGRAM

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/

MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory-mapped, as shown in Table 4-1.

TABLE 3-1:	PROGRAMMER'S MODEL REGISTER DESCRIPTIONS	
------------	--	--

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
DSWPAG	Extended Data Space (EDS) Write Page Register
RCOUNT	REPEAT Loop Counter Register
DCOUNT ⁽¹⁾	DO Loop Counter Register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address Register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

3.6.1 KEY RESOURCES

- "CPU" (www.microchip.com/DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

3.7 CPU Control Registers

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0								
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC								
bit 15						1	bit 8								
R/W-0 ^{(2,}	³⁾ R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0								
IPL2	IPL1	IPL0	RA	N N	OV	Z	C								
bit 7				IN	01	L	bit (
Legend:		C = Clearable	bit												
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'									
-n = Value	at POR	'1'= Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown								
bit 15		otor A Overflow	Ctatus hit(1)												
DIL 15		OA: Accumulator A Overflow Status bit ⁽¹⁾ 1 = Accumulator A has overflowed													
		ator A has not o													
bit 14	OB: Accumul	ator B Overflow	/ Status bit ⁽¹⁾												
		ator B has overf ator B has not o													
bit 13	SA: Accumul	SA: Accumulator A Saturation 'Sticky' Status bit ^(1,4)													
		ator A is saturate ator A is not satu		n saturated at	some time										
bit 12	SB: Accumulator B Saturation 'Sticky' Status bit ^(1,4)														
		ator B is saturat ator B is not sat		n saturated at	some time										
bit 11	0AB: 0A C	OAB: OA OB Combined Accumulator Overflow Status bit ⁽¹⁾													
		cumulators A or B have overflowed either Accumulators A or B have overflowed													
bit 10	SAB: SA SI	B Combined Ac	cumulator 'St	icky' Status bit ⁽	(1)										
		ators A or B are ccumulators A o			irated at some	time									
bit 9	DA: DO Loop	Active bit ⁽¹⁾													
	1 = DO loop is	1 = DO loop is in progress													
L:4 0	•	s not in progres													
bit 8		U Half Carry/Bo		for byto sized d	lata) or 8th low	order bit (for wo	ord sized data								
	•	sult occurred		ioi byte-sized d											
	•	-out from the 4 the result occur		oit (for byte-size	ed data) or 8th	low-order bit (1	for word-size								
Note 1:	This bit is available	e on dsPIC33E	PXXXMC20X	/50X and dsPI0	C33EPXXXGP	50X devices on	ly.								
2:	The IPL[2:0] bits a Level. The value ir IPL[3] = 1.	re concatenate	d with the IPL	[3] bit (CORCO	DN[3]) to form t	he CPU Interru	pt Priority								
	The IPL[2:0] Statu	s bits are read-	onlv when the	NSTDIS bit (II	NTCON1[15]) =	= 1.									
	A data write to the		-		,		d CD or by								

REGISTER 3-1: SR: CPU STATUS REGISTER

4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL[2:0]: CPU Interrupt Priority Level Status bits ^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (two's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1: 2:	This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only. The IPL[2:0] bits are concatenated with the IPL[3] bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL[3] = 1. User interrupts are disabled when

- Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled when IPL[3] = 1.
 3: The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.
- 4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

	_					.	D 0							
R/W-0	U-0	R/W-0	R/W-0 US0 ⁽¹⁾	R/W-0 EDT ^(1,2)	R-0 DL2 ⁽¹⁾	R-0 DL1 ⁽¹⁾	R-0 DL0 ⁽¹⁾							
VAR		0510	0800	EDI(",-/	DL2 ⁽¹⁾	DL1	1							
bit 15							bit							
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0							
SATA ⁽¹⁾	SATB ⁽¹⁾	SATDW ⁽¹⁾	ACCSAT ⁽¹⁾	IPL3 ⁽³⁾	SFA	RND ⁽¹⁾	IF ⁽¹⁾							
bit 7							bit							
Legend:		C = Clearabl	e bit											
R = Readable	e bit	W = Writable		U = Unimple	mented bit, read	d as '0'								
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	nown							
II Value at			•	<u> </u>										
bit 15		ole Exception Pr	-	-	t									
		e exception proc xception proces												
bit 14		ented: Read as												
bit 13-12	-	SP Multiply Unsi		ontrol bits ⁽¹⁾										
	11 = Reser		<u></u>											
	10 = DSP engine multiplies are mixed-sign													
	01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed													
bit 11	EDT: Early DO Loop Termination Control bit ^(1,2)													
	1 = Termina 0 = No effe	ates executing D ct	o loop at end o	f current loop	iteration									
bit 10-8	DL[2:0]: DO Loop Nesting Level Status bits ⁽¹⁾													
		n DO loops are a												
	•													
	•													
	• 001 = One	DO loop is active	`											
		DO loops are ac												
bit 7		A Saturation En												
		Ilator A saturatio Ilator A saturatio												
bit 6		B Saturation Er												
		lator B saturatio												
		lator B saturatio												
bit 5	SATDW: Da	ata Space Write	from DSP Eng	ine Saturatior	n Enable bit ⁽¹⁾									
		bace write satura bace write satura												
bit 4	-	ccumulator Satu												
		turation (super s turation (normal												
bit 3		Interrupt Priority		nit 3 ⁽³⁾										
		terrupt Priority L												
		terrupt Priority L	•											
Note 1: Th	ie hit ie availal	ble on dsPIC33E		50X and deD	C33EDYYYCD	50X devices on	N/							
	is bit is always		-1 7.7.7.100207/	SON and USFI			y.							

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

2: This bit is always read as '0'.

3: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
bit 1	RND: Rounding Mode Select bit ⁽¹⁾
	1 = Biased (conventional) rounding is enabled0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit⁽¹⁾ 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
 - **2:** This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

3.8 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-Bit MCU and DSC Programmer's Reference Manual"* (DS70000157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.8.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.8.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.9 DSP Engine (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

	SUMMART	
Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features
	of the dsPIC33EPXXXGP50X,
	dsPIC33EPXXXMC20X/50X and
	PIC24EPXXXGP/MC20X families of
	devices. It is not intended to be a
	comprehensive reference source.
	To complement the information in
	this data sheet, refer to
	"dsPIC33/PIC24 Program Memory"
	(www.microchip.com/DS70000613) in the
	"dsPIC33/PIC24 Family Reference
	Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.8 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG[7] to read Device ID sections of the configuration memory space.

The program memory maps, which are presented by device family and memory size, are shown in Figure 4-1 through Figure 4-5.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP32GP50X, dsPIC33EP32MC20X/50X AND PIC24EP32GP/MC20X DEVICES

FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X AND PIC24EP64GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP256GP50X, dsPIC33EP256MC20X/50X AND PIC24EP256GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word and addresses are incremented, or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices reserve the addresses between 0x000000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1 "Interrupt Vector Table**".

FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-7 through Figure 4-16.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes (32K words).

The base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data are aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/ or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33EP32MC20X/50X AND dsPIC33EP32GP50X DEVICES

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64MC20X/50X AND dsPIC33EP64GP50X DEVICES

FIGURE 4-9: DATA MEMORY MAP FOR dsPIC33EP128MC20X/50X AND dsPIC33EP128GP50X DEVICES

FIGURE 4-10: DATA MEMORY MAP FOR dsPIC33EP256MC20X/50X AND dsPIC33EP256GP50X DEVICES

FIGURE 4-16: DATA MEMORY MAP FOR PIC24EP512GP/MC20X/50X DEVICES

and

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X

dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

4.3.1 KEY RESOURCES

- "dsPIC33/PIC24 Program Memory" (www.microchip.com/DS70000613) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

4.4 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY

	••	0.00							20/00/00/									
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								XXXX
W1	0002								W1									XXXX
W2	0004								W2									XXXX
W3	0006								W3									XXXX
W4	0008								W4									XXXX
W5	000A		W5													XXXX		
W6	000C		W6													XXXX		
W7	000E		W7													XXXX		
W8	0010		W8													XXXX		
W9	0012								W9									XXXX
W10	0014		W10													XXXX		
W11	0016								W11									XXXX
W12	0018								W12									XXXX
W13	001A								W13									XXXX
W14	001C								W14									XXXX
W15	001E								W15									XXXX
SPLIM	0020								SPLI	N								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	H								0000
ACCAU	0026			S	ign Extensio	on of ACCA[39]						ACO	CAU				0000
ACCBL	0028								ACCB	iL								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			S	ign Extensio	on of ACCB[39]						ACO	CBU				0000
PCL	002E							F	PCL[15:0]								_	0000
PCH	0030	—	_		_	_		_	_	_				PCH[6:0]				0000
DSRPAG	0032	—	_		_	_						DSRPA	G[9:0]					0001
DSWPAG	0034	_	_		_	_		—				DS	SWPAG[8:0	0]				0001
RCOUNT	0036								RCOUNT	[15:0]								0000
DCOUNT	0038								DCOUNT	[15:0]								0000
DOSTARTL	003A							DOS	STARTL[15:1	1]							—	0000
DOSTARTH	003C	_	—	_	—	_	_	—	—	—	—			DOSTA	RTH[5:0]			0000
DOENDL	003E							DC	ENDL[15:1]			•					—	0000
DOENDH	0040	—	—		—	—		—	—	—	—			DOEN	DH[5:0]			0000
	•											•						•

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-	-1:	CPU C	ORE RE	EGISTE	R MAP F	OR dsF	PIC33EP	XXXMC	20X/50X	AND d	sPIC33I	EPXXX	GP50X	DEVICE	S ONL	(CON	TINUE	<u>)</u>
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC		IPL[2:0]		RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	—	US	[1:0]	EDT	EDT DL[2:0]			SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_		BWM[3:0] YWM[3:0] XWM[3:0]							[3:0]		0000		
XMODSRT	0048	XMODSRT[15:0] —												—	0000			
XMODEND	004A							XMC	DDEND[15:0)]							_	0001
YMODSRT	004C							YM	DDSRT[15:0]							_	0000
YMODEND	004E							YMO	DDEND[15:0)]							—	0001
XBREV	0050	BREN							XB	REV[14:0]								0000
DISICNT	0052	_	_							DISICNT[[13:0]							0000
TBLPAG	0054	_	—	_	_	_	_	_	_				TBLPA	G[7:0]				0000
MSTRPR	0058								MSTRPR	[15:0]								0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657J-page 66

TABLE	4-2:	CPU C	CORE RE	EGISTE	R MAP F	OR PIC	24EPX)	XXGP/M	C20X DI	EVICES	ONLY							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								XXXX
W1	0002								W1									XXXX
W2	0004								W2									XXXX
W3	0006								W3									XXXX
W4	8000								W4									XXXX
W5	000A								W5									XXXX
W6	000C								W6									XXXX
W7	000E		W7 W8															XXXX
W8	0010		W8															XXXX
W9	0012		W9															XXXX
W10	0014		W10															XXXX
W11	0016		W11															XXXX
W12	0018		W12															XXXX
W13	001A		W13															XXXX
W14	001C		W14															XXXX
W15	001E		W15															XXXX
SPLIM	0020		SPLIM[15:0]															0000
PCL	002E							F	PCL[15:1]								—	0000
PCH	0030	—	—	_	-	—	—	—	—	—				PCH[6:0]				0000
DSRPAG	0032	_	_	_	_	—	—		_			DSRPA	G[9:0]					0001
DSWPAG	0034	_	—	—	—	—	—	_				D	SWPAG[8:0	0]				0001
RCOUNT	0036								RCOUNT[15:0]								0000
SR	0042	—	—	_	-	—	—	—	DC	DC IPL[2:0] RA N OV Z C								0000
CORCON	0044	VAR	_	_	-	-	_	—	_	IPL3 SFA 0								
DISICNT	0052	_	_							DISICNT[[13:0]							0000
TBLPAG	0054	_	—	_	-	-	_	—	_				TBLPA	G[7:0]				0000
MSTRPR	0058								MSTRPR[15:0]								0000

TARI E 4.2. COLL CODE DECISTED MAD FOD DIC24EDXXXCD/MC20X DEVICES ONLY

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

TADLL	- -∪.																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	—	_	_	_	_	_	—	_	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	—	_	_	_	_	—	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	_	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF	_	_			_		—	—	_		_	_	—		0000
IFS9	0812		—	_	_			_		—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	_	_	_	_	_	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_	_	_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP[2:0]		_	OC1IP[2:0]			_		IC1IP[2:0]		_		INT0IP[2:0]		4444
IPC1	0842	_		T2IP[2:0]		_		OC2IP[2:0]	_		IC2IP[2:0]		_		DMA0IP[2:0]		4444
IPC2	0844	_		U1RXIP[2:0]]	_		SPI1IP[2:0)]	_		SPI1EIP[2:0]]	_		T3IP[2:0]		4444
IPC3	0846	_	_	_	_	_	I	DMA1IP[2:	0]	_	AD1IP[2:0]			_		U1TXIP[2:0]		0444
IPC4	0848	_		CNIP[2:0]		_		CMIP[2:0]		_	MI2C1IP[2:0]		_		SI2C1IP[2:0]		4444	
IPC5	084A	_	_	_	_	_	_	_	_	_	_	_	_	_		INT1IP[2:0]		0004
IPC6	084C	_		T4IP[2:0]		_		OC4IP[2:0]	_		OC3IP[2:0]		_		DMA2IP[2:0]		4444
IPC7	084E	_		U2TXIP[2:0]]	_	I	U2RXIP[2:	0]	_		INT2IP[2:0]				T5IP[2:0]		4444
IPC8	0850	_	—	_	_	_	_	—	_	_	SPI2IP[2:0]			_	:	SPI2EIP[2:0]		0044
IPC9	0852	_	_	_	_	_		IC4IP[2:0]		_		IC3IP[2:0]		_		DMA3IP[2:0]		0444
IPC12	0858	_	_	_	_	_	1	MI2C2IP[2:	0]	_		SI2C2IP[2:0]]	_	_	_	_	0440
IPC16	0860	_		CRCIP[2:0]		_		U2EIP[2:0]	_		U1EIP[2:0]		_	_	_	_	4440
IPC19	0866	_	_	_	_	_	_	_	_	_		CTMUIP[2:0]	_	_	_	_	0040
IPC35	0886			JTAGIP[2:0]]			ICDIP[2:0]	—	_	—		_	—	_	_	4400
IPC36	0888			PTG0IP[2:0]]		PTGWDTIP[2:0]		—	P	TGSTEPIP[2	:0]	_				4440	
IPC37	088A		_	_	_			PTG3IP[2:	D]	—		PTG2IP[2:0]		_		PTG1IP[2:0]		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_	_	_	_	_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	_	-	_		_	_	_	_	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—			_	—	—	—	_	_	DAE	DOOVR	—	_	_	_	0000
INTCON4	08C6	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	—				ILR[[3:0]					VECN	IUM[7:0]				0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	_		-			IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	QEI1IF	PSEMIF				-	—	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_		-					_	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_							_	_	_	—	_	0000
IFS6	080C	_	_	_	_	_							_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_							_	_	_	_	_	0000
IFS9	0812	_	_	_	_	—	_	_		_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_		-			IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	QEI1IE	PSEMIE				-	—	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	_	_	CTMUIE	_	_		-					_	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	_							_	_	_	—	_	0000
IEC6	082C	_	_	_	_	_							_	_	_	_	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_							_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_					PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP[2:0]		_		OC1IP[2:0)]		IC1IP[2:0]		_		INT0IP[2:0]		4444	
IPC1	0842	_		T2IP[2:0]		_		OC2IP[2:0] —				IC2IP[2:0]			— DMA0IP[2:0			4444
IPC2	0844	_		U1RXIP[2:0]	_		SPI1IP[2:0)]			SPI1EIP[2:0]]	_		T3IP[2:0]		4444
IPC3	0846	_	_	—	_	_		DMA1IP[2:	0]			AD1IP[2:0]		_		U1TXIP[2:0]		0444
IPC4	0848	_		CNIP[2:0]		—		CMIP[2:0]		_		MI2C1IP[2:0]]	_		SI2C1IP[2:0]		4444
IPC5	084A	_	_	—	_	_		—				—	—	_		INT1IP[2:0]		0004
IPC6	084C	_		T4IP[2:0]		_		OC4IP[2:0)]			OC3IP[2:0]	•	_		DMA2IP[2:0]		4444
IPC7	084E	_		U2TXIP[2:0]	_		U2RXIP[2:	0]			INT2IP[2:0]		_		T5IP[2:0]		4444
IPC8	0850	_	_	—	_	_		—			SPI2IP[2:0]		_		SPI2EIP[2:0]		0044	
IPC9	0852	_	_	_	_	_		IC4IP[2:0]			IC3IP[2:0]			_		DMA3IP[2:0]		0444
IPC12	0858	_	_			_						SI2C2IP[2:0]]	_	_	_		0440
IPC14	085C	_	_			_	QEI1IP[2:0] —				PSEMIP[2:0]			_	_	_	_	0440
IPC16	0860	_		CRCIP[2:0]		_		U2EIP[2:0]	_		U1EIP[2:0]		_	_	—	_	4440
IPC19	0866	_	_	—	_	_	—	—	—	_		CTMUIP[2:0]]	_	_	_	_	0040
IPC23	086E	_		PWM2IP[2:0)]	_	F	PWM1IP[2:	0]	_	—	—	—	_	_	_	_	4400
IPC24	0870	_	_	_	_	_		_	_	_	_	_	_	_		PWM3IP[2:0]		4004

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	_		JTAGIP[2:0]]		ICDIP[2:0]		_	—	—	_	—	_	—		4400	
IPC36	0888	_		PTG0IP[2:0]]	_	- PTGWDTIP[2:0]			—	P	TGSTEPIP[2:	:0]	—	—	_	_	4440
IPC37	088A	_	—	—	_	_	PTG3IP[2:0]			—	PTG2IP[2:0]			—		PTG1IP[2:0]		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR		_	_		_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP		_	_		_	_	_	_		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	—	—	—			-			—	_	DAE	DOOVR	—	—	—		0000
INTCON4	08C6	_	_	_		_	_		_	_	_	_		_	_	_	SGHT	0000
INTTREG	08C8	_	_	_			ILR[3:0]		VECNUM[7:0]								

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	—	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_	_	_	_	_	_	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806		_	—			_			—	_			—	MI2C2IF	SI2C2IF	_	0000
IFS4	0808		_	CTMUIF			_			—	C1TXIF			CRCIF	U2EIF	U1EIF	_	0000
IFS6	080C			—				—		—	_			_	_		PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	—						—	_			—	_			0000
IFS9	0812			—				—		—	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824			—				—		—	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826		_	—			_	—	—	—	_			—	MI2C2IE	SI2C2IE	_	0000
IEC4	0828			CTMUIE				—		—	C1TXIE			CRCIE	U2EIE	U1EIE		0000
IEC8	0830	JTAGIE	ICDIE	—			_	—	—	—	_			—	—		_	0000
IEC9	0832	_	_	_	_	_	_	_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP[2:0]		_	OC1IP[2:0])]	_	IC1IP[2:0]			_		INT0IP[2:0]		4444
IPC1	0842	_		T2IP[2:0]				OC2IP[2:0)]	_		IC2IP[2:0]		_	0	DMA0IP[2:0]		4444
IPC2	0844	_		U1RXIP[2:0	0]	_	SPI1IP[2:0]			_	SPI1EIP[2:0]			_		T3IP[2:0]		4444
IPC3	0846	_	_	_	_	_	[DMA1IP[2:	0]	_	AD1IP[2:0]			_	U1TXIP[2:0]			0444
IPC4	0848	_		CNIP[2:0]		_		CMIP[2:0]	_	MI2C1IP[2:0]		_	SI2C1IP[2:0]			4444	
IPC5	084A	—	—	_	_	_	_	_	—	_			_	_	INT1IP[2:0]			0004
IPC6	084C	_		T4IP[2:0]		_		OC4IP[2:0)]	_	OC3IP[2:0]			—	DMA2IP[2:0]			4444
IPC7	084E	_		U2TXIP[2:0)]	_	I	U2RXIP[2:	0]	_		INT2IP[2:0]		—			4444	
IPC8	0850	_		C1IP[2:0]		_		C1RXIP[2:	0]	_		SPI2IP[2:0]		—	T5IP[2:0] SPI2EIP[2:0]			4444
IPC9	0852	_	_	—	—	_		IC4IP[2:0]]	_		IC3IP[2:0]		—	DMA3IP[2:0]			0444
IPC11	0856	_	_	—	_	_		_	—	_	—	—	—	_	_	—	—	0000
IPC12	0858	_	_	—	_	_	1	MI2C2IP[2:	0]	_		SI2C2IP[2:0]	_	_	_	—	0440
IPC16	0860			CRCIP[2:0]	_	U2EIP[2:0]		_		U1EIP[2:0]		_	_	_	_	4440	
IPC17	0862	_	_	_	_	_	C1TXIP[2:0]		_			_	_	_	_	0400		
IPC19	0866		_	—	—				—		CTMUIP[2:0]	—	_	—	—	0040	
IPC35	0886			JTAGIP[2:0	0]			ICDIP[2:0]		—			—	—	_		—	4400
IPC36	0888			PTG0IP[2:0	0]	_		PTGWDTIP[2:0]		—	PTGSTEPIP[2:0]			—				4440
IPC37	088A	_	_	_	_	_		PTG3IP[2:	01	_		PTG2IP[2:0]			PTG1IP[2:0]			0444

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000	
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	—	_	—	—	INT2EP	INT1EP	INT0EP	8000	
INTCON3	08C4			_	—	_	—	_	_	_	—	DAE	DOOVR	—	_			0000	
INTCON4	08C6	_	_	_	-	-				-	_	_	_	—		_	SGHT	0000	
INTTREG	08C8	_	_	_	_		ILR[3:0]		VECNUM[7:0]									
F80 080 - DMAIF ADIF UTRXF UTRXF SPIIF SPIIF T3F T3F T3F T2F OC2IF DMAIF DMAIF COIF ICIT NTDF F81 0802 UZRXF UTRXF TSF T3F T3F T3F OC3IF OLAS I OLF MIZCIF SIZEF SIZEF	IABLE	4-0:		ERRUP	TCON	ROLLE	RREGI			JR asp	COSEPA			ES UNL	.T				
--	-------	-------	--------	--------	------------	--------	--------	--------	------------	--------	--------	--------	--------------	--------	--------	----------	--------------	---------------	---------------
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IFS2	0804	—		_	_	—	_	—	_	_	IC4IF	IC3IF	DMA3IF		—	SPI2IF	SPI2EIF	0000
FFS6 080A PWM2IF PWM2IF P	IFS3	0806	_	—	_	_	—	QEI1IF	PSEMIF	_	_	_	_	—	_	MI2C2IF	SI2C2IF	—	0000
IFS6 0800 Intertion Intertion <td>IFS4</td> <td>0808</td> <td>_</td> <td>—</td> <td>CTMUIF</td> <td>_</td> <td>—</td> <td>—</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>—</td> <td>CRCIF</td> <td>U2EIF</td> <td>U1EIF</td> <td>—</td> <td>0000</td>	IFS4	0808	_	—	CTMUIF	_	—	—	_	_	_	_	_	—	CRCIF	U2EIF	U1EIF	—	0000
IF88 0eto JTAGIF ICDIF — — — — — — PT	IFS5	080A	PWM2IF	PWM1IF	_	_	—	_	_	_	_	_	_	—		—	_	_	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IFS6	080C	_	—	_	_	—	_	_	_	_	_	_	—		_	_	PWM3IF	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IFS8	0810	JTAGIF	ICDIF	_	_	—	_	_	_	_	_	_	—		_	_	_	0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IFS9	0812	_	—	_	_	—	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC3	0826	_	_	_	_	_	QEI1IE	PSEMIE	_	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEC4	0828	_	_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	_	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IEC5	082A	PWM2IE	PWM1IE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IEC6	082C	_	—	_	_	—	_	_	_	_	_	_	—		_	_	PWM3IE	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IEC8	0830	JTAGIE	ICDIE	_	_	—	_	_	_	_	_	_	—		_	_	_	0000
IPC1 0842	IEC9	0832	_	—	_	_	—	_	_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC0	0840	_		T1IP[2:0]		—		OC1IP[2:0)]	_		IC1IP[2:0]				INT0IP[2:0]		4444
IPC3 0846 DMA1IP[2:0] AD1IP[2:0] U1TXIP[2:0] IPC4 0848 CNIP[2:0] CMIP[2:0] MI2C1IP[2:0] SI2C1IP[2:0] IPC5 084A SI2C1IP[2:0] IPC6 084C T4IP[2:0] DMA2IP[2:0] IPC7 084E U2TXIP[2:0] U2RXIP[2:0] INT2IP[2:0] T5IP[2:0] IPC8 0850 SPI2IP[2:0]	IPC1	0842	_		T2IP[2:0]		—		OC2IP[2:0)]	_		IC2IP[2:0]				DMA0IP[2:0]		4444
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	IPC2	0844	_		U1RXIP[2:0)]	—		SPI1IP[2:0)]	_		SPI1EIP[2:0]			T3IP[2:0]		4444
IPC5 084A INT1IP[2:0] INT1IP[2:0] - IPC6 084C T4IP[2:0] OC4IP[2:0] OC3IP[2:0] DMA2IP[2:0] - DMA2IP[2:0] - IPC7 084E U2TXIP[2:0] U2RXIP[2:0] INT2IP[2:0] T5IP[2:0] T5IP[2:0] SPI2EIP[2:0] SPI2EIP[2:0] SPI2EIP[2:0] DMA3IP[2:0] IPC3 0850 C1RXIP[2:0] SPI2IP[2:0] SPI2EIP[2:0] DMA3IP[2:0] IPC3 0852 IPC14 085C IPC14 085C IPC3 IPC16 0860 IPC3 IPC16 0860 IPC3 IPC3 IPC3 IPC3 IPC3 IPC3 IPC3	IPC3	0846	_	_	_	—	—		DMA1IP[2:	0]	_		AD1IP[2:0]				U1TXIP[2:0]		0444
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC4	0848	_		CNIP[2:0]		—		CMIP[2:0]]	_		MI2C1IP[2:0]		:	SI2C1IP[2:0]		4444
IPC7 084E — U2TXIP[2:0] — U2RXIP[2:0] — INT2IP[2:0] — T5IP[2:0] IPC8 0850 — — — — C1RXIP[2:0] — SPI2IP[2:0] — SPI2EIP[2:0] — SPI2EIP[2:0] — SPI2EIP[2:0] — IPC9 0852 — — — — C1RXIP[2:0] — IC3IP[2:0] — DMA3IP[2:0] — IPC12 0858 — — — MI2C2IP[2:0] — SI2C2IP[2:0] — — — — — — — — — — …	IPC5	084A	—		_	_	_	_	—	—	_	_	_	—			INT1IP[2:0]		0004
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IPC6	084C	—		T4IP[2:0]	•	_		OC4IP[2:0)]	_		OC3IP[2:0]	•			DMA2IP[2:0]		4444
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IPC7	084E	—		U2TXIP[2:0)]	_		U2RXIP[2:	0]	_		INT2IP[2:0]				T5IP[2:0]		4444
IPC12 0858 MI2C2IP[2:0] SI2C2IP[2:0]	IPC8	0850	_			_	_		C1RXIP[2:	0]	_		SPI2IP[2:0]			:	SPI2EIP[2:0]		0444
IPC14 085C PSEMIP[2:0] <	IPC9	0852	_	_	_	_	—		IC4IP[2:0]]	_		IC3IP[2:0]				DMA3IP[2:0]		0444
IPC16 0860 CRCIP[2:0] U2EIP[2:0] U1EIP[2:0] <td>IPC12</td> <td>0858</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>—</td> <td></td> <td>MI2C2IP[2:</td> <td>:0]</td> <td>_</td> <td></td> <td>SI2C2IP[2:0]</td> <td>]</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>0440</td>	IPC12	0858	_	_	_	_	—		MI2C2IP[2:	:0]	_		SI2C2IP[2:0]]		_	_	_	0440
IPC19 0866 - - - - - - CTMUIP[2:0] -	IPC14	085C	_	_	_	—	_		QEI1IP[2:0	0]	_		PSEMIP[2:0]	_	_	_	_	0440
IPC23 086E — PWM2IP[2:0] — PWM1IP[2:0] — — — — — — — — — —	IPC16	0860	_		CRCIP[2:0]	—		U2EIP[2:0)]	_		U1EIP[2:0]		_	_	_	—	4440
	IPC19	0866	_	—	—	—	—	—	—	—	_		CTMUIP[2:0]	_	_	_	—	0040
IPC24 0870 PWM3IP[2:0]	IPC23	086E	_		PWM2IP[2:	0]	—	1	PWM1IP[2:	:0]	_	—	—	—	_	_	_	—	4400
	IPC24	0870	_	—	—	—	—	—	—	—	_	—	_	—	_	F	PWM3IP[2:0]		0004

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

DS70000657J-page 73

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	—		JTAGIP[2:0)]			ICDIP[2:0]			_	_	_	—	_			4400
IPC36	0888	—		PTG0IP[2:0)]	—	PTGWDTIP[2:0] PTG3IP[2:0]			_	P	TGSTEPIP[2	:0]	—	—			4440
IPC37	088A	—	—	—	—	—	-	PTG3IP[2:0)]	_		PTG2IP[2:0]		—	I	PTG1IP[2:0]		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	—	_		_	_	_	—	—	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	—	—	—	—	—	_		_	_	_	DAE	DOOVR	—	—			0000
INTCON4	08C6	—	—	—	—	—	_		_	_	_	—	—	—	—		SGHT	0000
INTTREG	08C8	—	—	—	—		ILR[3:0]					VECNU	M[7:0]				0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Rese
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	000
IFS2	0804	_	_	—	_	—	—	_	_	_	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	000
IFS3	0806	_	—	—	_	—	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	000
IFS4	0808	_	—	CTMUIF	_	—	—	_	_	_	C1TXIF	_	_	CRCIF	U2EIF	U1EIF	_	000
IFS5	080A	PWM2IF	PWM1IF	_	_	_	_	_	—	_	_	_	_	_	_	_	_	000
IFS6	080C		_	_	_	_	_	_	—	_	_	_	_	_	_	_	PWM3IF	000
IFS8	0810	JTAGIF	ICDIF	_	_	_	_	_	—	_	_	_	_	_	_	_	_	000
IFS9	0812		_	_	_	_	_	_	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	000
IEC0	0820		DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	000
IEC2	0824		_	_	_	_	_	_	—	_	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	000
IEC3	0826		_	_	_	_	QEI1IE	PSEMIE	—	_	_	_	_	_	MI2C2IE	SI2C2IE	_	000
IEC4	0828		_	CTMUIE	_	_	_	_	—	_	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	_	000
IEC5	082A	PWM2IE	PWM1IE	_	_	_	_	_	—	_	_	_	_	_	_	_	_	000
IEC6	082C		_	_	_	_	_	_	—	_	_	_	_	_	_	_	PWM3IE	000
IEC7	082E	_	-	_	—	—	_	—	—	—	_		—		—	_		000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	—	_	_	_	_	_	_	_	_	000
IEC9	0832		_	_	_	_	_	_	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	000
IPC0	0840			T1IP[2:0]		_		OC1IP[2:0)]	_		IC1IP[2:0]		_		INT0IP[2:0]		444
IPC1	0842	_		T2IP[2:0]		—		OC2IP[2:0)]	—		IC2IP[2:0]				DMA0IP[2:0]		444
IPC2	0844			U1RXIP[2:0)]	_		SPI1IP[2:0)]	_		SPI1EIP[2:0]		_		T3IP[2:0]		444
IPC3	0846		_	_	_	_	I	DMA1IP[2:	0]	_		AD1IP[2:0]		_		U1TXIP[2:0]		044
IPC4	0848	_		CNIP[2:0]		—		CMIP[2:0]]	—		MI2C1IP[2:0]				SI2C1IP[2:0]		444
IPC5	084A	_	-	_	—	—	_	—	—	—	_		—			INT1IP[2:0]		000
IPC6	084C	_		T4IP[2:0]		—		OC4IP[2:0	0]	—		OC3IP[2:0]				DMA2IP[2:0]		444
IPC7	084E	_		U2TXIP[2:0]	—		U2RXIP[2:	0]	—		INT2IP[2:0]				T5IP[2:0]		444
IPC8	0850			C1IP[2:0]		_		C1RXIP[2:	0]	_		SPI2IP[2:0]		_		SPI2EIP[2:0]		444
IPC9	0852		_	_	_	_		IC4IP[2:0]]	_		IC3IP[2:0]		_		DMA3IP[2:0]		044
IPC12	0858	_	_	—	_	_	I	MI2C2IP[2:	0]	_		SI2C2IP[2:0]		_	_	—	—	044
IPC14	085C	_	_	_	_	—		QEI1IP[2:0	D]	_		PSEMIP[2:0]		-	_	—	_	044
IPC16	0860	_		CRCIP[2:0]]	—		U2EIP[2:0)]	—		U1EIP[2:0]		_	—	—	_	444
IPC17	0862	_	-	_	—	—		C1TXIP[2:	0]	_	_	—	—	_	—	—	_	040
IPC19	0866	_	_	_	_	_	_		_	_		CTMUIP[2:0]		_	_		_	004

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC23	086E	_		PWM2IP[2:0	0]	_	F	PWM1IP[2:	0]	_	_	_	_	_	_	_	_	4400
IPC24	0870	_	-	—	_	_	_	_	—		_		_	—	ł	PWM3IP[2:0]		0004
IPC35	0886	_		JTAGIP[2:0)]	_		ICDIP[2:0]		_			—	—		—	4400
IPC36	0888	_		PTG0IP[2:0)]	_	P	GWDTIP[2:0]		P	TGSTEPIP[2	:0]	—	—		—	4440
IPC37	088A	_	_	—	_	_		PTG3IP[2:	0]			PTG2IP[2:0]		—		PTG1IP[2:0]		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	_			—		_			—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4		_	—	_				—			DAE	DOOVR	—	—	-	—	0000
INTCON4	08C6	_	-	—	_	_	_	_	—	_	_		_	—	—	_	SGHT	0000
INTTREG	08C8	_	_	_	_		ILR[3:0]					VECN	JM[7:0]				0000

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_		TGATE	TCKF	'S[1:0]	—	TSYNC	TCS		0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	er3 Holding	Register (fo	r 32-bit time	r operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	—	_		TGATE	TCKF	'S[1:0]	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	—	_	_	—	_		TGATE	TCKF	'S[1:0]	—	—	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Т	imer5 Holdir	ng Register	(for 32-bit o	perations on	ly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	_	—		TGATE	TCKF	'S[1:0]	T32	_	TCS		0000
T5CON	0120	TON		TSIDL	_	_		_			TGATE	TCKF	'S[1:0]	_	_	TCS		0000

TABLE 4-8: TIMER1 THROUGH TIMER5 REGISTER MAP

TABLE 4	1-9:	INPU		JRE 1 T	HROUG	SH INPU	T CAPT	URE 4	REGIST	ER MA	5							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	—	ICSIDL		ICTSEL[2:0]		-	-	—	ICI[1	:0]	ICOV	ICBNE		ICM[2:0]		0000
IC1CON2	0142	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_		S	YNCSEL[4:	0]		000D
IC1BUF	0144							Inp	ut Capture 1	Buffer Reg	jister							XXXX
IC1TMR	0146							Inp	ut Capture	1 Timer Reg	lister							0000
IC2CON1	0148	_	Input Capture 1 Timer Register — ICSIDL ICTSEL[2:0] — — ICI[1:0] ICOV ICBNE ICM[2:0]															0000
IC2CON2	014A	—																000D
IC2BUF	014C							Inp	ut Capture 2	2 Buffer Reg	gister							XXXX
IC2TMR	014E							Inp	ut Capture 2	2 Timer Reg	jister							0000
IC3CON1	0150	_	_	ICSIDL		ICTSEL[2:0]		_	-	_	ICI[1	:0]	ICOV	ICBNE		ICM[2:0]		0000
IC3CON2	0152	—	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_		S	YNCSEL[4:	0]		000D
IC3BUF	0154							Inp	ut Capture 3	Buffer Reg	gister							XXXX
IC3TMR	0156							Inp	ut Capture 3	3 Timer Reg	jister							0000
IC4CON1	0158	—	_	ICSIDL		ICTSEL[2:0]		_	—	_	ICI[1	[:0]	ICOV	ICBNE		ICM[2:0]		0000
IC4CON2	015A	—	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	—		S	YNCSEL[4:	0]		000D
IC4BUF	015C							Inp	ut Capture 4	1 Buffer Reg	gister							XXXX
IC4TMR	015E							Inp	ut Capture 4	4 Timer Reg	lister							0000
			_															

TABLE 4-9: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 4 REGISTER MAP

-10:	001	FULC	JIVIFARE		00011	JUIFU		ANE 4	REGIS								
Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0900	—	—	OCSIDL	(OCTSEL[2:0)]	_	ENFLTB	ENFLTA	—	OCFLTB	OCFLTA	TRIGMODE		OCM[2:0]		0000
0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—		_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL[4:0]		000C
0904							Outp	out Compare	e 1 Seconda	ary Register							XXXX
0906								Output Co	mpare 1 Re	gister							XXXX
0908								Timer V	alue 1 Regi	ster							XXXX
090A	_	- <u> </u>															0000
090C	FLTMD	TMD FLTOUT FLTTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0]															000C
090E		LTMD FLTOUT FLTTRIEN OCINV — — OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] Output Compare 2 Secondary Register															XXXX
0910								Output Co	mpare 2 Re	gister							XXXX
0912								Timer V	alue 2 Regi	ster							XXXX
0914	_	_	OCSIDL	(OCTSEL[2:0)]	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM[2:0]		0000
0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL[4:0]		000C
0918							Outp	out Compare	e 3 Seconda	ary Register							XXXX
091A								Output Co	mpare 3 Re	gister							XXXX
091C								Timer V	alue 3 Regi	ster							XXXX
091E	_	_	OCSIDL	(OCTSEL[2:0)]	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM[2:0]		0000
0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL[4:0]		000C
0922							Outp	out Compare	e 4 Seconda	ary Register							XXXX
0924								Output Co	mpare 4 Re	gister							XXXX
0926								Timer V	alue 4 Regi	ster							XXXX
	Addr. 0900 0902 0904 0906 0908 0904 0906 0908 0904 0905 0904 0906 0907 0908 0909 0909 0910 0912 0914 0916 0918 0914 0915 0916 0917 0918 091910 0912 0912 0912 0912 0912 0912 0912 0912 0924	Addr. Bit 15 0900 0902 FLTMD 0904 0905 0900 0904 0905 0906 0907 FLTMD 0908 0909 0900 FLTMD 0910 09112 0912 0913 0914 0915 FLTMD 0916 FLTMD 0917 0918 0917 0918 0917 0918 0920 FLTMD 09212 09213 09214	Addr. Bit 15 Bit 14 0900 0902 FLTMD FLTOUT 0904 0906 0907 FLTMD FLTOUT 0908 0900 FLTMD FLTOUT 09010 0910 0910 09112 0912 0913 0914 0915 FLTMD FLTOUT 0918 0917 0918 0917 0918 09191 0920 FLTMD FLTOUT 09212 09214	Addr. Bit 15 Bit 14 Bit 13 0900 — — OCSIDL 0902 FLTMD FLTOUT FLTRIEN 0904 —	Addr. Bit 15 Bit 14 Bit 13 Bit 12 0900 OCSIDL OC 0902 FLTMD FLTOUT FLTRIEN OCINV 0904 OCSIDL OC OC 0906 OCSIDL OC 0906 OCSIDL OC 0908 OCSIDL OC 0906 OCSIDL OC 0907 FLTMD FLTOUT FLTRIEN OCINV 0908 OCSIDL OC 0900 OCSIDL OC 0910 OCSIDL OC 0912 OCSIDL OC 0914 OCSIDL OC 0918 OCSIDL OC 0912 OCSIDL OC 0914 <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0900 — — OCSIDL ○CTSEL[2:0 0902 FLTMD FLTOUT FLTRIEN OCINV — 0904 — — OCSIDL ○CTSEL[2:0 0906 — — … … 0906 — … … … 0906 … … … … 0906 … … … … 0908 … … … … 0900 … … … … 0904 … … … … 0908 … … … … 0900 … … … … … 0910 … … … … … 09114 … … … … … 0918 … … … …</td> <td>Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 100900——OCSIDL$\bigcirc CTSEL[2:0]$0902FLTMDFLTOUTFLTRIENOCINV——0904——OCSIDL$\bigcirc CTSEL[2:0]$0906——OCSIDL$\bigcirc CTSEL[2:0]$0907PLTMDFLTOUTFLTRIENOCINV—0908——OCSIDL$\bigcirc CTSEL[2:0]$0909FLTMDFLTOUTFLTRIENOCINV—09010——OCSIDL$\bigcirc CTSEL[2:0]$0912——OCSIDL$\bigcirc CTSEL[2:0]$0916FLTMDFLTOUTFLTRIENOCINV—0918————0914——OCSIDL$\bigcirc CTSEL[2:0]$0915————0916FLTMDFLTOUTFLTRIENOCINV—0917————0918————0914————0915————0916FLTMDFLTOUTFLTRIENOCINV—0917————0918————0919————0910————0911————0912————0913————<</td> <td>Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 90900OCSIDL\bigcircTSEL[2:0]0902FLTMDFLTOUTFLTRIENOCINV0904\bigcircTTRIENOCINV0906\bigcircTTRIENOCINV0907\bigcircTTRIENOCINV0908\bigcircTTRIENOCINV0909\bigcircTTRIENOCINV0909\bigcircTTRIENOCINV0906\bigcircTTRIENOCINV0907FLTMDFLTOUTFLTRIENOCINV0918\bigcircTTRIENOCINV0914OCSIDL\bigcircTTSEL[2:0]0918\bigcircTTSEL[2:0]0914OCSIDL\bigcircTTSEL[2:0]0915\bigcircTTSEL[2:0]0916FLTMDFLTOUTFLTRIENOCINV0917\bigcircTTSEL[2:0]0918\bigcircTTSEL[2:0]0919\bigcircTTSEL[2:0]0910\bigcircTTSEL[2:0]0912\bigcircTTSEL[2:0]0914\bigcircTTSEL[2:0]<!--</td--><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0900 OCSIDL OCTSEL[2:0] ENFLTB 0902 FLTMD FLTOUT FLTTRIEN OCINV OC32 0904 OC32 Output Co 0906 OC32 Output Co 0908 ENFLTB Output Co 0904 OCSIDL OCTSEL[2:0] ENFLTB 0906 OCSIDL OCTSEL[2:0] ENFLTB Output Co 0907 FLTMD FLTOUT FLTRIEN OCINV OC32 0910 OCSIDL OCTSEL[2:0] ENFLTB 0914 OCSIDL OCTSEL[2:0] ENFLTB 0918 OC32 Output Co</td><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0900 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0902 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0904 OC32 OCTRIG 0906 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0908 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0908 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0910 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA<!--</td--><td>Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60900OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0902FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT09040C32OCTRIGTRIGSTAT-0utput Compare 1 Register0906OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0907FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT0908OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0900FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT0901OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0910OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0911OC32OCTRIGTRIGSTAT0912-ENFLTBENFLTAOC32OCTRIGTRIGSTAT0914OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0915OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0916OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBEN</td><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0900 OCSIDL $\bigcirc TSEL[2:0]$ ENFLT8 ENFLTA OCFLTB 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS 0904 OC32 OCTRIG TRIGSTAT OCTRIS 0906 OC32 OCTRIG TRIGSTAT OCTRIS 0908 OC32 OCTRIG TRIGSTAT OCTRIS 0900 FLTMD FLTRIEN OCINV - - O322 OCTRIG TRIGSTAT OCTRIS 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB 0905 - - OLTUL Compare 1 Register OUtput Compare 2 Register OCTRIS</td><td>Addr. Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0902 FLTMD FLTOUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS 0904 - - OL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCTRIS 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0905 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0910 - - OCA OCSIDL OCT</td><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA TRIGMODE 0900 FLTMD FLTOUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS > SY 0904 - - OC32 OCTRIG TRIGSTAT OCTRIS > SY 0906 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0906 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0900 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE <</td><td>Addr. Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0900 FLTMD FLTOUT FLTTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCFLT8 OCFLTA TRIGMODE 0904 - - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0 0906 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0906 FLTMD FLTNUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0 0906 FLTMD FLTNUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0</td><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0900 OCSIDL ○CTSEL[2:0] ENFLT8 ENFLT8 OCFLT8 OCFLT8 TRIGMODE OCM[2:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS <td< td=""><td>Addr. Bit 13 Bit 13 Bit 12 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0900 OCSIDL OCTSEL[2:0] ENFLTB ENFLTB OCFLTB OCFLTB OCFLTA TRIGMODE OCM[2:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FL</td></td<></td></td></td>	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0900 — — OCSIDL ○CTSEL[2:0 0902 FLTMD FLTOUT FLTRIEN OCINV — 0904 — — OCSIDL ○CTSEL[2:0 0906 — — … … 0906 — … … … 0906 … … … … 0906 … … … … 0908 … … … … 0900 … … … … 0904 … … … … 0908 … … … … 0900 … … … … … 0910 … … … … … 09114 … … … … … 0918 … … … …	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 100900——OCSIDL $\bigcirc CTSEL[2:0]$ 0902FLTMDFLTOUTFLTRIENOCINV——0904——OCSIDL $\bigcirc CTSEL[2:0]$ 0906——OCSIDL $\bigcirc CTSEL[2:0]$ 0907PLTMDFLTOUTFLTRIENOCINV—0908——OCSIDL $\bigcirc CTSEL[2:0]$ 0909FLTMDFLTOUTFLTRIENOCINV—09010——OCSIDL $\bigcirc CTSEL[2:0]$ 0912——OCSIDL $\bigcirc CTSEL[2:0]$ 0916FLTMDFLTOUTFLTRIENOCINV—0918————0914——OCSIDL $\bigcirc CTSEL[2:0]$ 0915————0916FLTMDFLTOUTFLTRIENOCINV—0917————0918————0914————0915————0916FLTMDFLTOUTFLTRIENOCINV—0917————0918————0919————0910————0911————0912————0913————<	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 90900OCSIDL \bigcirc TSEL[2:0]0902FLTMDFLTOUTFLTRIENOCINV0904 \bigcirc TTRIENOCINV0906 \bigcirc TTRIENOCINV0907 \bigcirc TTRIENOCINV0908 \bigcirc TTRIENOCINV0909 \bigcirc TTRIENOCINV0909 \bigcirc TTRIENOCINV0906 \bigcirc TTRIENOCINV0907FLTMDFLTOUTFLTRIENOCINV0918 \bigcirc TTRIENOCINV0914OCSIDL \bigcirc TTSEL[2:0]0918 \bigcirc TTSEL[2:0]0914OCSIDL \bigcirc TTSEL[2:0]0915 \bigcirc TTSEL[2:0]0916FLTMDFLTOUTFLTRIENOCINV0917 \bigcirc TTSEL[2:0]0918 \bigcirc TTSEL[2:0]0919 \bigcirc TTSEL[2:0]0910 \bigcirc TTSEL[2:0]0912 \bigcirc TTSEL[2:0]0914 \bigcirc TTSEL[2:0] </td <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0900 OCSIDL OCTSEL[2:0] ENFLTB 0902 FLTMD FLTOUT FLTTRIEN OCINV OC32 0904 OC32 Output Co 0906 OC32 Output Co 0908 ENFLTB Output Co 0904 OCSIDL OCTSEL[2:0] ENFLTB 0906 OCSIDL OCTSEL[2:0] ENFLTB Output Co 0907 FLTMD FLTOUT FLTRIEN OCINV OC32 0910 OCSIDL OCTSEL[2:0] ENFLTB 0914 OCSIDL OCTSEL[2:0] ENFLTB 0918 OC32 Output Co</td> <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0900 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0902 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0904 OC32 OCTRIG 0906 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0908 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0908 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0910 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA<!--</td--><td>Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60900OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0902FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT09040C32OCTRIGTRIGSTAT-0utput Compare 1 Register0906OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0907FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT0908OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0900FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT0901OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0910OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0911OC32OCTRIGTRIGSTAT0912-ENFLTBENFLTAOC32OCTRIGTRIGSTAT0914OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0915OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0916OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBEN</td><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0900 OCSIDL $\bigcirc TSEL[2:0]$ ENFLT8 ENFLTA OCFLTB 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS 0904 OC32 OCTRIG TRIGSTAT OCTRIS 0906 OC32 OCTRIG TRIGSTAT OCTRIS 0908 OC32 OCTRIG TRIGSTAT OCTRIS 0900 FLTMD FLTRIEN OCINV - - O322 OCTRIG TRIGSTAT OCTRIS 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB 0905 - - OLTUL Compare 1 Register OUtput Compare 2 Register OCTRIS</td><td>Addr. Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0902 FLTMD FLTOUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS 0904 - - OL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCTRIS 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0905 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0910 - - OCA OCSIDL OCT</td><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA TRIGMODE 0900 FLTMD FLTOUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS > SY 0904 - - OC32 OCTRIG TRIGSTAT OCTRIS > SY 0906 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0906 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0900 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE <</td><td>Addr. Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0900 FLTMD FLTOUT FLTTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCFLT8 OCFLTA TRIGMODE 0904 - - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0 0906 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0906 FLTMD FLTNUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0 0906 FLTMD FLTNUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0</td><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0900 OCSIDL ○CTSEL[2:0] ENFLT8 ENFLT8 OCFLT8 OCFLT8 TRIGMODE OCM[2:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS <td< td=""><td>Addr. Bit 13 Bit 13 Bit 12 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0900 OCSIDL OCTSEL[2:0] ENFLTB ENFLTB OCFLTB OCFLTB OCFLTA TRIGMODE OCM[2:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FL</td></td<></td></td>	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0900 OCSIDL OCTSEL[2:0] ENFLTB 0902 FLTMD FLTOUT FLTTRIEN OCINV OC32 0904 OC32 Output Co 0906 OC32 Output Co 0908 ENFLTB Output Co 0904 OCSIDL OCTSEL[2:0] ENFLTB 0906 OCSIDL OCTSEL[2:0] ENFLTB Output Co 0907 FLTMD FLTOUT FLTRIEN OCINV OC32 0910 OCSIDL OCTSEL[2:0] ENFLTB 0914 OCSIDL OCTSEL[2:0] ENFLTB 0918 OC32 Output Co	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0900 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0902 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0904 OC32 OCTRIG 0906 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0908 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0908 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG 0910 OCSIDL OCTSEL[2:0] ENFLTB ENFLTA </td <td>Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60900OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0902FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT09040C32OCTRIGTRIGSTAT-0utput Compare 1 Register0906OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0907FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT0908OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0900FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT0901OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0910OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0911OC32OCTRIGTRIGSTAT0912-ENFLTBENFLTAOC32OCTRIGTRIGSTAT0914OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0915OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBENFLTA-0916OCSIDL$\bigcirc CTSEL[2:0]$-ENFLTBEN</td> <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0900 OCSIDL $\bigcirc TSEL[2:0]$ ENFLT8 ENFLTA OCFLTB 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS 0904 OC32 OCTRIG TRIGSTAT OCTRIS 0906 OC32 OCTRIG TRIGSTAT OCTRIS 0908 OC32 OCTRIG TRIGSTAT OCTRIS 0900 FLTMD FLTRIEN OCINV - - O322 OCTRIG TRIGSTAT OCTRIS 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB 0905 - - OLTUL Compare 1 Register OUtput Compare 2 Register OCTRIS</td> <td>Addr. Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0902 FLTMD FLTOUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS 0904 - - OL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCTRIS 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0905 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0910 - - OCA OCSIDL OCT</td> <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA TRIGMODE 0900 FLTMD FLTOUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS > SY 0904 - - OC32 OCTRIG TRIGSTAT OCTRIS > SY 0906 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0906 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0900 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE <</td> <td>Addr. Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0900 FLTMD FLTOUT FLTTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCFLT8 OCFLTA TRIGMODE 0904 - - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0 0906 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0906 FLTMD FLTNUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0 0906 FLTMD FLTNUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0</td> <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0900 OCSIDL ○CTSEL[2:0] ENFLT8 ENFLT8 OCFLT8 OCFLT8 TRIGMODE OCM[2:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS <td< td=""><td>Addr. Bit 13 Bit 13 Bit 12 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0900 OCSIDL OCTSEL[2:0] ENFLTB ENFLTB OCFLTB OCFLTB OCFLTA TRIGMODE OCM[2:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FL</td></td<></td>	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60900OCSIDL $\bigcirc CTSEL[2:0]$ -ENFLTBENFLTA-0902FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT09040C32OCTRIGTRIGSTAT-0utput Compare 1 Register0906OCSIDL $\bigcirc CTSEL[2:0]$ -ENFLTBENFLTA-0907FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT0908OCSIDL $\bigcirc CTSEL[2:0]$ -ENFLTBENFLTA-0900FLTMDFLTOUTFLTRIENOCINV0C32OCTRIGTRIGSTAT0901OCSIDL $\bigcirc CTSEL[2:0]$ -ENFLTBENFLTA-0910OCSIDL $\bigcirc CTSEL[2:0]$ -ENFLTBENFLTA-0911OC32OCTRIGTRIGSTAT0912-ENFLTBENFLTAOC32OCTRIGTRIGSTAT0914OCSIDL $\bigcirc CTSEL[2:0]$ -ENFLTBENFLTA-0915OCSIDL $\bigcirc CTSEL[2:0]$ -ENFLTBENFLTA-0916OCSIDL $\bigcirc CTSEL[2:0]$ -ENFLTBEN	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0900 OCSIDL $\bigcirc TSEL[2:0]$ ENFLT8 ENFLTA OCFLTB 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS 0904 OC32 OCTRIG TRIGSTAT OCTRIS 0906 OC32 OCTRIG TRIGSTAT OCTRIS 0908 OC32 OCTRIG TRIGSTAT OCTRIS 0900 FLTMD FLTRIEN OCINV - - O322 OCTRIG TRIGSTAT OCTRIS 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB 0905 - - OLTUL Compare 1 Register OUtput Compare 2 Register OCTRIS	Addr. Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0902 FLTMD FLTOUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS 0904 - - OL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCTRIS 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0904 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0905 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA 0910 - - OCA OCSIDL OCT	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLTB OCFLTA TRIGMODE 0900 FLTMD FLTOUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS > SY 0904 - - OC32 OCTRIG TRIGSTAT OCTRIS > SY 0906 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0906 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0900 - - OCSIDL OCTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE <	Addr. Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0900 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0900 FLTMD FLTOUT FLTTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCFLT8 OCFLTA TRIGMODE 0904 - - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0 0906 - - OCSIDL ○CTSEL[2:0] - ENFLT8 ENFLTA - OCFLT8 OCFLTA TRIGMODE 0906 FLTMD FLTNUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0 0906 FLTMD FLTNUT FLTRIEN OCINV - - OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0900 OCSIDL ○CTSEL[2:0] ENFLT8 ENFLT8 OCFLT8 OCFLT8 TRIGMODE OCM[2:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FLTOUT FLTRIEN OCINV OC32 OCTRIG TRIGSTAT OCTRIS <td< td=""><td>Addr. Bit 13 Bit 13 Bit 12 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0900 OCSIDL OCTSEL[2:0] ENFLTB ENFLTB OCFLTB OCFLTB OCFLTA TRIGMODE OCM[2:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FL</td></td<>	Addr. Bit 13 Bit 13 Bit 12 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0900 OCSIDL OCTSEL[2:0] ENFLTB ENFLTB OCFLTB OCFLTB OCFLTA TRIGMODE OCM[2:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 OCS2 OCTRIG TRIGSTAT OCTRIS SYNCSEL[4:0] 0900 FLTMD FL

TABLE 4-10: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 4 REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTGCST	0AC0	PTGEN		PTGSIDL	PTGTOGL	_	PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWTO	_		-	-	PTGIT	M[1:0]	0000
PTGCON	0AC2	F	PTGCLK[2	:0]		F	PTGDIV[4:0]			PTGPW	D[3:0]		_	Р	TGWDT[2:	0]	0000
PTGBTE	0AC4		ADO	CTS[4:1]		IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000
PTGHOLD	0AC6								PTGHOL	D[15:0]								0000
PTGT0LIM	0AC8								PTGT0LIN	/[15:0]								0000
PTGT1LIM	0ACA								PTGT1LIN	A[15:0]								0000
PTGSDLIM	0ACC								PTGSDLI	<i>I</i> [15:0]								0000
PTGC0LIM	0ACE								PTGC0LIN	<i>I</i> [15:0]								0000
PTGC1LIM	0AD0								PTGC1LI	<i>I</i> [15:0]								0000
PTGADJ	0AD2								PTGADJ	[15:0]								0000
PTGL0	0AD4								PTGL0[15:0]								0000
PTGQPTR	0AD6	_	—	—	_	_	_	—	—	—	_	—		Р	TGQPTR[4	l:0]		0000
PTGQUE0	0AD8				STEF	P1[7:0]							STEP	0[7:0]				0000
PTGQUE1	0ADA				STEF	P3[7:0]							STEP	2[7:0]				0000
PTGQUE2	0ADC				STEF	P5[7:0]							STEP	4[7:0]				0000
PTGQUE3	0ADE				STEF	P7[7:0]							STEP	6[7:0]				0000
PTGQUE4	0AE0				STEF	P9[7:0]							STEP	8[7:0]				0000
PTGQUE5	0AE2				STEP	11[7:0]							STEP1	10[7:0]				0000
PTGQUE6	0AE4				STEP	13[7:0]							STEP1	2[7:0]				0000
PTGQUE7	0AE6				STEP	15[7:0]							STEP1	14[7:0]				0000

TABLE 4-11: PTG REGISTER MAP

	-14.				I OR U										- '			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SI	(NCSRC[2:0]		SE	/TPS[3:0]		0000
PTCON2	0C02	_	PCLKDIV[2:0															0000
PTPER	0C04								PTPER[15	i:0]								00F8
SEVTCMP	0C06								SEVTCMP[15:0]								0000
MDC	0C0A								MDC[15:	0]								0000
CHOP	0C1A	CHPCLKEN	_	—	_	_	_					CHOPC	LK[9:0]					0000
PWMKEY	0C1E								PWMKEY[1	5:0]								0000
Legend: -	– = unin	nplemented r	ead as '0'	Reset valu	es are shov	vn in hexade	cimal											

TABLE 4-12: PWM REGISTER MAP FOR dePIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY **TABLE 4-13**:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC	[1:0]	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOE	D[1:0]	OVRENH	OVRENL	OVRDA	AT[1:0]	FLTD	AT[1:0]	CLD	AT[1:0]	SWAP	OSYNC	C000
FCLCON1	0C24	_			CLSRC[4:	0]		CLPOL	CLMOD		F	LTSRC[4:0)]		FLTPOL	FLTMC	DD[1:0]	0000
PDC1	0C26																	FFF8
PHASE1	0C28																	0000
DTR1	0C2A	_	_							DTR1[13:	:0]							0000
ALTDTR1	0C2C	_	_							ALTDTR1[1	3:0]							0000
TRIG1	0C32								TRGCMP[1	5:0]								0000
TRGCON1	0C34		TRGD	IV[3:0]		_	_	—	—	_	—			TRG	STRT[5:0]			0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	—	_														0000
AUXCON1	0C3E	_	_	_													0000	

TABLE 4	-14:	PWM G	ENERA	TOR 2 R	EGISTE	R MAP I	FOR dsl	PIC33EP	ХХХМС2	0X/50X	AND P	IC24E	PXXXN	/IC20X	(DEVIC	CES ONL	Y.	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC	[1:0]	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMO	D[1:0]	OVRENH	OVRENL	OVRDA	AT[1:0]	FLTD	AT[1:0]	CLD	AT[1:0]	SWAP	OSYNC	C000
FCLCON2	0C44	_		(CLSRC[4:0] CLPOL CLMOD FLTSRC[4:0] FLTPOL FLTMOD[1:0] PDC2[15:0]													
PDC2	0C46				PDC2[15:0]													
PHASE2	0C48				PDC2[15:0] PHASE2[15:0]													
DTR2	0C4A	_	_							DTR2[13:0]								0000
ALTDTR2	0C4C	_	_						Al	_TDTR2[13:	0]							0000
TRIG2	0C52							Т	RGCMP[15:0)]								0000
TRGCON2	0C54		TRGD	IV[3:0]		_	_	_	_	_	—			TR	GSTRT[5:0)]		0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_		_							LEB[11:0)]						0000
AUXCON2	0C5E	-	—	—			BLANK	(SEL[3:0]		—	—		CHOPS	SEL[3:0]		CHOPHEN	CHOPLEN	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PWM GENERATOR 3 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC[[1:0]	DTCP		MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMO	D[1:0]	OVRENH	OVRENL	OVRDA	\T[1:0]	FLTD	AT[1:0]	CLD	AT[1:0]	SWAP	OSYNC	C000
FCLCON3	0C64	_		(CLSRC[4:0]		CLPOL	CLMOD		FLT	SRC[4:0]		FLTPOL	FLTM	DD[1:0]	00F8
PDC3	0C66																0000	
PHASE3	0C68																0000	
DTR3	0C6A	_	_							DTR3[13:0]								0000
ALTDTR3	0C6C	_	_						AL	TDTR3[13:	:0]							0000
TRIG3	0C72							٦	RGCMP[15:0)]								0000
TRGCON3	0C74		TRGD	IV[3:0]		—	_	—	_	_	_			TR	GSTRT[5:	0]		0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	—	_	—	_	— LEB[11:0] 00											0000	
AUXCON3	0C7E	_	—	—													0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN		QEISIDL		PIMOD[2:0]		IMV	[1:0]			INTDIV[2:0)]	CNTPOL	GATEN	CCN	I[1:0]	0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV[2:0]		OUTFI	NC[1:0]	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4			PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6								POSCNT[15	0]								0000
POS1CNTH	01C8								POSCNT[31:	16]								0000
POS1HLD	01CA								POSHLD[15	0]								0000
VEL1CNT	01CC		VELCNT[15:0] INTTMR[15:0]															0000
INT1TMRL	01CE																	0000
INT1TMRH	01D0		INTTMR[31:16]															0000
INT1HLDL	01D2		INTTMR[31:16] INTHLD[15:0]															0000
INT1HLDH	01D4								INTHLD[31:1	6]								0000
INDX1CNTL	01D6								INDXCNT[15	:0]								0000
INDX1CNTH	01D8								NDXCNT[31:	16]								0000
INDX1HLD	01DA								INDXHLD[15	:0]								0000
QEI1GECL	01DC								QEIGEC[15:	0]								0000
QEI1ICL	01DC								QEIIC[15:0]								0000
QEI1GECH	01DE								QEIGEC[31:	16]								0000
QEI1ICH	01DE								QEIIC[31:16	6]								0000
QEI1LECL	01E0								QEILEC[15:	0]								0000
QEI1LECH	01E2								QEILEC[31:1	6]								0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

TABLE 4-17: I2C1 AND I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
I2C1RCV	0200	_	_	—	—	—	_	—	—				I2C1 Recei	ve Register				0000		
I2C1TRN	0202	_	_	—	_	_	_	_	_				I2C1 Transi	mit Register				OOFF		
I2C1BRG	0204	-		_	_	_	_	_				Bau	d Rate Gene	erator				0000		
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000		
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10											
I2C1ADD	020A	-		_	_	_	_		I2C1 Address Register											
I2C1MSK	020C	-		_	_	_	_				l:	2C1 Address	Mask Regi	ster				0000		
I2C2RCV	0210	-		_	_	_	_	_	_				I2C2 Recei	ve Register				0000		
I2C2TRN	0212	_	_		—	_	—	_	_				I2C2 Transi	nit Register				OOFF		
I2C2BRG	0214	-		_	_	_	_	_				Bau	d Rate Gene	erator				0000		
I2C2CON	0216	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000		
I2C2STAT	0218	ACKSTAT	TRSTAT		—		BCL	GCSTAT	ADD10	0 IWCOL I2COV D_A P S R_W RBF TBF C										
I2C2ADD	021A	_	_		_	_	—	I2C2 Address Register												
I2C2MSK	021C	_	_		-		—				l	2C2 Address	Mask Regis	ster				0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN	[1:0]	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	EL[1:0]	STSEL	0000		
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXI	SEL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110		
U1TXREG	0224	_	_	_	_	_	_	_				UART	l Transmit F	Register				XXXX		
U1RXREG	0226	_	_	_	_	_	_	O Baud Rate Generator Prescaler O												
U1BRG	0228					— — UART1 Receive Register Baud Rate Generator Prescaler														
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN	[1:0]	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	EL[1:0]	STSEL	0000		
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXI	SEL[1:0]	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110		
U2TXREG	0234	_	_	_	_	_	_	_				UART2	2 Transmit F	Register				XXXX		
U2RXREG	0236	_	_	_	_	—	_	_				UART	2 Receive R	legister				0000		
U2BRG	0238							Baud	Rate Gen	erator Pres	scaler							0000		

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_		SPIBEC[2:0]	SRMPT	SPIROV	SRXMPT		SISEL[2:0]		SPITBF	SPIRBF	0000
SPI1CON1	0242		_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE[2:0]		PPRE	[1:0]	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	—	_	—	_	_	—	_	—	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248						SPI1 Transmit and Receive Buffer Register 00											
SPI2STAT	0260	SPIEN		SPISIDL		_		SPIBEC[2:0]	SRMPT	SPIROV	SRXMPT		SISEL[2:0]		SPITBF	SPIRBF	0000
SPI2CON1	0262				DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE[2:0]		PPRE	[1:0]	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL									SPIBEN	0000				
SPI2BUF	0268							SPI2 Tra	insmit and R	eceive Buf	er Registe	r						0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Data B	uffer 0								XXXX
ADC1BUF1	0302								ADC1 Data B	uffer 1								XXXX
ADC1BUF2	0304								ADC1 Data B	uffer 2								XXXX
ADC1BUF3	0306								ADC1 Data B	uffer 3								XXXX
ADC1BUF4	0308								ADC1 Data B	uffer 4								XXXX
ADC1BUF5	030A								ADC1 Data B	uffer 5								XXXX
ADC1BUF6	030C								ADC1 Data B	uffer 6								XXXX
ADC1BUF7	030E								ADC1 Data B	uffer 7								XXXX
ADC1BUF8	0310								ADC1 Data B	uffer 8								XXXX
ADC1BUF9	0312					ADC1 Data Buffer 9												XXXX
ADC1BUFA	0314					ADC1 Data Buffer 10												
ADC1BUFB	0316								ADC1 Data Bu	uffer 11								XXXX
ADC1BUFC	0318								ADC1 Data Bu	Iffer 12								XXXX
ADC1BUFD	031A								ADC1 Data Bu	iffer 13								XXXX
ADC1BUFE	031C								ADC1 Data Bu	iffer 14								XXXX
ADC1BUFF	031E								ADC1 Data Bu	iffer 15								XXXX
AD1CON1	0320	ADON	—	ADSIDL	ADDMABM	—	AD12B	FOF	RM[1:0]		SSRC[2:0]		SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322		VCFG[2:0]		—	—	CSCNA	CHF	PS[1:0]	BUFS			SMPI[4:0]			BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	—			SAMC[4:0]						ADCS	S[7:0]				0000
AD1CHS123	0326	—	—	—	—	CH123NB[1:0] CH123SB CH123NA[1:0] CH123SA											0000	
AD1CHS0	0328	CH0NB	—	—			CH0SB[4:0]		CH0NA		-		C	CH0SA[4:0]			0000
AD1CSSH	032E	CSS[31:30]	—	—	_		CSS[26:24	1]	_			—	_	_	_	_	0000
AD1CSSL	0330				CSS[15:0]												0000	
AD1CON4	0332	_	_	_	_												0000	

TABLE 4-2	1: E	ECAN1	REGIST	ER MAP	WHEN	WIN (C	1CTRL	1[0]) =	0 OR 1	FOR dsP	IC33EP	YXXXMO	C/GP50	X DEVI	CES ON	ILY				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	F	REQOP[2:0)]	OPI	MODE[2:0]		_	CANCAP	_	_	WIN	0480		
C1CTRL2	0402	_	—	—	_	_	_	—	_	—	—	_		[DNCNT[4:0]			0000		
C1VEC	0404	_	—	—		I	FILHIT[4:0]			—				ICODE[6:0]]			0040		
C1FCTRL	0406		DMABS[2:0]		_	_	_	_	_	—	— — — — — — — — — —									
C1FIFO	0408	_	_			FBP[5:0]			_	_			FNRB[5:0]						
C1INTF	040A		_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000		
C1INTE	040C	_	_	—	_	_	_	—	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000		
C1EC	040E				TERRCN	IT[7:0]							RERRC	NT[7:0]				0000		
C1CFG1	0410		_	_	_	_	_		_	SJW[1	:0]			BRP	[5:0]			0000		
C1CFG2	0412		WAKFIL	_	_	_	S	EG2PH[2:0)]	SEG2PHTS	SAM	5	SEG1PH[2	::0]	F	PRSEG[2:0]	0000		
C1FEN1	0414														FFFF					
C1FMSKSEL1	0418	F7MS	K[1:0]	F6MS	K[1:0]	F5MS	SK[1:0]	F4MS	SK[1:0]	F3MSK	[1:0]	F2MS	K[1:0]	F1MS	K[1:0]	F0MS	K[1:0]	0000		
C1FMSKSEL2	041A	F15M	SK[1:0]	F14MS	K[1:0]	F13M	SK[1:0]	F12M	SK[1:0]	F11MSK	[1:0]	F10MS	SK[1:0]	F9MS	K[1:0]	F8MS	K[1:0]	0000		

4 503

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1[0]) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							S	ee definition	when WIN	= x							
C1RXFUL1	0420								RXFU	IL[15:0]								0000
C1RXFUL2	0422		RXFUL[31:16] RXOVE[15:0]															0000
C1RXOVF1	0428		RXOVF[15:0]															0000
C1RXOVF2	042A		RXOVF[15:0] RXOVF[31:16]															0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1P	RI[1:0]	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0P	RI[1:0]	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3P	RI[1:0]	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2P	RI[1:0]	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5P	RI[1:0]	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4P	RI[1:0]	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7P	RI[1:0]	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6P	RI[1:0]	XXXX
C1RXD	0440							E	CAN1 Rece	ive Data Wo	ord							XXXX
C1TXD	0442							E	CAN1 Trans	mit Data W	ord							XXXX

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	ion when W	IN = x							
C1BUFPNT1	0420		F3BF	P[3:0]			F2B	P[3:0]			F1BI	P[3:0]			F0BF	P[3:0]		0000
C1BUFPNT2	0422		F7BF	P[3:0]			F6B	P[3:0]			F5BI	P[3:0]			F4BF	P[3:0]		0000
C1BUFPNT3	0424		F11B	P[3:0]			F10E	3P[3:0]			F9BI	> [3:0]			F8BF	P[3:0]		0000
C1BUFPNT4	0426		F15B	P[3:0]			F14E	3P[3:0]			F13B	P[3:0]			F12B	P[3:0]		0000
C1RXM0SID	0430				SID	10:3]					SID[2:0]		—	MIDE	—	EID[17:16]	XXXX
C1RXM0EID	0432				EID[15:8]							EID[7:0]				XXXX
C1RXM1SID	0434				SID	10:3]					SID[2:0]		_	MIDE	_	EID[17:16]	XXXX
C1RXM1EID	0436				EID[15:8]							EID[7:0]				XXXX
C1RXM2SID	0438				SID	10:3]					SID[2:0]		_	MIDE	_	EID[17:16]	XXXX
C1RXM2EID	043A				EID[15:8]							EID[7:0]				XXXX
C1RXF0SID	0440				SID	10:3]					SID[2:0]		_	EXIDE	—	EID[17:16]	XXXX
C1RXF0EID	0442				EID[15:8]							EID[7:0]				XXXX
C1RXF1SID	0444				SID	10:3]					SID[2:0]		_	EXIDE	_	EID[17:16]	XXXX
C1RXF1EID	0446				EID[15:8]							EID[7:0]				XXXX
C1RXF2SID	0448				SID	10:3]					SID[2:0]		_	EXIDE	_	EID[17:16]	XXXX
C1RXF2EID	044A				EID[15:8]							EID[7:0]				XXXX
C1RXF3SID	044C				SID	10:3]					SID[2:0]		_	EXIDE		EID[17:16]	XXXX
C1RXF3EID	044E				EID[15:8]							EID[7:0]				XXXX
C1RXF4SID	0450				SID	10:3]					SID[2:0]		_	EXIDE		EID[17:16]	XXXX
C1RXF4EID	0452				EID	15:8]							EID[7:0]				XXXX
C1RXF5SID	0454				SID	10:3]					SID[2:0]		_	EXIDE		EID[17:16]	XXXX
C1RXF5EID	0456				EID	15:8]							EID[7:0]				XXXX
C1RXF6SID	0458				SID	10:3]					SID[2:0]		_	EXIDE		EID[17:16]	XXXX
C1RXF6EID	045A				EID[15:8]							EID[7:0]				XXXX
C1RXF7SID	045C				SID	10:3]					SID[2:0]		—	EXIDE		EID[17:16]	XXXX
C1RXF7EID	045E				EID[15:8]							EID[7:0]				XXXX
C1RXF8SID	0460				SID	10:3]					SID[2:0]		—	EXIDE		EID[17:16]	XXXX
C1RXF8EID	0462				EID[15:8]							EID[7:0]				xxxx
C1RXF9SID	0464				SID	10:3]					SID[2:0]		—	EXIDE	_	EID[17:16]	XXXX
C1RXF9EID	0466				EID[15:8]							EID[7:0]				XXXX
C1RXF10SID	0468				SID	10:3]					SID[2:0]		—	EXIDE		EID[17:16]	XXXX
C1RXF10EID	046A				EID[15:8]							EID[7:0]				XXXX
C1RXF11SID	046C				SID[10:3]					SID[2:0]		—	EXIDE	_	EID[17:16]	XXXX

DS70000657J-page 88

© 2011-2020 Microchip Technology Inc.

IABLE 4-2	:3: E	CANT	KEGIS I		PWHE	N WIN	(01011	KLJ[0])	= 1 FO	aspic.	33EPXX	XINC/GF	'50X DE	VICES C	JNLY (C	ONTIN	UED)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E				EID	[15:8]							EID[7:0]				XXXX
C1RXF12SID	0470				SID	[10:3]					SID[2:0]			EXIDE		EID[1	7:16]	XXXX
C1RXF12EID	0472				EID	[15:8]							EID[7:0]				XXXX
C1RXF13SID	0474				SID	[10:3]					SID[2:0]		_	EXIDE		EID[1	7:16]	XXXX
C1RXF13EID	0476				EID	[15:8]							EID[7:0]				XXXX
C1RXF14SID	0478				SID	[10:3]					SID[2:0]		_	EXIDE		EID[1	7:16]	XXXX
C1RXF14EID	047A				EID	[15:8]							EID[7:0]				XXXX
C1RXF15SID	047C				SID	[10:3]					SID[2:0]		_	EXIDE	_	EID[1	7:16]	XXXX
C1RXF15EID	047E				EID	[15:8]							EID[7:0]				XXXX

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1[0]) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY (CONTINUED)

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	_	CSIDL		١	/WORD[4:0)]		CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—	0000
CRCCON2	0642	_	- - DWIDTH[4:0] - - PLEN[4:0] X[15:1]															0000
CRCXORL	0644		X[15:1] —															0000
CRCXORH	0646		X[15:1] — X[31:16]															0000
CRCDATL	0648								CRC Data	Input Low V	Vord							0000
CRCDATH	064A								CRC Data	Input High \	Nord							0000
CRCWDATL	064C								CRC Re	sult Low Wo	ord							0000
CRCWDATH	064E								CRC Re	sult High Wo	ord							0000

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	—			RP35	R[5:0]			_	_			RP20	R[5:0]			0000
RPOR1	0682		_			RP37	R[5:0]			_				RP36	R[5:0]			0000
RPOR2	0684		_			RP39	R[5:0]			_				RP38	R[5:0]			0000
RPOR3	0686		_			RP41	R[5:0]			_				RP40	R[5:0]			0000
RPOR4	0688	_	_			RP43	R[5:0]			—	_			RP42	R[5:0]			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
RPOR0	0680	_	_			RP35	R[5:0]			_	—			RP20	R[5:0]			0000		
RPOR1	0682					RP37	R[5:0]			_	_			RP36	R[5:0]			0000		
RPOR2	0684	_	_			RP39	R[5:0]			_	_			RP38	R[5:0]			0000		
RPOR3	0686	_	_			RP41	R[5:0]							RP40	R[5:0]			0000		
RPOR4	0688	_	_			RP43	R[5:0]							RP42	R[5:0]			0000		
RPOR5	068A	_	_											0000						
RPOR6	068C	_	_	_						_	—	- RP56R[5:0]								

TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC204/504 AND PIC24EPXXXGP/MC204 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680					RP35	R[5:0]			_	_			RP20	R[5:0]			0000
RPOR1	0682	_	_			RP37	R[5:0]			—				RP36	R[5:0]			0000
RPOR2	0684	_	_			RP39	R[5:0]			—	_			RP38	R[5:0]			0000
RPOR3	0686	_	_			RP41	R[5:0]			—	_			RP40	R[5:0]			0000
RPOR4	0688	_	_			RP43	R[5:0]			—				RP42	R[5:0]			0000
RPOR5	068A	_	_			RP55	R[5:0]			—	_			RP54	R[5:0]			0000
RPOR6	068C	_	_			RP57	R[5:0]			—	—			RP56	R[5:0]			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC206/506 AND PIC24EPXXXGP/MC206 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—			RP35	R[5:0]			_	_			RP20	R[5:0]			0000
RPOR1	0682	_	_			RP37	R[5:0]			_	_			RP36	R[5:0]			0000
RPOR2	0684	_	_			RP39	R[5:0]				_			RP38	R[5:0]			0000
RPOR3	0686	_	_			RP41	R[5:0]				_			RP40	R[5:0]			0000
RPOR4	0688	_	_			RP43	R[5:0]			_	_			RP42	R[5:0]			0000
RPOR5	068A	_	_			RP55	R[5:0]			_	_			RP54	R[5:0]			0000
RPOR6	068C	_	_			RP57	R[5:0]			_	_			RP56	R[5:0]			0000
RPOR7	068E	_	_			RP97	R[5:0]				_		—	—	—	_	_	0000
RPOR8	0690	_	_			RP118	8R[5:0]				_		—	—	_	_	_	0000
RPOR9	0692	_	_	_	_	_	_	_	_		_			RP120)R[5:0]			0000

TABLE	4-29:	PER	IPHERA	L PIN S	ELECI	INPUT F	REGIST	ER MAF	FOR P	IC24EP	XXXMC	20X DE	VICES (JNLY				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R[6:0]				—	—	-	—	-	—	—	—	0000
RPINR1	06A2	_	_	_	_	_	_	—	—	_				INT2R[6:0]				0000
RPINR3	06A6	_		—	_	_	_	—	_					T2CKR[6:0]]			0000
RPINR7	06AE	_		•		IC2R[6:0]		•	•					IC1R[6:0]				0000
RPINR8	06B0	_				IC4R[6:0]								IC3R[6:0]				0000
RPINR11	06B6	_		—	—	_	—		—					OCFAR[6:0]]			0000
RPINR12	06B8	_		•		FLT2R[6:0]		•	•					FLT1R[6:0]				0000
RPINR14	06BC	_				QEB1R[6:0]				_				QEA1R[6:0]]			0000
RPINR15	06BE	_			ŀ	HOME1R[6:0)]			_				INDX1R[6:0]			0000
RPINR18	06C4		_	_	_	_	_	_	_	_				U1RXR[6:0]]			0000
RPINR19	06C6		_	_	_	_	_	_	_	_				U2RXR[6:0]]			0000
RPINR22	06CC				S	SCK2INR[6:0)]			_				SDI2R[6:0]				0000
RPINR23	06CE		_	_	_	_	_	_	_	_				SS2R[6:0]				0000
RPINR26	06D4		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
RPINR37	06EA				S	SYNCI1R[6:0)]			_	_	_	_	_	_	_	_	0000
RPINR38	06EC	_			D	TCMP1R[6:	0]					—	—	_				0000
RPINR39	06EE	_			D	TCMP3R[6:	0]			_			D	TCMP2R[6:	:0]			0000

TABLE 4-29: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File																		All
Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
RPINR0	06A0	—				INT1R[6:0]				—	—	—	—	_	—	—		0000
RPINR1	06A2	_				_	_		—	—				INT2R[6:0]				0000
RPINR3	06A6	_				_	_		—	—				T2CKR[6:0]				0000
RPINR7	06AE	_				IC2R[6:0]				_				IC1R[6:0]				0000
RPINR8	06B0	_				IC4R[6:0]				_				IC3R[6:0]				0000
RPINR11	06B6	_				_			_	_				OCFAR[6:0]]			0000
RPINR18	06C4	_				_			_	_				U1RXR[6:0]]			0000
RPINR19	06C6	_				_			_	_				U2RXR[6:0]]			0000
RPINR22	06CC	_			S	CK2INR[6:0)]			_				SDI2R[6:0]				0000
RPINR23	06CE	_		-	-	_		-	—	_				SS2R[6:0]				0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R[6:0]				—	_	—	—	—	—	_	_	0000
RPINR1	06A2		_	_	_			_		_				INT2R[6:0]				0000
RPINR3	06A6		_	_	_			_		_				T2CKR[6:0]				0000
RPINR7	06AE					IC2R[6:0]				_				IC1R[6:0]				0000
RPINR8	06B0					IC4R[6:0]				_				IC3R[6:0]				0000
RPINR11	06B6		_	_	_			_		_				OCFAR[6:0]]			0000
RPINR18	06C4		_	_	_			_		_				U1RXR[6:0]]			0000
RPINR19	06C6		_	_	_			_		_				U2RXR[6:0]]			0000
RPINR22	06CC				S	CK2INR[6:0)]			_				SDI2R[6:0]				0000
RPINR23	06CE		_	_	_			_		_				SS2R[6:0]				0000
RPINR26	06D4	—	_	_	_	—	_	_	_					C1RXR[6:0]]			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R[6:0]				—	—	—	—	_	-	-	—	0000
RPINR1	06A2		_	_	_	_	_	_	_	_				INT2R[6:0]				0000
RPINR3	06A6		_	_	_	_	_	_	_	_				T2CKR[6:0]				0000
RPINR7	06AE					IC2R[6:0]				_				IC1R[6:0]				0000
RPINR8	06B0					IC4R[6:0]				_				IC3R[6:0]				0000
RPINR11	06B6	_	_	_	_	_	—	_	_	_				OCFAR[6:0]				0000
RPINR12	06B8	_				FLT2R[6:0]				—				FLT1R[6:0]				0000
RPINR14	06BC	_				QEB1R[6:0]				—				QEA1R[6:0]				0000
RPINR15	06BE	_			F	HOME1R[6:0)]			—				NDX1R[6:0]]			0000
RPINR18	06C4	_	_	_	_	_	—	_	_	_				U1RXR[6:0]				0000
RPINR19	06C6	_	_	_	_	—	_	_	_	_				U2RXR[6:0]				0000
RPINR22	06CC	_			S	SCK2INR[6:0)]			—				SDI2R[6:0]				0000
RPINR23	06CE	_	_	_	_	_	—	_	_	_				SS2R[6:0]				0000
RPINR26	06D4	_	_	_	_	—	_	_	_	_				C1RXR[6:0]				0000
RPINR37	06EA	_			S	SYNCI1R[6:0)]			—	_	—	_	_	_	_	—	0000
RPINR38	06EC	_			D	TCMP1R[6:	0]			_	_	—	_	_	_	_	_	0000
RPINR39	06EE	_			D	TCMP3R[6:	0]			—			D	TCMP2R[6:	0]			0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

				-		-						-						
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R[6:0]					—	_	_	_	-			0000
RPINR1	06A2	_	_	-	_	_	_	_	_	_				INT2R[6:0]				0000
RPINR3	06A6	—	_	_	_	—	_	_	_	_				T2CKR[6:0]				0000
RPINR7	06AE	—				IC2R[6:0]				_				IC1R[6:0]				0000
RPINR8	06B0	—				IC4R[6:0]				_				IC3R[6:0]				0000
RPINR11	06B6	—	_	—	_	—	_		_	_				OCFAR[6:0]				0000
RPINR12	06B8	—				FLT2R[6:0]				_				FLT1R[6:0]				0000
RPINR14	06BC	—				QEB1R[6:0]				_				QEA1R[6:0]				0000
RPINR15	06BE	—			F	IOME1R[6:0)]			_				INDX1R[6:0]			0000
RPINR18	06C4	—	_	—	_	—	_		_	_				U1RXR[6:0]				0000
RPINR19	06C6	—	_	_	_	—	_	_	_	_				U2RXR[6:0]				0000
RPINR22	06CC	—			S	CK2INR[6:0)]			_				SDI2R[6:0]				0000
RPINR23	06CE	—	_	—	_	—	_		_	_				SS2R[6:0]				0000
RPINR37	06EA	—			S	YNCI1R[6:0)]			_	_	—	_	_	_	_	_	0000
RPINR38	06EC	—			D	TCMP1R[6:	0]			_	_	—	_	_	_	_	-	0000
RPINR39	06EE	—			D	TCMP3R[6:	0]						D	TCMP2R[6:	0]			0000

TABLE 4-34: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	_	_	_	_	—	_	_	—		NVM		0000				
NVMADRL	072A								NVMA	DR[15:0]						0000					
NVMADRH	072C	_	_	_	_		_	_	_				NVMADR[23:16]								
NVMKEY	072E	_		—	_	_	_	_	_				NVMK	EY[7:0]		0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	_	_	VREGSF	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_		COSC[2:0]		_		NOSC[2:0]		CLKLOCK	IOLOCK	LOCK	_	CF	_	_	OSWEN	Note 2
CLKDIV	0744	ROI		DOZE[2:0]		DOZEN		FRCDIV[2:0]	PLLPOS	ST[1:0]	_		I	PLLPRE[4	4:0]		3040
PLLFBD	0746	_	_	_	_	—	_	_				PLLD	0IV[8:0]					0030
OSCTUN	0748	_	_	_	-	_	_	—	TUN[5:0]							0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on the Configuration Fuses.

TABLE 4-36: REFERENCE CLOCK REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	—	ROSSLP	ROSEL		ROD	IV[3:0]		-	—	_	_	_		_	—	0000

TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	-	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	-	_	_	IC4MD	IC3MD	IC2MD	IC1MD	-	-	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_		_	CMPMD			CRCMD	_				_	I2C2MD		0000
PMD4	0766		_	_			_			_	_			REFOMD	CTMUMD			0000
PMD6	076A		_	_			_			_	_				-	_		0000
													DMA0MD					
PMD7	076C				_		_	_	_	_	_	_	DMA1MD	PTGMD	_		_	0000
T WE	0/00												DMA2MD	TTOME				0000
													DMA3MD					i l

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	AD1MD	0000
PMD2	0762	_	_	_	—	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	—	_	CRCMD	_		_	—	—	I2C2MD		0000
PMD4	0766	_	_	_	_	_	—	—	_	—	_		_	REFOMD	CTMUMD	_		0000
PMD6	076A	_					PWM3MD	PWM2MD	PWM1MD	—	_		_	—	—	_		0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	—	_	_	—	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762		_		_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764		_		_		CMPMD	_		CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766		_		_		_	_		_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A		_		_		_	_		_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	0760												DMA1MD	PTGMD				0000
PIVID7	076C	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	_	—	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_		CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	—	_	_	—				REFOMD	CTMUMD	_	_	0000
PMD6	076A		_	_	_		PWM3MD	PWM2MD	PWM1MD	—				—	_	_		0000
													DMA0MD					
PMD7	076C	_		_	_	_						_	DMA1MD	PTGMD	_	_	_	0000
FIVIDI	0700	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	_	AD1MD	0000
PMD2	0762			_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764			_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766			_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A			_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PMD7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGND	_	_	_	0000
													DMA3MD					

TABLE 4-42: OP AMP/COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	-	_	C4EVT	C3EVT	C2EVT	C1EVT	—	_	—	—	C4OUT	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82	_	CVR2OE	_	_	_	VREFSEL	_	_	CVREN	CVR10E	CVRR	CVRSS		CVR[3:0]		0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPO	L[1:0]	_	CREF	_	_	CCH	I[1:0]	0000
CM1MSKSRC	0A86	_	_	_	_		SELSR	CC[3:0]			SELSRO	CB[3:0]			SELSRO	A[3:0]		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	_	_	_	_	_	_	_	_	_	(CFSEL[2:0]]	CFLTREN		CFDIV[2:0]]	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPO	L[1:0]	_	CREF	_	_	CCH	I [1:0]	0000
CM2MSKSRC	0A8E	_	_	_	_		SELSR	CC[3:0]			SELSRO	CB[3:0]			SELSRO	A[3:0]		0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	_	_	_	_	_	_	_	(CFSEL[2:0]]	CFLTREN		CFDIV[2:0]]	0000
CM3CON ⁽¹⁾	0A94	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPO	L[1:0]	_	CREF	_	_	CCH	I [1:0]	0000
CM3MSKSRC ⁽¹⁾	0A96	_	_	_	_		SELSR	CC[3:0]			SELSRO	CB[3:0]			SELSRO	A[3:0]		0000
CM3MSKCON(1)	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR ⁽¹⁾	0A9A	_	_	_	_	_	_	_	_	_	(CFSEL[2:0]]	CFLTREN		CFDIV[2:0]]	0000
CM4CON	0A9C	CON	COE	CPOL	_		_	CEVT	COUT	EVPO	L[1:0]	—	CREF	—	_	CCH	I[1:0]	0000
CM4MSKSRC	0A9E	_	_	_	_		SELSR	CC[3:0]	-		SELSRO	CB[3:0]	•		SELSRCA[3:0]			0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	—	_		—	—	—	—	_	—	(CFSEL[2:0]]	CFLTREN		CFDIV[2:0]]	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are unavailable on dsPIC33EPXXXGP502/MC502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

TABLE 4-43: CTMU REGISTER MAP

	File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
Ī	CTMUCON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	—	—	_	_	_	—	_	_	0000
	CTMUCON2	033C	EDG1MOD	EDG1POL		EDG1	SEL[3:0]		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	EL[3:0]		_		0000
Ī	CTMUICON	033E			ITRIM[5	5:0]			IRNO	G[1:0]	_	_	_	_	—		-	_	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: JTAG INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	_	_	_	JDATAH[27:16]												
JDATAL	0FF2					JDATAL[15:0]												

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657J-page 99

TABLE 4-45: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_		AMO	DE[1:0]	_	_	MOD	E[1:0]	0000			
DMA0REQ	0B02	FORCE	_	_	_	_	_	_	_				IRQSE	EL[7:0]				OOFF			
DMA0STAL	0B04								STA[1	5:0]								0000			
DMA0STAH	0B06	_	_	_	_	_	_	_	_				STA[2	23:16]				0000			
DMA0STBL	0B08								STB[1	5:0]								0000			
DMA0STBH	0B0A	_	_	_	_	_	_	_	_				STB[2	23:16]				0000			
DMA0PAD	0B0C								PAD[1	5:0]								0000			
DMA0CNT	0B0E	_	_							CNT[1	3:0]							0000			
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	_	_	AMOE	DE[1:0]	—	_	MOD	E[1:0]	0000			
DMA1REQ	0B12	FORCE	_	_		_		-	- IRQSEL[7:0]												
DMA1STAL	0B14			•		•			STA[1	5:0]								0000			
DMA1STAH	0B16	_	_	—	_	—	_	_	— STA[23:16]												
DMA1STBL	0B18			•		•			STB[15:0]												
DMA1STBH	0B1A	_	_	_	_	_	_	_	STB[23:16]												
DMA1PAD	0B1C			•					STB[23:16] PAD[15:0]												
DMA1CNT	0B1E	_	_							CNT[1	3:0]							0000			
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMO	DE[1:0]	_	_	MOD	E[1:0]	0000			
DMA2REQ	0B22	FORCE	_	—	_	_	_	_	_				IRQSE	EL[7:0]				00FF			
DMA2STAL	0B24								STA[1	5:0]								0000			
DMA2STAH	0B26	_	_	-	_	_	_	_	_				STA[2	23:16]				0000			
DMA2STBL	0B28								STB[1	5:0]								0000			
DMA2STBH	0B2A	_	_	_	_	_	_	_	_				STB[2	23:16]				0000			
DMA2PAD	0B2C								PAD[1	5:0]								0000			
DMA2CNT	0B2E	_	—							CNT[1	3:0]							0000			
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMO	DE[1:0]	_	_	MOD	E[1:0]	0000			
DMA3REQ	0B32	FORCE	_	-	_	_	_	_	_				IRQSE	EL[7:0]				OOFF			
DMA3STAL	0B34								STA[1	5:0]								0000			
DMA3STAH	0B36	_	_	—	_	_	_	_	_				STA[2	23:16]				0000			
DMA3STBL	0B38								STB[1	5:0]								0000			
DMA3STBH	0B3A	_	—	—	—	_	—	—	—				STB[2	23:16]				0000			
DMA3PAD	0B3C								PAD[1	PAD[15:0]											
DMA3CNT	0B3E	_	_							CNT[13:0]											
DMAPWC	0BF0		_	_	_	—	_	_	_												
DMARQC	0BF2	_	_	_	_	—	_	_		—	_		_	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000			
DMAPPS	0BF4	_	—	—	—	—	—	_		—	_	_	—	PPST3	PPST2	PPST1	PPST0	0000			
DMALCA	0BF6	—	_	_		—		_		—	—		—		LSTC	H[3:0]		000F			
DSADRL	0BF8								DSADR[15:0]								0000			
DSADRH	0BFA	—	—	_	—	—	—	_	—				DSADF	R[23:16]				0000			

IADLL	4 - 4 0.												200/300					
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	—	_			TRISA[12:7]			—	—	TRISA4	_	—	TRIS	A[1:0]	1F93
PORTA	0E02	_	_	_			RA[12	2:7]			_	_	RA4	_	_	RA[1:0]	0000
LATA	0E04	_	_	_			LATA[1	2:7]			_	_	LATA4	_	_	LA1T	A[1:0]	0000
ODCA	0E06	_	_	—			ODCA[12:7]			_	—	ODCA4	_	_	ODC	A[1:0]	0000
CNENA	0E08	_	_	—			CNIEA[12:7]			_	—	CNIEA4	_	_	CNIE	A[1:0]	0000
CNPUA	0E0A	_	_	_			CNPUA	[12:7]			—	—	CNPUA4	_	_	CNPL	IA[1:0]	0000
CNPDA	0E0C	_	_	_			CNPDA	[12:7]			—	—	CNPDA4	_	_	CNPE	A[1:0]	0000
ANSELA	0E0E	—	_	_	ANSA[12:11]	—		_	_	_	—	ANSA4		_	ANS	A[1:0]	1813

TABLE 4-46: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10								TRISB[15:	0]								FFFF
PORTB	0E12								RB[15:0]									XXXX
LATB	0E14								LATB[15:0)]								XXXX
ODCB	0E16								ODCB[15:	0]								0000
CNENB	0E18								CNIEB[15:	0]								0000
CNPUB	0E1A								CNPUB[15	:0]								0000
CNPDB	0E1C								CNPDB[15	:0]								0000
ANSELB	0E1E		_		_	_			ANSB8	—			_		ANSE	3[3:0]		010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	—							TRISC[1	3:0]							BFFF
PORTC	0E22	RC15								RC[13:	0]							XXXX
LATC	0E24	LATC15								LATC[13	3:0]							XXXX
ODCC	0E26	ODCC15								ODCC[1	3:0]							0000
CNENC	0E28	CNIEC15								CNIEC[1	3:0]							0000
CNPUC	0E2A	CNPUC15	_							CNPUC[1	3:0]							0000
CNPDC	0E2C	CNPDC15	_							CNPDC[1	3:0]							0000
ANSELC	0E2E	_		_	_	ANSC11	_	_	-	_	_	_	_	_		ANSC[2:0]		0807

TABLE 4-49: PORTD REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30		—	_	_	_	—	_	TRISD8		TRISI	D[6:5]	_	—				0160
PORTD	0E32	_	_	_	_	_	_	_	RD8	_	RD[[6:5]	_	_			_	XXXX
LATD	0E34	_	_	_	_	_	_	_	LATD8	_	LATE	D[6:5]	_	_			_	XXXX
ODCD	0E36	_	_	_	_	_	_	_	ODCD8	_	ODCI	D[6:5]	_	_			_	0000
CNEND	0E38	_	_	_	_	_	_	_	CNIED8	_	CNIE	D[6:5]	_	_			_	0000
CNPUD	0E3A	_	_	_	_	_	_	_	CNPUD8	_	CNPU	ID[6:5]	_	_			_	0000
CNPDD	0E3C	—	—		_	_	_	_	CNPDD8	_	CNPD	D[6:5]	_	_			_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-50: PORTE REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40		TRISE	[15:12]		_	_	_	—	—	_	—		—	—	_	_	F000
PORTE	0E42		RE[1	5:12]			_	_	_	_	_	_	_	—	_	-	_	XXXX
LATE	0E44		LATE[[15:12]					_	_				_	_			XXXX
ODCE	0E46		ODCE	[15:12]		-	_					-		_		-		0000
CNENE	0E48		CNIEE	[15:12]			_	_	_	_	_	_	_	—	_	-	_	0000
CNPUE	0E4A		CNPUE	E[15:12]					_	_				_	_			0000
CNPDE	0E4C		CNPDE	E[15:12]					_	_		-		_	_			0000
ANSELE	0E4E		ANSE	[15:12]			-		_	_		-		—	_			F000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-51: PORTF REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	—	_	—	_	—	—	—	_	_	—	—	_	_	—	TRIS	F[1:0]	0003
PORTF	0E52	_	—	_	_	—	_	_	_	_	_	_	_	_	_	RF[1:0]	XXXX
LATF	0E54	—	—	—	_	—	—	—	_	_	—	—	_	_	—	LATE	[1:0]	XXXX
ODCF	0E56	_	—	_	_	—	_	_	_	_	_	_	_	_	_	ODC	F[1:0]	0000
CNENF	0E58	—	—	—	—	—	—	—	_	_	—	—	_	_	—	CNIE	F[1:0]	0000
CNPUF	0E5A	—	—	—	—	—	—	—	_	—	—	—	—	_	—	CNPL	IF[1:0]	0000
CNPDF	0E5C	_	-	_	-	-		_			-				_	CNPE	F[1:0]	0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	—	_	_	—	_		TRIS	G[9:6]		—			—	_		03C0
PORTG	0E62		_	-		_	_		RG	9:6]		_	_	_	_		_	XXXX
LATG	0E64		_	-		_	_		LATO	6[9:6]		_	_	_	_		_	XXXX
ODCG	0E66	_	_	_	_	_	—		ODC	G[9:6]		—			—	_		0000
CNENG	0E68		_	-		_	_		CNIE	G[9:6]		_	_	_	_		_	0000
CNPUG	0E6A	_	_	_	_	_	—		CNPU	G[9:6]		_	_	_		_		0000
CNPDG	0E6C	_		_	_	_	_		CNPD	G[9:6]		-	_	_		_		0000

TABLE 4-53: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_		_	_		TRISA	[10:7]		—	—			TRISA[4:0]			079F
PORTA	0E02	—	_		_	_	RA[10:7]					—			RA[4:0]			0000
LATA	0E04	—		-		_	LATA[10:7]					—			LATA[4:0]			0000
ODCA	0E06	—		-		_	ODCA[10:7]					—			ODCA[4:0]			0000
CNENA	0E08	—		-		_		CNIEA	[10:7]		—	—			CNIEA[4:0]			0000
CNPUA	0E0A	—		-		_			—	—			CNPUA[4:0]]		0000		
CNPDA	0E0C	—	_		_	_			—	—			CNPDA[4:0]]		0000		
ANSELA	0E0E	_	-	_	_	—	—		—	-	—	—	ANSA4	—	—	ANSA	\ [1:0]	0013

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-54: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10								TRISB[15	:0]								FFFF
PORTB	0E12								RB[15:0]								XXXX
LATB	0E14								LATB[15:	0]								XXXX
ODCB	0E16								ODCB[15	:0]								0000
CNENB	0E18								CNIEB[15	:0]								0000
CNPUB	0E1A								CNPUB[15	5:0]								0000
CNPDB	0E1C								CNPDB[15	5:0]								0000
ANSELB	0E1E	_	_	_	_	_	—	—	ANSB8	_	_	_	_		ANSE	B[3:0]		010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-55: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC204 AND dsPIC33EPXXXGP/MC204/504 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20		_				_					TRIS	C[9:0]					03FF
PORTC	0E22	_	_				—	RC[9:0] 2							XXXX			
LATC	0E24	_	_				_					LATO	C[9:0]					XXXX
ODCC	0E26	_	_				_					ODC	C[9:0]					0000
CNENC	0E28	_	_				_					CNIE	C[9:0]					0000
CNPUC	0E2A	_	_				_					CNPU	C[9:0]					0000
CNPDC	0E2C	_	_				_	CNPDC[9:0] 0.0										0000
ANSELC	0E2E	—	_				_	_	_	-	-		_	_		ANSC[2:0]		0007

TABLE 4-56: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00			_	_	_		—	TRISA8		—	—			TRISA[4:0]			011F
PORTA	0E02			_	-			—	RA8	_	—	—	RA[4:0]					0000
LATA	0E04	_	_	_	_	_	_	_	LATA8	_	_	_	LATA[4:0]					0000
ODCA	0E06	_	_	_	_	_	_	_	ODCA8	_	_	_	LATA[4:0] ODCA[4:0]					0000
CNENA	0E08	_	_	_	_	_	_	_	CNIEA8	_	_	_			CNIEA[4:0]			0000
CNPUA	0E0A	_	_	_	_	_	_	_	CNPUA8	_	_	_			CNPUA[4:0]]		0000
CNPDA	0E0C	_	_	_	_	_	_	—	CNPDA8		—	—	CNPDA[4:0]					0000
ANSELA	0E0E	_	_	_	_	—	_	—	_	_	_	_	ANSA4	—	_	ANSA	A[1:0]	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10								TRISB[15	:0]								FFFF
PORTB	0E12								RB[15:0]								XXXX
LATB	0E14								LATB[15	0]								XXXX
ODCB	0E16								ODCB[15	:0]								0000
CNENB	0E18								CNIEB[15	:0]								0000
CNPUB	0E1A								CNPUB[1	5:0]								0000
CNPDB	0E1C								CNPDB[1	5:0]								0000
ANSELB	0E1E		-	—	_	_			ANSB8	_	—	_	_		ANSI	B[3:0]		010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-58: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	_	_		_	_	_	TRISC8				_	_		TRISC	[1:0]	0103
PORTC	0E22	—	_	-		_	_	—	RC8	_			—			RC[1	:0]	XXXX
LATC	0E24	—	_	-		_	_	—	LATC8	_			—			LATC	[1:0]	XXXX
ODCC	0E26	—	_	-		_	_	—	ODCC8	_			—			ODCC	[1:0]	0000
CNENC	0E28	—	_	-		_	_	—	CNIEC8	_			—			CNIEC	[1:0]	0000
CNPUC	0E2A	—	_	-		_	_	—	CNPUC8	_			—			CNPUC	C[1:0]	0000
CNPDC	0E2C	—	_	-		_	_	—	CNPDC8	_			—			CNPDC	C[1:0]	0000
ANSELC	0E2E	—	_	-		_	_	—	—	_			—			ANSC	[1:0]	0003

TABLE 4-59: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_		—	—	_			—	_		—		001F				
PORTA	0E02	_		—	—	_	_		—	_		—		0000				
LATA	0E04	_		—	_	_			—	_		—		0000				
ODCA	0E06	_		—	_	_			—	_		—		0000				
CNENA	0E08	_		—	_	_			—	_		—	CNIEA[4:0]					0000
CNPUA	0E0A	_		—	_	_			—	_		—		0000				
CNPDA	0E0C	_		—	_	_			—	_		—		0000				
ANSELA	0E0E	_		_					_			-	ANSA4			ANSA	A[1:0]	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB[15:0]															FFFF	
PORTB	0E12	RB[15:0]														XXXX		
LATB	0E14	LATB[15:0]													XXXX			
ODCB	0E16	ODCB[15:0]													0000			
CNENB	0E18	CNIEB[15:0]													0000			
CNPUB	0E1A	CNPUB[15:0]													0000			
CNPDB	0E1C	CNPDB[15:0]													0000			
ANSELB	0E1E	_	_	_	_	_	_	_	ANSB8	_	-	_			ANSE	3[3:0]		010F

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG[9] = 0 and the base address bit, EA[15] = 1, the DSRPAG[8:0] bits are concatenated onto EA[14:0] to form the 24-bit EDS read address. Similarly, when base address bit, EA[15] = 1, DSWPAG[8:0] are concatenated onto EA[14:0] to form the 24-bit EDS write address.

EXAMPLE 4-1: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA[15] is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA[15] bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA[15] bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA[15] bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

-	-	et el Ace Been						
0/11			Before		After			
0/U, R/W	Operation	DSxPAG	DS EA[15]	Page Description	DSxPAG	DS EA[15]	Page Description	
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1	
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1	
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page	

TABLE 4-61:OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and
PSV SPACE BOUNDARIES^(2,3,4)

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudolinear Addressing is not supported for large offsets.

4.4.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA[15] = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - **2:** Clearing the DSxPAG in software has no effect.

FIGURE 4-17: EDS MEMORY MAP

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA[15] = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-17.

For more information on the PSV page access using Data Space Page registers, refer to the "**Program Space Visibility from Data Space**" section in "**dsPIC33/PIC24 Program Memory**" (www.microchip.com/DS70000613) of the "*dsPIC33/PIC24 Family Reference Manual*".

4.4.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below

FIGURE 4-18: ARBITER ARCHITECTURE

that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-62:	DATA MEMORY BUS
	ARBITER PRIORITY

Driority	MSTRPR[15:0] Bits Setting ⁽¹⁾					
Priority	0x0000	0x0020				
M0 (highest)	CPU	DMA				
M1	Reserved	CPU				
M2	Reserved	Reserved				
M3	DMA	Reserved				
M4 (lowest)	ICD	ICD				

Note 1: All other values of MSTRPR[15:0] are reserved.

4.4.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15[0] is fixed to '0' by the hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SSP points to valid RAM in all dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and permits stack availability for non-maskable trap exceptions. These can occur before the SSP is initialized by the user software. You can reprogram the SSP during initialization to any location within Data Space.

The Software Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-19 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC[15:0] are pushed onto the first available stack word, then PC[22:16] are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-19. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- **Note 1:** To maintain system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in, and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a C development environment

FIGURE 4-19: CALL STACK FRAME

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 [function] Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- **Note:** Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions, which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

4.6 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

Note: Modulo Addressing has address alignment restrictions for the buffer start or end address. See the "Data Memory" FRM (www.microchip.com/DS70595) for more information.

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-					
	tions assume word-sized data (LSb of					
	every EA is always clear).					

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON[15:0], contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON[3:0] (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON[15]).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON[7:4]. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON[14].

FIGURE 4-20: MODULO ADDRESSING OPERATION EXAMPLE

Byte Address		MOV MOV MOV	#0x1100, W0 W0, XMODSRT #0x1163, W0	;set modulo start address
0x1100		MOV MOV MOV		;set modulo end address
		MOV	W0, MODCON	;enable W1, X AGU for modulo
	♥ ()	MOV MOV		;W0 holds buffer fill value ;point W1 to buffer
0x1163		DO		; fill the 50 buffer locations
	I I	MOV	W0, [W1++]	;fill the next location
	Start Addr = 0x1100 End Addr = 0x1163 Length = 50 words	AGAIN:	,	; increment the fill value

- Note: Modulo Addressing has address alignment restrictions for the buffer start or end address. See the "Data Memory" FRM (www.microchip.com/DS70595) for more information.
- **Note:** The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.7 Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.7.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all these conditions are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XBREV[14:0] is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XBREVx value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XBREVx) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data are a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV[15]) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

FIGURE 4-21: BIT-REVERSED ADDRESSING EXAMPLE

ADLL	4 04.			D ADDRESSING S							
	Normal Address					Bit-Reversed Address					
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal		
0	0	0	0	0	0	0	0	0	0		
0	0	0	1	1	1	0	0	0	8		
0	0	1	0	2	0	1	0	0	4		
0	0	1	1	3	1	1	0	0	12		
0	1	0	0	4	0	0	1	0	2		
0	1	0	1	5	1	0	1	0	10		
0	1	1	0	6	0	1	1	0	6		
0	1	1	1	7	1	1	1	0	14		
1	0	0	0	8	0	0	0	1	1		
1	0	0	1	9	1	0	0	1	9		
1	0	1	0	10	0	1	0	1	5		
1	0	1	1	11	1	1	0	1	13		
1	1	0	0	12	0	0	1	1	3		
1	1	0	1	13	1	0	1	1	11		
1	1	1	0	14	0	1	1	1	7		
1	1	1	1	15	1	1	1	1	15		

TABLE 4-64: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use these data successfully, they must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices provides two methods by which Program Space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-65: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address					
Access Type	Space	[23]	[22:16]	[15]	[14:1]	[0]	
Instruction Access	User	0	0 PC[22:1]				
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0					
TBLRD/TBLWT	User	TBLPAG[7:0] Data EA[15:0]					
(Byte/Word Read/Write)		C	XXX XXXX	XXXX XXX			
	Configuration	TE	TBLPAG[7:0]		Data EA[15:0]		
		1	XXX XXXX	XXXX XX			

FIGURE 4-22: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P[15:0]) to a data address (D[15:0])

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P[23:16]) to a data address. The 'phantom' byte (D[15:8]) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D[7:0] of the data address in the TBLRDL instruction. The data are always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG[7] = 0, the table page is located in the user memory space. When TBLPAG[7] = 1, the page is located in configuration space.

FIGURE 4-23: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (www.microchip.com/DS70000609) in the "dsPIC33/PIC24 Family Reference Manual".
 2: Some registers and associated bits
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits[7:0] of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits[15:0] of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits[23:16] of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (www.microchip.com/DS70000609) in the "dsPIC33/ PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in Section 30.0 "Electrical Characteristics".

Setting the WR bit (NVMCON[15]) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (www.microchip.com/ DS70000609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (www.microchip.com/ DS70000609) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper eight bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTE	R 5-1: NVMC	JUN: NONVO	JLATILE MEI		CONTROL R	EGISTER		
R/SO-0 ⁽	⁶⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0	
WR	WREN	WRERR	NVMSIDL ⁽²⁾	—	—	_	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	
	0-0	0-0	0-0	R/VV-U` /	NVMOP		R/W-UV /	
bit 7					NUMO	[0.0]	bit C	
Legend:		SO = Settab	le Only bit					
R = Reada	ble bit	W = Writabl	e bit	U = Unimplem	nented bit, read	as '0'		
-n = Value	at POR	'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unkr	nown	
		(6)						
bit 15	WR: Write C				41			
			ory program or nce the operati		on; the operatio	on is self-timed	and the bit is	
		•	ration is comple	•				
bit 14	WREN: Write	e Enable bit ⁽¹⁾						
			n/erase operati					
			/erase operatio					
bit 13		•	Error Flag bit ⁽¹⁾				4	
		set attempt of th		ce allempt or le	rmination has o	currea (bit is se	t automatically	
			operation com	pleted normally	/			
bit 12	NVMSIDL: N	VM Stop in Id	le Control bit ⁽²⁾					
			r goes into Sta		ing Idle mode			
bit 11-4		nted: Read as	r is active durin	ig lale mode				
bit 3-0			ion Select bits ⁽	1,3,4)				
bit 0-0	1111 = Rese							
	1110 = Rese							
	1101 = Rese							
	1100 = Rese 1011 = Rese							
	1010 = Rese							
		nory page eras	e operation					
	0010 = Reserved 0001 = Memory double-word program operation ⁽⁵⁾							
	0000 = Rese		na program op					
Note 1:	These bits can on	nlv be reset on	a POR.					
2:	If this bit is set, th	ere will be min	imal power sav		d upon exiting l	dle mode, there	is a delay	
	(TVREG) before Flash memory becomes operational. All other combinations of NVMOP[3:0] are unimplemented.							
	Execution of the I			-	e NVM operatio	ns are in progr	ess	
	Two adjacent wor		-	-	-			
	This bit can only b		-		0	1		

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

REGISTER 5-2:	NVMADRH: NONVOLATILE MEMORY ADDRESS REGISTER HIGH
---------------	---

-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7							bit 0	
			NVMA	DR[23:16]				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
bit 15							bit 8	
			_	_	—	_	—	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADR[23:16]:** Nonvolatile Memory Write Address High bits Selects the upper eight bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	ADR[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-0 NVMADR[15:0]: Nonvolatile Memory Write Address Low bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_		_	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVM	KEY[7:0]			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is up			x = Bit is unkr	nown			

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY[7:0]:** Key Register (write-only) bits

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (www.microchip.com/DS70602) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON[1:0]), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC[2:0] bits in the FOSCSEL Configuration register. The value of the FNOSC[2:0] bits is loaded into NOSC[2:0] (OSCCON[10:8]) on Reset, which in turn, initializes the system clock.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

	Note:	In the event you are not able to access the
		product page using the link above, enter
		this URL in your browser:
l		http://www.microchip.com/wwwproducts/
ĺ		Devices.aspx?dDocName=en555464

6.1.1 KEY RESOURCES

- "Reset" (www.microchip.com/DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER	R 6-1: RCON	: RESET CO	NIROL RE	GISTER			
R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	—		VREGSF	—	CM	VREGS
bit 15							bit 8
	DAMO		DAMA	DAMA	DAMO		
R/W-0	R/W-0	R/W-0 SWDTEN ⁽²⁾	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR bit 7	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR bit (
							Dire
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	TRAPR: Tran	Reset Flag bit					
		onflict Reset has					
		onflict Reset ha		d			
bit 14	IOPUWR: Ille	gal Opcode or	Uninitialized	W Access Rese	et Flag bit		
	•	•		gal address mo	ode or Uninitia	ized W registe	er used as ar
	,	Pointer caused					
h:+ 40 40				register Reset n	as not occurred	1	
bit 13-12	-	ted: Read as '					
bit 11				Iby During Slee	p bit		
		tage regulator i		ng Sieep Indby mode dur	ring Sleen		
bit 10		ted: Read as '	-		ing cloop		
bit 9	-	ation Mismatch					
	1 = A Configu	ration Mismatc ration Mismatc	h Reset has				
bit 8	•	age Regulator S					
-		egulator is activ					
				mode during SI	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
		Clear (pin) Res Clear (pin) Res					
bit 6		re RESET (Insti					
		1 = A RESET instruction has been executed 0 = A RESET instruction has not been executed					
bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽²⁾						
	1 = WDT is e	1 = WDT is enabled 0 = WDT is disabled					
bit 4	WDTO: Watc	hdog Timer Tim	ne-out Flag b	it			
	1 = WDT time	e-out has occur e-out has not oc	red				
	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not
	If the FWDTEN Co		s '1' (unprog	rammed), the V	VDT is always e	nabled, regarc	lless of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

© 2011-2020 Microchip Technology Inc.

SWDTEN bit setting.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit
	1 = Device has been in Sleep mode
	0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device was in Idle mode
	0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred
	0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred
	0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (www.microchip.com/DS70000600) in the "dsPIC33/PIC24 Family Reference Manual".
 2: Some registers and associated bits
 - described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X CPU.

The interrupt controller has the following features:

- Up to Eight Processor Exceptions and Software Traps
- Eight User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory starting at location, 000004h. The IVT contains seven non-maskable trap vectors and up to 246 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X INTERRUPT VECTOR TABLE

Interrupt Source	Vector	IRQ	IVT Address	Inte	Interrupt Bit Location		
Interrupt Source	#	#	IVI Address	Flag	Enable	Priority	
	High	est Natura	al Order Priority				
INT0 – External Interrupt 0	8	0	0x000014	IFS0[0]	IEC0[0]	IPC0[2:0]	
IC1 – Input Capture 1	9	1	0x000016	IFS0[1]	IEC0[1]	IPC0[6:4]	
OC1 – Output Compare 1	10	2	0x000018	IFS0[2]	IEC0[2]	IPC0[10:8]	
T1 – Timer1	11	3	0x00001A	IFS0[3]	IEC0[3]	IPC0[14:12	
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0[4]	IEC0[4]	IPC1[2:0]	
IC2 – Input Capture 2	13	5	0x00001E	IFS0[5]	IEC0[5]	IPC1[6:4]	
OC2 – Output Compare 2	14	6	0x000020	IFS0[6]	IEC0[6]	IPC1[10:8]	
T2 – Timer2	15	7	0x000022	IFS0[7]	IEC0[7]	IPC1[14:12	
T3 – Timer3	16	8	0x000024	IFS0[8]	IEC0[8]	IPC2[2:0]	
SPI1E – SPI1 Error	17	9	0x000026	IFS0[9]	IEC0[9]	IPC2[6:4]	
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0[10]	IEC0[10]	IPC2[10:8]	
U1RX – UART1 Receiver	19	11	0x00002A	IFS0[11]	IEC0[11]	IPC2[14:12	
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0[12]	IEC0[12]	IPC3[2:0]	
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0[13]	IEC0[13]	IPC3[6:4]	
DMA1 – DMA Channel 1	22	14	0x000030	IFS0[14]	IEC0[14]	IPC3[10:8]	
Reserved	23	15	0x000032	_	_	_	
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1[0]	IEC1[0]	IPC4[2:0]	
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1[1]	IEC1[1]	IPC4[6:4]	
CM – Comparator Combined Event	26	18	0x000038	IFS1[2]	IEC1[2]	IPC4[10:8]	
CN – Input Change Interrupt	27	19	0x00003A	IFS1[3]	IEC1[3]	IPC4[14:12	
INT1 – External Interrupt 1	28	20	0x00003C	IFS1[4]	IEC1[4]	IPC5[2:0]	
Reserved	29-31	21-23	0x00003E-0x000042	_	_	_	
DMA2 – DMA Channel 2	32	24	0x000044	IFS1[8]	IEC1[8]	IPC6[2:0]	
OC3 – Output Compare 3	33	25	0x000046	IFS1[9]	IEC1[9]	IPC6[6:4]	
OC4 – Output Compare 4	34	26	0x000048	IFS1[10]	IEC1[10]	IPC6[10:8]	
T4 – Timer4	35	27	0x00004A	IFS1[11]	IEC1[11]	IPC6[14:12	
T5 – Timer5	36	28	0x00004C	IFS1[12]	IEC1[12]	IPC7[2:0]	
INT2 – External Interrupt 2	37	29	0x00004E	IFS1[13]	IEC1[13]	IPC7[6:4]	
U2RX – UART2 Receiver	38	30	0x000050	IFS1[14]	IEC1[14]	IPC7[10:8]	
U2TX – UART2 Transmitter	39	31	0x000052	IFS1[15]	IEC1[15]	IPC7[14:12	
SPI2E – SPI2 Error	40	32	0x000054	IFS2[0]	IEC2[0]	IPC8[2:0]	
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2[1]	IEC2[1]	IPC8[6:4]	
C1RX – CAN1 RX Data Ready ⁽¹⁾	42	34	0x000058	IFS2[2]	IEC2[2]	IPC8[10:8]	
C1 – CAN1 Event ⁽¹⁾	43	35	0x00005A	IFS2[3]	IEC2[3]	IPC8[14:12	
DMA3 – DMA Channel 3	44	36	0x00005C	IFS2[4]	IEC2[4]	IPC9[2:0]	
IC3 – Input Capture 3	45	37	0x00005E	IFS2[5]	IEC2[5]	IPC9[6:4]	
IC4 – Input Capture 4	46	38	0x000060	IFS2[6]	IEC2[6]	IPC9[10:8]	
Reserved	47-56	39-48	0x000062-0x000074	_	_	_	
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3[1]	IEC3[1]	IPC12[6:4]	
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3[2]	IEC3[2]	IPC12[10:8	
Reserved	59-64	51-56	0x00007A-0x000084	—	_		
PWMSpEventMatch – PWM Special Event Match ⁽²⁾	65	57	0x000086	IFS3[9]	IEC3[9]	IPC14[6:4]	

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.
 2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

	Vector	IRQ		Interrupt Bit Location		
Interrupt Source	# # IVT Address		Flag	Enable	Priority	
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3[10]	IEC3[10]	IPC14[10:8]
Reserved	67-72	59-64	0x00008A-0x000094		_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4[1]	IEC4[1]	IPC16[6:4]
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4[2]	IEC4[2]	IPC16[10:8]
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4[3]	IEC4[3]	IPC16[14:12]
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4[6]	IEC4[6]	IPC17[10:8]
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4[13]	IEC4[13]	IPC19[6:4]
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5[14]	IEC5[14]	IPC23[10:8]
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5[15]	IEC5[15]	IPC23[14:12]
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6[0]	IEC6[0]	IPC24[2:0]
Reserved	105-149	97-141	0x0001D6-0x00012E		_	_
ICD – ICD Application	150	142	0x000142	IFS8[14]	IEC8[14]	IPC35[10:8]
JTAG – JTAG Programming	151	143	0x000130	IFS8[15]	IEC8[15]	IPC35[14:12]
Reserved	152	144	0x000134		—	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9[1]	IEC9[1]	IPC36[6:4]
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9[2]	IEC9[2]	IPC36[10:8]
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9[3]	IEC9[3]	IPC36[14:12]
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9[4]	IEC9[4]	IPC37[2:0]
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9[5]	IEC9[5]	IPC37[6:4]
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9[6]	IEC9[6]	IPC37[10:8]
Reserved	159-245	151-245	0x000142-0x0001FE		—	_
	Lowe	est Natura	I Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

7.3.1 KEY RESOURCES

- "Interrupts" (www.microchip.com/DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable (GIE) bit.

INTCON3 contains the status flags for the DMA and DO stack overflow status trap sources.

The INTCON4 register contains the Software-Generated Hard Trap (SGHT) status bit.

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM[7:0]) and Interrupt Priority Level bits (ILR[3:0]) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0[0], the INT0IE bit in IEC0[0] and the INT0IP bits in the first position of IPC0 (IPC0[2:0]).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "CPU" (www.microchip.com/DS70359) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL[2:0] bits (SR[7:5]). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL[2:0], also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL[2:0] ⁽²⁾		RA	Ν	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	bit				

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	IPL[2:0]: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL[2:0] bits are concatenated with the IPL[3] bit (CORCON[3]) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL[3] = 1. User interrupts are disabled when IPL[3] = 1.
- **3:** The IPL[2:0] Status bits are read-only when the NSTDIS bit (INTCON1[15]) = 1.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1	US0	EDT	DL2	DL1	DL0
bit 15			•				bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7		•	•				bit C
		0 01 11					

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit

bit 15	VAR: Variable Exception Processing Latency Control
	1 = Variable exception processing is enabled
	0 = Fixed exception processing is enabled
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾
	1 = CPU Interrupt Priority Level is greater than 7
	0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL[2:0] bits (SR[7:5]) to form the CPU Interrupt Priority Level.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾			
bit 15							bit 8			
D M M O	D /14/ 0	D4440	D /11/0	D 144 A	D M M O	D 444 0				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR ⁽	1) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL				
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear		x = Bit is unk	nown			
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit							
		nesting is disa nesting is ena								
bit 14			verflow Trap F							
	0 = Trap was	s not caused by	erflow of Accun / overflow of Ac	cumulator A						
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit ⁽¹⁾									
			erflow of Accun / overflow of Ac							
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit ⁽¹⁾									
	 1 = Trap was caused by catastrophic overflow of Accumulator A 0 = Trap was not caused by catastrophic overflow of Accumulator A 									
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit ⁽¹⁾									
				flow of Accumula						
bit 10	OVATE: Acc	OVATE: Accumulator A Overflow Trap Enable bit ⁽¹⁾								
	1 = Trap ove 0 = Trap is d	erflow of Accum	ulator A							
bit 9	OVBTE: Acc	OVBTE: Accumulator B Overflow Trap Enable bit ⁽¹⁾								
	1 = Trap ove 0 = Trap is d	erflow of Accum	ulator B							
bit 8	COVTE: Cat	tastrophic Over	flow Trap Enab	ole bit ⁽¹⁾						
	1 = Trap on 0 0 = Trap is d		erflow of Accur	mulator A or B is	enabled					
bit 7	SFTACERR	SFTACERR: Shift Accumulator Error Status bit ⁽¹⁾								
				ilid accumulator						
bit 6	DIV0ERR: D	ivide-by-Zero I	Error Status bit							
			used by a divide caused by a d							
bit 5	DMACERR:	DMAC Trap Fl	ag bit							
	1 = DMAC tr									

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: These bits are available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
GIE	DISI	SWTRAP	_	_	_	_	_			
oit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
	—	—			INT2EP	INT1EP	INT0EP			
bit 7							bit (
Levendi										
Legend: R = Readab	la hit	W = Writable t	_:+		mented hit read					
			JIL	•	mented bit, read					
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown			
bit 15	GIE: Global Interrupt Enable bit									
	1 = Interrupts and associated IE bits are enabled									
bit 14	0 = Interrupts are disabled, but traps are still enabled									
DIL 14	DISI: DISI Instruction Status bit									
	1 = DISI instruction is active 0 = DISI instruction is not active									
bit 13	SWTRAP: Software Trap Status bit									
	1 = Software trap is enabled									
	0 = Software trap is disabled									
bit 12-3	Unimplemer	nted: Read as ')'							
bit 2	INT2EP: Exte	NT2EP: External Interrupt 2 Edge Detect Polarity Select bit								
	1 = Interrupt on negative edge									
	0 = Interrupt on positive edge									
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detec	t Polarity Selec	t bit					
	1 = Interrupt on negative edge									
	0 = Interrupt	on positive edge	e							
bit 0		ernal Interrupt 0	0	t Polarity Selec	t bit					
		on negative edg								
	0 = Interrupt on positive edge									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	_	_	—	_	_	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—	—	DAE	DOOVR	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-6	bit 15-6 Unimplemented: Read as '0'							
bit 5	DAE: DMAA	ddress Error S	oft Trap Status	s bit				
1 = DMA address error soft trap has occurred								

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

bit 3-0	Unimplemented: Read as '0'	

bit 4

bit 0

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

0 = DMA address error soft trap has not occurred

DOOVR: DO Stack Overflow Soft Trap Status bit 1 = DO stack overflow soft trap has occurred 0 = DO stack overflow soft trap has not occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
—	—	—	—	—	—	—	SGHT	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				

		-	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

SGHT: Software-Generated Hard Trap Status bit

1 = Software-generated hard trap has occurred

0 = Software-generated hard trap has not occurred

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
_	—	—	_		ILR[3:0]			
bit 15							bit	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			VEC	NUM[7:0]				
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, re	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
			e1					
bit 15-12	Unimplement							
bit 11-8	ILR[3:0]: New CPU Interrupt Priority Level bits 1111 = CPU Interrupt Priority Level is 15]							
	1111 = CPU II	nterrupt Priori	ty Level is 1:	0]				
	•							
	•							
	0001 = CPU li 0000 = CPU li							
bit 7-0	VECNUM[7:0]: Vector Number of Pending Interrupt bits							
	11111111 = 2	55, Reserved	; do not use					
	•							
	•							
	• 00001001 = 9	IC1 – Input	Canture 1					
	00001000 = 8			t 0				
	00000111 = 7							
	00000110 = 6							
	00000101 = 5							
	00000100 = 4 00000011 = 3							
			llap					
	00000011 = 3 00000010 = 2 00000001 = 1	, Generic har	d trap					

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (www.microchip.com/DS70348) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM.

In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports four independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA Controller include:

- ECAN[™]
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete
- · Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer is complete)
- DMA request for each channel can be selected from any supported interrupt source
- Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL[7:0] Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)	
INT0 – External Interrupt 0	00000000	—	_	
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—	
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	_	
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—	
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	_	
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)	
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)	
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)	
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)	
TMR2 – Timer2	00000111	—	_	
TMR3 – Timer3	00001000	—	_	
TMR4 – Timer4	00011011	—	_	
TMR5 – Timer5	00011100	—	—	
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)	
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)	
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	_	
UART1TX – UART1 Transmitter	00001100		0x0224 (U1TXREG)	
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)		
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)	
ECAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	—	
ECAN1 – TX Data Request	01000110		0x0442 (C1TXD)	
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	_	

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

8.1 DMA Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

8.1.1 KEY RESOURCES

- "Direct Memory Access (DMA)" (www.microchip.com/DS70348) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

8.2 DMAC Registers

Each DMAC Channel x (where x = 0 through 3) contains the following registers:

- 16-Bit DMA Channel Control register (DMAxCON)
- 16-Bit DMA Channel IRQ Select register (DMAxREQ)
- 32-Bit DMA RAM Primary Start Address register (DMAxSTA)
- 32-Bit DMA RAM Secondary Start Address register (DMAxSTB)
- 16-Bit DMA Peripheral Address register (DMAxPAD)
- 14-Bit DMA Transfer Count register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
CHEN	SIZE	DIR	HALF	NULLW	_	_	_		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
		AMODE1	AMODE0	_	_	MODE1	MODE0		
bit 7		_					bit (
Legend:							_		
R = Readabl	la hit		hit	U = Unimpler	nonted hit rea	ad as '0'			
-n = Value at		W = Writable bit		'0' = Bit is cle		x = Bit is unkr			
-n – value a	IPOR	'1' = Bit is set			areu		IOWI		
bit 15	CHEN: DMA	Channel Enabl	le bit						
	1 = Channel	1 = Channel is enabled							
	0 = Channel is disabled								
bit 14	SIZE: DMA D	ata Transfer S	ize bit						
	1 = Byte								
	0 = Word								
bit 13	DIR: DMA Transfer Direction bit (source/destination bus select)								
	 1 = Reads from RAM address, writes to peripheral address 0 = Reads from peripheral address, writes to RAM address 								
bit 12	HALF: DMA Block Transfer Interrupt Select bit								
	1 = Initiates interrupt when half of the data have been moved								
L:1 44	0 = Initiates interrupt when all of the data have been moved								
bit 11	 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear) 								
	0 = Normal c				(DIR bit mus	also be clear)			
bit 10-6		ted: Read as '	0'						
bit 5-4	-			/ode Select bit	s				
	AMODE[1:0]: DMA Channel Addressing Mode Select bits 11 = Reserved								
	10 = Peripheral Indirect Addressing mode								
	01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode								
	-			t mode					
bit 3-2	Unimplemented: Read as '0'								
bit 1-0	MODE[1:0]: DMA Channel Operating Mode Select bits								
	11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)								
	10 = Continuous, Ping-Pong modes are enabled 01 = One-Shot, Ping-Pong modes are disabled								

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER
REGISTER 0		REQ. DIVIA CI		INQ SELECT	REGISTER		
R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	—	—		—	—		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IRQS	EL[7:0]			
bit 7							bit C
Legend:		S = Settable b	.it				
R = Readable	bit	W = Writable I		II – Unimpler	nented bit, read	as 'O'	
-n = Value at P		'1' = Bit is set	JIL	'0' = Bit is cle		x = Bit is unkn	0.110
-n – value al P	UR	I – DILIS SEL			areu		OWI
bit 15	EOBCE: For	ce DMA Transfe	ar bit(1)				
bit 15		single DMA tra		n mode)			
		ic DMA transfer					
bit 14-8		ited: Read as '(-				
bit 7-0	-	: DMA Peripher		er Select hits			
		ECAN1 – TX D					
		IC4 – Input Cap					
		IC3 – Input Cap					
		ECAN1 – RX D					
		SPI2 Transfer [
		UART2TX – UA					
		UART2RX – UA		er			
		TMR5 – Timer5					
		TMR4 – Timer4 OC4 – Output (
		OC4 = Output COC3 = Output C					
		ADC1 – ADC1		2			
		UART1TX – UA	-				
		UART1RX - UA					
	00001010 =	SPI1 - Transfe	r Done				
	00001000 =	TMR3 – Timer3	3				
		TMR2 – Timer2					
		OC2 – Output (
		IC2 – Input Cap					
		OC1 – Output (
		IC1 – Input Cap INT0 – Externa					
	- 10000000 -		i interrupt 0				
Note 1. The	EORCE hit ca	innot he cleared	hv user soft	ware The FOR	RCE hit is cleare	d by hardware	when the

REGISTER 8-2: DMAXREQ: DMA CHANNEL X IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This selection is available in dsPIC33EPXXXGP/MC50X devices only.

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA[23:16]			
bit 7							bit 0
Legend:							
	L 14		L 14	1.1. 1.1		(0)	

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA[23:16]: Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ST	A[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 STA[15:0]: Primary Start Address bits (source or destination)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—		—	_	_
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB[23:16]			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 8-5: DMAXSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB[23:16]: Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	8[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
1000-0	1000-0	10,00-0		B[7:0]	1000-0	1000-0	1000-0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea			nown

bit 15-0 **STB[15:0]:** Secondary Start Address bits (source or destination)

© 2011-2020 Microchip Technology Inc.

REGISTER 8-7: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAC	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PAD[7:0]							
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 PAD[15:0]: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				CNT[[13:8] ⁽²⁾		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT	[7:0] ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable ł	oit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown	

bit 15-14 Unimplemented: Read as '0'

bit 13-0 **CNT[13:0]:** DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT[13:0] + 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	_	—	—
bit 15		· · · · · ·					bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADI	R[23:16]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

DIL 15-8 Unimplemented: Read as U	bit 15-8	Unimplemented: Read as '0'
-----------------------------------	----------	----------------------------

bit 7-0 DSADR[23:16]: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	.DR[15:8]			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	ADR[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemen	ted bit, re	ad as '0'	
-n = Value at POF	۲	'1' = Bit is set		'0' = Bit is cleared	b	x = Bit is unknown	

bit 15-0 DSADR[15:0]: Most Recent DMA Address Accessed by DMA bits

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
·							
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—				PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0
r							
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown			
bit 15-4	Unimplemer	nted: Read as '	0'				
bit 3	PWCOL3: D	MA Channel 3 F	Peripheral Wr	rite Collision Fla	ig bit		
		llision is detecte					
	•	collision is dete					
bit 2				rite Collision Fla	ig bit		
		llision is detecte collision is dete					
bit 1	• • • • • • • • • • • • • • • • • • • •			rite Collision Fla	a hit		
		llision is detecte	•		ig bit		
		collision is dete					
bit 0	PWCOL0: DI	MA Channel 0 F	Peripheral Wr	rite Collision Fla	ig bit		
	1 = Write co	llision is detecte	ed		-		
	0 = No write	collision is dete	ected				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	—	—	—		
bit 15					•		bit 8		
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0		
—	—	—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-4	Unimplemen	ted: Read as '	0'						
bit 3	RQCOL3: DN	1A Channel 3 T	ransfer Reque	est Collision Fl	ag bit				
		e and interrupt		st collision is d	etected				
	0 = No reque	st collision is d	etected						
bit 2		1A Channel 2 T			0				
		e and interrupt		st collision is d	etected				
	•	est collision is d							
bit 1		IA Channel 1 T			•				
		e and interrupt st collision is d		st collision is d	etected				
bit 0	•	A Channel 0 T		est Collision Fl	ag hit				
		e and interrupt			•				
			•		CICCICU				

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	_
bit 15	15						bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_					LSTC	H[3:0]	
bit 7							bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15-4	Unimplemen	ited: Read as '	0'				
bit 3-0	LSTCH[3:0]:	Last DMAC Ch	nannel Active	Status bits			
		MA transfer has	s occurred sin	ice system Res	set		
	1110 = Rese	rved					
	•						
	•						
	0100 = Rese	rved					
	0011 = Last (data transfer wa	as handled by	Channel 3			
		data transfer wa					
		data transfor w	a handlad hu	Channal 1			

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

0001 = Last data transfer was handled by Channel 1

0000 = Last data transfer was handled by Channel 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Legend:				
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-4	Unimple	mented: Read as '0'		
bit 3	PPST3: I	DMA Channel 3 Ping-Pong I	Node Status Flag bit	

	1 = DMASTB3 register is selected
	0 = DMASTA3 register is selected
bit 2	PPST2: DMA Channel 2 Ping-Pong Mode Status Flag bit
	1 = DMASTB2 register is selected
	0 = DMASTA2 register is selected
	0 - DINAOTAZ TEGISTELIS SELECTED
bit 1	PPST1: DMA Channel 1 Ping-Pong Mode Status Flag bit
	1 = DMASTB1 register is selected
	0 = DMASTA1 register is selected
bit 0	PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit
	1 = DMASTB0 register is selected
	0 = DMASTA0 register is selected

NOTES:

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (www.microchip.com/DS70580) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X oscillator system provides:

- On-Chip Phase-Locked Loop (PLL) to Boost Internal Operating Frequency on Select Internal and External Oscillator Sources
- On-the-Fly Clock Switching between Various Clock Sources
- · Doze mode for System Power Savings
- Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- Configuration Bits for Clock Source Selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a doze ratio of 1:2 or lower.

9.1 CPU Clocking System

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.

EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO). In clock modes S1 and S3, when the PLL output is selected, FOSC = FPLLO.

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$

Where:

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$ M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$Fvco = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

© 2011-2020 Microchip Technology Inc.

FIGURE 9-2: PLL BLOCK DIAGRAM

Oscillator Mode	Oscillator Source	POSCMD[1:0]	FNOSC[2:0]	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	XX	111	1, 2
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (www.microchip.com/DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

9.3 Oscillator Control Registers

U-0 R-0 R-0 U-0 R-0 R/W-y R/W-y R/W-y NOSC2⁽²⁾ NOSC1(2) COSC2 COSC1 NOSCO⁽²⁾ COSC0 bit 15 bit 8 R/W-0 R/W-0 R-0 U-0 R/W-0 U-0 U-0 R/W-0 CF⁽³⁾ IOLOCK LOCK CLKLOCK OSWEN bit 7 bit 0 Legend: y = Value set from Configuration bits on POR R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 COSC[2:0]: Current Oscillator Selection bits (read-only) 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved 011 = Primary Oscillator (XT, HS, EC) with PLL 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC) bit 11 Unimplemented: Read as '0' NOSC[2:0]: New Oscillator Selection bits⁽²⁾ bit 10-8 111 = Fast RC Oscillator (FRC) with Divide-by-n 110 = Fast RC Oscillator (FRC) with Divide-by-16 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved 011 = Primary Oscillator (XT, HS, EC) with PLL 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL) 000 = Fast RC Oscillator (FRC) bit 7 CLKLOCK: Clock Lock Enable bit 1 = If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and PLL configurations may be modified 0 = Clock and PLL selections are not locked, configurations may be modified bit 6 IOLOCK: I/O Lock Enable bit 1 = I/O lock is active 0 = I/O lock is not active bit 5 LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled Note 1: Writes to this register require an unlock sequence. Refer to "Oscillator" (www.microchip.com/DS70580) in the "dsPIC33/PIC24 Family Reference Manual" (available from the Microchip website) for details. 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC[2:0] bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (www.microchip.com/DS70580) in the *"dsPIC33/PIC24 Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

REGISTER 9	-2: CLNDI	V: CLUCK D		313 I EK						
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
ROI	DOZE2 ⁽¹⁾	DOZE1 ⁽¹⁾	DOZE0 ⁽¹⁾	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0			
bit 15							bit 8			
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PLLPOST1	PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0			
bit 7				T EEI TREO			bit C			
Legend: R = Readable	hit	W = Writable	hit	II – Unimplon	nented bit, read					
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	0000			
	OR				areu		101011			
bit 15	ROI: Recover	⁻ on Interrupt b	it							
		s will clear the								
		s have no effec		EN bit						
bit 14-12	DOZE[2:0]: F	Processor Cloc	k Reduction S	elect bits ⁽¹⁾						
	111 = FCY div									
	110 = FCY div	•								
	101 = FCY divided by 32 100 = FCY divided by 16									
		/ided by 8 (defa	ault)							
	010 = FCY div									
	001 = FCY div									
	000 = Fcy div	•	(0.0)							
bit 11		e Mode Enable								
				ween the peripl ratio is forced to		d the processor	r clocks			
bit 10-8		•	•	Postscaler bits	J 1.1					
bit 10-0	111 = FRC di		CO OSCIIIATOI							
	110 = FRC d i									
	101 = FRC divided by 32									
	100 = FRC d i									
	011 = FRC di									
	010 = FRC di 001 = FRC di	-								
		ivided by 1 (de	fault)							
bit 7-6		5 (,	Select bits (als	o denoted as 'N	12', PLL postsc	aler)			
	11 = Output o									
	10 = Reserve		C (1)							
	01 = Output c 00 = Output c	livided by 4 (de livided by 2	etault)							
bit 5	=	ted: Read as '	0'							
	e DOZE[2:0] bit ZE[2:0] are ign		vritten to wher	n the DOZEN b	it is clear. If DC	DZEN = 1, any	writes to			
	s bit is cleared		bit is set and a	an interrupt occ	urs.					
						tompt by year a	offwara ta aat			

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER

3: The DOZEN bit cannot be set if DOZE[2:0] = 000. If DOZE[2:0] = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

- **Note 1:** The DOZE[2:0] bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE[2:0] are ignored.
 - 2: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE[2:0] = 000. If DOZE[2:0] = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0 —	U-0	U-0	U-0	U-0	U-0	11.0			
-				00	0-0	U-0	R/W-0		
			_	—	—	—	PLLDIV8		
bit 15							bit 8		
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
1000-0	10,00-0	1000-1		DIV[7:0]	1477-0	1000-0	1000-0		
bit 7				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-9 Ur	nimplemen	ted: Read as '	0'						
bit 8-0 PL	LDIV[8:0]:	PLL Feedback	c Divisor bits	(also denoted as	s 'M', PLL muli	tiplier)			
11	11111111 =	= 513							
•									
•									
•	0110000 =	= 50 (default)							
•	0110000 -								
•									
•									
	0000010 =								
0 0	00000010 = 00000001 = 00000000 =	= 3							

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	_	_	—		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_				TUI	N[5:0]				
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknov				nown				
bit 15-6	Unimplemer	nted: Read as '	0'						
bit 5-0	TUN[5:0]: FF	RC Oscillator Tu	uning bits						
		aximum freque			77 MHz)				
	011110 = Ce	enter frequency	+ 1.406% (7.	.474 MHz)					
	•								
	•								
	000001 = C e	enter frequency	+ 0.047% (7.	.373 MHz)					
		enter frequency							
	111111 = C e	enter frequency	r — 0.047% (7.	367 MHz)					
	•								
	•								
	100001 = C e	enter frequency	– 1.453% (7.	263 MHz)					

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾			
bit 15						•	bit			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
bit 7							bit			
Legend:										
R = Readabl	a hit	W = Writable	hi t	II – Unimplon	monted bit read					
-n = Value at		'1' = Bit is set		'0' = Bit is cle	nented bit, reac	x = Bit is unkr	0000			
-n – value al	PUR	I – DILIS SEL			areu		IOWI			
bit 15	ROON: Refe	rence Oscillato	· Output Fnab	ole bit						
		ROON: Reference Oscillator Output Enable bit 1 = Reference Oscillator output is enabled on the REFCLK pin ⁽²⁾								
		e Oscillator out			·					
bit 14	Unimplemer	nted: Read as '	o '							
bit 13	ROSSLP: Re	eference Oscilla	tor Run in Sle	eep bit						
	1 = Reference	e Oscillator out	put continues	to run in Sleep)					
	0 = Reference	e Oscillator out	put is disable	d in Sleep						
bit 12	ROSEL: Reference Oscillator Source Select bit									
		r crystal is used								
	•	clock is used as								
bit 11-8	RODIV[3:0]: Reference Oscillator Divider bits ⁽¹⁾									
	1111 = Reference clock divided by 32,768									
	1110 = Reference clock divided by 16,384 1101 = Reference clock divided by 8,192									
	1100 = Reference clock divided by 4,096 1011 = Reference clock divided by 2,048									
	1011 - Reference clock divided by 2,046									
	1001 = Reference clock divided by 512									
	1000 = Refe	rence clock divi	ded by 256							
		rence clock divi								
		rence clock divi	•							
		rence clock divi								
		rence clock divi rence clock divi	-							
		rence clock divi	,							
		rence clock divi								
	0000 = Refe	rence clock	-							

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- Note 1: The Reference Oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

10.0 POWER-SAVING FEATURES

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (www.microchip.com/DS70615) in the "dsPIC33/PIC24 Family Reference Manual".
 2: Some registers and associated bits described in this section may not be available on all devices. Refer to

Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #IDLE_MODE ; Put the device into Idle mode PWRSAV #SLEEP_MODE ; Put the device into Sleep mode⁽¹⁾ Note 1: The use of PWRSV #SLEEP_MODE has limitations when the Flash Voltage Regulator bit, VREGSF (RCON[11]), is set to Standby mode. Refer to Section 10.2.1 "Sleep Mode" for more information.

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON[10:8]). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON[8]) and VREGSF (RCON[11]) bits (default configuration). However, putting the Flash voltage regulator in Standby mode (VREGSF = 0) when in Sleep has the effect of corrupting the prefetched instructions placed in the instruction queue. When the part wakes up, these instructions may cause undefined behavior. To remove this problem, the instruction queue must be flushed after the part wakes up. A way to flush the instruction queue is to perform a branch. Therefore, it is required to implement the SLEEP instruction in a function with 4-instruction word alignment. The 4-instruction word alignment will assure that the **SLEEP** instruction is always placed on the correct address to make sure the flushing will be effective. Example 10-2 shows how this is performed.

EXAMPLE 10-2: SLEEP MODE PWRSAV INSTRUCTION SYNTAX (WITH FLASH VOLTAGE REGULATOR SET TO STANDBY MODE)

.global __GoToSleep .section .text .align 4 __GoToSleep: PWRSAV #SLEEP_MODE BRA TO_FLUSH_QUEUE_LABEL TO_FLUSH_QUEUE_LABEL: RETURN If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON[8]) and VREGSF (RCON[11]) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (two-four clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON[13]).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV[11]). The ratio between peripheral and core clock speed is determined by the DOZE[2:0] bits (CLKDIV[14:12]). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV[15]). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN[™] module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

10.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

10.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (www.microchip.com/DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD ⁽¹⁾	PWMMD ⁽¹⁾	_	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		C1MD ⁽²⁾	AD1MD	
bit 7							bit	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own	
	-			-				
bit 15	T5MD: Timer	5 Module Disal	ole bit					
	1 = Timer5 m	nodule is disable	ed					
	0 = Timer5 m	odule is enable	d					
bit 14		4 Module Disal						
		nodule is disable						
1.1.40		odule is enable						
bit 13		3 Module Disal						
	1 = Timer3 module is disabled 0 = Timer3 module is enabled							
bit 12		2 Module Disal						
	1 = Timer2 module is disabled							
	0 = Timer2 module is enabled							
bit 11	T1MD: Timer	⁻ 1 Module Disal	ole bit					
		nodule is disable						
		nodule is enable						
bit 10		I1 Module Disa						
	1 = QEI1 module is disabled 0 = QEI1 module is enabled							
bit 9		VM Module Dis	able hit(1)					
DIL 9		dule is disable						
		dule is enabled						
bit 8	Unimplemer	nted: Read as '	0'					
bit 7	12C1MD: 12C	1 Module Disal	ole bit					
	1 = I2C1 mod	dule is disabled						
	0 = I2C1 mod	dule is enabled						
bit 6	U2MD: UART2 Module Disable bit							
	1 = UART2 n							
L:1 F		nodule is enabl						
bit 5		T1 Module Disa nodule is disabl						
		nodule is disabi nodule is enabl						
bit 4		I2 Module Disa						
	-	dule is disabled						
		dule is enabled						

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	SPI1MD: SPI1 Module Disable bit

- 1 = SPI1 module is disabled0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit⁽²⁾
 - 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - 2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

REGISTER	R 10-2: PMC	02: PERIPHER	AL MODULE		ONTROL RE	GISTER 2				
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	_	—	—	IC4MD	IC3MD	IC2MD	IC1MD			
bit 15							bit			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
—		_	—	OC4MD	OC3MD	OC2MD	OC1MD			
bit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable b	pit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-12	Unimpleme	nted: Read as '0	,							
bit 11	-	ut Capture 4 Mod		ł						
	-	apture 4 module i		•						
		pture 4 module i								
bit 10	-	IC3MD: Input Capture 3 Module Disable bit								
	1 = Input Capture 3 module is disabled									
	0 = Input Capture 3 module is enabled									
bit 9	IC2MD: Input Capture 2 Module Disable bit									
	1 = Input Capture 2 module is disabled									
	0 = Input Capture 2 module is enabled									
bit 8	IC1MD: Inpu	IC1MD: Input Capture 1 Module Disable bit								
	1 = Input Capture 1 module is disabled									
	-	apture 1 module i								
bit 7-4	Unimpleme	nted: Read as '0	3							
bit 3	OC4MD: OL	OC4MD: Output Compare 4 Module Disable bit								
		Compare 4 modu Compare 4 modu								
bit 2	OC3MD: Output Compare 3 Module Disable bit									
	1 = Output Compare 3 module is disabled									
	0 = Output Compare 3 module is enabled									
bit 1	OC2MD: Output Compare 2 Module Disable bit									
		Compare 2 modu Compare 2 modu								
	 0 = Output Compare 2 module is enabled OC1MD: Output Compare 1 Module Disable bit 									
bit 0	OC1MD: OI	Itput Compare 1	Module Disabl	e di						
bit 0		itput Compare 1 Compare 1 modu		ie dil						

DECISTED 40 2 DMD2: DEDIDHEDAL MODULE DISADLE CONTROL DECISTED 2

REGISTER 1	REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3							
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	
—	—	—	_	—	CMPMD	—	—	
bit 15							bit 8	
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
CRCMD	—	—	_	—	_	I2C2MD	—	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
<u> </u>								

REGISTER 10-3:	PMD3: PERIPHERAL	MODULE DISABLE (CONTROL REGISTER 3

bit 15-11	Unimplemented: Read as '0'
bit 10	CMPMD: Comparator Module Disable bit
	 1 = Comparator module is disabled 0 = Comparator module is enabled
bit 9-8	Unimplemented: Read as '0'
bit 7	CRCMD: CRC Module Disable bit
	1 = CRC module is disabled
	0 = CRC module is enabled
bit 6-2	Unimplemented: Read as '0'
bit 1	I2C2MD: I2C2 Module Disable bit
	1 = I2C2 module is disabled
	0 = I2C2 module is enabled
bit 0	Unimplemented: Read as '0'

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

	-			-			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—		—
bit 15		•					bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
_	—	—	—	REFOMD	CTMUMD	—	—
bit 7	-	•		•	•		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	 1 = Reference clock module is disabled 0 = Reference clock module is enabled
bit 2	CTMUMD: CTMU Module Disable bit
	1 = CTMU module is disabled0 = CTMU module is enabled
bit 1-0	Unimplemented: Read as '0'

REGISTER	(10-5: PIVIDO			E DISABLE C	UNIRUL RE	GISTER 0		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	—	—	—	—	PWM3MD ⁽¹⁾	PWM2MD ⁽¹⁾	PWM1MD ⁽¹⁾	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—			—		—		
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-11	Unimplemen	ted: Read as '	0'					
bit 10	PWM3MD: P	WM3 Module E	Disable bit ⁽¹⁾					
	1 = PWM3 m	odule is disable	ed					
	0 = PWM3 mo	odule is enable	ed					
bit 9	PWM2MD: P	WM2 Module [Disable bit ⁽¹⁾					
	1 = PWM2 mo	odule is disable	ed					
	0 = PWM2 m	odule is enable	ed					
bit 8	PWM1MD: P	WM1 Module [Disable bit ⁽¹⁾					
	1 = PWM1 mo	odule is disable	ed					

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

bit 7-0 Unimplemented: Read as '0'

0 = PWM1 module is enabled

Note 1: This bit is available on dsPIC33EPXXXMC50X/20X and PIC24EPXXXMC20X devices only.

U-0U-0U-0R/W-0R/W-0U-0U-0U-0 $ -$	REGISTER	10-0: PIVID/	PERIPHER		DISABLE C	UNIRUL RE	GISTER /		
U-0 U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0 - - $\frac{DMA0MD^{(1)}}{DMA1MD^{(1)}}$ PTGMD - - - bit 7 - - $\frac{DMA3MD^{(1)}}{DMA3MD^{(1)}}$ PTGMD - - - egend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 0 DMA0MDI: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA0 module is enabled DMA2MDI DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is enabled DMA33MD: DMA3 Module Disable bit ⁽¹⁾ 1 = DMA3 module is enabled DMA33 module is disabled 0 = DMA3 module is enabled DMA33 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
U-0 U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0 - - $\frac{DMA0MD^{(1)}}{DMA1MD^{(1)}}$ PTGMD - - - bit 7 - - $\frac{DMA3MD^{(1)}}{DMA3MD^{(1)}}$ PTGMD - - - egend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 0 DMA0MDI: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA0 module is enabled DMA2MDI DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is enabled DMA33MD: DMA3 Module Disable bit ⁽¹⁾ 1 = DMA3 module is enabled DMA33 module is disabled 0 = DMA3 module is enabled DMA33 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled	_	—	—	—	—	_	—	—	
	bit 15			•				bit 8	
- - DMA1MD ⁽¹⁾ DMA2MD ⁽¹⁾ DMA3MD ⁽¹⁾ PTGMD - - - eegend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' 0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' - - - bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled	U-0	U-0	U-0		R/W-0	U-0	U-0	U-0	
Image: Constraint of the second se				DMA0MD ⁽¹⁾					
bit 7 DMA2MD ⁽¹⁾ cegend: DMA3MD ⁽¹⁾ R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' o' Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' o' Bit is cleared x = Bit is unknown bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is enabled DMA3MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is enabled DMA3MD: DMA3 Module Disable bit ⁽¹⁾ 1 = DMA3 module is disabled 0 = DMA3 module is enabled DMA3MD: DMA3 Module Disable bit 1 = PTG module is disabled 0 = DMA3 module is disabled 0 = TG module is disabled 0 = PTG module is disabled 0 = PTG module is enabled					PTGMD				
bit 7 bit 0 Legend: Image: State of the	_		_	DMA2MD ⁽¹⁾	TIGNID	_	_	_	
.egend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 1 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = PTG module is disabled 0 = PTG module is disabled <td></td> <td></td> <td></td> <td>DMA3MD⁽¹⁾</td> <td></td> <td></td> <td></td> <td></td>				DMA3MD ⁽¹⁾					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' bit 15-5 Unimplemented: Read as '0' bit 15-5 Unimplemented: Read as '0' bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = TG module is disabled 0 = PTG module is disabled	oit 7							bit 0	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' bit 15-5 Unimplemented: Read as '0' bit 15-5 Unimplemented: Read as '0' bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = TG module is disabled 0 = PTG module is disabled									
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-5 Unimplemented: Read as '0' bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = PTG module is disabled 0 = PTG module is disabled 0 = PTG module is disabled	Legend:								
bit 15-5 Unimplemented: Read as '0' DMAOMD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is enabled DMA2MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled 1 = DMA3 module is disabled 0 = DMA3 module is enabled	R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
bit 4 DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is disabled 0 = DMA1 module is enabled DMA2MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is enabled DMA3MD: DMA3 Module Disable bit ⁽¹⁾ 1 = DMA3 module is enabled DMA3 module is enabled DMA3 module is enabled DMA3 module is enabled DIMA3 module is enabled DMA3 module is enabled DIMA3 module DISABLE bit	n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
0 = PTG module is enabled	bit 4 bit 3	Unimplemented: Read as '0' DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is enabled DMA2MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled							
bit 2-0 Unimplemented: Read as '0'		1 = PTG mod	ule is disabled						
	oit 2-0	Unimplement	ted: Read as '	כ'					

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

Note 1: This single bit enables and disables all four DMA channels.

11.0 I/O PORTS

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared. When ANSELx = 1 (the port is selected as analog) and TRISx = 1 (digital I/O enabled), the digital input value read by the port is always '0'.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on Change Notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV (DxFF00, WO	;	Configure PORTB<15:8>
		;	as inputs
MOV V	WO, TRISB	;	and PORTB<7:0>
		;	as outputs
NOP		;	Delay 1 cycle
BTSS H	PORTB, #13	;	Next Instruction

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-17). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices support virtual (internal) connections to the output of the op amp/ comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module") and the PTG module (see Section 24.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support virtual connections to the filtered QEI module inputs: FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)".

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R[6:0] bits of the RPINR12 register to the value of `b0000001, the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled and its inputs must be connected to a physical RPn pin. Example 11-2 illustrates how the input capture module can be connected to the QEI digital filter.

EXAMPLE 11-2: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43 OF THE dsPIC33EPXXXMC206 DEVICE

RPINR15 = 0x2500; /* Connect the QEI1 HOME1 input to RP37 (pin 43) */
RPINR7 = 0x009; /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000; /* Enable the QEI digital filter */
QEI1CON = 0x8000; /* Enable the QEI module */

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits	
External Interrupt 1	INT1	RPINR0	INT1R[6:0]	
External Interrupt 2	INT2	RPINR1	INT2R[6:0]	
Timer2 External Clock	T2CK	RPINR3	T2CKR[6:0]	
Input Capture 1	IC1 RPINR7		IC1R[6:0]	
Input Capture 2	IC2 RPINR7		IC2R[6:0]	
Input Capture 3	IC3	RPINR8	IC3R[6:0]	
Input Capture 4	IC4	RPINR8	IC4R[6:0]	
Output Compare Fault A	OCFA	RPINR11	OCFAR[6:0]	
PWM Fault 1 ⁽³⁾	FLT1	RPINR12	FLT1R[6:0]	
PWM Fault 2 ⁽³⁾	FLT2	RPINR12	FLT2R[6:0]	
QEI1 Phase A ⁽³⁾	QEA1	QEA1 RPINR14		
QEI1 Phase B ⁽³⁾	QEB1	RPINR14	QEB1R[6:0]	
QEI1 Index ⁽³⁾	INDX1	X1 RPINR15 IN		
QEI1 Home ⁽³⁾	HOME1	RPINR15	HOM1R[6:0]	
UART1 Receive	U1RX	RPINR18	U1RXR[6:0]	
UART2 Receive	U2RX	RPINR19	U2RXR[6:0]	
SPI2 Data Input	SDI2	RPINR22	SDI2R[6:0]	
SPI2 Clock Input	SCK2	RPINR22	SCK2R[6:0]	
SPI2 Slave Select	SS2	RPINR23	SS2R[6:0]	
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR[6:0]	
PWM Sync Input 1 ⁽³⁾	SYNCI1	SYNCI1 RPINR37 S		
PWM Dead-Time Compensation 1 ⁽³⁾	DTCMP1	RPINR38	DTCMP1R[6:0]	
PWM Dead-Time Compensation 2 ⁽³⁾	DTCMP2	RPINR39	DTCMP2R[6:0]	
PWM Dead-Time Compensation 3 ⁽³⁾	DTCMP3	RPINR39	DTCMP3R[6:0]	

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

2: This input source is available on dsPIC33EPXXXGP/MC50X devices only.

3: This input source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
000 0000	I	Vss	010 1101	I	RPI45
000 0001	I	C10UT ⁽¹⁾	010 1110	Ι	RPI46
000 0010	I	C2OUT ⁽¹⁾	010 1111	Ι	RPI47
000 0011	Ι	C3OUT ⁽¹⁾	011 0000	—	—
000 0100	I	C4OUT ⁽¹⁾	011 0001	—	—
000 0101	—	—	011 0010	—	
000 0110	Ι	PTGO30 ⁽¹⁾	011 0011	I	RPI51
000 0111	Ι	PTGO31 ⁽¹⁾	011 0100	Ι	RPI52
000 1000	I	FINDX1 ^(1,2)	011 0101	I	RPI53
000 1001	Ι	FHOME1 ^(1,2)	011 0110	I/O	RP54
000 1010	—	—	011 0111	I/O	RP55
000 1011	—	—	011 1000	I/O	RP56
000 1100	—	—	011 1001	I/O	RP57
000 1101	—	—	011 1010	Ι	RPI58
000 1110	—	—	011 1011	—	
000 1111	_	—	011 1100		—
001 0000	—	—	011 1101	—	—
001 0001	—	—	011 1110		—
001 0010	—	—	011 1111	—	—
001 0011	—	—	100 0000	—	—
001 0100	I/O	RP20	100 0001		—
001 0101	—	—	100 0010	—	—
001 0110	—	—	100 0011	—	—
001 0111	—	—	100 0100	—	—
001 1000	I	RPI24	100 0101	—	—
001 1001	Ι	RPI25	100 0110	—	—
001 1010	—	—	100 0111	—	—
001 1011	I	RPI27	100 1000	—	—
001 1100	Ι	RPI28	100 1001	—	—
001 1101	—	—	100 1010	—	—
001 1110	—	—	100 1011	—	—
001 1111	—		100 1100	—	
010 0000	I	RPI32	100 1101	—	_
010 0001	Ι	RPI33	100 1110	—	_
010 0010	I	RPI34	100 1111		_
010 0011	I/O	RP35	101 0000	—	_
010 0100	I/O	RP36	101 0001	—	
010 0101	I/O	RP37	101 0010	—	
010 0110	I/O	RP38	101 0011	—	
010 0111	I/O	RP39	101 0100	—	

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.
Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment		Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010 1000	I/O	RP40		101 0101		
010 1001	I/O	RP41		101 0110	—	—
010 1010	I/O	RP42		101 0111	—	—
010 1011	I/O	RP43		101 1000		—
010 1100	I	RPI44		101 1001	—	—
101 1010	—	_		110 1101	—	
101 1011				110 1110		
101 1100	_	_		110 1111	—	
101 1101	—	_] [111 0000	—	—
101 1110	I	RPI94		111 0001	—	_
101 1111	I	RPI95		111 0010	—	—
110 0000	I	RPI96		111 0011	—	_
110 0001	I/O	RP97		111 0100	—	—
110 0010	—	—		111 0101	—	—
110 0011	—	_		111 0110	I/O	RP118
110 0100	—	—		111 0111	Ι	RPI119
110 0101				111 1000	I/O	RP120
110 0110	—] [111 1001	Ι	RPI121
110 0111] [111 1010		
110 1000	_	_		111 1011	—	
110 1001	_			111 1100		
110 1010				111 1101		
110 1011	_	_		111 1110	—	
110 1100		_	ן ו	111 1111		_

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPxR[5:0]	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX ⁽²⁾	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM Primary Time Base Sync Output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

11.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-11, under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD – 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.

5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 30.0 "Electrical Characteristics" for additional information.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (www.microchip.com/DS70000598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

Peripheral Pin Select Registers 11.7

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R[6:0]			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7				•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
--------	----------------------------

bit 14-8	INT1R[6:0]: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121
bit 7-0	• • • • • • • • • • • • • •

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—			—	—	—	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		INT2R[6:0]						
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	able bit U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as '	0'					
bit 6-0		Assign External -2 for input pin			rresponding RP	n Pin bits		
	1111001 = lr	put tied to RPI	121					
	•							
	•							
	• 0000001 – Ir	nput tied to CM	D1					
		nput tied to Use						

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	-	—	—	—	—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_			T2CKR[6:0]						
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-7	Unimplemen	ted: Read as ')'						
bit 6-0		Assign Timer2 -2 for input pin			e Corresponding	g RPn pin bits			
	1111001 = Ir	nput tied to RPI	121						
	•								
	•								
	0000001 = lr	nput tied to CMI	⊃1						
		nput tied to Vss							

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_				IC2R[6:0]							
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—				IC1R[6:0]							
bit 7							bit (
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15	Unimpleme	nted: Read as '	כי								
bit 14-8		IC2R[6:0]: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)									
	1111001 =	Input tied to RPI	121								
	•										
	•										
	0000001 =	0000001 = Input tied to CMP1									
	0000000 =	Input tied to Vss									
bit 7	Unimpleme	nted: Read as '	כ'								
bit 6-0		Assign Input Cap 1-2 for input pin			nding RPn Pir	ı bits					
	1111001 =	1111001 = Input tied to RPI121									
	•										
	•										
	0000001 =	Input tied to CMI	P1								
	0000000 =	Input tied to Vss									

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			11/00-0	IC4R[6:0]	11/00-0				
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_				IC3R[6:0]					
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
	1111001 = •	nput tied to RPI	121						
	• 0000001 = Input tied to CMP1 0000000 = Input tied to Vss								
	0000000 = 1	nput tied to Vss	;						
bit 7		nput tied to Vss nted: Read as '							

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	_	—	—	—	
bit 15					•		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				OCFAR[6:0]			
bit 7							bit 0
Legend:							

REGISTER 11-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-0 OCFAR[6:0]: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121

> 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				FLT2R[6:0]					
bit 15							bit 8		
		-	-	-	-	D N N A	-		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—				FLT1R[6:0]					
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
	• •	nput tied to RPI nput tied to CM							
	0000000 = Input tied to Vss								
bit 7	Unimplemer	nted: Read as '	0'						
bit 6-0	(see Table 11	Assign PWM F I-2 for input pin nput tied to RPI	selection nun 121	•	onding RPn Pi	n bits			

REGISTER 11-8: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_				QEB1R[6:0]							
bit 15	·						bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
				QEA1R[6:0]							
bit 7							bit 0				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown				
bit 15	Unimplemer	ited: Read as '	0'								
bit 14-8	QEB1R[6:0]: Assign B (QEB) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)										
	1111001 = I	nput tied to RPI	121								
	•										
	•										
	0000001 = 	nput tied to CM	P1								
		0000000 = Input tied to Vss									
bit 7	Unimplemer	ted: Read as '	0'								
bit 6-0	QEA1R[6:0]	Assign A (QEA	() to the Corre	esponding RPn	Pin bits						
	(see Table 11	(see Table 11-2 for input pin selection numbers)									
	1111001 = 	1111001 = Input tied to RPI121									
	•										
	•										
	0000001 = 	nput tied to CM	P1								
		, nput tied to Vss									

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_				HOME1R[6:0]					
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_				INDX1R[6:0]						
bit 7							bit (
Legend: R = Readab	ole hit	W = Writable	bit	U = Unimpler	nented hit re	ad as 'O'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	Unimpleme	nted: Read as '	o '							
bit 14-8	HOME1R[6:0]: Assign QEI1 HOME1 (HOME1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121									
	•	Input tied to RPI	121							
	•									
	• 0000001 = Input tied to CMP1									
		0000000 = Input tied to Vss								
bit 7	Unimpleme	nted: Read as '	0'							
bit 6-0	-	IND1XR[6:0]: Assign QEI1 INDEX1 (INDX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)								
	1111001 =	1111001 = Input tied to RPI121								
	•									
	•									
		Input tied to CM								

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	—	—	—
bit 15	·					-	bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U1RXR[6:0]			
bit 7							bit 0

REGISTER 11-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	U1RXR[6:0]: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	•
	•
	0000001 = Input tied to CMP1

^{0000000 =} Input tied to Vss

REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U2RXR[6:0]			
bit 7	-						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				SCK2INR[6:0]				
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—				SDI2R[6:0]					
bit 7							bit 0		
Legend:									
R = Readab		W = Writable		U = Unimplen	-				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
	1111001 = Input tied to RPI121 • • • • • • • • • • • • •								
bit 7		nted: Read as '							
bit 6-0	SDI2R[6:0]: (see Table 1	Assign SPI2 Da 1-2 for input pin nput tied to RPI	ata Input (SDI2 selection nun	,	ponding RPn	Pin bits			

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_		—	—	—
bit 15						·	bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SS2R[6:0]			
bit 7							bit 0
Legend:							

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	SS2R[6:0]: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGP/MC50X DEVICES ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—		—	—	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	C1RXR[6:0]							
bit 7	•						bit 0	

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-7	Unimplemented: Read as '0'
bit 6-0	C1RXR[6:0]: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-15: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_				SYNCI1R[6:0]						
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—		—		—	—			
bit 7							bit (
Legend:										
R = Readab	ole bit	W = Writable	bit	it U = Unimplemented bit, read as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
L:L 4 F										
DIT 15	Unimpleme	nted: Read as '	0'							
	SYNCI1R[6:	nted: Read as ' : 0]: Assign PWM 1-2 for input pin	I Synchroniza		NCI1) to the C	Corresponding R	RPn Pin bits			
	SYNCI1R[6: (see Table 1	0]: Assign PWM	I Synchroniza selection nun		′NCI1) to the C	Corresponding F	RPn Pin bits			
	SYNCI1R[6: (see Table 1	0]: Assign PWM 1-2 for input pin	I Synchroniza selection nun		NCI1) to the C	Corresponding F	RPn Pin bits			
	SYNCI1R[6: (see Table 1	0]: Assign PWM 1-2 for input pin	I Synchroniza selection nun		NCI1) to the C	Corresponding F	RPn Pin bits			
	SYNCI1R[6: (see Table 1 1111001 =	0]: Assign PWM 1-2 for input pin Input tied to RPI	I Synchroniza selection nun 121		′NCI1) to the C	Corresponding F	RPn Pin bits			
	SYNCI1R[6: (see Table 1 1111001 =	:0]: Assign PWM 1-2 for input pin Input tied to RPI Input tied to CMI	1 Synchroniza selection nun 121 P1		′NCI1) to the C	Corresponding F	RPn Pin bits			
bit 15 bit 14-8 bit 7-0	SYNCI1R[6: (see Table 1 1111001 =	0]: Assign PWM 1-2 for input pin Input tied to RPI	I Synchroniza selection nun 121 P1		′NCI1) to the C	Corresponding F	RPn Pin bits			

REGISTER 11-16: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38 (dsPIC33EPXXXMC20X AND PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				DTCMP1R[6:0)]			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	_	_		—	—	_	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	Unimpleme	nted: Read as '	0'					
bit 14-8		:0]: Assign PW (see Table 11-2				CMP1) to the C	Corresponding	
	1111001 = 	nput tied to RP	121					
	•							
	•							
	• 0000001 = I	nput tied to CM	P1					
	0000000 = I							

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-17: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP3R[6:0	0]		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP2R[6:0)]		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	•	nput tied to RPI	121				
	•						
	• 000001 - Ir	nput tied to CM	D1				
		nput tied to Use					
bit 7		ted: Read as '					
bit 6-0	DTCMP2R[6: RPn Pin bits	:0]: Assign PW	/M Dead-Time for input pin	e Compensatio selection numb	• •	CMP2) to the (Corresponding
	•						
	•						
	0000001 = lr	nut tied to CM	D1				

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP3	5R[5:0]		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—		RP20R[5:0]				
bit 7							bit 0

REGISTER 11-18: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP35R[5:0]: Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP20R[5:0]: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-19: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP37R[5:0]					
bit 15							bit 8	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP36R[5:0]						
bit 7							bit 0		

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP37R[5:0]: Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP36R[5:0]: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 11-3 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP39R[5:0]						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP38R[5:0]						
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8	RP39R[5:0]: Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 11-3 for peripheral function numbers)								
bit 7-6	Unimplemented: Read as '0'								

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

(see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP41R[5:0]						
bit 15							bit 8		

RP38R[5:0]: Peripheral Output Function is Assigned to RP38 Output Pin bits

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP40R[5:0]						
bit 7							bit 0		

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP41R[5:0]:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R[5:0]:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 5-0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP43R[5:0]					
bit 15	·						bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—		RP42R[5:0]					
bit 7	·						bit 0	

REGISTER 11-22: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP43R[5:0]: Peripheral Output Function is Assigned to RP43 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP42R[5:0]: Peripheral Output Function is Assigned to RP42 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-23: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP55R[5:0]						
bit 15							bit 8		

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP54R[5:0]							
bit 7							bit 0			

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP55R[5:0]: Peripheral Output Function is Assigned to RP55 Output Pin bits (see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP54R[5:0]: Peripheral Output Function is Assigned to RP54 Output Pin bits (see Table 11-3 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—			RP57	7R[5:0]				
bit 15	÷						bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—			RP56	6R[5:0]				
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8	RP57R[5:0]: Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)								
bit 7-6	Unimplemen	ted: Read as '	0'						
bit 5-0	RP56R[5:0]: Peripheral Output Function is Assigned to RP56 Output Pin bits								

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

(see Table 11-3 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP97R[5:0]						
bit 15							bit 8		

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—			—
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP97R[5:0]: Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_		RP118R[5:0]							
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—		—	_		_		—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	V = Writable bit U = Unimplemented bit, read as			l as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-14	Unimplemen	nted: Read as 'o	ı'							

bit 15-1 4	ommplemented. Read as 0
bit 13-8	RP118R[5:0]: Peripheral Output Function is Assigned to RP118 Output Pin bits
	(see Table 11-3 for peripheral function numbers)
bit 7-0	Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP120R[5:0]						
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R[5:0]:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

NOTES:

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (www.microchip.com/DS70362) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be Operated in Asynchronous Counter mode from an External Clock Source
- The External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler
- A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON[1]
- Timer Synchronization Control bit (TSYNC): T1CON[2]
- Timer Gate Control bit (TGATE): T1CON[6]

Timer control bit setting for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE	TSYNC
Timer	0	0	Х
Gated Timer	0	1	х
Synchronous Counter	1	х	1
Asynchronous Counter	1	х	0

TABLE 12-1: TIMER MODE SETTINGS

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

12.1 Timer1 Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

12.1.1 KEY RESOURCES

- "Timers" (www.microchip.com/DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

12.2 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾		TSIDL	_	_	_	—	_
bit 15							bit 8
	B4 44.0	D 444 0	DMU 0		D 444 0	DAA/ O	
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	—	TSYNC ⁽¹⁾	TCS ⁽¹⁾	— bit (
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
L:1 4 C	TON: Timer1	O., 1;4(1)					
bit 15	1 = Starts 16-						
	0 = Stops 16-						
bit 14	-	ted: Read as '	0'				
bit 13	TSIDL: Timer	1 Stop in Idle I	Node bit				
		ues module op s module opera			Idle mode		
bit 12-7	0 = Continues module operation in Idle mode Unimplemented: Read as '0'						
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit						
	When TCS =	1:					
	This bit is ign						
	<u>When TCS =</u> 1 = Cotod time	0: e accumulatio	n in onablad				
		e accumulatio					
bit 5-4	TCKPS[1:0]: Timer1 Input Clock Prescale Select bits						
	11 = 1:256						
	10 = 1:64						
	01 = 1:8 00 = 1:1						
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	TSYNC: Timer1 External Clock Input Synchronization Select bit ⁽¹⁾						
	When TCS =						
		izes external c					
	When TCS =	synchronize ex	Riemai Ciock II	iput			
	This bit is ign						
bit 1	TCS: Timer1 Clock Source Select bit ⁽¹⁾						
	1 = External o 0 = Internal c	clock is from pi lock (FP)	n, T1CK (on th	ne rising edge)		
bit 0		ted: Read as '	0'				

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

© 2011-2020 Microchip Technology Inc.

NOTES:

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (www.microchip.com/DS70362) of the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

Timery is a Type C timer (y = 3 and 5).

13.1 **Timerx/y Resources**

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/
	wwwproducts/Devices.aspx?d
	DocName=en555464

KEY RESOURCES 13.1.1

- "Timers" (www.microchip.com/DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

13.2 Timer Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
TON	_	TSIDL				—	_	
bit 15							bit	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	
	TGATE	TCKPS1	TCKPS0	T32		TCS ⁽¹⁾		
bit 7							bit	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own	
bit 15	TON: Timerx	-						
	<u>When T32 = 1</u> 1 = Starts 32-							
	0 = Stops 32-							
	When T32 = 0							
	1 = Starts 16-							
	0 = Stops 16-		o.1					
bit 14	Unimplemented: Read as '0'							
bit 13	TSIDL: Timerx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode							
		s module opera						
bit 12-7	Unimplemented: Read as '0'							
bit 6	TGATE: Time	GATE: Timerx Gated Time Accumulation Enable bit						
	When TCS =							
	This bit is igno							
	$\frac{\text{When TCS}}{1 - \text{Cated tim}}$	<u>0:</u> le accumulatio	n is enabled					
		le accumulation						
bit 5-4	TCKPS[1:0]:	Timerx Input C	lock Prescale	Select bits				
	11 = 1:256	·						
	10 = 1:64							
	01 = 1:8 00 = 1:1							
bit 3		mer Mode Sele	ect hit					
	T32: 32-Bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer							
		nd Timery act a						
bit 2	Unimplemented: Read as '0'							
bit 1	TCS: Timerx	Clock Source S	Select bit ⁽¹⁾					
	1 = External c 0 = Internal cl	clock is from pil lock (FP)	n, TxCK (on th	e rising edge)				
	Unimplemented: Read as '0'							
bit 0	Unimplemen	ted: Read as '	0'					

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
TON ⁽¹⁾		TSIDL ⁽²⁾	—	—			—	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—		TCS ^(1,3)	—	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'		
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own	
	-			-				
bit 15	TON: Timery	On bit ⁽¹⁾						
	1 = Starts 16	-bit Timery						
	0 = Stops 16-	•						
bit 14	Unimplemented: Read as '0'							
bit 13	TSIDL: Timery Stop in Idle Mode bit ⁽²⁾							
		ues module op s module opera			ldle mode			
bit 12-7	Unimplemented: Read as '0'							
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾							
	When TCS = This bit is ign							
	When TCS =							
		ne accumulation						
		ne accumulation		Calast hits(1)				
bit 5-4	11 = 1:256	Timery Input C	lock Prescale	Select Dits				
	11 = 1.250 10 = 1.64							
01 = 1:8								
	00 = 1:1							
bit 3-2	Unimplemented: Read as '0'							
bit 1	TCS: Timery Clock Source Select bit ^(1,3)							
	1 = External o 0 = Internal c	clock is from pir lock (FP)	n, TyCK (on th	e rising edge)				
bit 0	Unimplemented: Read as '0'							
Note 1: Wh	an 20 hit an an	ation is enabled		1) those hits	have no offect	on Timory onoro		

REGISTER 13-2: TyCON: (TIMER3 AND TIMER5) CONTROL REGISTER

- **Note 1:** When 32-bit operation is enabled (12CON[3] = 1), these bits have no effect on Timery operation; all timer functions are set through TxCON.
 - 2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON[3]), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
 - 3: The TyCK pin is not available on all devices. See the "Pin Diagrams" section for the available pins.

NOTES:

14.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture with Dedicated Timer" (www.microchip.com/DS70000352) in the "dsPIC33/dsPIC24 Family Reference Manual".
 2: Some registers and associated bits
 - 2. Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices support four input capture channels.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 19 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- · Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

14.1.1 KEY RESOURCES

- "Input Capture with Dedicated Timer" (www.microchip.com/DS70000352) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools
14.2 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Stop in Idle Control bit
	1 = Input capture will halt in CPU Idle mode
	0 = Input capture will continue to operate in CPU Idle mode
bit 12-10	ICTSEL[2:0]: Input Capture Timer Select bits
	111 = Peripheral clock (FP) is the clock source of the ICx
	110 = Reserved
	101 = Reserved
	100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported)
	011 = T5CLK is the clock source of the ICx 010 = T4CLK is the clock source of the ICx
	001 = T2CLK is the clock source of the ICx
	000 = T3CLK is the clock source of the ICx
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI[1:0]: Number of Captures per Interrupt Select bits (this field is not used if ICM[2:0] = 001 or 111)
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event
	00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
	1 = Input capture buffer overflow occurred
	0 = No input capture buffer overflow occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM[2:0]: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
	100 = Capture mode, every 4th rising edge (Prescaler Capture mode)
	011 = Capture mode, every rising edge (Simple Capture mode)
	010 = Capture mode, every falling edge (Simple Capture mode)
	001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI[1:0]) is not used in this mode)
	000 = Input capture module is turned off

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾		SYNCSEL4 ⁽⁴⁾	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0 ⁽⁴⁾

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

bit 7		· · · ·		bit 0
Legend:	HS = Hardware Settat	ble bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-9 Unimplemented: Read as '0'

bit 8

- IC32: Input Capture 32-Bit Timer Mode Select bit (Cascade mode)
 - 1 = Odd IC and Even IC form a single 32-bit input capture module⁽¹⁾
 - 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture Trigger Operation Select bit⁽²⁾

- 1 = Input source used to trigger the input capture timer (Trigger mode)
- 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL[4:0] bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL[4:0] bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.

 Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO8 = IC1

PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 **SYNCSEL[4:0]:** Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = No Sync or Trigger source for ICx
 - 11110 = Reserved
 - 11101 = Reserved
 - 11100 = CTMU module synchronizes or triggers $ICx^{(5)}$
 - 11011 = ADC1 module synchronizes or triggers $ICx^{(5)}$
 - 11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$
 - 11001 = CMP2 module synchronizes or triggers $ICx^{(5)}$
 - 11000 = CMP1 module synchronizes or triggers $ICx^{(5)}$
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 module synchronizes or triggers ICx
 - 10010 = IC3 module synchronizes or triggers ICx
 - 10001 = IC2 module synchronizes or triggers ICx
 - 10000 = IC1 module synchronizes or triggers ICx
 - 01111 = Timer5 synchronizes or triggers ICx
 - 01110 = Timer4 synchronizes or triggers ICx
 - 01101 = Timer3 synchronizes or triggers ICx (default)
 - 01100 = Timer2 synchronizes or triggers ICx
 - 01011 = Timer1 synchronizes or triggers ICx
 - 01010 = PTGOx module synchronizes or triggers $ICx^{(6)}$
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Reserved
 - 00100 = OC4 module synchronizes or triggers ICx
 - 00011 = OC3 module synchronizes or triggers ICx
 - 00010 = OC2 module synchronizes or triggers ICx
 - 00001 = OC1 module synchronizes or triggers ICx
 - 00000 = No Sync or Trigger source for ICx
- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL[4:0] bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL[4:0] bits). It can be read, set and cleared in software.
 - **4:** Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1
 PTGO9 = IC2
 PTGO10 = IC3
 PTGO11 = IC4

NOTES:

15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare" (www.microchip.com/DS70000358) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select one of seven available clock sources for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The output compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: Refer to "Output Compare" (www.microchip.com/DS70000358) in the "dsPIC33/PIC24 Family Reference Manual" for OCxR and OCxRS register restrictions.

15.1 Output Compare Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

15.1.1 KEY RESOURCES

- "Output Compare" (www.microchip.com/ DS70000358) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
0-0	0-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	0-0	ENFLTB
 bit 15		OCSIDE	OCTGELZ	OCTSELT	OCTSELU	_	
DIL 15							bit 8
R/W-0	U-0	HSC/R/W-0	HSC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT/		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7	· _	OCFLIB	OCFLIA	TRIGMODE	OCIVIZ	OCIVIT	bit 0
							DILU
Legend:		HSC = Hardw	are Settable/Cl	earable bit			
R = Read	able bit	W = Writable I			nented bit, read	as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
				0 2000 0000			
bit 15-14	Unimplemen	nted: Read as '0	,				
bit 13	-	tput Compare x		de Control bit			
		Compare x halts	-				
		ompare x contir			ode		
bit 12-10	OCTSEL[2:0]: Output Comp	are x Clock Se	lect bits			
		eral clock (FP)					
	110 = Reserv						
	101 = PTGO 100 = T1CLK	x clock -/ (is the clock sol	urce of the OC:	x (only the sync	hronous clock	is supported)	
		K is the clock so					
		K is the clock so					
		(is the clock sou (is the clock sou					
hit O				x			
bit 9	-	nted: Read as '0					
bit 8		ult B Input Enab Compare Fault B		is enabled			
		Compare Fault B					
bit 7	-	ult A Input Enabl	,				
	1 = Output C	Compare Fault A Compare Fault A	input (OCFA) i				
bit 6	Unimplemen	nted: Read as '0	,				
bit 5	•	VM Fault B Cond		t			
	1 = PWM Fa	ult B condition of	on OCFB pin ha	as occurred			
bit 4	 0 = No PWM Fault B condition on OCFB pin has occurred OCFLTA: PWM Fault A Condition Status bit 						
	1 = PWM Fault A condition on OCFA pin has occurred						
	0 = No PWM Fault A condition on OCFA pin has occurred						
Note 1:	OCxR and OCxI	RS are double-b	uffered in PWN	/ mode only			
2:	Each Output Co			-	ırce. See <mark>Secti</mark>	on 24.0 "Perip	heral Trigger
	Generator (PTC						00
	PTGO4 = OC1						
	PTGO5 = OC2 PTGO6 = OC3						
	PTGO7 = OC3						

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2[6]) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM[2:0]: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1
 - PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—	—	OC32
bit 15							bit 8
R/W-0	HS/R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
			1		-		
OCTRIG bit 7	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
							Ditt
Legend:		HS = Hardwa	re Settable bit				
R = Readal	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14	1 = Fault mo cleared in 0 = Fault mo FLTOUT: Fau	n software and de is maintaine Ilt Out bit	ed until the Fa a new PWM pe d until the Faul	ault source is r eriod starts It source is rem			
bit 13	 1 = PWM output is driven high on a Fault 0 = PWM output is driven low on a Fault FLTTRIEN: Fault Output State Select bit 1 = OCx pin is tri-stated on a Fault condition 0 = OCx pin I/O state is defined by the FLTOUT bit on a Fault condition 						
bit 12	1 = OCx outp	ut Compare x I out is inverted out is not invert					
bit 11-9	Unimplemen	ted: Read as '	0'				
bit 8	1 = Cascade	module operation	tion is enabled	bit (32-bit oper	ation)		
bit 7	 0 = Cascade module operation is disabled OCTRIG: Output Compare x Trigger/Sync Select bit 1 = Triggers OCx from the source designated by the SYNCSELx bits 0 = Synchronizes OCx with the source designated by the SYNCSELx bits 						
bit 6	1 = Timer so		triggered and is	s running nd is being helo	l clear		
bit 5	1 = OCx is tr	i-stated	Output Pin Dir	rection Select b DCx pin	it		
2: 3: 	Do not use the O When the OCy m as a Trigger source Each Output Com 'Peripheral Trigg PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3 PTGO3 = OC4	odule is turned ce, the OCy mo npare x module	off, it sends a t odule must be u (OCx) has one	trigger out signa unselected as a e PTG Trigger/S	al. If the OCx m Trigger source Synchronization	e prior to disabl	ling it.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

© 2011-2020 Microchip Technology Inc.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL[4:0]: Trigger/Synchronization Source Selection bits
	11111 = OCxRS compare event is used for synchronization
	11110 = INT2 pin synchronizes or triggers OCx
	11101 = INT1 pin synchronizes or triggers OCx
	11100 = CTMU module synchronizes or triggers OCx
	11011 = ADC1 module synchronizes or triggers OCx
	11010 = CMP3 module synchronizes or triggers OCx
	11001 = CMP2 module synchronizes or triggers OCx
	11000 = CMP1 module synchronizes or triggers OCx
	10111 = Reserved
	10110 = Reserved
	10101 = Reserved
	10100 = Reserved
	10011 = IC4 input capture event synchronizes or triggers OCx
	10010 = IC3 input capture event synchronizes or triggers OCx
	10001 = IC2 input capture event synchronizes or triggers OCx
	10000 = IC1 input capture event synchronizes or triggers OCx
	01111 = Timer5 synchronizes or triggers OCx
	01110 = Timer4 synchronizes or triggers OCx
	01101 = Timer3 synchronizes or triggers OCx
	01100 = Timer2 synchronizes or triggers OCx (default)
	01011 = Timer1 synchronizes or triggers OCx
	01010 = PTGOx synchronizes or triggers OCx ⁽³⁾
	01001 = Reserved
	01000 = Reserved
	00111 = Reserved
	00110 = Reserved
	00101 = Reserved
	00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 = OC3 module synchronizes or triggers OCx ^(1,2)
	00010 = OC2 module synchronizes or triggers OCx ^(1,2)
	00001 = OC1 module synchronizes or triggers OCx ^(1,2)

- 00000 = No Sync or Trigger source for OCx
- Note 1: Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO1 = OC2 PTGO2 = OC3 PTGO3 = OC4

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (www.microchip.com/DS70645) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to six outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM Generators
- Two PWM Outputs per PWM Generator
- Individual Period and Duty Cycle for Each PWM Pair
- Duty Cycle, Dead Time, Phase Shift and Frequency Resolution of Tcy/2 (7.14 ns at Fcy = 70 MHz)
- Independent Fault and Current-Limit Inputs for Six PWM Outputs
- Redundant Output
- Center-Aligned PWM mode
- Output Override Control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for Input Clock
- PWMxL and PWMxH Output Pin Swapping
- Independent PWM Frequency, Duty Cycle and Phase-Shift Changes for Each PWM Generator
- Dead-Time Compensation
- Enhanced Leading-Edge Blanking (LEB) Functionality
- Frequency Resolution Enhancement
- PWM Capture Functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 7.14 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNC01 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD[1:0] bits (FCLCON[1:0]), regardless of the state of FLT32.

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL[6]). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0.

To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

; FLT32 pin must be pulled low externally in order to clear and disable the fault ; Writing to FCLCON1 register requires unlock sequence
mov #0xabcd,w10; Load first unlock key to w10 registermov #0x4321,w11; Load second unlock key to w11 registermov #0x0000,w0; Load desired value of FCLCON1 register in w0mov w10, PWMKEY; Write first unlock key to PWMKEY registermov w11, PWMKEY; Write second unlock key to PWMKEY registermov w0,FCLCON1; Write desired value to FCLCON1 register
; Set PWM ownership and polarity using the IOCON1 register
; Writing to IOCON1 register requires unlock sequence
<pre>mov #0xabcd,w10 ; Load first unlock key to w10 register mov #0x4321,w11 ; Load second unlock key to w11 register mov #0xF000,w0 ; Load desired value of IOCON1 register in w0 mov w10, PWMKEY ; Write first unlock key to PWMKEY register mov w11, PWMKEY ; Write second unlock key to PWMKEY register mov w0,IOCON1 ; Write desired value to IOCON1 register</pre>

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

16.2 PWM Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

16.2.1 KEY RESOURCES

- "High-Speed PWM" (www.microchip.com/ DS70645) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

16.3 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7	•						bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	1 = PWMx module is enabled
	0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending
	0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low) 0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
	0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	1 = External synchronization of primary time base is enabled
	0 = External synchronization of primary time base is disabled
Note 1:	These bits should only be changed when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of

the external synchronization input signal.

2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC[2:0]: Synchronous Source Selection bits ⁽¹⁾ 111 = Reserved 100 = Reserved 011 = PTGO17 ⁽²⁾ 010 = PTGO16 ⁽²⁾ 001 = Reserved 000 = SYNCI1 input from PPS
bit 3-0	<pre>SEVTPS[3:0]: PWMx Special Event Trigger Output Postscaler Select bits⁽¹⁾ 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event</pre>

- **Note 1:** These bits should only be changed when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	F	PCLKDIV[2:0] ⁽¹⁾	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

'0' = Bit is cleared

REGISTER 16-2: PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER 2

bit 15-3 Unimplemented: Read as '0'

n = Value at POR

bit 2-0 PCLKDIV[2:0]: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

'1' = Bit is set

- 111 = Reserved
- 110 = Divide-by-64
- 101 = Divide-by-32
- 100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

x = Bit is unknown

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R[15:8]			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	ER[7:0]			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	nented bit, read	l as '0'	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER[15:0]:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 SEVTCMP[15:0]: Special Event Compare Count Value bits

-n = Value at POR

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	—	—	СНОРС	CLK[9:8]
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CHOP	CLK[7:0]			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15 bit 14-10 bit 9-0	1 = Chop cloo 0 = Chop cloo Unimplemen CHOPCLK[9		enabled disabled '0' k Divider bits clock signal is	given by the fo	llowing express	sion:	

REGISTER 16-5: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

REGISTER 16-6: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 MDC[15:0]: PWMx Master Duty Cycle Value bits

HS/HC-0	HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT ⁽⁶⁾	FLTIEN	CLIEN	TRGIEN ⁽⁶⁾	ITB ⁽²⁾	MDCS ⁽²⁾	
bit 15							bit	
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTC1	DTC0	DTCP ⁽³⁾	—	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾	
bit 7							bit	
Legend:		HC = Hardware	Clearable bit	HS = Hardw	are Settable bit			
R = Readable I	oit	W = Writable bi			mented bit, rea			
-n = Value at P		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown	
					Salea			
bit 15	FI TSTAT: Fai	ult Interrupt Statu	ıs bit ⁽¹⁾					
		rrupt is pending						
		nterrupt is pendi	ng					
		ared by setting Fl						
bit 14	CLSTAT: Cur	rent-Limit Interru	pt Status bit ⁽¹⁾					
		mit interrupt is pe						
		t-limit interrupt is						
		ared by setting C						
bit 13		igger Interrupt St						
		interrupt is pending						
	 0 = No trigger interrupt is pending This bit is cleared by setting TRGIEN = 0. 							
bit 12	FLTIEN: Faul	t Interrupt Enable	e bit					
		rrupt is enabled			1			
1.11.4.4		rrupt is disabled		IAI bit is clear	ed			
bit 11		nt-Limit Interrupt						
		mit interrupt is er mit interrupt is di		e CLSTAT bit is	scleared			
bit 10	TRGIEN: Trig	ger Interrupt Ena	able bit ⁽⁶⁾					
		event generates a vent interrupts are			T hit is cleared			
bit 9		dent Time Base N						
bit 5		register provides		riad for this PV	VM generator			
		egister provides t						
bit 8		er Duty Cycle Re	-	-				
		ster provides dut	-		WM generator			
		ister provides du						
Note 1: Soft	ware must clea	ar the interrupt st	atus here and	in the corresp	onding IFSx bit	in the interrup	t controller.	
2: The	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt co These bits should not be changed after the PWMx is enabled (PTEN = 1).							
3: DTC	[1:0] = 11 for	DTCP to be effec	tive; otherwis	e, DTCP is ign	ored.			
		īme Base (ITB =	1) mode mus	t be enabled to	o use Center-Al	gned mode. If	ITB = 0, the	
5: To o	-	CAM bit is ignored. To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLC						
		,						

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6	6	DTC[1:0]: Dead-Time Control bits
		11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time is actively applied for Complementary Output mode00 = Positive dead time is actively applied except for Push-Pull mode
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		<u>When Set to '1':</u> If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened. If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.
		When Set to '0':
		If DTCMPx = 0, PWMxH is shortened and PWMxL is lengthened. If DTCMPx = 1, PWMxL is shortened and PWMxH is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		 1 = PWM generator uses the secondary master time base for synchronization and as the clock source for the PWM generation logic (if secondary time base is available) 0 = PWM generator uses the primary master time base for synchronization and as the clock source for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled 0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWMx Reset Control bit ⁽⁵⁾
		1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base mode
		0 = External pins do not affect PWMx time base
bit 0		IUE: Immediate Update Enable bit ⁽²⁾
		 1 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are immediate 0 = Updates to the active MDC/PDCx/DTRx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
Note	1:	Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
	2:	These bits should not be changed after the PWMx is enabled (PTEN = 1).
	3:	DTC[1:0] = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	4:	The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
	5:	To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

6: When the local time base counter matches the value specified by the user in the TRIGx register, an ADC trigger signal is generated. Also, see the TRIGx register description.

REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDO	Cx[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

bit 15-0 **PDCx[15:0]:** PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx[7:0]			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown				nown			

bit 15-0 PHASEx[15:0]: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx[9]) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD[1:0] (IOCON[11:10]) = 00, 01 or 10), PHASEx[15:0] = Phase-shift value for PWMxH and PWMxL outputs
2: If ITB (PWMCONx[9]) = 1, the following applies based on the mode of operation:

2. If the (PWMCONX[9]) = 1, the following applies based on the mode of operation. Complementary, Redundant and Push-Pull Output mode (PMOD[1:0] (IOCONX[11:10]) = 00, 01 or 10), PHASEx[15:0] = Independent time base period value for PWMxH and PWMxL

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—			DTR	x[13:8]			
bit 15		÷					bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			DTF	Rx[7:0]				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow						nown	

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx[13:0]: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				ALTDT	Rx[13:8]		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTD	TRx[7:0]			
bit 7							bit 0
Legend:							
-	L :4						
R = Readable	DIT	W = Writable t	DIT	U = Unimplem	iented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx[13:0]: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	TRGDI	V[3:0]		—	_	_	—			
bit 15							bit			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—			TRGST	RT[5:0] ⁽¹⁾					
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-12	TRGDIV[3:0]	: Trigger # Out	out Divider bit	S						
	1111 = Trigg	er output for ev	ery 16th trigge	er event						
	1110 = Trigg	er output for ev	ery 15th trigge	er event						
	1101 = Trigg	er output for ev	ery 14th trigge	er event						
	1100 = Trigg	er output for ev	ery 13th trigge	er event						
	1011 = Trigg	er output for ev	ery 12th trigge	er event						
	1010 = Trigger output for every 11th trigger event									
		er output for ev								
		er output for ev								
		er output for ev								
		er output for ev								
	00	er output for ev	,							
		er output for ev								
		er output for ev								
		er output for ev								
		er output for ev								
	0000 = Trigg	er output for ev	ery trigger eve	ent						
bit 11-6	-	ted: Read as '								
bit 5-0	TRGSTRT[5:	0]: Trigger Pos	tscaler Start E	Enable Select b	its ⁽¹⁾					
	111111 = W a	aits 63 PWM cy	cles before ge	enerating the fi	rst trigger event	after the modu	ule is enable			
	•									
	•									
	•									
					t trigger event a					
	$00001 = W_{2}$					tor the medule				
				erating the first	trigger event a t trigger event a					

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC
bit 7	OVRDATO	FLIDAIT	FLIDAIO	CLDATT	CLDATO	SWAF	bit (
Lananda							
Legend:						(0)	
R = Readable		W = Writable		•	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	PENH: PWM	xH Output Pin	Ownership bit				
		odule controls					
		dule controls F					
bit 14		xL Output Pin (•				
		odule controls					
L:1 1 0		dule controls F	•				
bit 13		xH Output Pin oin is active-lov					
		oin is active-iou					
bit 12	-	xL Output Pin F	-				
		oin is active-low	•				
		oin is active-hig					
bit 11-10	PMOD[1:0]:	PWMx # I/O Pi	n Mode bits ⁽¹⁾				
		ed; do not use					
				I Output mode	-		
				nt Output mode entary Output			
bit 9		/erride Enable	-	• •			
		[1] controls out					
		enerator contro	•				
bit 8	OVRENL: OV	verride Enable	for PWMxL Pi	n bit			
		[0] controls out	•	L pin			
	0 = PWMx ge	enerator contro	ls PWMxL pin				
bit 7-6	-	-			e is Enabled bit		
					by OVRDAT[1] by OVRDAT[0]		
bit 5-4	FLTDAT[1:0]	: Data for PWN	/IxH and PWM	IxL Pins if FLTM	MOD is Enabled	l bits	
				state specified l tate specified b			
bit 3-2					DD is Enabled b	its	
-					ecified by CLDA		
					cified by CLDA		
Note 1: Th	nese bits should	not be change	d after the PW	/Mx module is e	enabled (PTEN	= 1).	
	the PWMLOCK (e unlock sequen			[6]) is a '1', the	IOCONx regist	er can only be	written after

REGISTER 16-13: IOCONX: PWMx I/O CONTROL REGISTER^(2,3)

3: The OSYNC bit (IOCON[0]) must be set to '1' prior to changing the state of the SWAP bit (IOCON[1]), else the SWAP function will attempt to occur in the middle of the PWM cycle and unpredictable results may occur.

REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER^(2,3) (CONTINUED)

bit 1		SWAP: SWAP PWMxH and PWMxL Pins bit
		 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins a = PWMxH and PWMxL pins are manual to their respective pins.
		0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0		OSYNC: Output Override Synchronization bit
		 1 = Output overrides via the OVRDAT[1:0] bits are synchronized to the PWMx time base. In Edge-Aligned mode, output overrides are updated when the local time base equals zero. In Center-Aligned mode, output overrides are updated when the local time base matches the PHASEx register. 0 = Output overrides via the OVDDAT[1:0] bits occur on the next CPU clock boundary
Note	1:	These bits should not be changed after the PWMx module is enabled (PTEN = 1).
	2:	If the PWMLOCK Configuration bit (FOSCSEL[6]) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

3: The OSYNC bit (IOCON[0]) must be set to '1' prior to changing the state of the SWAP bit (IOCON[1]), else the SWAP function will attempt to occur in the middle of the PWM cycle and unpredictable results may occur.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGCI	MP[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP[7:0]			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

REGISTER 16-14: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

bit 15-0 TRGCMP[15:0]: Trigger Control Value bits

When the primary PWMx functions in local time base, this register contains the compare values that can trigger the ADC module.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD				
bit 15							bit 8				
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0				
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽²⁾	FLTMOD1	FLTMOD0				
bit 7							bit				
Legend:											
R = Readable	hit	W = Writable	hit	LI – Unimplor	mented bit, read						
		'1' = Bit is set		-							
-n = Value at F	OR	I = Bil is set		'0' = Bit is cle	ared	x = Bit is unkr	lown				
bit 15	Unimplomor	ted: Read as '	o'								
bit 14-10	-			Source Select	t for PWM Gene	protor # bits					
JIL 14-10			Jonuol Signal	Source Select							
	11111 = Fault 32 11110 = Reserved										
	•										
	•										
	01100 = Reserved										
	01011 = Comparator 4										
	01010 = Op Amp/Comparator 3										
	01001 = Op Amp/Comparator 2										
	01000 = Op Amp/Comparator 1										
	00111 = Reserved										
	00110 = Reserved										
	00101 = Reserved 00100 = Reserved										
	00011 = Fau										
	00010 = Fau 00001 = Fau										
	00001 – Fau										
bit 9		ent-Limit Polar	ity for PWM G	enerator # bit	2)						
			-								
	 1 = The selected current-limit source is active-low 0 = The selected current-limit source is active-high 										
bit 8	CLMOD: Cur	rent-Limit Mode	e Enable for P	WM Generato	r # bit						
		imit mode is er imit mode is di									
	ne PWMLOCK unlock sequen			[6]) is a '1', the	IOCONx regist	er can only be	written after				
				N = 0. Chanain	ig the clock sele	ection during on	eration will				
	ld unnrodictable	•	,								

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

yield unpredictable results.

REGISTER 16-15: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

- bit 7-3 FLTSRC[4:0]: Fault Control Signal Source Select for PWM Generator # bits 11111 = Fault 32 (default) 11110 = Reserved 01100 = Reserved 01011 = Comparator 4 01010 = Op Amp/Comparator 3 01001 = Op Amp/Comparator 2 01000 = Op Amp/Comparator 1 00111 = Reserved 00110 = Reserved 00101 = Reserved 00100 = Reserved 00011 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1 FLTPOL: Fault Polarity for PWM Generator # bit⁽²⁾ bit 2 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high bit 1-0 FLTMOD[1:0]: Fault Mode for PWM Generator # bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDATx values (cycle)
 - 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDATx values (latched condition)
- **Note 1:** If the PWMLOCK Configuration bit (FOSCSEL[6]) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.
 - **2:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN		_			
bit 15	·		÷			÷	bit			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL			
bit 7					1	1	bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	1 = Rising ed		will trigger Le	le bit ading-Edge Bla gedge of PWM						
bit 14	1 = Falling ed		will trigger Le	le bit eading-Edge Bla g edge of PWM						
bit 13	PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL									
bit 12	1 = Falling ed	 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 								
bit 11	1 = Leading-E	Edge Blanking	is applied to	anking Enable selected Fault i I to selected Fa	nput					
bit 10	1 = Leading-E	Edge Blanking	is applied to	Blanking Enable selected curren I to selected cur	t-limit input					
bit 9-6	Unimplemen	ted: Read as '	0'							
bit 5	1 = State blar	•	nt-limit and/or		bit ⁽¹⁾ nals) when sele	cted blanking s	ignal is high			
bit 4	1 = State blar		nt-limit and/or		bit ⁽¹⁾ nals) when seled	cted blanking s	ignal is low			
bit 3	1 = State blar	ing in PWMxH nking (of currer ng when PWM	nt-limit and/or	Fault input sig	nals) when PWN	/IxH output is h	igh			
bit 2	1 = State blar	ing in PWMxH nking (of currer ng when PWM	nt-limit and/or	Fault input sig	nals) when PWN	/IxH output is lo	W			
bit 1	BPLH: Blanki 1 = State blar	ing in PWMxL	High Enable I nt-limit and/or	bit [.] Fault input sigi	nals) when PWN	/lxL output is h	igh			
bit 0	BPLL: Blanki 1 = State blar	ng in PWMxL l	ow Enable b nt-limit and/or	it [.] Fault input sigr	nals) when PWN	/IxL output is lo	W			

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	—	—		LEB[11:8]					
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			LE	B[7:0]						
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB[11:0]: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_		BLANKS	SEL[3:0]	
bit 15			•				bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7	·					• 	bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7-6	1001 = Rese 0100 = Rese 0011 = PWN 0010 = PWN 0001 = PWN 0000 = No s	erved /3H selected as /2H selected as /1H selected as	s state blank so state blank so state blank so	ource			
bit 5-2	The selected 1001 = Rese 0100 = Rese 0011 = PWN 0010 = PWN 0001 = PWN	erved	CHOP clock	e (CHOP) the se source source source	elected PWMx o	outputs.	
bit 1	CHOPHEN: 1 = PWMxH	PWMxH Output chopping functi chopping functi	Chopping En on is enabled				
bit 0	1 = PWMxL	PWMxL Output chopping function chopping function	on is enabled	ible bit			

REGISTER 16-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

NOTES:

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Quadrature Encoder Interface (QEI)" (www.microchip.com/ DS70000601) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High register
- 32-Bit Position Compare Low register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

FIGURE 17-1: QEI BLOCK DIAGRAM

17.1 QEI Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

17.1.1 KEY RESOURCES

- "Quadrature Encoder Interface" (www.microchip.com/DS70000601) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

17.2 QEI Control Registers

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER	
---	--

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN		QEISIDL	PIMOD2 ⁽¹⁾	PIMOD1 ⁽¹⁾	PIMOD0 ⁽¹⁾	IMV1 ⁽²⁾	IMV0 ⁽²⁾
bit 15			•				bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1	CCM0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable		U = Unimpler	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		drature Encode		dule Counter I	Enable bit		
		ounters are ena ounters are dis		Rs can be read	d or written to		
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	QEISIDL: QE	I Stop in Idle M	lode bit				
		ues module op s module opera			dle mode		
bit 12-10	PIMOD[2:0]:	Position Count	er Initializatior	Mode Select	bits ⁽¹⁾		
	101 = Resets 100 = Second 011 = First in 010 = Next in 001 = Every i 000 = Index i	Count mode f the position co d index event at dex event after index input even index input even nput event doe	ounter when the fter home event home event in t initializes the nt resets the p s not affect po	e position cou it initializes posi- nitializes positi position counte sition counter	inter equals QE sition counter wit ion counter with ter with content r	h contents of C contents of Q	EI1IC register EI1IC register
bit 9	IMV1: Index I	Match Value for	[.] Phase B bit ⁽²)			
	1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0						
L: L O)			
bit 8		Match Value for match occurs w		,			
		match occurs w					
bit 7	Unimplemen	ted: Read as '	0'				
Noto 1: \A		10 or 11 oll of					

Note 1: When CCM[1:0] = 10 or 11, all of the QEI counters operate as timers and the PIMOD[2:0] bits are ignored.

2: When CCM[1:0] = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV[2:0]: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	111 = 1:128 prescale value 110 = 1:64 prescale value
	101 = 1.32 prescale value
	100 = 1:16 prescale value
	011 = 1:8 prescale value
	010 = 1:4 prescale value
	001 = 1:2 prescale value
	000 = 1:1 prescale value
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	 1 = Counter direction is negative unless modified by external up/down signal 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM[1:0]: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM[1:0] = 10 or 11, all of the QEI counters operate as timers and the PIMOD[2:0] bits are ignored.
-	

- 2: When CCM[1:0] = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

R/\/_0	R///_0	R/W-0	R///-0	R/\//_0	R/W-0	R/W-0			
1		1	1	1		SWPAB			
	QI DIV2	QIDIVI	QIDIVO	CONNET	CONNEC	bit			
						DIL			
R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x			
	1	1		1		QEA			
		<u> </u>			~	bit			
		bit	-		as '0'				
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
	00			event					
			•						
		•							
0 = Input pin	digital filter is di	sabled (bypas	sed)						
QFDIV[2:0]:	QEAx/QEBx/IN	DXx/HOMEx D	Digital Input Filt	er Clock Divide	Select bits				
111 = 1:128 clock divide									
110 = 1:64 clock divide									
011 = 1.8 clock divide									
		Output Eupotio	n Mada Salaat	hita					
_	-	-			EC.				
$01 =$ The CTNCMPx pin goes high when POS1CNT \ge QEI1EEC									
00 = Output i	s disabled								
SWPAB: Swa	ap QEA and QE	B Inputs bit							
1 = QEAx and QEBx are swapped prior to quadrature decoder logic									
	-	larity Select bit							
-		tv Select bit							
	-	ty ocloor bit							
-		ity Select bit							
0 = Input is n	not inverted								
QEAPOL: QE	EAx Input Polar	ity Select bit							
0 = Input is n	not inverted								
HOME: Statu 1 = Pin is at l	is of HOMEx In	out Pin After Po	olarity Control b	oit					
	1 = Index ma 0 = Index ma 0 = Index ma FLTREN: QE 1 = Input pin 0 = Input pin QFDIV[2:0]: 111 = 1:128 d 100 = 1:64 d 101 = 1:32 d 100 = 1:16 d 011 = 1:8 clo 010 = 1:4 clo 001 = 1:2 clo 000 = 1:1 clo 000 = 1:2 clo 000 = 1:1 clo 000 = 0utput is 1 = Input is in 0	FLTREN QFDIV2 R/W-0 R/W-0 IDXPOL QEBPOL POR '1' = Bit is set QCAPEN: QEI Position Cou 1 = Index match event trigge 0 = Index match event does FLTREN: QEAx/QEBx/INDX 1 = Input pin digital filter is ei 0 = Input pin digital filter is ei 0 = Input pin digital filter is di QFDIV[2:0]: QEAx/QEBx/INDX 1 = Input pin digital filter is di QFDIV[2:0]: QEAx/QEBx/INDX 1 = Input pin digital filter is di QFDIV[2:0]: QEAx/QEBx/INDX 1 = Input pin digital filter is di QFDIV[2:0]: QEAx/QEBx/INDX 1 = Input pin digital filter is di QFDIV[2:0]: QEAx/QEBx/INDX 11 = 1:128 clock divide 100 = 1:64 clock divide 101 = 1:8 clock divide 010 = 1:4 clock divide 010 = 1:2 clock divide 010 = 1:4 clock divide 010 = 1:4 clock divide 01 = The CTNCMPx pin goe 01 =	FLTREN QFDIV2 QFDIV1 R/W-0 R/W-0 R/W-0 IDXPOL QEBPOL QEAPOL IDXPOL QEBPOL QEAPOL POR '1' = Bit is set QCAPEN: QEI Position Counter Input Cap 1 = Index match event triggers a position c 0 = Index match event does not trigger a po FLTREN: QEAx/QEBx/INDXx/HOMEx Digi 1 = Input pin digital filter is enabled 0 = Input pin digital filter is disabled (bypas QFDIV[2:0]: QEAx/QEBx/INDXx/HOMEx Digi 11 = 1:128 clock divide 101 = 1:32 clock divide 100 = 1:64 clock divide 101 = 1:8 clock divide 010 = 1:4 clock divide 010 = 1:2 clock divide 011 = 1:2 clock divide 010 = 1:1 clock divide 011 = The CTNCMPx pin goes high when Q 101 = The CTNCMPx pin goes high when P 01 = The CTNCMPx pin goes high when P 01 = The CTNCMPx pin goes high when P 01 = The CTNCMPx pin goes high when P 01 = The CTNCMPx pin goes high when P 01 = The CTNCMPx pin goes high when P 01 = The CTNCMPx pin goes high when P 01 = The CTNCMPx pin goes high when P	FLTRENQFDIV2QFDIV1QFDIV0R/W-0R/W-0R-xIDXPOLQEBPOLQEAPOLHOMEPOR'1' = Bit is set'0' = Bit is clearQCAPEN: QEI Position Counter Input Capture Enable bit1 = Index match event triggers a position capture event0 = Index match event does not trigger a position captureFLTREN: QEAx/QEBx/INDXx/HOMEx Digital Filter Enable1 = Input pin digital filter is enabled0 = Input pin digital filter is disabled (bypassed)QFDIV[2:0]: QEAx/QEBx/INDXx/HOMEx Digital Input Filt111 = 1:128 clock divide100 = 1:64 clock divide101 = 1:32 clock divide101 = 1:32 clock divide101 = 1:2 clock divide001 = 1:1 clock divide001 = 1:2 clock divide001 = 1:2 clock divide001 = 1:1 clock divide001 = 1:2 clock divide001 = 1:4 clock divide001 = 1:5 clock divide001 = 1:6 clock divide011 = The CTNCMPx pin goes high when POS1CNT ≤ QE01 = The CTNCMPx pin goes high when POS1CNT ≥ QE01 = The CTNCMPx pin goes high when POS1CNT ≥ QE01 = The CTNCMPx pin goes high when POS1CNT ≥ QE01 = Input is inverted1 = Input is inverted0 = Input is not inverted0 = Input is no	FLTREN QFDIV2 QFDIV1 QFDIV0 OUTFNC1 RW-0 RW-0 R/W-0 R-x R-x IDXPOL QEBPOL QEAPOL HOME INDEX a bit W = Writable bit U = Unimplemented bit, read POR '1' = Bit is set '0' = Bit is cleared QCAPEN: QEI Position Counter Input Capture Enable bit 1 = Index match event triggers a position capture event 0 = Index match event does not trigger a position capture event 0 = Input pin digital filter is enabled 0 = Input pin digital filter is enabled 0 = Input pin digital filter is enabled 0 = Input pin digital filter is disabled (bypassed) QFDIV[2:0]: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide 11 = 1:28 clock divide 11 = 1:28 clock divide 11 = 1:32 clock divide 100 = 1:61 clock divide 01 = 1:32 clock divide 01 = 1:32 clock divide 010 = 1:4 clock divide 01 = 1:2 clock divide 01 = 1:2 clock divide 010 = 1:4 clock divide 01 = 1:2 clock divide 01 = 1:2 clock divide 010 = 1:4 clock divide 01 = 1:2 clock divide 02 = Input si nages high when QE11LEC ≥ POS1CNT ≥ QE110EC 01 = The CTNCMPx pin goes high when POS1CNT ≥ QE11GEC 01 = The CTNCMPx pin goes high when POS1CNT	FLTRENQFDIV2QFDIV1QFDIV0OUTFNC1OUTFNC0R/W-0R/W-0R-xR-xR-xR-xIDXPOLQEBPOLQEAPOLHOMEINDEXQEBabitW = Writable bitU = Unimplemented bit, read as '0'POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknQCAPEN: QEI Position Counter Input Capture Enable bit1 = Index match event does not trigger a position capture evento = Index match event does not trigger a position capture eventPLTREN: QEA/QEBX/INDXx/HOMEx Digital Filter Enable bit1 = Input pin digital filter is enabled0 = Input pin digital filter is disabled (bypassed)QCPUY2:01: QEAx/QEBX/INDXx/HOMEx Digital Input Filter Clock Divide Select bits111 = 1:128 clock divide100 = 1:16 clock divide101 = 1:32 clock divide101 = 1:32 clock divide101 = 1:32 clock divide101 = 1:42 clock divide102 = 1:42 clock divide103 = 1:42 clock divide104 = 1:52 clock divide105 = 1:12 clock			

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control bit
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping bit 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 0 QEA: Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping bit
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'

	11.0						
U-0	U-0	HS/R/C-0 PCHEQIRQ	R/W-0 PCHEQIEN	HS/R/C-0 PCLEQIRQ	R/W-0 PCLEQIEN	HS/R/C-0 POSOVIRQ	R/W-0 POSOVIEN
		PUREQIKQ	PUTEQIEN	PULEQIRQ	PULEQIEN	PUSUVIRQ	bit 8
bit 15							DILO
HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0	HS/R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit	C = Clearable	e bit		
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '0	3				
bit 13		Position Counte	er Greater Tha	n or Equal Con	npare Status b	it	
		T ≥ QEI1GEC T < QEI1GEC					
bit 12		Position Counte	r Greater Tha	n or Equal Com	npare Interrupt	Enable bit	
	1 = Interrupt i			q			
	0 = Interrupt i	s disabled					
bit 11		Position Counte	r Less Than o	r Equal Compa	are Status bit		
	1 = POS1CN 0 = POS1CN						
bit 10		Position Counte	r Less Than or	- Equal Compa	re Interrupt En	able bit	
bit io	1 = Interrupt i			Equal Compa			
	0 = Interrupt i						
bit 9		Position Counte	er Overflow Sta	atus bit			
	1 = Overflow		J				
bit 8		ow has occurred Position Counte		arrunt Enable h	.it		
bit o	1 = Interrupt i				ni -		
	0 = Interrupt i						
bit 7	PCIIRQ: Posi	ition Counter (H	oming) Initializ	ation Process	Complete Stat	us bit ⁽¹⁾	
		T was reinitializ					
		T was not reiniti		í D	0 1 1 1 1		
bit 6	1 = Interrupt i	tion Counter (He	oming) initializ	ation Process	Complete inter	rupt Enable bit	
	0 = Interrupt i						
bit 5	VELOVIRQ:	Velocity Counte	r Overflow Sta	tus bit			
	1 = Overflow						
		ow has not occu					
bit 4		/elocity Counter	· Overflow Inte	rrupt Enable bi	It		
	1 = Interrupt i 0 = Interrupt i						
bit 3	-	atus Flag for Ho	me Event Stat	us bit			
		ent has occurre					
	0 = No Home	event has occu	ırred				

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD[2:0] modes, '011' and '100'.

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD[2:0] modes, '011' and '100'.

REGISTER 17-4: POS1CNTH: POSITION COUNTER 1 HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			POSC	NT[31:24]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			POSC	NT[23:16]				
bit 7							bit 0	
r								
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set		'0' = Bit is cleared x = Bit is un		x = Bit is unkr	nown			

bit 15-0 **POSCNT[31:16]:** High Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-5: POS1CNTL: POSITION COUNTER 1 LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POSCNT[15:8]							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
POSCNT[7:0]								
bit 7							bit 0	

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	J = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **POSCNT[15:0]:** Low Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-6: POS1HLD: POSITION COUNTER 1 HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	ILD[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable k	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			

bit 15-0 **POSHLD[15:0]:** Hold Register for Reading and Writing POS1CNTH bits

REGISTER 17-7: VEL1CNT: VELOCITY COUNTER 1 REGISTER

-n = Value at POR '1' = Bit is set '0' = Bit is of				'0' = Bit is clea	ared	x = Bit is unkr	nown
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
Legend:							
bit 7							bit 0
			VELC	NT[7:0]			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
							DILO
bit 15							bit 8
			VELC	NT[15:8]			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 VELCNT[15:0]: Velocity Counter bits

REGISTER 17-8: INDX1CNTH: INDEX COUNTER 1 HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT[23:16]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

INDXCNT[31:16]: High Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits bit 15-0

REGISTER 17-9: INDX1CNTL: INDEX COUNTER 1 LOW WORD REGISTER

'1' = Bit is set

Legend: R = Readable b	it	W = Writable bit	t	U = Unimplen	nented bit, read	l as '0'	
bit 7							bit C
			INDXC	NT[7:0]			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			INDXC	NT[15:8]			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

'0' = Bit is cleared

INDXCNT[15:0]: Low Word Used to Form 32-Bit Index Counter Register (INDX1CNT) bits bit 15-0

-n = Value at POR

x = Bit is unknown

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXI	ILD[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDX	HLD[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	= Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown

REGISTER 17-10: INDX1HLD: INDEX COUNTER 1 HOLD REGISTER

bit 15-0 **INDXHLD[15:0]:** Hold Register for Reading and Writing INDX1CNTH bits

REGISTER 17-11: QEI1ICH: QEI1 INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEII	C[31:24]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEII	C[23:16]				
bit 7							bit 0	
1								
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 **QEIIC[31:16]:** High Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: QEI1 INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEI	IC[7:0]			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **QEIIC[15:0]:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-13: QEI1LECH: QEI1 LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C[23:16]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 **QEILEC[31:16]:** High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: QEI1 LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIL	EC[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIL	.EC[7:0]			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit U = Unimplemente					nented bit, rea	ad as '0'	
n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkı	nown	

bit 15-0 **QEILEC[15:0]:** Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC[23:16]			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 **QEIGEC[31:16]:** High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

		-						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIG	EC[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIG	EC[7:0]				
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		0' = Bit is cleared $x = E$		x = Bit is unki	nown	

bit 15-0 **QEIGEC[15:0]:** Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	IR[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	1R[23:16]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpleme	ented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkr	nown

bit 15-0 INTTMR[31:16]: High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 17-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	/IR[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	MR[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is clear					ared	x = Bit is unkr	nown

bit 15-0 INTTMR[15:0]: Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D[31:24]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D[23:16]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is se		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown

REGISTER 17-19: INT1HLDH: INTERVAL 1 TIMER HOLD HIGH WORD REGISTER

bit 15-0 INTHLD[31:16]: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTH	_D[15:8]			
bit 15						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTH	LD[7:0]			
						bit 0
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is se			'0' = Bit is cleared		x = Bit is unknown	
	R/W-0	R/W-0 R/W-0	R/W-0 R/W-0 R/W-0 INTH Dit W = Writable bit	INTHLD[15:8] R/W-0 R/W-0 R/W-0 INTHLD[7:0] INTHLD[7:0] Dit W = Writable bit U = Unimplen	INTHLD[15:8] R/W-0 R/W-0 R/W-0 INTHLD[7:0] INTHLD[7:0]	INTHLD[15:8] R/W-0 R/W-0 INTHLD[7:0]

bit 15-0 INTHLD[15:0]: Hold Register for Reading and Writing INT1TMRL bits

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (www.microchip.com/DS70005185) in the "dsPIC33/PIC24 Family Reference Manual".
 2: Some registers and associated bits.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See Section 30.0 "Electrical Characteristics" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2[13]) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on \overline{SSx} .

Note:	This insures that the first frame transmission
	after initialization is not shifted or corrupted.

- 2. In Non-Framed Three-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1[6]) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
- **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- 3. FRMEN (SPIxCON2[15]) = 1 and SSEN (SPIxCON1[7]) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
 - Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 30.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1[9]) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1[5]) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

18.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

18.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (www.microchip.com/DS70005185) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

18.3 SPIx Control Registers

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
SPIEN	_	SPISIDL	_	—	SPIBEC2	SPIBEC1	SPIBEC0				
bit 15							bit 8				
R/W-0	HS/R/C-0	R/W-0	R/W-0	R/W-0	R/W-0	HS/HC/R-0	HS/HC/R-0				
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF				
bit 7							bit (
Legend:		C = Clearabl	e bit	HS = Hardware		HC = Hardwar	e Clearable bi				
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as 'O'					
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is clear	red	x = Bit is unkn	lown				
bit 15	SPIEN: SPIX	Enable bit									
	-	the module an	id configures S	SCKx, SDOx, SD	Ix and \overline{SSx} as	serial port pins					
bit 14	Unimpleme	nted: Read as	' O '								
bit 13	SPISIDL: SF	Plx Stop in Idle	Mode bit								
	1 = Discontir	•	le operation w	hen device ente le mode	rs Idle mode						
bit 12-11	Unimpleme	nted: Read as	'O'								
bit 10-8	SPIBEC[2:0]: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)										
	Master mode: Number of SPIx transfers that are pending.										
	Slave mode:			-							
bit 7	SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)										
	1 = SPIx Shi	-	mpty and Read	dy-to-Send or red		,					
bit 6		PIROV: SPIx Receive Overflow Flag bit									
	 1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 										
	0 = No overf	low has occurr	ed								
bit 5	SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode)										
	1 = RX FIFO 0 = RX FIFO	is empty is not empty									
bit 4-2	SISEL[2:0]:	SPIx Buffer In	terrupt Mode b	oits (valid in Enha	anced Buffer m	ode)					
	111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty										
	 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete 100 = Interrupt when one data are shifted into the SPIxSR and as a result, the TX FIFO has one open memory location 										
	011 = Interru 010 = Interru	upt when the S upt when the S	SPIx receive bu		re full						
		010 = Interrupt when the SPIx receive buffer is 3/4 or more full 001 = Interrupt when data are available in the receive buffer (SRMPT bit is set)									
				e receive buffer a		· · · ·	<i></i>				

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
bit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	Unimplemen	ted: Read as	ʻ0'								
bit 12	DISSCK: Dis	able SCKx Pin	bit (SPIx Mas	ter modes only	<i>י</i>)						
		DISSCK: Disable SCKx Pin bit (SPIx Master modes only) 1 = Internal SPIx clock is disabled, pin functions as I/O									
	0 = Internal SPIx clock is enabled										
bit 11	DISSDO: Disable SDOx Pin bit										
	 1 = SDOx pin is not used by the module; pin functions as I/O 0 = SDOx pin is controlled by the module 										
bit 10	MODE16: Word/Byte Communication Select bit										
	1 = Communication is word-wide (16 bits)										
	0 = Communication is byte-wide (8 bits)										
bit 9	SMP: SPIx Data Input Sample Phase bit										
	<u>Master mode:</u> 1 = Input data are sampled at end of data output time										
				output time ata output time							
	Slave mode:										
	SMP must be cleared when SPIx is used in Slave mode.										
bit 8	CKE: SPIx Clock Edge Select bit ⁽¹⁾										
	1 = Serial output data change on transition from Active Clock state to Idle Clock state (refer to bit 6)										
bit 7	0 = Serial output data change on transition from Idle Clock state to Active Clock state (refer to bit 6) SSEN: Slave Select Enable bit (Slave mode) ⁽²⁾										
	SSEN : Slave Select Enable bit (Slave mode) ⁽²⁾ 1 = SSx pin is used for Slave mode										
	1 - SSX pin is used for Slave mode 0 = SSx pin is not used by the module; pin is controlled by port function										
bit 6	CKP: Clock Polarity Select bit										
				/e state is a lov e state is a hig							
bit 5		ter Mode Enal		C							
	1 = Master m	ode									
	0 = Slave mo	de									
Note 1: Th	ne CKE bit is not	used in Frame	d SPI modes	Program this bi	t to '0' for Frame	ed SPI modes (FRMEN = 1				
	nis bit must be cl						.				
					.						

SPIXCON1: SPIX CONTROL REGISTER 1 REGISTER 18-2:

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE[2:0]: Secondary Prescale bits (Master mode)⁽³⁾ 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - .
 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE[1:0]:** Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - **3:** Do not set both primary and secondary prescalers to the value of 1:1.

			-						
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	—	—	—	—	—	FRMDLY	SPIBEN		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable bit		U = Unimpler	mented bit, rea	ad as '0'	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15	FRMEN: Framed SPIx Support bit 1 = Framed SPIx support is enabled (SSx pin is used as Frame Sync pulse input/output)								
		SPIx support is e SPIx support is d	•	Sx pin is used as	Frame Sync	pulse input/outpu	it)		
bit 14	SPIFSD: Frame Sync Pulse Direction Control bit								
	1 = Frame Sync pulse input (slave) 0 = Frame Sync pulse output (master)								
bit 13	FRMPOL: Frame Sync Pulse Polarity bit								
	1 = Frame Sync pulse is active-high								
	0 = Frame Sync pulse is active-low								
bit 12-2	Unimplemer	nted: Read as '0	,						
bit 1	FRMDLY: Frame Sync Pulse Edge Select bit								
		ync pulse coincic ync pulse preced							
bit 0	SPIBEN: Enl	hanced Buffer Er	nable bit						
		d buffer is enable							
	0 = Enhance	d buffer is disabl	ed (Standa	rd mode)					

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

19.0 INTER-INTEGRATED CIRCUIT (I²C)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit (I²C)" (www.microchip.com/ DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/ PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C Interface Supporting both Master and Slave modes of Operation
- I²C Slave mode Supports 7 and 10-Bit Addressing
- I²C Master mode Supports 7 and 10-Bit Addressing
- I²C Port allows Bidirectional Transfers between Master and Slaves
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control)
- I²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly
- Intelligent Platform Management Interface (IPMI)
 Support
- System Management Bus (SMBus) Support

FIGURE 19-1: I2Cx BLOCK DIAGRAM (x = 1 OR 2)

19.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

19.1.1 KEY RESOURCES

- "Inter-Integrated Circuit (I²C)" (www.microchip.com/DS70000195) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	HC/R/W-1	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN		I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0	HC/R/W-0				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit 0				
Legend:		HC = Hardware	Clearable bit								
R = Readab	ole bit	W = Writable bi	t	U = Unimpler	nented bit, rea	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown				
bit 15	I2CEN: I2Cx	Enable bit									
		the I2Cx module				serial port pins	;				
L:1.4.4		the I2Cx module	; all I ² C pins ar	e controlled by	port functions						
bit 14 bit 13	-	ted: Read as '0'	ala hit								
DIL 13		I2CSIDL: I2Cx Stop in Idle Mode bit									
		 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode 									
bit 12		SCLREL: SCLx Release Control bit (when operating as I ² C slave)									
	1 = Releases SCLx clock										
		0 = Holds SCLx clock low (clock stretch)									
		$\frac{\text{If STREN = 1:}}{\text{Bit is } \text{PAW}(i, e_{1}, software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear$									
	Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception. Hardware is clear at the end of every slave data byte reception.										
	If STREN = 0:										
	Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception.										
bit 11	-	IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit ⁽¹⁾									
	1 = IPMI mode is enabled; all addresses are Acknowledged										
	0 = IPMI mode disabled										
bit 10		A10M: 10-Bit Slave Address bit									
	1 = I2CxADD is a 10-bit slave address										
bit 9		0 = I2CxADD is a 7-bit slave address									
DIL 9		DISSLW: Disable Slew Rate Control bit 1 = Slew rate control is disabled									
	0 = Slew rate control is enabled										
bit 8	SMEN: SMB	us Input Levels b	it								
		I/O pin thresholds SMBus input thre		n SMBus speci	fication						
bit 7		eral Call Enable b		ting as I ² C slav	re)						
	1 = Enables ir	nterrupt when a ge call address disal	eneral call addre			dule is enabled	for reception				

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge
bit 4	 0 = Sends ACK during Acknowledge ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence. 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

U-0

HS/R/C-0

HSC/R-0

HSC/R-0

U-0

U-0

HSC/R-0

HSC/R-0

1130/K-0	1130/R-0	0-0	0-0	0-0	113/N/C-0	113C/R-0	113C/R-0			
ACKSTAT	TRSTAT	—	—	_	BCL	GCSTAT	ADD10			
bit 15	1				•		bit 8			
HS/R/C-0	HS/R/C-0	HSC/R-0	HSC/R/C-0	HSC/R/C-0	HSC/R-0	HSC/R-0	HSC/R-0			
IWCOL	I2COV	D_A	Р	S	RW	RBF	TBF			
bit 7		I					bit			
Legend:		C = Clearab	le bit	HS = Hardwa	re Settable bit	HSC = Hardware S	ettable/Clearable b			
R = Readab	le bit	W = Writable	e bit	U = Unimplen	nented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is se	et	'0' = Bit is clea		x = Bit is unknown				
				-						
bit 15	ACKSTAT:	Acknowledge	e Status bit (w	hen operating	as I ² C master. a	applicable to master t	ransmit operation)			
		received fror		1 5	- ,		, ,			
		ceived from								
				f slave Acknow	•					
bit 14			•	-	² C master, appl	icable to master tran	nsmit operation)			
		1 = Master transmit is in progress (8 bits + ACK)0 = Master transmit is not in progress								
					ion Hardware i	s clear at the end of s	alave Acknowledge			
bit 13-11		ented: Read	• •				Save Acknowledge			
bit 10	-			ŀ						
	BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation									
	0 = No bus collision detected									
	Hardware is set at detection of a bus collision.									
bit 9	GCSTAT: (GCSTAT: General Call Status bit								
	1 = General call address was received									
	 0 = General call address was not received Hardware is set when address matches general call address. Hardware is clear at Stop detection. 									
L:1 0				les general ca	ai address. Har		op delection.			
bit 8	ADD10: 10-Bit Address Status bit									
	 1 = 10-bit address was matched 0 = 10-bit address was not matched 									
	Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop									
	detection.									
bit 7			lision Detect			_				
	1 = An attempt to write to the I2CxTRN register failed because the I^2C module is busy									
	 0 = No collision Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software). 									
bit 6						sy (cleared by soliw	are <i>)</i> .			
DILO	I2COV: I2Cx Receive Overflow Flag bit									
	 1 = A byte was received while the I2CxRCV register was still holding the previous byte 0 = No overflow 									
	Hardware i	s set at an a	ttempt to tran	sfer I2CxRSR	to I2CxRCV (d	leared by software)				
bit 5	D_A: Data/	Address bit/	(when operat	ing as I ² C slav	ve)					
			st byte receiv							
			•	ved was a dev			h			
			ievice addres	s match. Hard	ware is set by	reception of a slave	byte.			
bit 4	P: Stop bit		n hitkaa ka	n data ta -11-	•					
		es that a Sto t was not de		n detected las	ι					
				t Donootod S	tart or Stop is a	lataatad				

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from the slave
	 0 = Write – Indicates data transfer is input to the slave Hardware is set or clear after reception of an I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	—	_	—	_	AMS	K[9:8]
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			AMS	K[7:0]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK[9:0]: Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK[6:0] only):

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax + 1; bit match is required in this position

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/DS70000582) in the "dsPIC33/PIC24 Family Reference Manual".
 2: Some registers and associated bits
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces.

The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an $IrDA^{®}$ encoder and decoder.

Note: <u>Hardwa</u>re flow control using UxRTS and UxCTS is not available on all pin count devices. See the "Pin Diagrams" section for availability.

The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support

FIGURE 20-1: UARTX SIMPLIFIED BLOCK DIAGRAM

20.1 UART Helpful Tips

- In multinode, direct-connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE[4]), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UARTx module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

20.2 UART Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

20.2.1 KEY RESOURCES

- "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/ DS70000582) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

20.3 UARTx Control Registers

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽	1)	USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0		
bit 15							bit 8		
HC/R/W-0	0 R/W-0	HC/R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL		
bit 7							bit 0		
Legend:		HC = Hardwar	e Clearable bi	it					
R = Reada	ble bit	W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value	at POR	-				x = Bit is unknown			
bit 15	UARTEN: UA	ARTx Enable bit	(1)						
	1 = UARTx i	s enabled; all U	ARTx pins are	controlled by U	ARTx as define	ed by UEN[1:0]			
		s disabled; all U	ARTx pins are	controlled by F	PORT latches; l	JARTx power c	onsumption is		
	minimal								
bit 14	-	nted: Read as '0							
bit 13		Tx Stop in Idle N							
		nues module op es module opera			le mode				
bit 12		Encoder and De							
DIL 12		oder and decod							
		oder and decod							
bit 11	RTSMD: Mod	de Selection for	UxRTS Pin bit	t					
	$1 = \overline{\text{UxRTS}}$	oin is in Simplex	mode						
	$0 = \overline{\text{UxRTS}}$	0 = UxRTS pin is in Flow Control mode							
bit 10	Unimplemer	Unimplemented: Read as '0'							
bit 9-8	UEN[1:0]: U/	ARTx Pin Enabl	e bits						
		JxRX and BCLK				controlled by PO	ORT latches ⁽³⁾		
		JxRX, <u>UxCTS</u> a JxRX and <u>UxR</u> T				controlled by D(
		nd UxRX pins a							
	PORT la			,		·	5		
bit 7	WAKE: Wake	e-up on Start bit	Detect During	Sleep Mode E	nable bit				
		continues to san			generated on	the falling edge	; bit is cleared		
		are on the follow	ving rising edg	le					
L:1 C		-up is enabled	Mada Calasti	- : 4					
bit 6		ARTx Loopback Loopback mode		SIL					
		k mode is disab							
	Refer to "Univer in the "dsPIC33/F								
	or transmit opera		ICIEITCE IVIAITU		n on chabiling ti				
	This feature is or		the 16x BRG	mode (BRGH =	0).				
	This feature is or								
			· · · · ·	-					

4: This feature is only available on 64-pin devices.

REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement is disabled or completed
bit 4	URXINV: UARTx Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates four clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL[1:0]: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit
Note 1:	Refer to "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/DS70000582) in the <i>"dsPIC33/PIC24 Family Reference Manual"</i> for information on enabling the UARTx module for receive or transmit operation.

- **2:** This feature is only available for the 16x BRG mode (BRGH = 0).
- **3:** This feature is only available on 44-pin and 64-pin devices.
- **4:** This feature is only available on 64-pin devices.

R/W-0	R/W-0	R/W-0	U-0	HC/R/W-0	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0
Legend:		HC = Hardware	e Clearable bit	C = Clearabl	e bit		
R = Readable bit		W = Writable b	bit	U = Unimplei	mented bit. read	d as '0'	

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

-	ogona.			
F	R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-1	n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15,13 UTXISEL[1:0]: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14 UTXINV: UARTx Transmit Polarity Inversion bit

If IREN = 0:

	1 = UxTX Idle state is '0'
	0 = UxTX Idle state is '1'
	If IREN = 1:
	 1 = IrDA encoded, UxTX Idle state is '1' 0 = IrDA encoded, UxTX Idle state is '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit ⁽¹⁾
	 1 = Transmit is enabled, UxTX pin is controlled by UARTx 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; UxTX pin is controlled by the PORT
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 - Transmit Chiff Deviator is smarth, and transmit huffer is smarth (the last transmission has several at a)

- 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL[1:0]: UARTx Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has four data characters)
 - 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)
 - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
- **Note 1:** Refer to **"Universal Asynchronous Receiver Transmitter (UART)**" (www.microchip.com/DS70000582) in the *"dsPIC33/PIC24 Family Reference Manual"* for information on enabling the UARTx module for transmit operation.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (www.microchip.com/DS70000582) in the "dsPIC33/PIC24 Family Reference Manual" for information on enabling the UARTx module for transmit operation.
21.0 ENHANCED CAN (ECAN™) MODULE (dsPIC33EPXXXGP/ MC50X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (www.microchip.com/DS70353) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGP/MC50X devices contain one ECAN module.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The ECAN module features are as follows:

- Implementation of the CAN Protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and Extended Data Frames
- 0-8 Bytes Data Length
- Programmable Bit Rate Up to 1 Mbit/sec
- Automatic Response to Remote Transmission Requests
- Up to Eight Transmit Buffers with Application-Specified Prioritization and Abort Capability (each buffer can contain up to 8 bytes of data)
- Up to 32 Receive Buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 Full (Standard/Extended Identifier) Acceptance Filters
- Three Full Acceptance Filter Masks
- DeviceNet[™] Addressing Support
- Programmable Wake-up Functionality with Integrated Low-Pass Filter
- Programmable Loopback mode supports Self-Test Operation
- Signaling via Interrupt Capabilities for All CAN Receiver and Transmitter Error States
- Programmable Clock Source
- Programmable Link to Input Capture (IC2) module for Timestamping and Network Synchronization
- Low-Power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP[2:0] bits (CxCTRL1[10:8]). Entry into a mode is Acknowledged by monitoring the OPMODE[2:0] bits (CxCTRL1[7:5]). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3 ECAN Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

21.3.1 KEY RESOURCES

- "Enhanced Controller Area Network (ECAN™)" (www.microchip.com/DS70353) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

21.4 ECAN Control Registers

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0				
	_	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0				
bit 15				-	•		bit 8				
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
OPMODE2	OPMODE1	OPMODE0	—	CANCAP			WIN				
bit 7							bit (
Legend:											
R = Readable		W = Writable		-	nented bit, read						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
		tod. Deed as f	o'								
bit 15-14 bit 13	-	ted: Read as '									
DIL 13		Nx Stop in Idle ues module op		device enters I	dle mode						
		s module opera			die mode						
bit 12		All Pending Tra									
	1 = Signals a	ll transmit buffe	ers to abort tra	ansmission							
	0 = Module w	ill clear this bit	when all tran	smissions are a	aborted						
bit 11	CANCKS: ECANx Module Clock (FCAN) Source Select bit										
	1 = FCAN is equal to 2 * FP 0 = FCAN is equal to FP										
bit 10-8		•	ation Mode h	hits							
	REQOP[2:0]: Request Operation Mode bits 111 = Set Listen All Messages mode										
	110 = Reserv	/ed									
	101 = Reserv		-l -								
		onfiguration mode									
	010 = Set Lo										
	001 = Set Dis										
		rmal Operation									
bit 7-5	-	0] : Operation M		aada							
	111 = Module is in Listen All Messages mode 110 = Reserved										
	101 = Reserved										
	100 = Module is in Configuration mode										
	011 = Module is in Listen Only mode 010 = Module is in Loopback mode										
		e is in Disable n									
	000 = Module	e is in Normal C	Operation mo	de							
bit 4	Unimplemen	ted: Read as '	0'								
bit 3				Capture Event							
	1 = Enables i 0 = Disables		ased on CAN	message recei	ive						
bit 2-1		ted: Read as '	0'								
bit 0	-	ap Window Sele									
	1 = Uses filte	-									
	0 = Uses buff	er window									

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—		—	DNCNT[4:0]				
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown				

REGISTER 21-2: CxCTRL2: ECANx CONTROL REGISTER 2

bit 15-5 Unimplemented: Read as '0'

DNCNT[4:0]: DeviceNet™ Filter Bit Number bits

10010-11111 = Invalid selection 10001 = Compares up to Data Byte 3, bit 6 with EID[17]

10001 – Compares up to Data Byte 5, bit 6 with Eit

•

bit 4-0

00001 = Compares up to Data Byte 1, bit 7 with EID[0]

00000 = Does not compare data bytes

bit 15	FILHIT[4:0]	
bit 15		
		bit 8
U-0 R-1 R-0 R-0 R-0	R-0 R	R-0 R-0
— ICODE[6:0]		
bit 7		bit 0
Legend:		
R = Readable bit W = Writable bit U = Unimpler	mented bit, read as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cle	ared x = Bi	t is unknown
bit 15-13 Unimplemented: Read as '0'		
bit 12-8 FILHIT[4:0]: Filter Hit Number bits		
10000-11111 = Reserved		
01111 = Filter 15		
•		
•		
00001 = Filter 1		
00000 = Filter 0		
bit 7 Unimplemented: Read as '0'		
bit 6-0 ICODE[6:0]: Interrupt Flag Code bits		
1000101-111111 = Reserved 1000100 = FIFO almost full interrupt		
1000111 = Receiver overflow interrupt		
1000010 = Wake-up interrupt		
1000001 = Error interrupt 1000000 = No interrupt		
•		
•		
• 0010000-0111111 = Reserved		
0001111 = RB15 buffer interrupt		
•		
•		
0001001 = RB9 buffer interrupt		
0001000 = RB8 buffer interrupt		
0000111 = TRB7 buffer interrupt		
0000110 = TRB6 buffer interrupt 0000101 = TRB5 buffer interrupt		
0000100 = TRB4 buffer interrupt		
0000011 = TRB3 buffer interrupt		
0000010 = TRB2 buffer interrupt 0000001 = TRB1 buffer interrupt		
0000000 = TRB0 buffer interrupt		

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
DMABS[2:0]			—	_	—	—					
bit 15							bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
					FSA[4:0]						
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	ut U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cle		x = Bit is unkr	nown				
bit 15-13	DMABS[2:0]: DMA Buffer Size bits										
	111 = Reserved										
	110 = 32 buffers in RAM										
	101 = 24 buffers in RAM										
	100 = 16 buffers in RAM 011 = 12 buffers in RAM										
	011 = 12 buffers in RAM 010 = 8 buffers in RAM										
	001 = 6 buffers in RAM										
	000 = 4 buffers in RAM										
bit 12-5	Unimpleme	nted: Read as '	0'								
bit 4-0	FSA[4:0]: FIFO Area Starts with Buffer bits										
	11111 = Read Buffer RB31										
	11110 = Read Buffer RB30										
	•										
	•										
	• 00001 - TV	/RX Buffer TRB	1								

REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
_	_	-	FBP[5:0]							
bit 15							bit 8			
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
				FNR	B[5:0]					
bit 7							bit 0			
Legend:										
R = Readab		W = Writable		U = Unimplen						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	Unimplom	nted. Deed ee '	o '							
-	-	ented: Read as '								
bit 13-8		IFO Buffer Point	er bits							
	011111 = F									
	011110 = F	RB30 buπer								
	•									
	•									
	000001 = TRB1 buffer									
	000000 = TRB0 buffer									
bit 7-6	Unimpleme	ented: Read as '	0'							
bit 5-0	FNRB[5:0]:	FIFO Next Read	d Buffer Point	ter bits						
	011111 = F	RB31 buffer								
	011110 = F	RB30 buffer								
	•									
	•									
	000001 = T	RB1 buffer								
	000000 = T									

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER										
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
_	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN			
bit 15							bit			
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0			
IVRIF	WAKIF	ERRIF		FIFOIF	RBOVIF	RBIF	TBIF			
bit 7					1		bit			
Legend:		C = Writable	bit but only '0	l' can be writter	n to clear the bit					
R = Readab	le bit	W = Writable	•		mented bit, read					
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
			•	U Ditio die						
bit 15-14	Unimplemer	nted: Read as	ʻ0'							
bit 13	-	smitter in Error		bit						
	1 = Transmit	ter is in Bus Of	f state							
	0 = Transmit	ter is not in Bus	s Off state							
bit 12		mitter in Error		sive bit						
		ter is in Bus Pa ter is not in Bus		_						
bit 11				-						
		RXBP: Receiver in Error State Bus Passive bit 1 = Receiver is in Bus Passive state								
		is not in Bus F								
bit 10	TXWAR: Tra	nsmitter in Erro	or State Warni	ng bit						
		ter is in Error V		•						
	0 = Transmit	ter is not in Err	or Warning sta	ate						
bit 9		RXWAR: Receiver in Error State Warning bit								
		is in Error Wai	•							
bit 8		is not in Error	•		, hit					
DILO		EWARN: Transmitter or Receiver in Error State Warning bit 1 = Transmitter or receiver is in Error Warning state								
		ter or receiver i								
bit 7	IVRIF: Invalio	IVRIF: Invalid Message Interrupt Flag bit								
		request has oc								
		request has no								
bit 6		Wake-up Activ	•	ag bit						
		request has oc request has no								
bit 5	-	r Interrupt Flag		ources in CxIN	TF[13:8])					
		request has oc			[10.0])					
		request has no								
bit 4	Unimplemer	nted: Read as	ʻ0 '							
bit 3	FIFOIF: FIFO) Almost Full In	terrupt Flag b	it						

bit 3 FIFOIF: FIFO Almost Full Interrupt Flag bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred
- bit 2 RBOVIF: RX Buffer Overflow Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

bit 1	RBIF: RX Buffer Interrupt Flag bit
	1 = Interrupt request has occurred

- 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	_	—	_		_				
bit 15							bit				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-8	Unimplemen	ted: Read as ')'								
bit 7		Message Inter	•	bit							
	1 = Interrupt request is enabled										
L:1 C		0 = Interrupt request is not enabled									
bit 6		WAKIE: Bus Wake-up Activity Interrupt Enable bit									
	 I = Interrupt request is enabled Interrupt request is not enabled 										
bit 5		ERRIE: Error Interrupt Enable bit									
-	1 = Interrupt request is enabled										
	0 = Interrupt r	equest is not e	nabled								
bit 4	Unimplemen	ted: Read as ')'								
bit 3	FIFOIE: FIFO	FIFOIE: FIFO Almost Full Interrupt Enable bit									
	1 = Interrupt request is enabled										
	0 = Interrupt request is not enabled										
bit 2	RBOVIE: RX Buffer Overflow Interrupt Enable bit										
	 I = Interrupt request is enabled Interrupt request is not enabled 										
bit 1	•	RBIE: RX Buffer Interrupt Enable bit									
DIT I		request is enab									
		equest is not e									
bit 0	TBIE: TX Buf	fer Interrupt En	able bit								
		equest is enab equest is not e									

REGISTER 21-7: CXINTE: ECANX INTERRUPT ENABLE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TERF	RCNT[7:0]			
						bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		RERF	RCNT[7:0]			
						bit 0
it	W = Writable b	bit	U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
	R-0	R-0 R-0 it W = Writable b	TERF R-0 R-0 R-0 RERF it W = Writable bit	TERRCNT[7:0] R-0 R-0 R-0 RERRCNT[7:0] RERRCNT[7:0] it W = Writable bit U = Unimpleme	TERRCNT[7:0] R-0 R-0 R-0 RERRCNT[7:0] RERRCNT[7:0] it W = Writable bit U = Unimplemented bit, real	TERRCNT[7:0] R-0 R-0 R-0 R-0 RERRCNT[7:0] RERRCNT[7:0] Image: colspan="2">Image: colspan="2" Image: colspan="2"

bit 15-8 **TERRCNT[7:0]:** Transmit Error Count bits

bit 7-0 **RERRCNT[7:0]:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW[1:0]: Synchronization Jump Width bits

```
11 = Length is 4 x TQ
10 = Length is 3 x TQ
```

```
01 = \text{Length is } 2 \times \text{Tq}
```

```
00 = Length is 1 x TQ
```

```
bit 5-0 BRP[5:0]: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

```
•
•
00 0010 = TQ = 2 x 3 x 1/FCAN
00 0001 = TQ = 2 x 2 x 1/FCAN
```

^{00 0000 =} Tq = 2 x 1 x 1/FCAN

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
—	WAKFIL	_	—	—	SEG2PH2	SEG2PH1	SEG2PH0			
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as '	0'							
bit 14	WAKFIL: Sel	ect CAN Bus L	ine Filter for V	Vake-up bit						
		N bus line filter								
		line filter is not		e-up						
bit 13-11	-	ted: Read as '								
bit 10-8	SEG2PH[2:0]: Phase Segment 2 bits									
	111 = Length is 8 x TQ •									
	•									
	•									
	000 = Length									
bit 7		Phase Segmer	nt 2 Time Sele	ct bit						
	1 = Freely pro		oits or Informa	tion Processin	g Time (IPT), w	hichever is are	ater			
bit 6		e of the CAN B			ge (),					
	1 = Bus line is sampled three times at the sample point									
	0 = Bus line i	s sampled once	e at the sampl	e point						
bit 5-3	SEG1PH[2:0]: Phase Segment 1 bits									
	111 = Length	is 8 x Tq								
	•									
	•									
	000 = Length is 1 x To									
bit 2-0		Propagation T	ime Segment	bits						
	111 = Length	is 8 x Tq								
	•									
	•									

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
			FLTE	N[15:8]							
bit 15							bit 8				
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
			FLTE	EN[7:0]							
bit 7							bit 0				
Legend:											
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at P	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown										

bit 15-0

FLTEN[15:0]: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

0 = Disables Fliter h

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
14/00-0		P[3:0]	14/00-0	10,00-0		P[3:0]	1444-0		
1.11.4.5	1 3 0	1 [5.0]			120	1 [5.0]	L :4 (
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1B	P[3:0]			F0B	P[3:0]			
bit 7		[]				. []	bit (
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-12	F3BP[3:0]:	RX Buffer Mask	for Filter 3 bi	ts					
	1111 = Filte	r hits received ir	n RX FIFO bu	ıffer					
	1110 = Filte	r hits received ir	n RX Buffer 1	4					
	•								
	•								
	0001 = Filte	r hits received ir	n RX Buffer 1						
		r hits received in							
bit 11-8	F2BP[3:0]:	RX Buffer Mask	for Filter 2 bi	ts (same values	as bits[15:12])			
bit 7-4		RX Buffer Mask		•					
bit 3-0		RX Buffer Mask							
						/			

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BI	> [3:0]			F6E	3P[3:0]		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BI	> [3:0]		F4BP[3:0]				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

DIT 15-12	 F/BP[3:0]: RX Buffer Mask for Filter 7 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 •
	• 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F6BP[3:0]: RX Buffer Mask for Filter 6 bits (same values as bits[15:12])
bit 7-4	F5BP[3:0]: RX Buffer Mask for Filter 5 bits (same values as bits[15:12])
bit 3-0	F4BP[3:0]: RX Buffer Mask for Filter 4 bits (same values as bits[15:12])

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11B	P[3:0]		F10BP[3:0]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		P[3:0]				P[3:0]		
bit 7						L J	bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-12	1111 = Filte 1110 = Filte • • • 0001 = Filte	RX Buffer Masl r hits received ir r hits received ir r hits received ir r hits received ir	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	ıffer 4				
bit 11-8	F10BP[3:0]:	RX Buffer Masl	k for Filter 10	bits (same valu	ies as bits[15:1	12])		
bit 7-4	F9BP[3:0]:	RX Buffer Mask	for Filter 9 bi	ts (same values	as bits[15:12])		
bit 3-0	F8BP[3:0]: F	RX Buffer Mask	for Filter 8 bi	ts (same values	as bits[15:12])		

© 2011-2020 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F15BP[3:0]				F14BP[3:0]					
bit 15						[]	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F13E	3P[3:0]			F12B	3P[3:0]				
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x		x = Bit is unki	x = Bit is unknown			
bit 15-12	E4600[2:0]	• DV Duffor Moo	k for Eiltor 15	hita						
DIL 13-12		15BP[3:0]: RX Buffer Mask for Filter 15 bits								
		1110 = Filter hits received in RX Buffer 14								
	•									
	•									
	•	r hits received in	DV Duffor 1							
		r hits received in								
bit 11-8	F14BP[3:0]	: RX Buffer Mas	k for Filter 14	bits (same valu	ies as bits[15:1	21)				
bit 7-4		: RX Buffer Mas		•	-	-/				
bit 3-0		: RX Buffer Mas		•	-	-,				
				N N	•					

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SID	10:3]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID[2:0]		—	EXIDE		EID[1	7:16]
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				•	nented bit, read	l as '0'	
n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 4	0 = Message	address bit, SIE address bit, SIE ted: Read as '0	Dx, must be '				
bit 3	EXIDE: Exten	ded Identifier E	nable bit				
	If MIDE = 1:						
		only messages v only messages v					
		only messages v					
bit 2	0 = Matches o If MIDE = 0: Ignores EXIDI	only messages v	with Standard				
	0 = Matches of <u>If MIDE = 0:</u> Ignores EXIDI Unimplemen	only messages v E bit.	with Standard				
bit 2 bit 1-0	0 = Matches of <u>If MIDE = 0:</u> Ignores EXIDI Unimplement EID[17:16]: E 1 = Message	only messages v E bit. ted: Read as '0	with Standard , ier bits Dx, must be ':	d Identifier addr	resses		

REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	0[7:0]			
bit 7							bit C
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	nented bit, read	l as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	K – Keauable bit	0 – Onimplemented bit, rea	
	-n = Value at POR	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **EID[15:0]:** Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7M	SK[1:0]	F6MS	K[1:0]	F5MS	SK[1:0]	F4MS	SK[1:0]	
bit 15				·			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3M	SK[1:0]	F2MS	K[1:0]	F1MS	SK[1:0]	F0MS	K[1:0]	
bit 7				•		•	bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-14	11 = Reserv 10 = Accept 01 = Accept	ance Mask 2 reg ance Mask 1 reg	jisters contain jisters contain	mask				
	•	ance Mask 0 reg	-	mask				
bit 13-12	F6MSK[1:0]	: Mask Source f	or Filter 6 bits	mask (same values a	/			
bit 11-10	F6MSK[1:0] F5MSK[1:0]	: Mask Source f : Mask Source f	or Filter 6 bits or Filter 5 bits	mask (same values a (same values a	as bits[15:14])			
bit 11-10 bit 9-8	F6MSK[1:0] F5MSK[1:0] F4MSK[1:0]	: Mask Source f : Mask Source f : Mask Source f	or Filter 6 bits or Filter 5 bits or Filter 4 bits	mask (same values a (same values a (same values a	as bits[15:14]) as bits[15:14])			
bit 11-10	F6MSK[1:0] F5MSK[1:0] F4MSK[1:0]	: Mask Source f : Mask Source f	or Filter 6 bits or Filter 5 bits or Filter 4 bits	mask (same values a (same values a (same values a	as bits[15:14]) as bits[15:14])			
bit 11-10 bit 9-8	F6MSK[1:0] F5MSK[1:0] F4MSK[1:0] F3MSK[1:0] F2MSK[1:0]	: Mask Source f : Mask Source f : Mask Source f : Mask Source f : Mask Source f	or Filter 6 bits or Filter 5 bits or Filter 4 bits or Filter 3 bits or Filter 2 bits	mask (same values a (same values a (same values a (same values a	as bits[15:14]) as bits[15:14]) as bits[15:14]) as bits[15:14])			
bit 11-10 bit 9-8 bit 7-6	F6MSK[1:0] F5MSK[1:0] F4MSK[1:0] F3MSK[1:0] F2MSK[1:0]	: Mask Source f : Mask Source f : Mask Source f : Mask Source f	or Filter 6 bits or Filter 5 bits or Filter 4 bits or Filter 3 bits or Filter 2 bits	mask (same values a (same values a (same values a (same values a	as bits[15:14]) as bits[15:14]) as bits[15:14]) as bits[15:14])			

REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15I	MSK[1:0]	F14MS	SK[1:0]	F13M	SK[1:0]	K[1:0] F12MSK[1:0]	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11N	F11MSK[1:0] F10MSK[1:0] F9MSK[1:0]		SK[1:0]	F8MS	K[1:0]		
bit 7					<u> </u>		bit 0
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimplemented bit, read		l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-14	FISWISK[1.0]	: Mask Source	IOI FILLEI IO L	ກເຮ			
	01 = Accepta 00 = Accepta	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg	jisters contair jisters contair	n mask n mask n mask			
bit 13-12	10 = Accepta 01 = Accepta 00 = Accepta F14MSK[1:0]	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source	jisters contair jisters contair for Filter 14 k	n mask n mask n mask n mask pits (same value	-		
bit 11-10	10 = Accepta 01 = Accepta 00 = Accepta F14MSK[1:0] F13MSK[1:0]	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source	jisters contair jisters contair for Filter 14 k for Filter 13 k	n mask n mask n mask n mask bits (same value bits (same value	es as bits[15:14])	
	10 = Accepta 01 = Accepta 00 = Accepta F14MSK[1:0] F13MSK[1:0]	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source	jisters contair jisters contair for Filter 14 k for Filter 13 k	n mask n mask n mask n mask pits (same value	es as bits[15:14])	
bit 11-10	10 = Accepta 01 = Accepta 00 = Accepta F14MSK[1:0] F13MSK[1:0] F12MSK[1:0]	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source	jisters contair jisters contair for Filter 14 k for Filter 13 k for Filter 12 k	n mask n mask n mask n mask bits (same value bits (same value	es as bits[15:14 es as bits[15:14])])	
bit 11-10 bit 9-8 bit 7-6 bit 5-4	10 = Accepta 01 = Accepta 00 = Accepta F14MSK[1:0] F13MSK[1:0] F12MSK[1:0]	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source : Mask Source	jisters contair jisters contair for Filter 14 b for Filter 13 b for Filter 12 b for Filter 11 b	n mask n mask n mask oits (same value oits (same value oits (same value	es as bits[15:14 es as bits[15:14 es as bits[15:14])])])	
bit 11-10 bit 9-8 bit 7-6	10 = Accepta 01 = Accepta 00 = Accepta F14MSK[1:0] F13MSK[1:0] F12MSK[1:0] F11MSK[1:0] F10MSK[1:0]	nce Mask 2 reg nce Mask 1 reg nce Mask 0 reg : Mask Source : Mask Source : Mask Source : Mask Source : Mask Source	jisters contair jisters contair for Filter 14 k for Filter 13 k for Filter 12 k for Filter 11 k for Filter 10 k	n mask n mask n mask pits (same value pits (same value pits (same value its (same value	es as bits[15:14 es as bits[15:14 es as bits[15:14 es as bits[15:14])])])	

REGISTER 21-20: CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER REGISTER (n = 0-2)

		•	,					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			SID	[10:3]				
bit 15							bit	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
	SID[2:0]		—	MIDE		EID[1	17:16]	
bit 7							bit (
Legend:								
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-5		tandard Identifie						
		bit, SIDx, in filte is a don't care ir	•					
bit 4		nted: Read as '	-	IIISOII				
	•							
bit 3		fier Receive Mo					F hit in the file	
		only message ty either standard						
		f (Filter SID/EID)					D) (Moodug	
bit 2	Unimpleme	nted: Read as '	0'					
bit 1-0	EID[17:16]:	Extended Identi	fier bits					
		s bit, EIDx, in filt		n				
	0 = EIDx bit	is a don't care i	n filter compa	arison				

REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		EID	[15:8]			
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		EI	D[7:0]			
						bit 0
	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared		nown
	R/W-x	R/W-x R/W-x	EID R/W-x R/W-x EID EID EID EID EID EID EID EID EID EID	EID[15:8] R/W-x R/W-x R/W-x EID[7:0] t W = Writable bit U = Unimplen	EID[15:8] R/W-x R/W-x R/W-x R/W-x EID[7:0] t W = Writable bit U = Unimplemented bit, rea	EID[15:8] R/W-x R/W-x R/W-x R/W-x R/W-x EID[7:0] t W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 EID[15:0]: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = EIDx bit is a don't care in filter comparison

REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L[15:8]			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFL	IL[7:0]			
bit 7							bit 0
Legend:		C = Writable	bit, but only '0'	can be written	to clear the bit		

Legend:	C = Writable bit, but only '0'	can be written to clear the bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXFUL[15:0]:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L[31:24]			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXFU	L[23:16]			
bit 7							bit 0
Legend:		C = Writable b	oit, but only 'C)' can be written	to clear the bi	t	
R = Readable	bit	W = Writable k	oit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 **RXFUL[31:16]:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
			RXOV	′F[15:8]					
bit 15							bit 8		
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
			RXO	/F[7:0]					
bit 7							bit 0		
Legend:	Legend: C = Writable bit, but only '0' can be written to clear the bit								
R = Readable b	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								

'0' = Bit is cleared

bit 15-0 **RXOVF[15:0]:** Receive Buffer n Overflow bits

-n = Value at POR

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

'1' = Bit is set

REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXOV	F[31:24]			
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
			RXOV	F[23:16]			
bit 7							bit 0
F							
Legend:		C = Writable I	bit, but only '0	' can be written	to clear the bi	t	
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **RXOVF[31:16]:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

x = Bit is unknown

REGISTER 21-26:	CxTRmnCON: ECANx TX/RX BUFFER mn CONTROL REGISTER
	(m = 0,2,4,6; n = 1,3,5,7)

	(m = 0	,2,4,6; n = 1,.	3,5,7)				
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0
bit 15							bit 8
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 15-8	See Definition	n for bits[7:0], C	Controls Buffer	n			
bit 7	TXENm: TX/	RX Buffer Sele	ction bit				
	1 = Buffer TRBn is a transmit buffer 0 = Buffer TRBn is a receive buffer						
bit 6	TXABTm: Me	essage Aborteo	l bit ⁽¹⁾				
	1 = Message						
	-	completed tran		-			
bit 5		Message Lost A					
		lost arbitration did not lose ar					
bit 4	TXERRm: Er	ror Detected D	uring Transmi	ssion bit ⁽¹⁾			
		or occurred whi or did not occur					
bit 3		essage Send R		•	•		
	1 = Requests sent	s that a messag	ge be sent; the	bit automatica	ally clears when	i the message i	s successfully
	0 = Clearing	the bit to '0' wh	nile set reques	ts a message	abort		
bit 2	RTRENm: Au	uto-Remote Tra	insmit Enable	bit			
		emote transmit emote transmit					
bit 1-0	TXmPRI[1:0]	: Message Tra	nsmission Pric	ority bits			
	11 = Highest	message priori	ity				
		ermediate mes					
		ermediate mess message priori					
		moosaye priori	• 3				
Note 1: Th	nis bit is cleared	when TXREQ i	s set.				

Note: The buffers, SID, EID, DLC, Data Field, and Receive Status registers are located in DMA RAM.

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
_	—	_			SID[10:6]				
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
		SID[5:0]			SRR	IDE		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-13 bit 12-2 bit 1	SID[10:0]: St SRR: Substitu When IDE = (1 = Message 0 = Normal m When IDE = 1	will request ren nessage	er bits quest bit mote transmis	ssion					
bit 0	1 = Message	d Identifier bit will transmit Ex will transmit St							

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
	_	—	_		EID	[17:14]	
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			EID	0[13:6]			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 11-0 EID[17:6]: Extended Identifier bits

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1			
bit 15							bit 8			
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
_	_	_	RB0	DLC3	DLC2	DLC1	DLC0			
bit 7							bit C			
Legend:										
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	d as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-10	EID[5:0]: Ext	EID[5:0]: Extended Identifier bits								
bit 9	RTR: Remote	e Transmission	Request bit							
	When IDE =	<u>1:</u>								
		will request re	note transmis	ssion						
		0 = Normal message								
		<u>When IDE = 0:</u> The RTR bit is ignored.								
bit 8	RB1: Reserv	-								
	User must se	et this bit to '0' p	er CAN proto	ocol.						
bit 7-5	Unimplemer	nted: Read as '	0'							
bit 4	RB0: Reserv	ed Bit 0								
	User must se	et this bit to '0' p	er CAN proto	ocol.						
L:1 0 0			-							

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 **DLC[3:0]:** Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Byte	1[15:8]				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Byte	0[7:0]				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is clear	red	x = Bit is unki	nown	

bit 15-8	Byte 1[15:8]: ECAN Message Byte 1 bits
hit 7 0	Bute OF7:01: FCAN Measage Bute O bite

bit 7-0 Byte 0[7:0]: ECAN Message Byte 0 bits

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	3[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	2[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkı	nown	

bit 15-8 Byte 3[15:8]: ECAN Message Byte 3 bits

bit 7-0 Byte 2[7:0]: ECAN Message Byte 2 bits

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	5[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	e 4[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unkno			nown	

bit 15-8 Byte 5[15:8]: ECAN Message Byte 5 bits

bit 7-0 Byte 4[7:0]: ECAN Message Byte 4 bits

BUFFER 21-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	7[15:8]			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byte	6[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-8 Byte 7[15:8]: ECAN Message Byte 7 bits

bit 7-0 Byte 6[7:0]: ECAN Message Byte 6 bits

BUFFER 21-8: ECAN™ MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—			FILHIT[4:0] ⁽¹⁾		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
	L		1. 14	1.1. 1.1		(0)	

- J				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT[4:0]: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.
bit 7-0	Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

NOTES:

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Charge Time Measurement Unit (CTMU)" (www.microchip.com/DS70661) in the "dsPIC33/PIC24 Family Reference Manual".
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- Four Edge Input Trigger Sources
- · Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edges
- Precise Time Measurement Resolution of 1 ns
- Accurate Current Source Suitable for Capacitive Measurement
- On-Chip Temperature Measurement using a Built-in Diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

FIGURE 22-1: CTMU BLOCK DIAGRAM

- 3: CTMU TEMP connects to one of the ADC CH0 inputs; see CH0SA and CH0SB (AD1CHS0[12:8,4:0).
- 4: If TGEN = 1 and EDG1STAT = EDG2STAT, CTMU current source is still enabled and may be shunted to Vss internally. This should be considered in low-power applications.
- 5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1[9]) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (www.microchip.com/DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

22.2 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1									
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG		
bit 15	oit 15						bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—		—	—		—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	it	U = Unimplen	nented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15 CTMUEN: CTMU Enable bit 1 = Module is enabled 0 = Module is disabled									
bit 14	Unimplemented: Read as '0'								
bit 13	CTMUSIDL: CTMU Stop in Idle Mode bit								
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 								

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

1 =	E	ina	bles	edge	delay	generation

0 = Disables edge delay generation

TGEN: Time Generation Enable bit

bit 11 EDGEN: Edge Enable bit

bit 12

- 1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.)
 - 0 = Software is used to trigger edges (manual set of EDGxSTAT)
- bit 10 EDGSEQEN: Edge Sequence Enable bit
 - 1 = Edge 1 event must occur before Edge 2 event can occur
 - 0 = No edge sequence is needed
- bit 9 IDISSEN: Analog Current Source Control bit⁽¹⁾
 - 1 = Analog current source output is grounded
 - 0 = Analog current source output is not grounded
- bit 8 CTTRIG: ADC Trigger Control bit
 - 1 = CTMU triggers ADC start of conversion
 - 0 = CTMU does not trigger ADC start of conversion
- bit 7-0 Unimplemented: Read as '0'
- **Note 1:** The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

REGISTER 2	22-2: CTMU	JCON2: CTM	U CONTROL	REGISTER 2	2					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 15							bit			
						11.0	11.0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	_				
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 15	1 = Edge 1 is	Edge 1 Edge Sa s edge-sensitive s level-sensitive	;	Selection bit						
bit 14	1 = Edge 1 is	dge 1 Polarity programmed f programmed f	or a positive e							
bit 13-10	•	0]: Edge 1 Sou	•							
	01xx = Reser 0011 = CTED 0010 = CTED 0001 = OC1 r 0000 = Timer	01 pin 02 pin module								
bit 9	EDG2STAT: E	Edge 2 Status b	oit							
	1 = Edge 2 h			vritten to contro	l the edge sou	rce.				
bit 8	EDG1STAT: Edge 1 Status bit									
	Indicates the status of Edge 1 and can be written to control the edge source. 1 = Edge 1 has occurred 0 = Edge 1 has not occurred									
bit 7	EDG2MOD: E	Edge 2 Edge Sa	ampling Mode	Selection bit						
		s edge-sensitive s level-sensitive								
bit 6	EDG2POL: Edge 2 Polarity Select bit									
	 1 = Edge 2 is programmed for a positive edge response 0 = Edge 2 is programmed for a negative edge response 									
bit 5-2		0]: Edge 2 Sou rved 1 module 02 pin 01 pin module								
bit 1-0		ted: Read as '()'							
Dit 1-0	Ommplemen	teu. Read as)							

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_		—		—
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
	000001 = Min 000000 = No 111111 = Min 111110 = Min • • 100010 = Ma	nimum positive ominal current o nimum negativ nimum negativ aximum negativ	e change from r output specified e change from e change from ve change from	nominal current nominal current d by IRNG[1:0] nominal curren nominal curren nominal curren	. + 2% it – 2% it – 4% nt – 60%		
bit 9-8	IRNG[1:0]: C 11 = 100 × Ba 10 = 10 × Bas 01 = Base Cu	urrent Source ase Current ⁽²⁾ se Current ⁽²⁾	Range Select k				
bit 7-0	Unimplemen	ted: Read as '	0'				
	his current range Refer to the CTM				-		

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

2: Refer to the CTMU Current Source Specifications (Table 30-56) in Section 30.0 "Electrical Characteristics" for the current range selection values.

NOTES:

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Manual".

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Analog-to-Digital Converter (ADC)" (www.microchip.com/DS70621) in the "dsPIC33/PIC24 Family Reference
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have one ADC module. The ADC module supports up to 16 analog input channels.

On ADC1, the AD12B bit (AD1CON1[10]) allows the ADC module to be configured by the user as either a 10-bit, four Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, one S&H ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

23.1.1 10-BIT ADC CONFIGURATION

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) Conversion
- Conversion Speeds of Up to 1.1 Msps
- Up to 16 Analog Input Pins
- Connections to Three Internal Op Amps
- Connections to the Charge Time Measurement Unit (CTMU) and Temperature Measurement Diode
- Channel Selection and Triggering can be Controlled by the Peripheral Trigger Generator (PTG)
- External Voltage Reference Input Pins
- Simultaneous Sampling of:
 - Up to four analog input pins
 - Three op amp outputs
 - Combinations of analog inputs and op amp outputs
- Automatic Channel Scan mode
- · Selectable Conversion Trigger Source
- · Selectable Buffer Fill modes
- Four Result Alignment Options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

23.1.2 12-BIT ADC CONFIGURATION

The 12-bit ADC configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported

Depending on the particular device pinout, the ADC can have up to 16 analog input pins, designated AN0 through AN15. These analog inputs are shared with op amp inputs and outputs, comparator inputs, and external voltage references. When op amp/comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available. The actual number of analog input pins, op amps and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 register is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only one ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1[0]) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1[1]), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use ANO-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (www.microchip.com/DS70621) section in the "dsPIC33/PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (www.microchip.com/DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0			
bit 15	•						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	HC/HS/R/W-0	HC/HS/R/C-0			
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾			
bit 7	_						bit (
Lanandı			- Classable bit		ve Cetteble bit		4			
Legend:	. L.:4					C = Clearable bi	L			
R = Readable		W = Writable k	DIL	•	nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknov	vn			
bit 15	ADON: ADO	C1 Operating M	ode bit							
	1 = ADC mo 0 = ADC is c	odule is operatir off	ıg							
bit 14	Unimpleme	nted: Read as	' O '							
bit 13	ADSIDL: AD	DC1 Stop in Idle	Mode bit							
		ADSIDL: ADC1 Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode								
	0 = Continues module operation in Idle mode									
bit 12	ADDMABM	: DMA Buffer B	uild Mode bit							
						rovides an addre	ess to the DM			
						nd-alone buffer	*			
						des a Scatter/Ga size of the DMA b				
bit 11		nted: Read as		or 110 a.i.a.og						
bit 10	-	C1 10-Bit or 12		Mode bit						
		-channel ADC								
		-channel ADC	•							
bit 9-8	FORM[1:0]:	Data Output F	ormat bits							
	<u>For 10-Bit O</u>									
		I fractional (Dou			0, where s = .I	NOT.d[9])				
	10 = Fractional (DOUT = dddd dddd ddd0 0000)									
		01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d[9]) 00 = Integer (Dout = 0000 00dd dddd dddd)								
	For 12-Bit O)						
		l fractional (Doเ	JT = sddd ddd	ld dddd 000	0, where s = . I	NOT.d[11])				
		nal (Dout = dd								
		l integer (Dout	= ssss sddd	dddd dddd,	where $s = .NC$) I.d[11])				
		r (Dout = 0000	ما ما ما ما ما ما ما ما							

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- **3:** Do not clear the DONE bit in software if auto-sample is enabled (ASAM = 1).

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC[2:0]: Sample Trigger Source Select bits
	If SSRCG = 1:
	111 = Reserved
	110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾
	101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾
	100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾
	011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾
	010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾
	001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾
	000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾
	If SSRCG = 0 :
	111 = Internal counter ends sampling and starts conversion (auto-convert)
	110 = CTMU ends sampling and starts conversion
	101 = Reserved
	100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion ⁽²⁾
	010 = Timer3 compare ends sampling and starts conversion
	001 = Active transition on the INTO pin ends sampling and starts conversion
	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
hit 1	
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC[2:0] for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS[1:0] = 01 or 1x)
	In 12-bit mode (AD21B = 1), SIMSAM is Unimplemented and is Read as '0':
	1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS[1:0] = 1x); or samples CH0 and CH1
	simultaneously (when CHPS[1:0] = 01)
	0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC1 Sample Auto-Start bit
	1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set
	0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC1 Sample Enable bit
	1 = ADC Sample-and-Hold amplifiers are sampling
	0 = ADC Sample-and-Hold amplifiers are holding
	If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If
	SSRC[2:0] = 000, software can write '0' to end sampling and start conversion. If SSRC[2:0] ≠ 000,
	automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC1 Conversion Status bit ⁽³⁾
	1 = ADC conversion cycle has completed
	0 = ADC conversion has not started or is in progress
	Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the
	DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in
	progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - **3:** Do not clear the DONE bit in software if auto-sample is enabled (ASAM = 1).

			CONTROL REG				
R/W-0	R/W-0) R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2	VCFG	1 VCFG0		_	CSCNA	CHPS1	CHPS0
bit 15							bit
R-0	R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMPI		SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7			Olvii 12			DOT W	bit
Logondu							
Legend:	- h:t		L:4 II		a suite al lait us su	d = = (0'	
R = Readable		W = Writable			nented bit, read		
-n = Value at	POR	'1' = Bit is set	·()' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	VCFG[2:	0]: Converter Volta	ge Reference Co	nfiguration k	oits		
	Value	VREFH	VREFL				
	000	Avdd	Avss				
	001	External VREF+	Avss				
	010	Avdd	External VREF-				
	011	External VREF+	External VREF-				
	1xx	Avdd	Avss				
bit 12-11	Unimple	mented: Read as '	0'				
bit 10	-	Input Scan Select					
		s inputs for CH0+ o		JXA			
		not scan inputs	0				
bit 9-8	CHPS[1:	0]: Channel Select	bits				
		mode (AD21B = 1)		its are Unim	plemented and	are Read as '	<u>)':</u>
		verts CH0, CH1, C					
		verts CH0 and CH	1				
bit 7			(anly valid when F				
		uffer Fill Status bit is currently filling ti			o upor opplicat	ion chould coor	voo data in t
		half of the buffer	le second han on	ne buller, u	ie user applicat		55 uata 11 ti
		is currently filling	the first half of the	e buffer; the	user application	on should acce	ee data in tl
	seco						55 uala 111 li
		ond half of the buffe	ſ				
bit 6-2	SMPI[4:0	ond half of the buffe)]: Increment Rate					
bit 6-2	When AD)]: Increment Rate	bits				
bit 6-2	<u>When AD</u> x1111 =	0]: Increment Rate 0DMAEN = 0: Generates interrup	bits ot after completion				on
bit 6-2	<u>When AD</u> x1111 =)]: Increment Rate	bits ot after completion				on
bit 6-2	<u>When AD</u> x1111 =	0]: Increment Rate 0DMAEN = 0: Generates interrup	bits ot after completion				on
bit 6-2	<u>When AD</u> x1111 =	0]: Increment Rate 0DMAEN = 0: Generates interrup	bits ot after completion				on
bit 6-2	When AD x1111 = x1110 = • • * x0001 =	D]: Increment Rate <u>DMAEN = 0:</u> Generates interrup Generates interrup Generates interrup	bits ot after completion ot after completion ot after completion	of every 15 of every 2r	ith sample/conv id sample/conv	version operation ersion operation	on on
bit 6-2	When AD x1111 = x1110 = x0001 = x0000 =	D]: Increment Rate <u>DDMAEN = 0:</u> Generates interrup Generates interrup Generates interrup Generates interrup	bits ot after completion ot after completion ot after completion	of every 15 of every 2r	ith sample/conv id sample/conv	version operation ersion operation	on on
bit 6-2	When AD x1111 = x1110 = x0001 = x0000 = When AD	D]: Increment Rate <u>DDMAEN = 0:</u> Generates interrup Generates interrup Generates interrup <u>DDMAEN = 1:</u>	bits of after completion of after completion of after completion of after completion	of every 15 of every 2r of every sa	ith sample/conv d sample/conv mple/conversic	version operatio ersion operatio n operation	on on n
bit 6-2	When AD x1111 = x1110 = x0001 = x0000 = When AD 11111 =	 D]: Increment Rate DDMAEN = 0: Generates interrup Generates interrup Generates interrup Generates interrup DDMAEN = 1: Increments the DM 	bits of after completion of after completion of after completion IA address after c	of every 15 of every 2r of every sa ompletion o	ith sample/conv nd sample/conv mple/conversic f every 32nd sa	version operation ersion operation on operation ample/conversion	on on n on operatior
bit 6-2	When AD x1111 = x1110 = x0001 = x0000 = When AD 11111 =	D]: Increment Rate <u>DDMAEN = 0:</u> Generates interrup Generates interrup Generates interrup <u>DDMAEN = 1:</u>	bits of after completion of after completion of after completion IA address after c	of every 15 of every 2r of every sa ompletion o	ith sample/conv nd sample/conv mple/conversic f every 32nd sa	version operation ersion operation on operation ample/conversion	on on n on operatior
bit 6-2	When AD x1111 = x1110 = x0001 = x0000 = When AD 11111 =	 D]: Increment Rate DDMAEN = 0: Generates interrup Generates interrup Generates interrup Generates interrup DDMAEN = 1: Increments the DM 	bits of after completion of after completion of after completion IA address after c	of every 15 of every 2r of every sa ompletion o	ith sample/conv nd sample/conv mple/conversic f every 32nd sa	version operation ersion operation on operation ample/conversion	on on n on operatior
bit 6-2	When AD x1111 = x1110 = x0001 = x0000 = When AD 11111 = 11110 =	 D]: Increment Rate DDMAEN = 0: Generates interrup Generates interrup Generates interrup Generates interrup DDMAEN = 1: Increments the DM 	bits after completion after completion after completion after completion A address after c A address after c	of every 15 of every 2r of every sa ompletion o ompletion o	ith sample/conv id sample/conv mple/conversic f every 32nd sa f every 31st sa	version operation ersion operation on operation ample/conversion mple/conversion	on on n on operation n operation

CIETED 22 2. ACONO, ADCA CONTROL DECISTED 2

© 2011-2020 Microchip Technology Inc.

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

bit 1	BUFM: Buffer Fill Mode Select bit 1 = Starts the buffer filling the first half of the buffer on the first interrupt and the second half of the				
	buffer on next interrupt0 = Always starts filling the buffer from the start address				
bit 0	ALTS: Alternate Input Sample Mode Select bit				
	 1 = Uses channel input selects for Sample MUXA on first sample and Sample MUXB on next sample 0 = Always uses channel input selects for Sample MUXA 				

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC					SAMC[4:0] ⁽¹)	
bit 15							bit 8
DAAUO	DMM O	D /// 0	DAMA	D /// 0	D/14/ 0	D 444 0	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 [7:0] ⁽²⁾	R/W-0	R/W-0	R/W-0
bit 7			ADUS	s[7.0] ^{(*}			bit (
							Dit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
		rived from syste					
	0 = Clock der	ived from syste	em clock				
bit 14-13	-	ted: Read as '					
bit 12-8		Auto-Sample Ti	me bits ⁽¹⁾				
	11111 = 31 7	Γad					
	•						
	•						
	00001 = 1 TA 00000 = 0 TA						
bit 7-0	ADCS[7:0]: A	ADC1 Conversi	on Clock Sele	ect bits ⁽²⁾			
		TP • (ADCS[7:					
	•						
	•			. –			
	0000001 =	TP • (ADCS[7: TP • (ADCS[7: TP • (ADCS[7:	0] + 1) = TP •	2 = Tad			
Note 1: Th	nis bit is only use						

REGISTER 23-3: AD1CON3: ADC1 CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—		—			ADDMAEN
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—		DMABL[2:0]	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	pit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unk	nown
bit 15-9	Unimplemen	ted: Read as '0	,				
bit 8			L L L L				
SIL U	ADDMAEN: A	ADC1 DMA Ena	die dit				
	1 = Conversio	on results are st	ored in the A				
	1 = Conversio		ored in the A				
bit 7-3	1 = Conversio 0 = Conversio	on results are st	ored in the Al ored in ADC1				
	1 = Conversio 0 = Conversio Unimplemen	on results are sto on results are sto	ored in the Al ored in ADC1 ,	BUF0 through	ADC1BUFF re	gisters; DMA w	
bit 7-3	1 = Conversio 0 = Conversio Unimplemen DMABL[2:0]: 111 = Allocate	on results are sto on results are sto ted: Read as '0 Selects Numbe es 128 words of	ored in the Al ored in ADC1 , er of DMA Bu buffer to eac	BUF0 through . ffer Locations p ch analog input	ADC1BUFF re	gisters; DMA w	
bit 7-3	1 = Conversio 0 = Conversio Unimplemen DMABL[2:0]: 111 = Allocate 110 = Allocate	on results are sto on results are sto ted: Read as '0 Selects Numbe es 128 words of es 64 words of b	ored in the Al ored in ADC1 , er of DMA Bu buffer to each puffer to each	BUF0 through , ffer Locations p ch analog input n analog input	ADC1BUFF re	gisters; DMA w	
bit 7-3	1 = Conversio 0 = Conversio Unimplemen DMABL[2:0]: 111 = Allocate 101 = Allocate	on results are sto on results are sto ted: Read as '0 Selects Numbe es 128 words of es 64 words of t es 32 words of t	ored in the Al ored in ADC1 , er of DMA Bu buffer to each puffer to each puffer to each	BUF0 through , ffer Locations p ch analog input n analog input n analog input	ADC1BUFF re	gisters; DMA w	
bit 7-3	1 = Conversio 0 = Conversio Unimplemen DMABL[2:0]: 111 = Allocate 101 = Allocate 101 = Allocate 100 = Allocate	on results are sto on results are sto ted: Read as '0 Selects Numbe es 128 words of es 64 words of t es 32 words of t es 16 words of t	ored in the Al ored in ADC1 , er of DMA Bu buffer to each puffer to each puffer to each puffer to each	BUF0 through , ffer Locations p ch analog input n analog input n analog input n analog input	ADC1BUFF re	gisters; DMA w	
bit 7-3	1 = Conversio 0 = Conversio Unimplemen DMABL[2:0]: 111 = Allocate 110 = Allocate 101 = Allocate 100 = Allocate 011 = Allocate	on results are sto on results are sto ted: Read as '0 Selects Numbe es 128 words of es 64 words of t es 32 words of t	ored in the Al ored in ADC1 or of DMA Bu buffer to each ouffer to each ouffer to each ouffer to each	BUF0 through, ffer Locations p ch analog input a analog input a analog input a analog input analog input	ADC1BUFF re	gisters; DMA w	
bit 7-3	1 = Conversio 0 = Conversio Unimplemen DMABL[2:0]: 111 = Allocate 110 = Allocate 101 = Allocate 100 = Allocate 011 = Allocate 010 = Allocate 010 = Allocate	on results are sto on results are sto ted: Read as '0 Selects Numbe es 128 words of es 64 words of t es 32 words of t es 16 words of t es 8 words of b	ored in the Al ored in ADC1 ored in ADC1 buffer to each ouffer to each ouffer to each ouffer to each uffer to each uffer to each uffer to each	BUF0 through, ffer Locations p ch analog input a analog input a analog input analog input analog input analog input analog input	ADC1BUFF re	gisters; DMA w	

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNELS 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-11 Unimplemented: Read as '0'

bit 10-9 CH1

CH123NB[1:0]: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits In 12-Bit Mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value			
value	CH1	CH2	CH3
11	AN9	AN10	AN11
10 (1,2)	OA3/AN6	AN7	AN8
0x	Vrefl	VREFL	Vrefl

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-Bit Mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel					
value	CH1	CH2	CH3			
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6			
0 (1,2)	OA2/AN0	AN1	AN2			

bit 7-3 Unimplemented: Read as '0'

bit 2-1 CH123NA[1:0]: Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-Bit Mode (AD21B = 1), CH123NA is Unimplemented and is Read as '0':

Value		ADC Channel	
value	CH1	CH2	CH3
11	AN9	AN10	AN11
10 (1,2)	OA3/AN6	AN7	AN8
0x	VREFL	VREFL	Vrefl

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON[10]) = 1); otherwise, the ANx input is used.

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNELS 1, 2, 3 SELECT REGISTER (CONTINUED)

bit 0

CH123SA: Channel 1, 2, 3 Positive Input Select for Sample MUXA bit In 12-bit mode (AD21B = 1), CH123SA is Unimplemented and is Read as '0':

Value	ADC Channel						
value	CH1	CH2	CH3				
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6				
0 (1,2)	OA2/AN0	AN1	AN2				

Note 1: AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON[10]) = 1); otherwise, the ANx input is used.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		0-0	r\/ VV-U	r\/ VV - U	CH0SB[4:0] ⁽¹		rv/ VV-U
bit 15					ULIN90[4.0](.	,	bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHONA		_			CH0SA[4:0](1		
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable bi	t	U = Unimple	mented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	1 = Channel (0 = Channel (nnel 0 Negative I 0 negative input is 0 negative input is	s AN1 ⁽¹⁾	or Sample MU)	KB bit		
bit 14-13	•	ted: Read as '0'			(1)		
bit 12-8		Channel 0 Positi n; use this select					
	11101 = Res 11100 = Res 11011 = Res 11010 = Cha 11001 = Cha	erved erved nnel 0 positive in nnel 0 positive in nnel 0 positive in	put is the out put is the out	put of OA3/AN put of OA2/AN	6 ^(2,3) 0 ⁽²⁾	asurement diode ((CTMUTEMP)
	01110 = Cha	erved nnel 0 positive in nnel 0 positive in nnel 0 positive in	put is AN14 ⁽³)			
	•						
	00001 = Cha	nnel 0 positive in nnel 0 positive in nnel 0 positive in	put is AN1 ⁽³⁾				
bit 7	CH0NA: Cha 1 = Channel (nnel 0 Negative I 0 negative input i 0 negative input i	nput Select fo s AN1 ⁽¹⁾	or Sample MU)	KA bit		
bit 6-5	Unimplemen	ted: Read as '0'					
Note 1:		I7 are repurposed w enabling a part					
2:	The OAx input is	s used if the corre	esponding op	amp is selecte	d (OPMODE (C	CMxCON[10]) =	1); otherwise,

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

the ANx input is used.3: See the "Pin Diagrams" section for the available analog channels for each device.

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA[4:0]: Channel 0 Positive Input Select for Sample MUXA bits ⁽¹⁾ 11111 = Open; use this selection with CTMU capacitive and time measurement 11100 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP) 11101 = Reserved 11001 = Reserved 11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3) 11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾ 11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾ 10110 = Reserved •
	<pre></pre>

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON[10]) = 1); otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
CSS31	CSS30		_	_	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾			
bit 15	00000				00020	00020	bit 8			
							Dire			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
			—				—			
bit 7	•						bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown			
bit 15	CSS31: ADC1	I Input Scan S	election bit							
		1 = Selects CTMU capacitive and time measurement for input scan (Open)								
	0 = Skips CTN	MU capacitive	and time mea	surement for ir	nput scan (Open)				
bit 14	CSS30: ADC1	ADC1 Input Scan Selection bit								
	 1 = Selects CTMU on-chip temperature measurement for input scan (CTMU TEMP) 0 = Skips CTMU on-chip temperature measurement for input scan (CTMU TEMP) 									
	-	-	-	asurement for i	input scan (CTN	IU TEMP)				
bit 13-11	•	ted: Read as '								
bit 10		I Input Scan S								
		A3/AN6 for inp								
	•	3/AN6 for input								
bit 9		I Input Scan S								
		A2/AN0 for inp 2/AN0 for input								
hit 0										
bit 8		I Input Scan S A1/AN3 for inp								
		1/AN3 for input								
bit 7-0	-	ted: Read as '								
	•									
Note 1: A	II AD1CSSH bits	can be selecte	d by user soft	ware Howeve	r innuts selected	d for scan with				

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON[10]) = 1); otherwise, the ANx input is used.

REGISTER 23-8:	AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW ^(1,2,3)
----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CSS	S[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimpler	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 CSS[15:0]: ADC1 Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

- **Note 1:** On devices with less than 16 analog inputs, all AD1CSSL bits can be selected by the user. However, inputs selected for scan, without a corresponding input on the device, convert VREFL.
 - **2:** CSSx = ANx, where x = 0-15. The outputs for Op Amps 1, 2 and 3 can be scanned by selecting analog inputs, AN3, AN0 and AN6, respectively.
 - **3:** For analog inputs that have op amp output function (OAxOUT), op amp output can be accessed for input scan if the corresponding op amp is selected (OPMODE (CMxCON[10[) = 1); otherwise, the ANx input is used.

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (www.microchip.com/DS70000669) in the "dsPIC33/PIC24 Family Reference Manual".
 2: Some registers and associated bits described in this section may not be available on all dovinance. Patients
 - described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue registers (PTGQUE0-PTGQUE7). The registers perform operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple Clock Sources
- Two 16-Bit General Purpose Timers
- Two 16-Bit General Limit Counters
- Configurable for Rising or Falling Edge Triggering
- Generates Processor Interrupts to Include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to Receive Trigger Signals from these Peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to Trigger or Synchronize to these Peripherals:
- Watchdog Timer
- Output Compare
- Input Capture
- ADC
- PWM
- Op Amp/Comparator

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464
	Devices.aspx:uDocivalite=eff000404

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (www.microchip.com/DS70000669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

	11.0			11.0			
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSIDL	PTGTOGL	_	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							bit 8
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0

R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
PTGSTRT	PTGWDTO	—	-	—	—	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾
bit 7							bit 0

Legend:	HS = Hardware Settable bit	t	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTGEN: Module Enable bit
	1 = PTG module is enabled
	0 = PTG module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTGSIDL: PTG Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	PTGTOGL: PTG TRIG Output Toggle Mode bit
	 1 = Toggles state of the PTGOX for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOX pulse determined by the value in the PTGPWDx bits
bit 11	Unimplemented: Read as '0'
bit 10	PTGSWT: PTG Software Trigger bit ⁽²⁾
	 1 = Triggers the PTG module 0 = No action (clearing this bit will have no effect)
bit 9	PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
	1 = Enables Single-Step mode 0 = Disables Single-Step mode
bit 8	PTGIVIS: PTG Counter/Timer Visibility Control bit
	 1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx) 0 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7	PTGSTRT: PTG Start Sequencer bit
	1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6	PTGWDTO: PTG Watchdog Timer Time-out Status bit
	 1 = PTG Watchdog Timer has timed out 0 = PTG Watchdog Timer has not timed out
bit 5-2	Unimplemented: Read as '0'
Note 1:	These bits apply to the PTGWHI and PTGWLO commands only.
2:	This bit is only used with the PTGCTRL Step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- PTGITM[1:0]: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 10 = Single level detect with Step delay executed on exit of command
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 00 = Continuous edge detect with Step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

bit 1-0

- 2: This bit is only used with the PTGCTRL Step command software trigger option.
- **3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

REGISTER 2	4-2: PIGCO	ON: PTG CO	NTROL REG	ISTER				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGCLK2	PTGCLK1	PTGCLK1 PTGCLK0 PTGDIV4 PTGDIV3 PTGDIV2 PTGDIV1						
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	_	PTGWDT2	PTGWDT1	PTGWDT	
bit 7						1	bit	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown	
bit 15-13 bit 12-8	111 = Reserv 110 = Reserv 101 = PTG m 100 = PTG m 011 = PTG m 010 = PTG m 001 = PTG m		urce will be T3 urce will be T2 urce will be T1 urce will be TA urce will be F6 urce will be F6	CLK CLK CLK D DSC				
	11111 = Divic 11110 = Divic • • • • • • • • • • • • • • • • • • •	de-by-32 de-by-31 de-by-2						
bit 7-4	PTGPWD[3:0]: PTG Trigger	Output Pulse	-Width bits				
	1110 = All trig	gger outputs ar gger outputs ar gger outputs ar gger outputs ar	e 15 PTG cloc e 2 PTG clock	k cycles wide cycles wide				
bit 3	Unimplemen	ted: Read as '	0'					
bit 2-0	111 = Watcho 110 = Watcho 101 = Watcho 010 = Watcho 011 = Watcho 010 = Watcho 001 = Watcho	I: Select PTG dog Timer will t dog Timer is dis	ime-out after 5 ime-out after 2 ime-out after 1 ime-out after 6 ime-out after 3 ime-out after 1 ime-out after 8	12 PTG clock 56 PTG clock 28 PTG clock 4 PTG clocks 2 PTG clocks 6 PTG clocks 6 PTG clocks	s s			

REGISTER 24-2: PTGCON: PTG CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	hit	= Inimpler	mented bit, read	as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	C bit			
		s Trigger when			executed		
					nand is execute	d	
bit 14		mple Trigger P					
		s Trigger when			executed nand is execute	d	
bit 13		mple Trigger P				u	
DIC 10		s Trigger when			executed		
					nand is execute	d	
bit 12	ADCTS1: Sa	mple Trigger P	TGO12 for AD	OC bit			
		s Trigger when					
L 14 4 4					nand is execute	d	
bit 11		ger/Synchroniz			ast command is	ovecuted	
					e broadcast com		ited
bit 10		ger/Synchroniz	-				
		00 7			ast command is		
			-		e broadcast com	imand is execu	ited
bit 9		ger/Synchroniz					
					ast command is broadcast com		ited
bit 8		ger/Synchroniz	-				
	-				ast command is	executed	
					e broadcast com		ited
bit 7	OC4CS: Cloc	ck Source for C	C4 bit				
		s clock pulse w				cutod	
bit 6		sk Source for O	-		command is exe	culeu	
DILO		s clock pulse w		dcast comman	d is executed		
					command is exe	cuted	
bit 5	OC2CS: Cloc	ck Source for O	C2 bit				
		s clock pulse v					
	0 = Does not	generate clock	pulse when t	he broadcast o	command is exe	cuted	
	is register is rea	ad-only when th	e PTG modul	e is executing	Step commands	(PTGEN = 1 a	and
	GSTRT = 1).	1 • 11 • 1			0		
2: Th	is register is onl	ly used with the	PTGCTRL O	PTION = 1111	Step command	•	

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	LIM[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTG			PTGT	DLIM[7:0]			
bit 7						bit 0	
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplen	nented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit i		x = Bit is unkr	nown				

bit 15-0 **PTGT0LIM[15:0]:** PTG Timer0 Limit Register bits

General Purpose Timer0 Limit register (effective only with a PTGT0 Step command).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT1LIM[15:8]							
bit 15 bit 8							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT1LIM[7:0]							
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT1LIM[15:0]:** PTG Timer1 Limit Register bits

General Purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-6: PIGSDLIN: PIGSTEP DELAT LINIT REGISTER	REGISTER 24-6:	PTGSDLIM: PTG STEP DELAY LIMIT REGISTER ^(1,2)
---	----------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSD	DLIM[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTG			PTGSI	DLIM[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknow			nown		

bit 15-0 **PTGSDLIM[15:0]:** PTG Step Delay Limit Register bits Holds a PTG Step delay value representing the number of additional PTG clocks between the start of a Step command and the completion of a Step command.

Note 1: A base Step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).

2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTG		PTGC	DLIM[15:8]				
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTG		PTGC	0LIM[7:0]				
bit 7						bit 0	
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 **PTGC0LIM[15:0]:** PTG Counter 0 Limit Register bits May be used to specify the loop count for the PTGJMPC0 Step command or as a limit register for the

General Purpose Counter 0.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	_IM[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1	LIM[7:0]			
bit 7							bit 0
Legend:							

Logona			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM[15:0]:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command or as a limit register for the General Purpose Counter 1.

REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGHOLD[15:8]									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGHOLD[7:0]									
bit 7 bit									

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **PTGHOLD[15:0]:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGA	DJ[15:8]				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGA	DJ[7:0]				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 **PTGADJ[15:0]:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGADD command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGL0[15:8]								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGL0[7:0]									
bit 7									

Legend:					
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 PTGL0[15:0]: PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	N/W-U	N/W-U	N/ VV-0	N/W-0	N/VV-U
_	—				PTGQPTR[4:0]]	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR[4:0]:** PTG Step Queue Pointer Register bits

This register points to the currently active Step command in the Step queue.

REGISTER 24-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-7)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STEP(2x + 1)[7:0] ⁽²⁾									
bit 15 bit									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STEP(2x)[7:0] ⁽²⁾									
bit 7 bit									

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	STEP(2x + 1)[7:0]: PTG Step Queue Pointer Register bits ⁽²⁾	
	A queue location for storage of the STEP(2x + 1) command byte.	
bit 7-0	STEP(2x)[7:0]: PTG Step Queue Pointer Register bits ⁽²⁾	
	A queue location for storage of the STEP(2x) command byte.	

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 24-1 for the Step command encoding.

3: The Step registers maintain their values on any type of Reset.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

24.4 Step Commands and Format

TABLE 24-1: PTG STEP COMMAND FORMAT

Step Command Byte:			
STEPx[7:0]			
CMD[3:0]		OPTION[3:0]	
bit 7	bit 4 bit 3		bit 0

bit 7-4	CMD[3:0]	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION[3:0].
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION[3:0].
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION[3:0].
	001x	PTGSTRB	Copy the value contained in CMD[0]:OPTION[3:0] to the CH0SA[4:0] bits (AD1CHS0[4:0]).
	0100	PTGWHI	Wait for a low-to-high edge input from the selected PTG trigger input as described by OPTION[3:0].
	0101	PTGWLO	Wait for a high-to-low edge input from the selected PTG trigger input as described by OPTION[3:0].
	0110	Reserved	Reserved.
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION3[:0].
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd[0]:option[3:0]>.</cmd[0]:option[3:0]>
	101x	PTGJMP	Copy the value indicated in < <cmd[0]:option[3:0]> to the Queue Pointer (PTGQPTR) and jump to that Step queue.</cmd[0]:option[3:0]>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR).
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd[0]:option[3:0]> to the Queue Pointer (PTGQPTR), and jump to that Step queue</cmd[0]:option[3:0]>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR).
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd[0]:option[3:0]> to the Queue Pointer (PTGQPTR), and jump to that Step queue.</cmd[0]:option[3:0]>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

bit 3-0	Step Command	OPTION[3:0]	Option Description
	PTGCTRL ⁽¹⁾	0000	Reserved.
		0001	Reserved.
		0010	Disable Step Delay Timer (PTGSD).
		0011	Reserved.
		0100	Reserved.
		0101	Reserved.
		0110	Enable Step Delay Timer (PTGSD).
		0111	Reserved.
		1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.
		1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.
		1010	Reserved.
		1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register.
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register.
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register.
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).
	PTGADD ⁽¹⁾	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).
		0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).
		0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).
		0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).
		0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM).
		0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).
		0110	Reserved.
		0111	Reserved.
	PTGCOPY ⁽¹⁾	1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).
		1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).
		1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).
		1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).
		1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).
		1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).
		1110	Reserved.
		1111	Reserved.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

bit 3-0	Step Command	OPTION[3:0]	Option Description
	PTGWHI(1)	0000	PWM Special Event Trigger. ⁽³⁾
	or _{PTGWLO} (1)	0001	PWM master time base synchronization output. ⁽³⁾
		0010	PWM1 interrupt. ⁽³⁾
		0011	PWM2 interrupt. ⁽³⁾
		0100	PWM3 interrupt. ⁽³⁾
		0101	Reserved.
		0110	Reserved.
		0111	OC1 Trigger event.
		1000	OC2 Trigger event.
		1001	IC1 Trigger event.
		1010	CMP1 Trigger event.
		1011	CMP2 Trigger event.
		1100	CMP3 Trigger event.
		1101	CMP4 Trigger event.
		1110	ADC conversion done interrupt.
		1111	INT2 external interrupt.
	PTGIRQ ⁽¹⁾	0000	Generate PTG Interrupt 0.
		0001	Generate PTG Interrupt 1.
		0010	Generate PTG Interrupt 2.
		0011	Generate PTG Interrupt 3.
		0100	Reserved.
		•	•
		•	•
		•	•
	(2)	1111	Reserved.
	PTGTRIG ⁽²⁾	00000	PTGO0.
		00001	PTGO1.
		•	•
		•	•
		•	•
		11110	PTGO30.
		11111	PTGO31.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

PTG Output Number	PTG Output Description	
PTGO0	Trigger/Synchronization Source for OC1	
PTGO1	Trigger/Synchronization Source for OC2	
PTGO2	Trigger/Synchronization Source for OC3	
PTGO3	Trigger/Synchronization Source for OC4	
PTGO4	Clock Source for OC1	
PTGO5	Clock Source for OC2	
PTGO6	Clock Source for OC3	
PTGO7	Clock Source for OC4	
PTGO8	Trigger/Synchronization Source for IC1	
PTGO9	Trigger/Synchronization Source for IC2	
PTGO10	Trigger/Synchronization Source for IC3	
PTGO11	Trigger/Synchronization Source for IC4	
PTGO12	Sample Trigger for ADC	
PTGO13	Sample Trigger for ADC	
PTGO14	Sample Trigger for ADC	
PTGO15	Sample Trigger for ADC	
PTGO16	PWM Time Base Synchronous Source for PWM ⁽¹⁾	
PTGO17	PWM Time Base Synchronous Source for PWM ⁽¹⁾	
PTGO18	Mask Input Select for Op Amp/Comparator	
PTGO19	Mask Input Select for Op Amp/Comparator	
PTGO20	Reserved	
PTGO21	Reserved	
PTGO22	Reserved	
PTGO23	Reserved	
PTGO24	Reserved	
PTGO25	Reserved	
PTGO26	Reserved	
PTGO27	Reserved	
PTGO28	Reserved	
PTGO29	Reserved	
PTGO30	PTG Output to PPS Input Selection	
PTGO31	PTG Output to PPS Input Selection	

TABLE 24-2: PTG OUTPUT DESCRIPTIONS

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

NOTES:

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (www.microchip.com/DS70000357) in the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)
 - Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)

FIGURE 25-4: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

25.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that are available in the dsPIC33EPXXXGP50X, dsPIC33EPXXX-MC20X/50X and PIC24EPXXXGP/MC20X devices. Configuration A (see Figure 25-6) takes advantage of the internal connection to the ADC module to route the output of the op amp directly to the ADC for measurement. Configuration B (see Figure 25-7) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 30-55 in Section 30.0 "Electrical Characteristics" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

When the op amp output is made available on the corresponding OAxOUT pin, set both the pin's TRISx bit and the corresponding ANSELx bit to '1'.

25.1.1 OP AMP CONFIGURATION A

Figure 25-6 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADC. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADC module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADC internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See Table 30-53 in Section 30.0 "Electrical Characteristics" for the typical value of RINT1. Table 30-60 and Table 30-61 in Section 30.0 "Electrical Characteristics" describe the minimum Sample Time (TSAMP) requirements for the ADC module in this configuration. Figure 25-6 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

Note 1: See Table 30-53 for the Typical value.

- 2: See Table 30-53 for the Minimum value for the feedback resistor.
- 3: See Table 30-60 and Table 30-61 for the minimum Sample Time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.
25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in Section 30.0 "Electrical Characteristics" for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics**" describe the minimum Sample Time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.

Table 25-1 is a summary of the availability of the comparators (1 to 4) and the op amp (1 to 3) for the different packages.

		28-P	in (SO	IC/SP	DIP)	:	28-Pin	(QFN)			36-F	Pin			44/48-	Pin			64-F	Pin	
Comparators/ Op Amps	Reference	Compa	arator	Ор	Amp	Comp	arator	Ори	Amp	Comp	parator	Op /	Amp	Comp	arator	Ор	Amp	Comp	arator	Ор	Amp
		Neg	Pos																		
	OA1INM1	✓		\checkmark		✓		\checkmark													
Comparator/On Amp 1	OA1INM2	N/A				\checkmark															
Comparator/Op Amp 1	OA1INP		✓		\checkmark																
	VREF		\checkmark																		
Comparator/Op Amp 2	OA2INM1	V		V		V		V		V		V		V		V		V		V	
	OA2INM2	N/A				\checkmark															
	OA2INP				\checkmark																
	VREF						\checkmark														
	OA3INM1	N/A		N/A		N/A		N/A		\checkmark		\checkmark		\checkmark		V		\checkmark		\checkmark	
	OA3INM2	N/A				\checkmark															
Comparator/Op Amp 3	OA3INP		N/A		\checkmark		\checkmark		\checkmark		\checkmark										
	VREF		\checkmark																		
	C4INB	N/A				N/A				\checkmark				\checkmark				\checkmark			
	OA1OUT	\checkmark																			
	OA2OUT	\checkmark																			
Comparator 4	oa3out/ C4ina	N/A				N/A				\checkmark				\checkmark				\checkmark			
	C4INA/ OA3OUT		N/A				N/A				\checkmark				~				~		
	VREF		\checkmark																		

TABLE 25-1: OP AMP/COMPARATOR ANALYSIS

Legend: X = Available connection;

N/A = Unavailable connection (nominal module input not connected to any device pin); Grayed out cells = Op amp functionality not available for Comparator 4

25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

OP AMP CONFIGURATION B

FIGURE 25-7:

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (www.microchip.com/ DS70000357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

- **Note 1:** See Table 30-53 for the Typical value.
 - 2: See Table 30-53 for the Minimum value for the feedback resistor.
 - 3: See Table 30-60 and Table 30-61 for the minimum Sample Time (TSAMP).
 - 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

25.3 Op Amp/Comparator Registers

R/W-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
PSIDL			_	C4EVT ⁽¹⁾	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT ⁽¹⁾					
bit 15							bit a					
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0					
				C4OUT ⁽²⁾	C3OUT ⁽²⁾	C2OUT ⁽²⁾	C10UT ⁽²⁾					
bit 7				01001		02001	bit					
Legend:	la hit	M = Mritabla	hit	LI – Unimplon	contod hit room	1 00 '0'						
R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set		•	nented bit, read									
-n = value a	IPUR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN					
bit 15	PSIDL: Com	parator Stop in	Idle Mode b	it								
		•		ators when devi	ce enters Idle r	node						
	0 = Continue	es operation of a	all comparate	ors in Idle mode								
bit 14-12		nted: Read as '										
bit 11	C4EVT: Op /	Amp/Comparato	or 4 Event St	atus bit ⁽¹⁾								
		/comparator eve /comparator eve		cur								
bit 10	C3EVT: Comparator 3 Event Status bit ⁽¹⁾											
		ator event occur ator event did n										
bit 9	C2EVT: Comparator 2 Event Status bit ⁽¹⁾											
	•	ator event occur ator event did ne										
bit 8	•)								
	C1EVT: Comparator 1 Event Status bit ⁽¹⁾ 1 = Comparator event occurred											
	0 = Comparator event did not occur											
bit 7-4	Unimpleme	nted: Read as '	0'									
bit 3	C4OUT: Cor	nparator 4 Outp	ut Status bit	(2)								
	When CPOL											
	1 = VIN+ > V 0 = VIN+ < V											
	When CPOL											
	1 = VIN+ < V											
	0 = VIN + > V											
bit 2		nparator 3 Outp	ut Status bit	(2)								
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{V}}$											
	1 = VIN + > V $0 = VIN + < V$											
	When CPOL											
	1 = VIN+ < V	/IN-										
	0 = VIN+ > V	'IN-										

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER

- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON[9].
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON[8].

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

- bit 1 C2OUT: Comparator 2 Output Status bit⁽²⁾ When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -C1OUT: Comparator 1 Output Status bit⁽²⁾ bit 0 When CPOL = 0: 1 = VIN+ > VIN-0 = VIN + < VIN-When CPOL = 1: 1 = VIN+ < VIN-0 = VIN + > VIN -
- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON[9].
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON[8].

R/W-0	R/W-0	R/W-0	U-0	U-0	D/M/ O	R/W-0	R/W-0						
2011	COE ⁽²⁾		0-0	0-0	R/W-0								
CON	COE	CPOL	—	_	OPMODE	CEVT	COUT						
bit 15							bit 8						
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0						
EVPOL1	EVPOL0	_	CREF ⁽¹⁾	_	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾						
bit 7							bit (
Legend:													
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15	CON: Op Am	p/Comparator	Enable bit										
	CON: Op Amp/Comparator Enable bit 1 = Op amp/comparator is enabled												
	0 = Op amp/	comparator is c	isabled										
bit 14	COE: Comparator Output Enable bit ⁽²⁾												
		tor output is pr tor output is inf		xOUT pin									
bit 13	CPOL: Comparator Output Polarity Select bit												
	1 = Comparator output is inverted												
	0 = Compara	tor output is no	t inverted										
bit 12-11	Unimplemer	nted: Read as '	0'										
bit 10	OPMODE: Op Amp/Comparator Operation Mode Select bit												
		oerates as an o oerates as a co											
bit 9	0 = Circuit op		mparator										
bit 9	0 = Circuit op CEVT: Comp 1 = Compara	perates as a co arator Event bi ator event acco	mparator t ording to the E		ttings occurred;	disables future	e triggers and						
bit 9	0 = Circuit op CEVT: Comp 1 = Compara interrupt	perates as a co arator Event bi ator event acco s until the bit is	mparator t ording to the E cleared		ttings occurred;	disables future	e triggers an						
	0 = Circuit op CEVT: Comp 1 = Compara interrupt: 0 = Compara	perates as a co arator Event bi ator event acco s until the bit is ator event did r	mparator t ording to the E cleared ot occur		ttings occurred;	disables future	e triggers an						
	 0 = Circuit op CEVT: Comp 1 = Compara interrupt: 0 = Compara COUT: Comp 	perates as a co arator Event bi ator event acco s until the bit is ator event did r parator Output l	mparator t ording to the E cleared ot occur bit		ttings occurred;	disables future	e triggers an						
	 0 = Circuit op CEVT: Comp 1 = Compara interrupt: 0 = Compara COUT: Comp 	perates as a co arator Event bi ator event acco s until the bit is ator event did r parator Output = 0 (noninverte	mparator t ording to the E cleared ot occur bit		ttings occurred;	disables future	e triggers an						
	 0 = Circuit op CEVT: Comp 1 = Compara interrupt: 0 = Compara COUT: Comp When CPOL 	perates as a co arator Event bi ator event acco s until the bit is ator event did r parator Output l = 0 (noninverte N-	mparator t ording to the E cleared ot occur bit		ttings occurred;	disables future	e triggers an						
	 0 = Circuit op CEVT: Comp 1 = Compara interrupt: 0 = Compara COUT: Comp When CPOL 1 = VIN+ > VI 0 = VIN+ < VI When CPOL 	perates as a co parator Event bi ator event acco s until the bit is ator event did r parator Output l = 0 (noninverted N- N- = 1 (inverted p	mparator t ording to the E cleared ot occur oit ed polarity):		ttings occurred;	disables futur	e triggers an						
bit 9 bit 8	0 = Circuit op CEVT: Comp 1 = Compara interrupt: 0 = Compara COUT: Comp <u>When CPOL</u> 1 = VIN+ > VI 0 = VIN+ < VI	perates as a co parator Event bi ator event accoss s until the bit is ator event did r parator Output I = 0 (noninverted N- N- = 1 (inverted p N-	mparator t ording to the E cleared ot occur oit ed polarity):		ttings occurred;	disables future	e triggers an						

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)⁽³⁾

- **2**: This output is not available when OPMODE (CMxCON[10]) = 1.
- 3: CM3CON is not available on 28-pin devices.

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)⁽³⁾ (CONTINUED) bit 7-6 EVPOL[1:0]: Trigger/Event/Interrupt Polarity Select bits 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output. If CPOL = 0 (noninverted polarity): High-to-low transition of the comparator output. 01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0) If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output. If CPOL = 0 (noninverted polarity): Low-to-high transition of the comparator output 00 = Trigger/event/interrupt generation is disabled bit 5 Unimplemented: Read as '0' **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾ bit 4 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin bit 3-2 Unimplemented: Read as '0' CCH[1:0]: Op Amp/Comparator Channel Select bits⁽¹⁾ bit 1-0 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- $pin^{(2)}$ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON[10]) = 1.
 - 3: CM3CON is not available on 28-pin devices.

R/W-0	25-3: CM4C	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0				
CON	COE	CPOL				CEVT	COUT				
bit 15	UOL	OFOL			_	OLVI	bit 8				
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
EVPOL1	EVPOL0	_	CREF ⁽¹⁾			CCH1 ⁽¹⁾	CCH0 ⁽¹⁾				
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'					
n = Value at POR '1' = Bit is set				'0' = Bit is clea		x = Bit is unkr	nown				
bit 15	CON: Compa	rator Enable b	it								
	1 = Comparat										
	0 = Comparat	tor is disabled									
bit 14	COE: Compa	rator Output E	nable bit								
		tor output is pr tor output is in	esent on the C ternal only	xOUT pin							
bit 13	CPOL: Comparator Output Polarity Select bit										
		tor output is in tor output is no									
bit 12-10	Unimplemen	ted: Read as	0'								
bit 9	CEVT: Compa	arator Event bi	t								
	interrupts	tor event acc until the bit is tor event did r	cleared	POL[1:0] settin	gs occurred;	disables future	triggers and				
bit 8	COUT: Comp	arator Output	bit								
	When CPOL	- 0 (noninverte	ed polarity):								
	1 = VIN+ > VII										
	0 = VIN + < VII										
	When CPOL :	= 1 (inverted p	olarity):								
	1 = VIN + < VII										

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER

2: This input pin is not available in 28-pin devices. Refer to Table 25-1.

REGISTER 2	5-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)
bit 7-6	EVPOL[1:0]: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	<u>If CPOL = 1 (inverted polarity):</u> Low-to-high transition of the comparator output.
	<u>If CPOL = 0 (noninverted polarity):</u> High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)
	<u>If CPOL = 1 (inverted polarity):</u> High-to-low transition of the comparator output.
	If CPOL = 0 (noninverted polarity): Low-to-high transition of the comparator output.
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage 0 = VIN+ input connects to C4IN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH[1:0]: Comparator Channel Select bits ⁽¹⁾
	11 = VIN- input of comparator connects to OA3/AN6 ⁽²⁾ 10 = VIN- input of comparator connects to OA2/AN0 01 = VIN- input of comparator connects to OA1/AN3 02 = VIN- input of comparator connects to OA1/AN3
	00 = VIN- input of comparator connects to C4IN1- ⁽²⁾

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This input pin is not available in 28-pin devices. Refer to Table 25-1.

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT **CONTROL REGISTER**

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	_	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	Unimplemented: Read as '0'
bit 11-8	SELSRCC[3:0]: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PTGO19
	1100 = PTGO18
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM3H 0100 = PWM3L
	0011 = PWM2H
	0011 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB[3:0]: Mask B Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PTGO19
	1100 = PTGO18
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L 0001 = PWM1H

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

bit 3-0 SELSRCA[3:0]: Mask A Input Select bits

1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 **= PTGO18** 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	1 = The mask 0 = The mask	ting (blanking) ting (blanking)	function will pre	event any asse	rted ('0') compar rted ('1') compar		
bit 14 bit 13	•	n ted: Read as Gate C Input Er					
DIL 15	1 = MCI is co	onnected to OF ot connected to	R gate				
bit 12	1 = Inverted I	MCI is connect	Inverted Enable ted to OR gate nected to OR g				
bit 11		Sate B Input Er					
		nnected to OR					
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit			
			ed to OR gate nected to OR g	jate			
bit 9	OAEN: OR G	Sate A Input Er	able bit				
		nnected to OR	•				
bit 8	OANEN: OR	Gate A Input I	nverted Enable	e bit			
			ed to OR gate nected to OR g	jate			
bit 7	1 = Inverted A	ANDI is conne	nverted Enable cted to OR gate nnected to OR	e			
bit 6	1 = ANDI is c	Gate Output E connected to O lot connected t	R gate				
bit 5	1 = MCI is co	Gate C Input E onnected to AN ot connected to	D gate				
bit 4			Inverted Enab	le bit			
	1 = Inverted I	-					

© 2011-2020 Microchip Technology Inc.

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

bit 3 ABEN: AND Gate B Input Enable bit 1 = MBI is connected to AND gate 0 = MBI is not connected to AND gate ABNEN: AND Gate B Input Inverted Enable bit bit 2 1 = Inverted MBI is connected to AND gate 0 = Inverted MBI is not connected to AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate bit 0 AANEN: AND Gate A Input Inverted Enable bit 1 = Inverted MAI is connected to AND gate 0 = Inverted MAI is not connected to AND gate

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unki	nown
	111 = T5CLK 110 = T4CLK 101 = T3CLK 100 = T2CLK 011 = Reserv 010 = SYNCC 001 = Fosc ⁽⁴) 000 = Fp ⁽⁴⁾	(2) (1) (2) ved D1 ⁽³⁾					
bit 3	CFLTREN: C 1 = Digital filte 0 = Digital filte		er Enable bit				
bit 2-0	CFDIV[2:0]: (111 = Clock [110 = Clock [101 = Clock [100 = Clock [011 = Clock [011 = Clock [Divide 1:64 Divide 1:32 Divide 1:16 Divide 1:8	ter Clock Divid	de Select bits			

CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER REGISTER 25-6:

- 2: See the Type B Timer Block Diagram (Figure 13-1).
 - 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0				
_	CVR2OE ⁽¹⁾	_		—	VREFSEL	—	_				
bit 15	•		·				bit				
	D 4 4 4	D 444 0	D M U O	D111	DAVA	DAALO	D 444 0				
R/W-0 CVREN	R/W-0 CVR10E ⁽¹⁾	R/W-0 CVRR	R/W-0 CVRSS ⁽²⁾	R/W-0 CVR3	R/W-0 CVR2	R/W-0 CVR1	R/W-0 CVR0				
bit 7	CVRIOE /	UVRR	CVR33	CVR3	GVRZ	CVRI	bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplement				(1)						
bit 14		-	age Reference	-	ble bit ⁽¹⁾						
			nected to the C onnected from		nin						
bit 13-11	Unimplement	,			pin						
	•										
bit 10	VREFSEL: Comparator Voltage Reference Select bit 1 = CVREFIN = VREF+										
	0 = CVREFIN = VREFT										
bit 9-8	Unimplement	-	-								
bit 7	•			nable bit							
	CVREN: Comparator Voltage Reference Enable bit 1 = Comparator voltage reference circuit is powered on										
			erence circuit is		vn						
bit 6	CVR1OE: Cor	parator Voltage Reference 1 Output Enable bit ⁽¹⁾									
	1 = Voltage level is output on the CVREF10 pin										
	0 = Voltage level is disconnected from then CVREF10 pin										
bit 5	CVRR: Comparator Voltage Reference Range Selection bit										
	1 = CVRSRC/2 0 = CVRSRC/3										
bit 4	CVRSS: Com	parator Voltag	je Reference S	ource Selection	on bit ⁽²⁾						
			erence source, erence source,		ref+) – (AVss) /dd – AVss						
bit 3-0	CVR[3:0] Con	CVR[3:0] Comparator Voltage Reference Value Selection $0 \le \text{CVR}[3:0] \le 15$ bits									
	When CVRR :	-	-								
	CVREFIN = (C)	VR[3:0]/24) •	(CVRSRC)								
	When $CVRR$		VR[3:0]/32) • (
	CVREFIN = (CV	v KSKC/4) + (C	∙งณเว.บ]/ว∠) ● (UVRSKU)							

REGISTER 25-7: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

analog inputs or outputs must have their corresponding ANSELx and TRISx bits set.
In order to operate with CVRSS = 1, at least one of the comparator modules must be enabled.

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS70346) of the "dsPIC33/PIC24 Family Reference Manual".
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

- User-Programmable (up to 32nd order) Polynomial CRC Equation
- Interrupt Output
- Data FIFO

The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, Up to 32 Bits
- Programmable Shift Direction (little or big-endian)
- · Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 26-1. A simple version of the CRC shift engine is shown in Figure 26-2.

FIGURE 26-1: CRC BLOCK DIAGRAM

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN[4:0] bits (CRCCON2[4:0]).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

$$\begin{array}{c} x16+x12+x5+1\\ \text{and}\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+x7\\ +x5+x4+x2+x+1 \end{array}$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1:CRC SETUP EXAMPLES FOR16 AND 32-BIT POLYNOMIAL

CRC Control	Bit Values					
Bits	16-Bit Polynomial	32-Bit Polynomial				
PLEN[4:0]	01111	11111				
X[31:16]	0000 0000 0000 000x	0000 0100 1100 0001				
X[15:0]	0001 0000 0010 000x	0001 1101 1011 011x				

26.2 Programmable CRC Resources

Many useful resources are provided on the main product page of the Microchip website for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES

- "Programmable Cyclic Redundancy Check (CRC)" (www.microchip.com/DS70346) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN			
bit 7	•	•				•	bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	0 = CRC mod	dule is enabled		chines, pointer	rs and CRCWD	AT/CRCDAT a	re reset, othe
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit				
		ues module op s module opera			Idle mode		
bit 12-8				FIFO. Has a n	naximum value	of 8 when PLE	N[4:0] > 7
bit 7	CRCFUL : CR 1 = FIFO is ft 0 = FIFO is n		t				
bit 6	CRCMPT: CR 1 = FIFO is e 0 = FIFO is n		' Bit				
bit 5	1 = Interrupt	RC Interrupt Se on FIFO is emp on shift is com	oty; final word		shifting through are ready	CRC	
bit 4		rt CRC bit RC serial shifte ial shifter is turr					
bit 3	LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSb (little-endian) 0 = Data word is shifted into the CRC starting with the MSb (big-endian)						
bit 2-0		ted: Read as '		-			

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—			DWIDTH[4:0]		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_		—			PLEN[4:0]			
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		0' = Bit is cleared x = I			= Bit is unknown	
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12-8	DWIDTH[4:0]: Data Width Select bits							
	These bits set the width of the data word (DWIDTH[4:0] + 1).							
bit 7-5	Unimplemented: Read as '0'							
bit 4-0	PLEN[4:0]: Polynomial Length Select bits							
		- •	-					

These bits set the length of the polynomial (Polynomial Length = PLEN[4:0] + 1).

REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

REGISTER 26-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		X[3	81:24]				
						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		X[2	23:16]				
						bit 0	
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
	R/W-0	R/W-0 R/W-0	X[3] R/W-0 R/W-0 X[2] it W = Writable bit	X[31:24] R/W-0 R/W-0 X[23:16]	X[31:24] R/W-0 R/W-0 R/W-0 R/W-0 X[23:16] it W = Writable bit U = Unimplemented bit, real	X[31:24] R/W-0 R/W-0 R/W-0 R/W-0 X[23:16] vit W = Writable bit U = Unimplemented bit, read as '0'	

bit 15-0 X[31:16]: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 26-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X	[15:8]			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
1417 0		1411 0	X[7:1]			14110	-
bit 7							bit C
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0		id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-1X[15:1]: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

NOTES:

27.0 SPECIAL FEATURES

Note:	This data sheet summarizes the features of the dsPIC33EPXXXGP50X.
	dsPIC33EPXXXMC20X/50X and
	PIC24EPXXXGP/MC20X families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the related section of the
	"dsPIC33/PIC24 Family Reference
	Manual", which is available from the
	Microchip website (www.microchip.com).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data are stored at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data are automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data are reloaded on all
	types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Flash bytes map is shown in Table 27-1.

Image: Contract of a contra contract of a contract of a contract of a contract of a contrac	IADLE					EREGISTE		i	1			
00AFE 04 0137EC 124		Address	Memory Size	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00AFE 04 0137EC 124	Reserved	0057EC	32									
1157EC 128 0577 512												
1024FC 256 10 </td <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td> <td>_</td>				_	_	_	_	_	_	_	_	_
0557C 61/2 0<												
Reserved 007FE 027 (000 000 000 0000 0000 0000 0000 000												
Image: constraint of constrant of constrant of constraint of constraint of constraint of co	Reserved											
0157E 123 </td <td></td> <td>-</td> <td></td>		-										
024FEE 256 0657E 032 004F7 032 004F7 044 04 047 0					_	_	_	_	_	_	_	_
0557EE 512 0 0 0 0 0 0 0 0057F0 32 0 A A A A A A 0157F0 128												
FICD 0057F0 32 00AFF0 64 64 0557F0 512 512 Reserved ⁽⁰⁾ - JTAGEN Reserved ⁽⁰⁾ - ICS[1:0] FPOR 0057F2 512 - - JTAGEN Reserved ⁽⁰⁾ - ICS[1:0] 0057F2 512 - - WDTWIN[1:0] ALTI2C2 ALTI2C1 Reserved ⁽⁰⁾ - <												
00AFF0 64 (157F0 128 (257F0 Reserved ⁽³⁾ JEAGEN Reserved ⁽³⁾ IESTIMATION	FICD											
0157F0 128 (024F2 Reserved ⁽³⁾ Reserved ⁽³⁾ Reserved ⁽³⁾ Reserved ⁽³⁾ ICS[1:0] FPOR 0057F2 032 004F2 04 (024F2 04 (024F2	1100											
02AFF0 256 (057F0 512 512 00AFF2 264 (0157F2 00AFF2 64 (0157F2 00AFF2 64 (0157F2 00AFF2 64 (0157F2 00AFF3 64 (0157F4 00AFF3 64 (0157F4 00AFF3 64 (0157F4 00AFF3 64 (0157F4 00AFF3 64 (0157F6 00AFF3 00AFF3 00AFF3 0				·	Reserved ⁽³⁾	_		Reserved ⁽²⁾	Reserved ⁽³⁾	_	ICSI	1.01
0557F0 512 Image: Constraint of the second					10001100		UNICEN	rtooorrou	110001100		100	
FPOR 0037F2 32 00AFF2 wDTWIN[1:0] ALTI2C2 ALTI2C1 Reserved ⁽³⁾ - - - - 0037F2 128 0357F2 - wDTWIN[1:0] ALTI2C2 ALTI2C1 Reserved ⁽³⁾ - -												
00AFF2 64 (157F2 128 (05575 WDTWIN[1:0] ALTI2C2 ALTI2C1 Reserved ⁽³⁾ FWDT 0057F4 32 (04F74												
0157F2 128 (02AFF2 WDTWIN[1:0] ALTI2C1 Reserved ⁽⁹⁾ 0057F2 512	FFOR											
02AFF2 256 0557F2 512 0057F4 32 004F74 32 004F74 128 0057F4 128 FWDTEN WINDIS PLLKEN WDTPRE WDTPOST[3:0] 0057F6 12 FVS IOL1WAY POSCHO[1:0] 0057F6 128 FVS IOL1WAY POSCHO[1:0] 0057F6 128 FVS FNOSC[2:0] 0057F8 128 POSCHO[1:0] POSCHO[1:0] 024FF4 64 <td></td> <td></td> <td></td> <td></td> <td></td> <td>A/INIT1-01</td> <td></td> <td></td> <td>Decenved(3)</td> <td></td> <td></td> <td></td>						A/INIT1-01			Decenved(3)			
0557F2 512 Image: constraint of the second		-			WDIN		AL11202	ALTIZGT	Reserved	_	_	_
FWDT 0057F4 32 windis PLLKEN WDTPRE WDTPOST[3:0] 02AFF4 128 - FWDT FWDTEN WINDIS PLLKEN WDTPRE WDTPOST[3:0] 02AFF4 128 - FWDTEN WINDIS PLLKEN WDTPRE WDTPOST[3:0] FOSC 0057F6 32 - FCKSM[1:0] IOL1WAY - - OSCIOFNC POSCMD[1:0] 00AFF8 64 - FCKSM[1:0] IOL1WAY - - PNOSCIOFNC POSCMD[1:0] 00AFF8 64 - FOSCSEI 0057F8 32 - FOSCSEI - - - - FNOSC[2:0] - FGS 0057FA 32 - - - - - - - GCP GWRP 02AFFA 286 - - - - - - - - - - - - - - - -												
Image: mark with two problems of the two problems of tw												
0157F4 128 FWDTEN WINDIS PLLKEN WDTPRE WDTPOST[3:0] FOSC 0657F4 512 FWDTEN WINDIS PLLKEN WDTPRE WDTPOST[3:0] FOSC 00AFF6 64 FWDTEN WDTPRE 00AFF6 128 FFCKSK[1:0] IOL1WAY OSCIOFNC POSCMD[1:0] 00AFF6 64 FFCKSK[1:0] IOL1WAY POSCIOFNC POSCMD[1:0] FOSCEL 0057F8 32 FFCKSK[1:0] FNOSC[2:0] FOS 0057F8 32	FWDI											
02AFF4 256 0557F4 512 00576 32 004FF6 64 0157F6 128 02AFF6 256 0557F6 512 0557F6 512 0557F6 512 0557F6 512 0557F8 512 0557F4 512 0557F5 512 0557F6 512 0557F7 512							DULKEN	WOTODE		WDTDO		
0557F4 512 0 0 0 0 FOSC 0057F6 32 00AFF6 04 64 057F6 128 0557F6 0 0 POSCIOFNC POSCIOFNC 0507F6 512 0 0 FOSCSEL 0057F8 32 00AFF8 0 POSCIOFNC POSCIOFNC POSCIDFNC 0507F6 512 0 POSCIOFNC POSCIDFNC POSCIDFNC POSCIDFNC POSCIDFNC 0057F8 32 02AFF8 0 POSCIDFNC POSCIDFNC POSCIDFNC POSCIDFNC 02AFF8 64 POSCIDFNC POSCIDFNC POSCIDFNC POSCIDFNC 02AFF8 64 POSCIDFNC POSCIDFNC POSCIDFNC 02AFF8 256 POSCIDFNC POSCIDFNC 02AFF8 256 POSCIDFNC POSCIDFNC 0507FA 32 POSCIDFNC POSCIDFNC 02AFFA 256 POSCIDFNC POSCIDFNC 0507FA 512 POSCIDFNC POSCIDFNC 0507FC 512 POSCIDFNC POSCIDFNC 0507FC 512 POSCIDFNC POSCIDFNC 0507FC 512 POSCIDFNC POSCIDFNC 0507FC 512 POSCIDFNC POSCIDFNC <td></td> <td></td> <td></td> <td></td> <td>FWDIEN</td> <td>WINDIS</td> <td>PLLKEN</td> <td>WDIPRE</td> <td></td> <td>WDIPOS</td> <td>51[3:0]</td> <td></td>					FWDIEN	WINDIS	PLLKEN	WDIPRE		WDIPOS	51[3:0]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-								
Image: mark with the formation of												
1157F6 128 FCKSM[1:0] IOL1WAY OSCIOFNC POSCMD[1:0] 02AFF6 256 OSCIOFNC POSCMD[1:0] FOSCSEL 0057F8 32 <	FOSC			-								
02AFF6 256 0557F6 512 FOSCSEL 0057F8 32 00AFF8 64 0157F8 128 02AFF8 256 0557F6 512 FGS 0057FA 0057FA 32 0057FA 512 FGS 0057FA 0057FA 512 FGS 0057FA 0057FA 512 FGS 0057FA 0057FA 512 FReserved 0057FC 0057FC 512 Reserved 0557FC 0057FC 512 Reserved 0557FC 0057FC 512 Reserved 0557FC 0512 Reserved 0557FC 0512 Reserved 0557FC 0512 0557FC 512 0057FE 128 024FFC 256				-								
0557F6 512 Image: Constraint of the second				—	FCK	SM[1:0]	IOL1WAY	—	—	OSCIOFNC	POSC	/ID[1:0]
FOSCSEL 0057F8 32 IESO PWMLOCK ⁽¹⁾ — — — — FNOSC[2:0] 00AFF8 64 - - - - - - FNOSC[2:0] - 02AFF8 256 - - - - - - - FNOSC[2:0] - FGS 0057FA 32 - - - - - - - - - FNOSC[2:0] - <td></td>												
Image: Normal System Image: No												
0157F8 128 IESO PWMLOCK ⁽¹⁾ FNOSC[2:0] 02AFF8 256 0557F8 512	FOSCSEL											
02AFF8 256 055778 512 FGS 0057FA 32 00AFFA 64 0157FA 128 02AFFA 256 0557FA 512 Reserved 0057FC 32 00AFFC 64 0157FA 128 0557FA 512 Reserved 0057FC 00AFFC 64 0157FC 128 0AFFC 64 0157FC 128 00AFFC 64 0157FC 128 02AFFC 256 0557FC 512 Reserved 057FE 057FE 32 02AFFC 256 0557FC 512 Reserved 057FE 024 0257FE 32 024 0257FE 128 024 0257FE 128 02										_		
0557F8 512 Image: constraint of the symbol is and the symbol is				—	IESO	PWMLOCK	—	—	—	F	NOSC[2:0]	
FGS 0057FA 32 00AFFA 64 0157FA 128 02AFFA 256 0557FA 512 Reserved 0057FC 32 00AFFC 64 0157FC 128 00AFFC 64 0157FC 128 00AFFC 64 0157FC 128 02AFFC 256 0557FC 512 Reserved 057FFE 32 00AFFC 64 0157FC 512 Reserved 057FFE 32 00AFFE 64 0157FE 128 00AFFE 64 0157FE 128 00AFFE 64 0157FE 128 02AFFE 256				-								
00AFFA 64 0157FA 128 02AFFA 256 02AFFA 256 0557FA 512 Reserved 0057FC 32 00AFFC 64 0157FA 128 00AFFC 64 0157FC 128 02AFFC 256 0557FC 512 Reserved 057FFE 057FFC 512 Reserved 057FFE 00AFFC 64 0557FE 128 0AFFE 64 0157FE 128 0AFFE 64 0157FE 128 02AFFE 256												
0157FA 128 GCP GWRP 02AFFA 256 GCP GWRP 02AFFA 512 GCP GWRP Reserved 0057FC 128	FGS											
02AFFA 256 0557FA 512 Reserved 0057FC 32 00AFFC 64 0157FC 128 02AFFC 256 0557FC 512 Reserved 057FC 0557FC 512 Reserved 057FFE 00AFFE 64 0557FC 512 00AFFE 64 057FFE 32 00AFFE 64 0157FE 128 00AFFE 64 0157FE 128 02AFFE 256												
0557FA 512 Image: constraint of the symbolic definition of the symbol definitity of the s				—	—	—	—	—	—	—	GCP	GWRP
Reserved 0057FC 32 00AFFC 64 0157FC 128 02AFFC 256 0557FC 512 Reserved 057FFE 00AFFE 64 0157FE 128 00AFFE 64 0157FE 128 00AFFE 64 0157FE 128 02AFFE 256												
00AFFC 64 0157FC 128 02AFFC 256 0557FC 512 Reserved 057FFE 32 00AFFE 64 0157FE 128 00AFFE 512												
0157FC 128 -<	Reserved											
02AFFC 256 0557FC 512 Reserved 057FFE 32 00AFFE 64 0157FE 128 02AFFE 256		-										
0557FC 512 Image: Constraint of the system			128	—	—	—	—	—	—	—	—	—
Reserved 057FFE 32 00AFFE 64 0157FE 128 02AFFE 256			256									
00AFFE 64 0157FE 128 02AFFE 256		0557FC	512									
0157FE 128 — — — — — — — — — — — — — — — — — — —	Reserved	057FFE	32									
02AFFE 256		00AFFE	64									
		0157FE	128	—	—	—	—	—	—	—	—	—
0557FE 512		02AFFE	256									
		0557FE	512									

TABLE 27-1: CONFIGURATION BYTE REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: This bit is reserved and must be programmed as '0'.

3: These bits are reserved and must be programmed as '1'.

Bit Field	Description
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
FNOSC[2:0]	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Reserved; do not use 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
FCKSM[1:0]	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD[1:0]	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC Oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST[3:0]	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
WDTWIN[1:0]	Watchdog Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
ALTI2C1	Alternate I2C1 pin 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 pin 1 = I2C2 is mapped to the SDA2/SCL2 pins 0 = I2C2 is mapped to the ASDA2/ASCL2 pins
JTAGEN ⁽²⁾	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS[1:0]	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 27-2:	CONFIGURATION BITS DESCRIPTION (CONTINUED)
--------------------	--

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	_	—	—	—		_	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	_	—	—	—	—	—	—
bit 15							bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/W-1	R/W-1
—	—	—	—	—		GCP	GWRP
bit 7							bit 0
Legend:		PO = Progran	n Once bit				
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

REGISTER 27-1: FGS CONFIGURATION REGISTER

Unused: Reads contents of Flash Configuration Words
GCP: General Segment Code Flash Protection Level bit
1 = General Segment has no security
0 = General Segment has high security
GWRP: General Segment Program Flash Write Protection bit
1 = General Segment is not write-protected0 = General Segment is write-protected

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15							bit 8
r-1	U-1	R/PO-1	U-1	U-1	U-1	R/PO-1	R/PO-1
—		JTAGEN	—	—	_	ICS	[1:0]
bit 7							bit 0
Legend:		PO = Progran	n Once bit	r = Reserved	bit		
R = Readable bit		W = Writable bit		U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

Select bits

REGISTER 27-2: FICD CONFIGURATION REGISTER

bit 23-8Unimplemented: Read as '1'bit 7Reserved: Maintain as '1'bit 6Unimplemented: Read as '1'bit 5JTAGEN: JTAG Enable bit 1 = JTAG port is enabled 0 = JTAG port is disabledbit 4-2Unimplemented: Read as '1'bit 1-0ICS[1:0]: ICD Communication Channel Select 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3		
bit 6 Unimplemented: Read as '1' bit 5 JTAGEN: JTAG Enable bit 1 = JTAG port is enabled 0 = JTAG port is disabled bit 4-2 Unimplemented: Read as '1' bit 1-0 ICS[1:0]: ICD Communication Channel Select 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2	bit 23-8	Unimplemented: Read as '1'
bit 5 JTAGEN: JTAG Enable bit 1 = JTAG port is enabled 0 = JTAG port is disabled bit 4-2 Unimplemented: Read as '1' bit 1-0 ICS[1:0]: ICD Communication Channel Select 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2	bit 7	Reserved: Maintain as '1'
1 = JTAG port is enabled 0 = JTAG port is disabled bit 4-2 Unimplemented: Read as '1' bit 1-0 ICS[1:0]: ICD Communication Channel Select 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2	bit 6	Unimplemented: Read as '1'
0 = JTAG port is disabled bit 4-2 Unimplemented: Read as '1' bit 1-0 ICS[1:0]: ICD Communication Channel Select 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2	bit 5	JTAGEN: JTAG Enable bit
bit 4-2Unimplemented: Read as '1'bit 1-0ICS[1:0]: ICD Communication Channel Select11 = Communicates on PGEC1 and PGED110 = Communicates on PGEC2 and PGED2		1 = JTAG port is enabled
bit 1-0 ICS[1:0]: ICD Communication Channel Select 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2		0 = JTAG port is disabled
11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2	bit 4-2	Unimplemented: Read as '1'
10 = Communicates on PGEC2 and PGED2	bit 1-0	ICS[1:0]: ICD Communication Channel Select
		10 = Communicates on PGEC2 and PGED2

00 = Reserved, do not use

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	—	_	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 15	bit 15 bit 8						
RW-1	R/W-1	R/W-0	U-1	U-1	R/W-0	R/W-0	R/W-0
FCKS	M[1:0]	IOL1WAY	—	—	OSCIOFNC	POSCI	MD[1:0]
bit 7							bit 0
Legend: PO = Pr		PO = Program	n Once bit				
R = Readable bit		W = Writable I	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 23-8	Unimplemented: Read as '1'
bit 7-6	FCKSM[1:0]: Clock Switching and Monitor Selection bits
	 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	IOL1WAY: IOLOCK Bit One-Way Set Enable bit
	 1 = The IOLOCK bit (OSCCON[6]) can be set and cleared as needed (provided an unlocking sequence is executed)
	0 = The IOLOCK bit (OSCCON[6]) can only be set once (provided an unlocking sequence is executed); once IOLOCK is set, this prevents any possible RP register changes
bit 4-3	Unused: Reads contents of Flash Configuration Words
bit 2	OSCIOFNC: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSC2 pin; Primary Oscillator must be disabled or configured for the External Clock (EC) mode for the CLKO to be active (POSCMD[1:0] = 11 or 00) 0 = CLKO output is disabled
bit 1-0	POSCMD[1:0]: Primary Oscillator Configuration bits
	11 = Primary Oscillator is disabled
	10 = HS Oscillator mode selected (10 MHz-40 MHz)
	01 = MS Oscillator mode selected (3.5 MHz-10 MHz) 00 = External Clock mode selected

REGISTER 27-3: FOSC CONFIGURATION REGISTER

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
_		—	_	_		—			
bit 23							bit 16		
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1		
—			_		_		_		
bit 15							bit 8		
RW-0	R/W-0	U-1	U-1	U-1	R/W-0	R/W-1	R/W-0		
IESO	PWMLOCK	—		—		FNOSC[2:0]			
bit 7							bit (
Legend:		PO = Program	once bit						
R = Readab	le bit	W = Writable I	oit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unknown			
	Unimenterrere	tod. Dood on 11	3						
bit 23-8	-	ted: Read as '1							
bit 7		I External Swite							
				abled (Two-Spee abled (Two-Spee					
bit 6		PWM Lock Ena							
1 = Certain PWM registers may only be written after key sequence									
	0 = PWM registers may be written without key								
bit 5-3	Unused: Rea	ds contents of	Flash Configu	ration Words					
bit 2-0	FNOSC[2:0]:	Oscillator Sele	ction bits						
	111 = Fast R	C Oscillator witl	n Divide-by-N	(FRCDIV)					
		ed; do not use							
	101 = Low-Power RC (LPRC) Oscillator								

REGISTER 27-4: FOSCSEL CONFIGURATION REGISTER

101 = Low-Power RC (LPRC) Oscillator

- 100 = Secondary Oscillator (SOSC)
- 011 = Primary Oscillator with PLL module (MS+PLL, HS+PLL, EC+PLL)
- 010 = Primary Oscillator (MS, HS, EC)
- 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCDIV+PLL)
- 000 = Fast RC (FRC) Oscillator

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	—	—	—	—	—	—
bit 23							bit 16
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	_	—	—	—	—	—	—
bit 15						•	bit 8
RW-1	R/W-1	R/W-1	R/W-1	r-1	U-1	U-1	U-1

REGISTER 27-5: FPOR CONFIGURATION REGISTER

RW-1	R/W-1	R/W-1	R/W-1	r-1	U-1	U-1	U-1
WDTV	VIN[1:0]	ALTI2C2	ALTI2C1	—	—	—	—
bit 7							bit 0

Legend:	PO = Program Once bit	r = Reserved bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-8	Unimplemented: Read as '1'
bit 7-6	WDTWIN[1:0]: Watchdog Timer Window Select bits
	11 = WDT window is 25% of WDT period
	10 = WDT window is 37.5% of WDT period
	01 = WDT window is 50% of WDT period
	00 = WDT window is 75% of WDT period
bit 5	ALTI2C2: Alternate I2C2 Pin Mapping bit
	1 = Default location for SCL2/SDA2 pins
	0 = Alternate location for SCL2/SDA2 pins (ASCL2/ASDA2)
bit 4	ALTI2C1: Alternate I2C1 Pin Mapping bit
	1 = Default location for SCL1/SDA1 pins
	0 = Alternate location for SCL1/SDA1 pins (ASCL1/ASDA1)
bit 3	Reserved: Read as '1'
bit 2-0	Unused: Reads contents of Flash Configuration Words

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
_		_		_	_	_	_	
bit 23							bit 16	
U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1	
—		—			_	—		
bit 15							bit 8	
RW-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPC	DST[3:0]		
bit 7							bit 0	
Legend:		PO = Progran	n Once bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 23-8	•	ted: Read as '						
bit 7		atchdog Timer	Enable bit					
	1 = WDT is er		l is placed on th		+)			
bit 6		•	•		()			
		ndowed Watchdog Timer Disable bit d WDT selected; windowed WDT is disabled						
) = Windowed WDT is enabled; note that executing a CLRWDT instruction while the WDT is disabled						
			re (FWDTEN =					
bit 5	PLLKEN: PLI	Lock Enable	bit					
	1 = PLL lock i							
	0 = PLL lock i							
bit 4		DT Prescaler b						
	1 = WDT prescaler ratio of 1:128 0 = WDT prescaler ratio of 1:32							
bit 3-0	•		.oz Timer Postscal	a Salact hits				
511 5-0	1111 = 1:32,7							
	1110 = 1:16,3							
	1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048							
	1010 = 1·1 02	4						
	1010 = 1:1,02 1001 = 1:512							
	1001 = 1:512 1000 = 1:256							
	1001 = 1:512 1000 = 1:256 0111 = 1:128							
	1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64							
	1001 = 1:512 1000 = 1:256 0111 = 1:128							
	1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32							
	1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16							

REGISTER 27-6: FWDT CONFIGURATION REGISTER

REGISTER 27-7: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R
			DEVID[2	23:16] ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID	[15:8] ⁽¹⁾			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID	[7:0] ⁽¹⁾			
bit 7							bit 0
Legend:	R = Read-Only bit			U = Unimplen	nented bit		

bit 23-0 **DEVID[23:0]:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 27-8: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	[23:16] ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVRE	/[15:8] ⁽¹⁾			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE	V[7:0] ⁽¹⁾			
bit 7							bit 0

 Legend:
 R = Read-only bit
 U = Unimplemented bit

bit 23-0 **DEVREV[23:0]:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.

27.2 User ID Words

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices contain four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

The User ID Words register map is shown in Table 27-3.

TABLE 27-3: USER ID WORDS REGISTER MAP

File Name	Address	Bits 23-16	Bits 15-0
FUID0	0x800FF8		UID0
FUID1	0x800FFA	_	UID1
FUID2	0x800FFC	_	UID2
FUID3	0x800FFE	_	UID3

Legend: — = unimplemented, read as '1'.

27.3 On-Chip Voltage Regulator

All of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family incorporate an onchip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5 located in Section 30.0 "Electrical Characteristics".

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE

REGULATOR^(1,2,3)

27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC[2:0] and POSCMD[1:0]).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON[5]) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON[1]) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

27.5 Watchdog Timer (WDT)

For dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

27.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Timeout period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST[3:0] Configuration bits (FWDT[3:0]), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 27-2: WDT BLOCK DIAGRAM

27.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON[3,2]) needs to be cleared in software after the device wakes up.

27.5.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON[5]). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON[4]), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT[6]). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN[1:0]).

27.6 JTAG Interface

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to "Programming and Diagnostics" (www.microchip.com/DS70608) in the "dsPIC33/PIC24 Family Reference Manual" for further information on usage, configuration and operation of the JTAG interface.

27.7 In-Circuit Serial Programming

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.8 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to "CodeGuard™ Security" (www.microchip.com/DS70634) in the "dsPIC33/PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

28.0 INSTRUCTION SET SUMMARY

Note:	This data sheet summarizes the features
	of the dsPIC33EPXXXGP50X,
	dsPIC33EPXXXMC20X/50X and
	PIC24EPXXXGP/MC20X families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the related section of the
	"dsPIC33/PIC24 Family Reference
	Manual", which is available from the
	Microchip website (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

 Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed, or an SFR register is read. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set, refer to the <i>"16-Bit MCU and DSC</i> <i>Programmer's Reference Manual"</i> (www.microchip.com/DS70000157).
	For more information on instructions that take more than one instruction cycle to exe- cute, refer to "CPU" (www.microchip.com/ DS70359) in the "dsPIC33/PIC24 Family Reference Manual", particularly the "Instruction Flow Types" section.

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in\{b,c,d\}$	a is selected from the set of values b, c, d
[n:m]	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS
Field	Description
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 destination Working registers ∈ {W0W15}
Wns	One of 16 source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}	
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS ((CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
1	ADD	ADD	Acc ⁽¹⁾	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (4)	None
		BRA	GEU, Expr	Branch if Unsigned Greater Than or Equal	1	1 (4)	None
		BRA	GT,Expr	Branch if Greater Than	1	1 (4)	None
		BRA	GTU, Expr	Branch if Unsigned Greater Than	1	1 (4)	None
		BRA	LE,Expr	Branch if Less Than or Equal	1	1 (4)	None
		BRA	LEU,Expr	Branch if Unsigned Less Than or Equal	1	1 (4)	None
		BRA	LT,Expr	Branch if Less Than	1	1 (4)	None
		BRA	LTU, Expr	Branch if Unsigned Less Than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA, Expr ⁽¹⁾	Branch if Accumulator A overflow	1	1 (4)	None
		BRA	OB, Expr(1)	Branch if Accumulator B overflow	1	1 (4)	None
		BRA	OV, Expr(1)	Branch if Overflow	1	1 (4)	None
		BRA	SA, Expr ⁽¹⁾	Branch if Accumulator A saturated	1	1 (4)	None
		BRA	SB, Expr ⁽¹⁾	Branch if Accumulator B saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
		BRA	Wn	Computed Branch	1	4	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws[Wb]	1	1	None
-		BSW.C	Ws,Wb	Write Z bit to Ws[Wb]	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws[Wb] to C	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws[Wb] to Z	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	4	SFA
		CALL	Wn	Call Indirect Subroutine	1	4	SFA
		CALL.L	Wn	Call Indirect Subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f=Ī	1	1	N,Z
		COM	f,WREG	WREG = \overline{f}	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	01	CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CPO	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
10	010	CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
20	CID	CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, Branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, Branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, Branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, Branch if ≠	1	1 (5)	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm, Wn ⁽¹⁾	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit15,Expr ⁽¹⁾	Do code to PC + Expr, lit15 + 1 Times	2	2	None
		DO	Wn,Expr(1)	Do code to PC + Expr, (Wn) + 1 Times	2	2	None
32	ED	ED	Wm*Wm, Acc, Wx, Wy, Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm, Acc, Wx, Wy, Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	4	None
		GOTO	Wn	Go to Indirect	1	4	None
		GOTO.L	Wn	Go to Indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit Literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit Literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit Literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws[9:0] to DSRPAG	1	1	None
		MOVPAG	Ws, DSWPAG	Move Ws[8:0] to DSWPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws[7:0] to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Prefetch and Store Accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		MPY	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAE SA,SB,SAE
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAE SA,SB,SAE
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
53	NEG	NEG	Acc ⁽¹⁾	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 Times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 Times	1	1	None
60	RESET	RESET		Software Device Reset	1	1	None
61	RETFIE	RETFIE		Return from Interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws, Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo ⁽¹⁾ Acc,#Slit4,Wdo ⁽¹⁾	Store Accumulator	1	1	None
60	0.E	SAC.R		Store Rounded Accumulator	1	1	None
69 70	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
70	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
71	CETTA C	SETM	Ws Acc, Wn ⁽¹⁾	Ws = 0xFFFF	1	1	
11	SFTAC	SFTAC	Acc, Wn ^(*) Acc, #Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by (Wn) Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB OA,OB,OAB,
		SFTAC		Anthritetic Shift Accumulator by Shito			SA,SB,SAB

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
72	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	Acc ⁽¹⁾	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn – lit10 – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
		SWAP	Wn	Wn = Byte Swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog[23:16] to Wd[7:0]	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog[15:0] to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws[7:0] to Prog[23:16]	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog[15:0]	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C,Z,N

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

NOTES:

29.0 DEVELOPMENT SUPPORT

Move a design from concept to production in record time with Microchip's award-winning development tools. Microchip tools work together to provide state of the art debugging for any project with easy-to-use Graphical User Interfaces (GUIs) in our free MPLAB[®] X and Atmel Studio Integrated Development Environments (IDEs), and our code generation tools. Providing the ultimate ease-of-use experience, Microchip's line of programmers, debuggers and emulators work seamlessly with our software tools. Microchip development boards help evaluate the best silicon device for an application, while our line of third party tools round out our comprehensive development tool solutions.

Microchip's MPLAB X and Atmel Studio ecosystems provide a variety of embedded design tools to consider, which support multiple devices, such as PIC^{\circledast} MCUs, AVR^{\circledast} MCUs, SAM MCUs and $dsPIC^{\circledast}$ DSCs. MPLAB X tools are compatible with Windows[®], Linux[®] and Mac[®] operating systems while Atmel Studio tools are compatible with Windows.

Go to the following website for more information and details:

https://www.microchip.com/development-tools/

NOTES:

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	25 mA
Maximum current sunk by all ports ^(2,4)	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: dsPIC33EPXXXGP502, dsPIC33EPXXXMC202/502 and PIC24EPXXXGP/MC202 devices, which have a maximum sink/source capability of 130 mA.

30.1 DC Characteristics

TABLE 30-1: OI	PERATING MIPS	VS. VOLTAGE
----------------	---------------	-------------

			Maximum MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	ТА	-40	_	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$	PD	PINT + PI/O			W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(ΓJ – ΤΑ)/θ.	JA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0		°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θJA	41	-	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0	—	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θJA	49.8	_	°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θJA	25.2	-	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5	_	°C/W	1
Package Thermal Resistance, 36-Pin UQFN 5x5 mm	θJA	29.2	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71.0	—	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
Operati	ng Voltag	e					
DC10	Vdd	Supply Voltage	3.0		3.6	V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	_	—	V/ms	0V-1V in 100 ms

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol Characteristics Min Typ Max Units Comments								
	CEFC External Filter Capacitor 4.7 10 — μF Capacitor must have a low series resistance (< 1 Ohm)								

Note 1: Typical VCAP voltage = 1.8 volts when VDD \ge VDDMIN.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACT	ERISTICS		(unless oth	•	ns: 3.0V to 3.6V ≤ TA ≤ +85°C for Ind ≤ TA ≤ +125°C for E				
Parameter No.	Тур.	Max.	Units	Units Conditions					
Operating Cur	rent (IDD) ⁽¹⁾								
DC20d	9	15	mA	-40°C					
DC20a	9	15	mA	+25°C	3.3V	10 MIPS			
DC20b	9	15	mA	+85°C	5.5 V	10 1011-3			
DC20c	9	15	mA	+125°C					
DC22d	16	25	mA	-40°C					
DC22a	16	25	mA	+25°C	3.3V	20 MIPS			
DC22b	16	25	mA	+85°C	3.3V	20 1011-3			
DC22c	16	25	mA	+125°C					
DC24d	27	40	mA	-40°C					
DC24a	27	40	mA	+25°C	3.3V	40 MIPS			
DC24b	27	40	mA	+85°C	5.5 V	40 1011-3			
DC24c	27	40	mA	+125°C					
DC25d	36	55	mA	-40°C					
DC25a	36	55	mA	+25°C	3.3V	60 MIPS			
DC25b	36	55	mA	+85°C	3.3V	00 101175			
DC25c	36	55	mA	+125°C]				
DC26d	41	60	mA	-40°C					
DC26a	41	60	mA	+25°C	3.3V	70 MIPS			
DC26b	41	60	mA	+85°C					

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins (except OSC1) are configured as outputs and driven low
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (defined PMDx bits are all '1's)
- NOP instructions are executed in while (1) loop
- · JTAG is disabled

DC CHARACTE	ERISTICS		(unless othe		s: 3.0V to 3.6V ≤ TA ≤ +85°C for Ind ≤ TA ≤ +125°C for E>			
Parameter No.	Тур.	Max.	Units Conditions					
Idle Current (III	DLE) ⁽¹⁾							
DC40d	3	8	mA	-40°C				
DC40a	3	8	mA	+25°C	- 3.3V	10 MIPS		
DC40b	3	8	mA	+85°C	3.3V	10 1011195		
DC40c	3	8	mA	+125°C				
DC42d	6	12	mA	-40°C				
DC42a	6	12	mA	+25°C	3.3V	20 MIPS		
DC42b	6	12	mA	+85°C		20 Mill 0		
DC42c	6	12	mA	+125°C				
DC44d	11	18	mA	-40°C				
DC44a	11	18	mA	+25°C	3.3V	40 MIPS		
DC44b	11	18	mA	+85°C	5.5 V	40 WIF 3		
DC44c	11	18	mA	+125°C				
DC45d	17	27	mA	-40°C				
DC45a	17	27	mA	+25°C	3.3V	60 MIPS		
DC45b	17	27	mA	+85°C	5.5 V			
DC45c	17	27	mA	+125°C				
DC46d	20	35	mA	-40°C				
DC46a	20	35	mA	+25°C	3.3V	70 MIPS		
DC46b	20	35	mA	+85°C				

TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base Idle current (IIDLE) is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- The NVMSIDL bit (NVMCON[12]) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON[11]) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

DC CHARACTE	RISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур.	Max.	Units	Cond	itions			
Power-Down Cu	urrent (IPD) ⁽¹⁾ -	dsPIC33EP32GI	P50X, dsPIC33EF	P32MC20X/50X and PIC2	24EP32GP/MC20X			
DC60d	30	100	μA	-40°C				
DC60a	35	100	μA	+25°C	3.3V			
DC60b	150	200	μA	+85°C	3.3V			
DC60c	250	500	μA	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ -	dsPIC33EP64GI	P50X, dsPIC33EF	P64MC20X/50X and PIC2	24EP64GP/MC20X			
DC60d	25	100	μA	-40°C				
DC60a	30	100	μA	+25°C	3.3V			
DC60b	150	350	μA	+85°C	-			
DC60c	350	800	μA	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP128G	P50X, dsPIC33E	P128MC20X/50X and PIC	C24EP128GP/MC20X			
DC60d	30	100	μA	-40°C				
DC60a	35	100	μA	+25°C	3.3V			
DC60b	150	350	μA	+85°C	5.5V			
DC60c	550	1000	μA	+125°C				
Power-Down Cı	urrent (IPD) ⁽¹⁾ –	dsPIC33EP256G	P50X, dsPIC33E	P256MC20X/50X and PIC	C24EP256GP/MC20X			
DC60d	35	100	μA	-40°C				
DC60a	40	100	μA	+25°C	3.3V			
DC60b	250	450	μA	+85°C	0.0 v			
DC60c	1000	1200	μA	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP512G	P50X, dsPIC33E	P512MC20X/50X and PIC	C24EP512GP/MC20X			
DC60d	40	100	μΑ	-40°C				
DC60a	45	100	μA	+25°C	3.3V			
DC60b	350	800	μA	+85°C	0.0V			
DC60c	1100	1500	μA	+125°C				

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON[8]) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON[11]) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- · JTAG is disabled

DC CHARACTER	RISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No.	Тур.	Max.	Units	Cond	ditions			
DC61d	8		μA	-40°C				
DC61a	10	—	μA	+25°C	2.21/			
DC61b	12	—	μA	+85°C	3.3V			
DC61c	13	—	μA	+125°C				

TABLE 30-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (△Iwdt)⁽¹⁾

Note 1: The △IwDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

TABLE 30-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No.	Тур.	Doze Ratio	Units	Conditions			
Doze Current (IDC)ZE) ⁽¹⁾						
DC73a ⁽²⁾	35	_	1:2	mA	-40°C	3.3V	Fosc = 140 MHz
DC73g	20	30	1:128	mA	-40 C	3.3V	FUSC - 140 MITZ
DC70a ⁽²⁾	35	_	1:2	mA	+25°C	3.3V	Fosc = 140 MHz
DC70g	20	30	1:128	mA	+25 C	3.3V	
DC71a ⁽²⁾	35	_	1:2	mA	.05%0	2.21/	5000 - 140 MU
DC71g	20	30	1:128	mA	+85°C	3.3V	Fosc = 140 MHz
DC72a ⁽²⁾	28	—	1:2	mA	+125°C	3.3V	Fosc = 120 MHz
DC72g	15	30	1:128	mA	+125 C	3.3V	

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while (1) statement
- · JTAG is disabled
- 2: Parameter is characterized but not tested in manufacturing.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions							
	VIL	Input Low Voltage								
DI10		Any I/O Pin and MCLR	Vss	_	0.2 Vdd	V				
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 VDD	V	SMBus disabled			
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.8	V	SMBus enabled			
	Vih	Input High Voltage								
DI20		I/O Pins Not 5V Tolerant	0.8 Vdd	_	Vdd	V	Note 3			
		I/O Pins 5V Tolerant and MCLR	0.8 Vdd	—	5.5	V	Note 3			
		I/O Pins with SDAx, SCLx	0.8 Vdd	_	5.5	V	SMBus disabled			
		I/O Pins with SDAx, SCLx	2.1	_	5.5	V	SMBus enabled			
	ICNPU	Change Notification Pull-up Current								
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS			
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾								
DI31			20	50	100	μA	Vdd = 3.3V, Vpin = Vdd			

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant pins.

4: VIL source < (Vss – 0.3). Characterized but not tested.

5: VIH source > (VDD + 0.3) for non-5V tolerant pins only.

6: Digital 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.

7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			(unless	d Operatin otherwise g temperat	stated) ure -40°	C ≤ Ta ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DI50	lıL	Input Leakage Current ^(1,2) I/O Pins 5V Tolerant ⁽³⁾	-1		+1		$Vss \leq Vpin \leq Vdd$,
D150			-1	_	+1	μA	Pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance, -40°C ≤ TA ≤ +85°C
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, -40°C ≤ TA ≤ +85°C
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance, -40°C ≤ TA ≤ +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, -40°C ≤ TA ≤ +125°C
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	—	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant pins.
- **4:** VIL source < (Vss 0.3). Characterized but not tested.
- 5: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **6:** Digital 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions						
DI60a	licl	Input Low Injection Current	0		₋₅ (4,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7		
DI60b	Іісн	Input High Injection Current	0		+5 ^(5,6,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁶⁾		
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁸⁾		+20 ⁽⁸⁾	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT		

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **2:** Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5**: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **6:** Digital 5V tolerant pins do not have an internal high-side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

DC CHA	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions							
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C},$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$			
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾			0.4	V				
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$			
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$			
DO20A	Von1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5 ⁽¹⁾	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$			
		4x Source Driver Pins**	2.0 ⁽¹⁾	_	—		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$			
			3.0 ⁽¹⁾		—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$			
		Output High Voltage	1.5 ⁽¹⁾	_	_	V	IOH \ge -22 mA, VDD = 3.3V			
		8x Source Driver Pins ⁽³⁾	2.0 ⁽¹⁾	_	—		IOH \geq -18 mA, VDD = 3.3V			
			3.0 ⁽¹⁾				IOH \ge -10 mA, VDD = 3.3V			

TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB[7:15] and RC3
 For 64-pin devices: RA4, RA9, RB[7:15], RC3 and RC15

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions	
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000	—		E/W	-40°C to +125°C		
D131	Vpr	VDD for Read	3.0	—	3.6	V			
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V			
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C		
D135	IDDP	Supply Current during Programming ⁽²⁾	_	10	—	mA			
D136	IPEAK	Instantaneous Peak Current During Start-up	—	—	150	mA			
D137a	Тре	Page Erase Time	—	146,893	—	FRC cycles	TA = +85°C		
D137b	TPE	Page Erase Time	—	146,893	—	FRC cycles	Ta = +125°C		
D138a	Tww	Word Write Cycle Time	_	346	—	FRC cycles	TA = +85°C		
D138b	Tww	Word Write Cycle Time	_	346	—	FRC cycles	Ta = +125°C		

TABLE 30-14: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

2: Parameter characterized but not tested in manufacturing.

30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	$\begin{array}{ll} Operating \ temperature & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +125^\circ C \ for \ Extended \end{array}$						
	Operating voltage VDD range as described in Section 30.1 "DC Characteristics" .						

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15		In XT and HS modes, when external clock is used to drive OSC1
DO56	Cio	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C mode

АС СНА				rating Co wise state perature	ed) -40°C ≤ TA ≤ 1	ditions: 3.0V to 3.6V) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Symb	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC	
		Oscillator Crystal Frequency	3.5 10		10 25	MHz MHz	XT HS	
OS20 Tosc		Tosc = 1/Fosc	8.33	_	DC	ns	+125°C	
		Tosc = 1/Fosc	7.14	_	DC	ns	+85°C	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	+125°C	
		Instruction Cycle Time ⁽²⁾	14.28	—	DC	ns	+85°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	-	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2	_	ns		
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	-	12	—	mA/V	HS, VDD = 3.3V, TA = +25°C	
			_	6	—	mA/V	XT, VDD = 3.3V, TA = +25°C	

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Condition				Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes		
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms			
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%			

Note 1: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditio	ons		
Internal	FRC Accuracy @ FRC Fre	equency =	7.37 MHz	.(1)					
F20a	FRC	-1.5	0.5	+1.5	%	$\textbf{-40^{\circ}C} \leq TA \leq \textbf{-10^{\circ}C}$	VDD = 3.0-3.6V		
		-1	0.5	+1	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V		
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V		

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions				
LPRC (@ 32.768 kHz ⁽¹⁾									
F21a	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V			
		-20		+20	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V			
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V			

Note 1: The change of LPRC frequency as VDD changes.

^{© 2011-2020} Microchip Technology Inc.

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHAR	ACTERISTI	CS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
DO31	TIOR	Port Output Rise Time		5	10	ns		
DO32	TIOF	Port Output Fall Time	_	5	10	ns		
DI35	TINP	INTx Pin High or Low Time (input)	20	—	_	ns		
DI40	Trbp	CNx High or Low Time (input)	2		_	Тсү		

Note 1: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period	_	400	600	μs			
SY10	Tost	Oscillator Start-up Time		1024 Tosc			Tosc = OSC1 period		
SY12	Twdt	Watchdog Timer Time-out Period	0.81	0.98	1.22	ms	WDTPRE = 0, WDTPOST[3:0] = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C		
			3.26	3.91	4.88	ms	WDTPRE = 1, WDTPOST[3:0] = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs			
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μs			
SY30	TBOR	BOR Pulse Width (low)	1	_	—	μs			
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μs	-40°C to +85°C		
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	—	30	μs			
SY37	TOSCDFRC	FRC Oscillator Start-up Delay	46	48	54	μs			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay		—	70	μs			

TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 30-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS
--

АС СН	AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽²⁾		Min.	Тур.	Max.	Units	Conditions		
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)		
			Asynchronous	35		_	ns			
TA11	TTXL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)		
			Asynchronous	10	_	—	ns			
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	—	ns	N = prescale value (1, 8, 64, 256)		
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON[1]))		DC		50	kHz			
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal T1CK o Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns			

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

АС СНИ	ARACTERIS	TICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions	
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		—	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)	
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_		ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)	
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N			ns	N = prescale value (1, 8, 64, 256)	
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns		

TABLE 30-24: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteristic ⁽¹⁾			Min.	Тур.	Max.	Units	Conditions		
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20	—	_	ns	Must also meet Parameter TC15	
TC11	TtxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15	
TC15	TtxP	TxCK Input Period	Synchronous, with prescaler	2 Tcy + 40	_	_	ns	N = prescale value (1, 8, 64, 256)	
TC20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment			0.75 Tcy + 40		1.75 Tcy + 40	ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 30-26: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	s Conditions			
IC10	TccL	ICx Input Low Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25		ns	Must also meet Parameter IC15			
IC11	ТссН	ICx Input High Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15	N = prescale value (1, 4, 16)		
IC15	TccP	ICx Input Period	Greater of 25 + 50 or (1 Tcy/N) + 50	_	ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 30-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
OC10	TccF	OCx Output Fall Time	_			ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time	_	_	—	ns	See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHAF	RACTERIS	FICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				
OC15	TFD	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns	
OC20 TFLT Fault Input Pulse Width Tcy + 20 — ns							

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions				
MP10	TFPWM	PWMx Output Fall Time	—	—		ns	See Parameter DO32
MP11	TRPWM	PWMx Output Rise Time	—	_	_	ns	See Parameter DO31
MP20	TFD	Fault Input ↓ to PWMx I/O Change	_	_	15	ns	
MP30 TFH Fault Input Pulse Width			15	_	_	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

АС СНА		FICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic ¹⁷			Min.	Тур.	Max.	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 TcY/N) + 25			ns	Must also meet Parameter TQ15	
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	—	ns	Must also meet Parameter TQ15	
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	_	—	ns		
TQ20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal TQCK o Timer	—	1	Тсү			

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHAR	ACTERIS	rics	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Typ. ⁽²⁾ Max. Units		Conditions	
TQ30	TQUL	Quadrature Input Low Time	6 Tcy	_	ns		
TQ31	ΤουΗ	Quadrature Input High Time	6 Tcy	—	ns		
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns		
TQ36	TQUP	Quadrature Phase Period	3 TCY	_	ns		
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (www.microchip.com/DS70000601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip website for the latest family reference manual sections.

FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

АС СНА	RACTERI	STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	(1) Min. Max. Units Conditions				
TQ50	TqiL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter	3 * N * TCY		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 Tcy	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

 Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on the falling edge.

AC CHARAG	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 30-33	—	—	0,1	0,1	0,1		
9 MHz	—	Table 30-34	—	1	0,1	1		
9 MHz	—	Table 30-35	—	0	0,1	1		
15 MHz	—	—	Table 30-36	1	0	0		
11 MHz	_	—	Table 30-37	1	1	0		
15 MHz	_	—	Table 30-38	0	1	0		
11 MHz	_	—	Table 30-39	0	0	0		

TABLE 30-33: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-14: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 30-15: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-34: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	_	_	15	MHz	Note 3	
SP20	TscF	SCK2 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-16: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-35:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	ïCS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	_	—	9	MHz	Note 3	
SP20	TscF	SCK2 Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	—		_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30		_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30		_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- **4**: Assumes 50 pF load on all SPI2 pins.

TABLE 30-36:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency		—	9	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCK2 Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK2 Output Rise Time	_	—	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	_	—	—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-37:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHA	ARACTERIS	-	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—	—	Lesser of FP or 15	MHz	Note 3	
SP72	TscF	SCK2 Input Fall Time	_	_		ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK2 Input Rise Time		—		ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time		_		ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	_	—		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—		ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns		
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	Note 4	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	_	ns	Note 4	
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	—	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHA	ARACTERIS	-	$\begin{array}{l} \mbox{Standard Operating Conditions: } 3.0V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ for \ Industrial \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \ for \ Extended \\ \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 11	MHz	Note 3	
SP72	TscF	SCK2 Input Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK2 Input Rise Time	_	—	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	Note 4	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	—	ns	Note 4	
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—		50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-39:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCK2 Input Frequency			15	MHz	Note 3		
SP72	TscF	SCK2 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO2 Data Output Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO2 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns			
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns			
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	Note 4		
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—		ns	Note 4		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-21: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-40:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCK2 Input Frequency	—	—	11	MHz	Note 3		
SP72	TscF	SCK2 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCK2 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns			
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	_	_	ns			
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	Note 4		
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	—	—	ns	Note 4		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

AC CHARAG	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP			
15 MHz	Table 30-42	_	—	0,1	0,1	0,1			
10 MHz	_	Table 30-43	—	1	0,1	1			
10 MHz	—	Table 30-44	—	0	0,1	1			
15 MHz	—	—	Table 30-45	1	0	0			
11 MHz	_	—	Table 30-46	1	1	0			
15 MHz	_	—	Table 30-47	0	1	0			
11 MHz	_	—	Table 30-48	0	0	0			

TABLE 30-41: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-22: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency			15	MHz	Note 3	
SP20	TscF	SCK1 Output Fall Time	—	_		ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	_		ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	_		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30		_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS		therwise	stated) ture -40	°C ≤ Ta ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency		_	10	MHz	Note 3
SP20	TscF	SCK1 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

TABLE 30-44:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCK1 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time		—	—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge		6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-45:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА		rics	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	_		Lesser of FP or 15	MHz	Note 3	
SP72	TscF	SCK1 Input Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	_		—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_		—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30		_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	_	—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	Note 4	
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	Note 4	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—		50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-46:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА		rics	Standard Op (unless othe Operating ter	rwise st	a ted) re -40°C	≤ Ta ≤ +	to 3.6V 85°C for Industrial 125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	_	Lesser of FP or 11	MHz	Note 3
SP72	TscF	SCK1 Input Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	Note 4
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	Note 4
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	—		50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

АС СНА				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCK1 Input Frequency	_	—	15	MHz	Note 3		
SP72	TscF	SCK1 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns			
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	_	_	ns			
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	Note 4		
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	Note 4		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCK1 Input Frequency	_	—	11	MHz	Note 3		
SP72	TscF	SCK1 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCK1 Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns			
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	_	_	ns			
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	Note 4		
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	Note 4		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

AC CHA	ARACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	stated) ture -40)°C ≤ TA ≤	V to 3.6V +85°C for Industrial +125°C for Extended		
Param No.	Symbol	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	Max.	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μs			
			400 kHz mode	Tcy/2 (BRG + 2)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μs			
			400 kHz mode	Tcy/2 (BRG + 2)		μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs			
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from 10 to 400 pF		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns			
			1 MHz mode ⁽²⁾	_	300	ns			
IM25		TSU:DAT	5 TSU:DAT	Data Input	100 kHz mode	250		ns	
		Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽²⁾	40		ns			
IM26	THD:DAT	Data Input	100 kHz mode	0		μs			
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	0.2		μs			
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)		μs	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	condition		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	After this period, the		
		Hold Time	400 kHz mode	TCY/2 (BRG +2)	_	μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	generated		
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	—	μs			
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	—	μs			
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)	—	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs			
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns			
		From Clock	400 kHz mode	_	1000	ns			
			1 MHz mode ⁽²⁾	_	400	ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be		
			400 kHz mode	1.3	—	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start		
IM50	Св	Bus Capacitive L	oading	—	400	pF			
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	Note 3		

TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to "**Inter-Integrated Circuit (I²C)**" (www.microchip.com/DS70000195) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip website for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

AC CHA	RACTERI	STICS		Standard Op (unless other Operating ten	rwise sta	ated)	ons: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial
					•		$C \le TA \le +125^{\circ}C$ for Extended
Param. No.	Symbol	Characteristic ⁽³⁾		Min.	Max.	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7		μs	
			400 kHz mode	1.3	—	μs	
			1 MHz mode ⁽¹⁾	0.5	—	μs	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μs	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	S25 TSU:DAT	Data Input	100 kHz mode	250	_	ns	
	Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽¹⁾	100		ns	
IS26	S26 THD:DAT	Data Input	100 kHz mode	0	_	μs	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	0	0.3	μs	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	_	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	—	μs	Start condition
			1 MHz mode ⁽¹⁾	0.25		μs	
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first
		Hold Time	400 kHz mode	0.6	_	μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25	—	μs	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs	
		Setup Time	400 kHz mode	0.6	_	μs	
			1 MHz mode ⁽¹⁾	0.6	_	μs	
IS34	THD:STO	Stop Condition	100 kHz mode	4		μs	
		Hold Time	400 kHz mode	0.6	—	μs	
			1 MHz mode ⁽¹⁾	0.25		μs	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	μs	can start
IS50	Св	Bus Capacitive Lo	ading		400	pF	
S51	TPGD	Pulse Gobbler De	lay	65	390	ns	Note 2

TABLE 30-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: Typical value for this parameter is 130 ns.

3: These parameters are characterized, but not tested in manufacturing.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-34: ECAN_x MODULE I/O TIMING CHARACTERISTICS

TABLE 30-51: ECANX MODULE I/O TIMING REQUIREMENTS

			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
CA10	TIOF	Port Output Fall Time	_			ns	See Parameter DO32	
CA11	TIOR	Port Output Rise Time	—	—	_	ns	See Parameter DO31	
CA20	TCWF	Pulse Width to Trigger CAN Wake-up Filter	120			ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-35: **UARTX MODULE I/O TIMING CHARACTERISTICS**

TABLE 30-52: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +125°C					
Param No.	Symbol	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
UA10	TUABAUD	UARTx Baud Time	66.67			ns		
UA11	FBAUD	UARTx Baud Frequency	—	_	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column are at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

DC CH/	ARACTERIST	rics	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)(1)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min.	Тур. ⁽²⁾	Max.	Units	Conditions				
Comparator AC Characteristics											
CM10	TRESP	Response Time ⁽³⁾	—	19	—	ns	V+ input step of 100 mV V- input held at VDD/2				
CM11	TMC2OV	Comparator Mode Change to Output Valid	_	—	10	μs					
Compa	rator DC Cha	aracteristics				•					
CM30	VOFFSET	Comparator Offset Voltage	—	±10	±15 ⁽⁷⁾	mV					
CM31	Vhyst	Input Hysteresis Voltage ⁽³⁾	_	30	65 ⁽⁷⁾	mV					
CM32	TRISE/TFALL	Comparator Output Rise/ Fall Time ⁽³⁾		20	_	ns	1 pF load capacitance on input				
CM33	Vgain	Open-Loop Voltage Gain ⁽³⁾	—	90	—	db					
CM34	VICM	Input Voltage Range	AVss	—	AVDD	V					
Op Am	o AC Charact	teristics		•		•					
CM20	SR	Slew Rate ⁽³⁾	3.7	7.5	16	V/µs	10 pF load				
CM21a	Рм	Phase Margin (Configuration A) ^(3,4)	_	55	_	Degree	G = 4V/V; 10 pF load				
CM21b	Рм	Phase Margin (Configuration B) ^(3,5)	—	40	—	Degree	G = 4V/V; 10 pF load				
CM22	Gм	Gain Margin ⁽³⁾	—	20	—	db	G = 100V/V; 10 pF load				
CM23a	Gвw	Gain Bandwidth (Configuration A) ^(3,4)	_	10	_	MHz	10 pF load				
CM23b	GBW	Gain Bandwidth (Configuration B) ^(3,5)	—	6	_	MHz	10 pF load				

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- **2:** Data in "Typ" column are at 3.3V, +25°C unless otherwise stated.
- 3: Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.
- 7: These parameters have a combined effect on the actual performance of the comparator.
- 8: Input resistance (R1) must be less than or equal to 2 kOhm. The resulting minimum gain of the op amp circuit is equal to four.

DC CH	ARACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Min. Typ. ⁽²⁾ Max. U		Units	Conditions		
Op Am	p DC Charact	eristics							
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V			
CM41	CMRR	Common-Mode Rejection Ratio ⁽³⁾	—	40	—	db	VCM = AVDD/2		
CM42	VOFFSET	Op Amp Offset Voltage ⁽³⁾	-30	±5	+30	mV			
CM43	VGAIN	Open-Loop Voltage Gain ⁽³⁾	—	90	_	db			
CM44	los	Input Offset Current	—	_	_		See pad leakage currents in Table 30-11		
CM45	lв	Input Bias Current	—	_	_	_	See pad leakage currents in Table 30-11		
CM46	Ιουτ	Output Current	—	_	420	μA	With minimum value of RFEEDBACK (CM48)		
CM48	RFEEDBACK ⁽⁸⁾	Feedback Resistance Value	8	_	—	kΩ			
CM49a	VOADC	Output Voltage	AVss + 0.077		AVDD - 0.077	V	Ιουτ = 420 μΑ		
		Measured at OAx Using	AVss + 0.037	—	AVDD - 0.037	V	Ιουτ = 200 μΑ		
		ADC ^(3,4)	AVss + 0.018		AVDD - 0.018	V	Ιουτ = 100 μΑ		
CM49b	Vout	Output Voltage	AVss + 0.210	—	AVDD - 0.210	V	Ιουτ = 420 μΑ		
		Measured at OAxOUT Pin ^(3,4,5)	AVss + 0.100 AVss + 0.050	_	AVDD – 0.100 AVDD – 0.050	V V	Ιουτ = 200 μΑ Ιουτ = 100 μΑ		
CM51	Rint1 ⁽⁶⁾	Internal Resistance 1 (Configuration A and B) $^{(3,4,5)}$	198	264	317	Ω	Min = -40° C Typ = $+25^{\circ}$ C Max = $+125^{\circ}$ C		

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS (CONTINUED)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column are at 3.3V, +25°C unless otherwise stated.
- 3: Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- **5:** See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.
- 7: These parameters have a combined effect on the actual performance of the comparator.
- 8: Input resistance (R1) must be less than or equal to 2 kOhm. The resulting minimum gain of the op amp circuit is equal to four.

AC CHAI	AC CHARACTERISTICS			$\label{eq:conditions} \begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
VR310	TSET	Settling Time	— 1 10 μs Note 1						

Note 1: Settling time is measured while CVRR = 1 and CVR[3:0] bits transition from '0000' to '1111'.

2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.</p>

TABLE 30-55: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 1): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristics	Min. Typ. Max. Units Condition						
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb			
VRD311	CVRAA	Absolute Accuracy ⁽²⁾	—	±25	—	mV	CVRSRC = 3.3V		
VRD313	CVRSRC	Input Reference Voltage	0	—	AVDD + 0.3	V			
VRD314	CVRout	Buffer Output Resistance ⁽²⁾	_	1.5k	_	Ω			

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions:3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
CTMU Current Source									
CTMUI1	IOUT1	Base Range ⁽¹⁾	0.29	—	0.77	μA	CTMUICON[9:8] = 01		
CTMUI2	Ιουτ2	10x Range ⁽¹⁾	3.85	_	7.7	μA	CTMUICON[9:8] = 10		
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	38.5	_	77	μA	CTMUICON[9:8] = 11		
CTMUI4	Ιουτ4	1000x Range ⁽¹⁾	385	_	770	μA	CTMUICON[9:8] = 00		
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	_	0.598	_	V	TA = +25°C, CTMUICON[9:8] = 01		
			_	0.658	_	V	TA = +25°C, CTMUICON[9:8] = 10		
			—	0.721	_	V	TA = +25°C, CTMUICON[9:8] = 11		
CTMUFV2	VFVR	Temperature Diode Rate of		-1.92	_	mV/⁰C	CTMUICON[9:8] = 01		
		Change ^(1,2,3)	_	-1.74		mV/⁰C	CTMUICON[9:8] = 10		
			_	-1.56	_	mV/ºC	CTMUICON[9:8] = 11		

TABLE 30-56: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON[15:10] = 000000).

2: Parameters are characterized but not tested in manufacturing.

3: Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- Executing a while (1) statement
- · Device operating from the FRC with no PLL

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $							
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
Device Supply										
AD01	AVdd	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of: VDD + 0.3 or 3.6	V				
AD02	AVss	Module Vss Supply	Vss - 0.3	_	Vss + 0.3	V				
		·	Refere	ence In	puts					
AD05	Vrefh	Reference Voltage High	AVss + 2.5		AVdd	V	VREFH = VREF+ VREFL = VREF- (Note 1)			
AD05a			3.0	_	3.6	V	VREFH = AVDD VREFL = AVSS = 0			
AD06	Vrefl	Reference Voltage Low	AVss	_	AVDD – 2.5	V	Note 1			
AD06a			0	_	0	V	VREFH = AVDD VREFL = AVSS = 0			
AD07	Vref	Absolute Reference Voltage	2.5		3.6	V	VREF = VREFH - VREFL			
AD08	IREF	Current Drain	_		10 600	μΑ μΑ	ADC off ADC on			
AD09	Iad	Operating Current ⁽²⁾	—	5	—	mA	ADC operating in 10-bit mode (Note 1)			
			—	2	—	mA	ADC operating in 12-bit mode (Note 1)			
		·	Ana	log Inp	out					
AD12	Vinh	Input Voltage Range VinH	Vinl	_	Vrefh	V	This voltage reflects Sample-and- Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input			
AD13	Vinl	Input Voltage Range VINL	Vrefl	_	AVss + 1V	V	This voltage reflects Sample-and- Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input			
AD17	Rin	Recommended Impedance of Analog Voltage Source	_		200	Ω	Impedance to achieve maximum performance of ADC			

TABLE 30-57: ADC MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

AC CHARACTERISTICS			$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		ADC A	Accuracy	(12-Bit	Mode)			
AD20a	Nr	Resolution	12 Data Bits			bits		
AD21a INL	INL	Integral Nonlinearity	-2.5	_	2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-5.5	—	5.5	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD22a DNL	DNL	Differential Nonlinearity	-1	—	1	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-1	—	1	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD23a	Gerr	Gain Error ⁽³⁾	-10	—	10	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-10	—	10	LSb	+85°C < TA \leq +125°C (Note 2)	
AD24a	EOFF	Offset Error	-5	—	5	LSb	-40°C \leq TA \leq +85°C (Note 2)	
			-5	_	5	LSb	+85°C < TA \leq +125°C (Note 2)	
AD25a	—	Monotonicity	—	—	—	—	Guaranteed	
		Dynamic	Performa	ance (12-	-Bit Mod	e)		
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75	_	dB		
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	_	68	_	dB		
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB		
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	—	250		kHz		
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3	—	bits		

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
	•	ADC A	ccuracy (10-Bit N	lode)			
AD20b	Nr	Resolution	• · · · ·			bits		
AD21b	INL	Integral Nonlinearity	-0.625		0.625	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-1.5		1.5	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD22b	DNL	Differential Nonlinearity	-0.25		0.25	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-0.25	—	0.25	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD23b	Gerr	Gain Error	-2.5	_	2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-2.5	_	2.5	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD24b	EOFF	Offset Error	-1.25		1.25	LSb	-40°C ≤ TA ≤ +85°C (Note 2)	
			-1.25	—	1.25	LSb	+85°C < TA ≤ +125°C (Note 2)	
AD25b	—	Monotonicity	_	_	_		Guaranteed	
		Dynamic P	erforman	ce (10-E	Bit Mode)			
AD30b	THD	Total Harmonic Distortion ⁽³⁾	_	64	_	dB		
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾		57	_	dB		
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	72	—	dB		
AD33b	Fnyq	Input Signal Bandwidth ⁽³⁾	—	550	—	kHz		
AD34b	ENOB	Effective Number of Bits ⁽³⁾	—	9.4	—	bits		

TABLE 30-59: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-36: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC[2:0] = 000, SSRCG = 0)
АС СНА	RACTER	RISTICS	$ \begin{array}{ c c c c c } \hline Standard Operating Conditions: 3.0V to 3.6V \\ \hline (unless otherwise stated)^{(1)} \\ \hline Operating temperature & -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \\ \hline \end{array} $					
Param No.	Symbol	Characteristic	Min. Typ. Max.				Conditions	
		Clock	A Parameter	ters				
AD50	TAD	ADC Clock Period	117.6	_	_	ns		
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾		250	_	ns		
		Conv	version R	ate				
AD55	tCONV	Conversion Time		14 Tad		ns		
AD56	FCNV	Throughput Rate	_	_	500	ksps		
AD57a	TSAMP	Sample Time when Sampling any ANx Input	3 Tad		-	—		
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	3 Tad	—	_			
		Timin	g Parame	ters				
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad		3 Tad	—	Auto-convert trigger is not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ^(2,3)	2 Tad	—	3 Tad	_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	_	0.5 Tad	—			
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_	—	20	μs	Note 6	

TABLE 30-60: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- **5**: See Figure 25-7 for configuration information.
- 6: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1[15]) = 1). During this time, the ADC result is indeterminate.

FIGURE 30-38: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS[1:0] = 01, SIMSAM = 0, ASAM = 1, SSRC[2:0] = 111, SSRCG = 0, SAMC[4:0] = 00010)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) (1)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		Cloci	k Parame	ters		•		
AD50	TAD	ADC Clock Period	76	—	—	ns		
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾		250	_	ns		
	•	Conv	version F	Rate		•		
AD55	tCONV	Conversion Time		12 TAD		—		
AD56	FCNV	Throughput Rate	_	—	1.1	Msps	Using simultaneous sampling	
AD57a	TSAMP	Sample Time when Sampling any ANx Input	2 Tad	—	—	—		
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	4 Tad	—	_	—		
		Timin	g Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad		3 Tad	—	Auto-convert trigger is not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ^(2,3))	2 Tad	—	3 Tad			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	_	0.5 Tad		—		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)	_	—	20	μs	Note 6	

TABLE 30-61: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- **6:** The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1[15]) = 1). During this time, the ADC result is indeterminate.

TABLE 30-62: DMA MODULE TIMING REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
		Operating te	mperature	-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
DM1	DMA Byte/Word Transfer Latency	1 Tcy ⁽²⁾	_	_	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

^{© 2011-2020} Microchip Technology Inc.

NOTES:

31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽⁴⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 8x I/O pin	15 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - **3:** Refer to the **"Pin Diagrams**" section for 5V tolerant pins.
 - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X
HDC5	3.0 to 3.6V ⁽¹⁾	-40°C to +150°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, may have degraded performance. Device functionality is tested but not characterized.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Мах	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+165	°C
Operating Ambient Temperature Range	ТА	-40	—	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	CTERISTIC	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$								
Parameter No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions			
Operating V	Voltage									
HDC10	Supply Vo	Supply Voltage								
	Vdd	—	3.0	3.3	3.6	V	-40°C to +150°C			

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACT	ERISTICS		(unless ot	Operating Co nerwise state emperature	ed)		
Parameter No.	Typical	Мах	Units	Conditions			
Power-Down	Current (IPD)						
HDC60e	1400	2500	μA	+150°C 3.3V Base Power-Down Current (Notes 1 and 3)			
HDC61c	15	_	μA	+150°C 3.3V Watchdog Timer Current: ∆Iw (Notes 2 and 4)			

TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON[8]) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 31-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARAG	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Мах	Units	Conditions			
HDC44e	12	30	mA	+150°C 3.3V 40 MIPS			

TABLE 31-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARAG	CTERISTICS		(unless othe	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Parameter No.	Typical	Мах	Units	Conditions				
HDC20	9	15	mA	+150°C	3.3V	10 MIPS		
HDC22	16	25	mA	+150°C 3.3V 20 MIPS				
HDC23	30	50	mA	+150°C	40 MIPS			

TABLE 31-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARA	CTERISTICS		(unless oth	erwise s	Conditions tated) re -40°C ≤		
Parameter No.	Typical	Doze Ratio	Units	Conditions			
HDC72a	24	35	1:2	mA			
HDC72f ⁽¹⁾	14	—	1:64	mA	+150°C	3.3V	40 MIPS
HDC72g ⁽¹⁾	12		1:128	mA	1		

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.

DC CHAF	RACTERIS	STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)		
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)		
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		—	V	ІОн ≥ -10 mA, VDD = 3.3V (Note 1)		
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4		—	V	IOH ≥ 15 mA, VDD = 3.3V (Note 1)		
HDO20A	Vон1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5		—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)		
			2.0		—		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)		
			3.0	_	—		IOH ≥ -2 mA, VDD = 3.3V (Note 1)		
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	_	—	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)		
			2.0		—		$IOH \ge -6.8 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ (Note 1)		
			3.0		—		IOH ≥ -3 mA, VDD = 3.3V (Note 1)		

TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB[15:7] and RC3
 For 64-pin devices: RA4, RA9, RB[15:7], RC3 and RC15

TABLE 31-9: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHAI	RACTERIS	ACTERISTICS (unless othe			$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions			Conditions		
HD130 HD134	Ep Tretd	Program Flash Memory Cell Endurance Characteristic Retention	10,000 20	_	_	E/W Year	-40°C to +150°C ⁽²⁾ 1000 E/W cycles or less and no other specifications are violated	

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to +150°C.

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-10: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-11: PLL CLOCK TIMING SPECIFICATIONS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic	Min Typ Max Units Condition				Conditions		
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period		

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz.

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

© 2011-2020 Microchip Technology Inc.

IADEE										
AC CH	ARACTERISTICS		•	d Operating Conditions: 3.0V to 3.6V (unless otherwise stated) g temperature $+125^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Characteristic	Min	Тур	Max	Units Conditions					
	Internal FRC Accuracy @ FF	RC Frequ	ency = 7.	37 MHz ^{(*}	1)					
H20	FRC	-3	-2	+3	%	+125°C \leq TA \leq +150°C VDD = 3.0-3.6V				
Noto 1	Eroquonev is calibrated at a	25°C and	12 21/		•	-	•			

TABLE 31-12: INTERNAL FRC ACCURACY

Note 1: Frequency is calibrated at +25°C and 3.3V.

TABLE 31-13: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Characteristic	Min	Тур	Max	ax Units Conditions				
	LPRC @ 32.768 kHz ^(1,2)								
HF21	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le +150^{\circ}C VDD = 3.0-3.6V$			

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT). See Section 27.5 "Watchdog Timer (WDT)" for more information.

TABLE 31-14: OP AMP/COMPARATOR SPECIFICATIONS

DC CHAI	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +150°C						
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions				Conditions	
	Op Amp DC Characteristics							
HCM42 VOFFSET Op Amp Offset Voltage -40 ±5 +40 mV								

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$												
Param No.	Symbol	Characteristic	Min Typ Max			Units	Conditions						
	ADC Accuracy (12-Bit Mode) ⁽¹⁾												
HAD20a	Nr	Resolution ⁽³⁾	12	2 Data B	its	bits							
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V						
HAD22a	DNL	Differential Nonlinearity	-1		1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V						
HAD23a	Gerr	Gain Error	-10		10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V						
HAD24a	HAD24a EOFF Offset Error -5 — 5				5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V						
		Dynamic I	Performa	nce (12·	Bit Mode	e) ⁽²⁾							
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz							

TABLE 31-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 31-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Symbol	Characteristic	Min	Min Typ Max l			Conditions		
		ADC A	ccuracy	(10-Bit I	Mode) ⁽¹⁾				
HAD20b	Nr	Resolution ⁽³⁾	10) Data B	its	bits			
HAD21b	INL	Integral Nonlinearity	-1.5	-1.5 — 1.5		LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD22b	DNL	Differential Nonlinearity	-0.25	—	0.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD23b	Gerr	Gain Error	-2.5	—	2.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
HAD24b	EOFF	Offset Error	-1.25	_	1.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
		Dynamic F	Performa	nce (10-	Bit Mode	e) ⁽²⁾			
HAD33b FNYQ Input Signal Bandwidth — 400 kHz									

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

NOTES:

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

FIGURE 32-1: VOH – 4x DRIVER PINS VOH (V) -0.050 -0.045 3.6V -0.040 3.3V -0.035 3V -0.030 IOH(A) -0.025 -0.020 Absolute Maximum -0.015 -0.010 -0.005 0.000 0.50 1.00 2.00 2.50 3.00 3.50 0.00 1.50 4.00

FIGURE 32-2: VOH – 8x DRIVER PINS

FIGURE 32-4: VoL – 8x DRIVER PINS

MIPS

MIPS

FIGURE 32-10: TYPICAL LPRC FREQUENCY @ VDD = 3.3V

NOTES:

PACKAGING INFORMATION 33.0

33.1 **Package Marking Information**

28-Lead SPDIP

28-Lead SOIC (.300")

28-Lead SSOP

Example dsPIC33EP64GP 502-I/SP@3 **1310017**

Example

Example

28-Lead QFN-S (6x6x0.9 mm)

Example

dsPIC33EP64

GP502-I/SSe3

1310017

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

33.1 Package Marking Information (Continued)

36-Lead UQFN (5x5 mm)

44-Lead VTLA (TLA)

44-Lead TQFP

44-Lead QFN (8x8x0.9 mm)

Example

Example

Example

Example

Example

33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)

Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)

Example dsPIC33EP 64GP506 -I/MR 1310017

64-Lead TQFP (10x10x1 mm)

Example

© 2011-2020 Microchip Technology Inc.

33.2 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D		17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b 0.31 - 0.5			0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units				
Dimension	Dimension Limits			MAX	
Contact Pitch	Е	E 1.27 BSC			
Contact Pad Spacing	С	9.40			
Contact Pad Width (X28)	Х			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	Distance Between Pads G				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Microchip Technology Drawing C04-073 Rev C Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	0.65 BSC		
Overall Height	Α	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073 Rev C Sheet 2 of 2

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E 0.65 BS0		0.65 BSC		
Contact Pad Spacing	C 7.00				
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.85	
Contact Pad to Center Pad (X26)	G1	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2073 Rev B

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX	
Number of Pins	Ν	28			
Pitch	е		0.65 BSC		
Overall Height	А	0.80 0.90 1.00			
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65 3.70 4.70			
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2	4.7			
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-436–M5 Rev B Sheet 1 of 2

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Number of Terminals	Ν	36			
Pitch	е		0.40 BSC		
Overall Height	Α	0.50 0.55 0.60			
Standoff	A1	0.00 0.02 0.09			
Terminal Thickness	A3	0.152 REF			
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60 3.70 3.80			
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60 3.70 3.80			
Terminal Width	b	0.15 0.20 0.25			
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	К	0.25 REF			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-436–M5 Rev B Sheet 2 of 2

36-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M5) - 5x5 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Center Pad Width	X2			3.80
Center Pad Length	Y2			3.80
Contact Pad Spacing	C1		5.00	
Contact Pad Spacing	C2		5.00	
Contact Pad Width (X36)	X1			0.20
Contact Pad Length (X36	Y1			0.80
Corner Pad Width (X4)	X3			0.85
Corner Pad Length (X4)	Y3			0.85
Corner Pad Radius	R		0.10	
Contact Pad to Center Pad (X36)	G	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2436-M5 Rev B

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	36			
Number of Pins per Side	ND	10			
Number of Pins per Side	NE	8			
Pitch	е	0.50 BSC			
Overall Height	А	0.80 0.90 1.00			
Standoff	A1	0.025	-	0.075	
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60 3.75 3.90			
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.75	3.90	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187C Sheet 2 of 2

36-Lead Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Optional Center Pad Width	W2			3.75	
Optional Center Pad Length	T2			3.75	
Contact Pad Spacing	C1		4.50		
Contact Pad Spacing	C2		4.50		
Contact Pad Width (X36)	X1			0.25	
Contact Pad Length (X36)	Y1			0.25	
Distance Between Pads	K1	0.15	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2187B

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157D Sheet 1 of 2
44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	IILLIMETER:	S
Dimension Limits		MIN	NOM	MAX
Number of Terminals	Ν		44	
Number of Terminals per Side	ND		12	
Number of Terminals per Side	NE		10	
Pitch	е	0.50 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.40	4.55	4.70
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.20	0.25	0.30
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157D Sheet 2 of 2

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units			MILLIMETER	S
Dimensio	on Limits	MIN	NOM	MAX
Terminal Pitch	E		0.50 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Terminal Pad Spacing	C1		5.65	
Terminal Pad Spacing	C2		5.65	
Terminal Pad Width (X44)	X1			0.30
Terminal Pad Length (X44)	Y1			0.45
Distance Between Pads	(G1)	0.20 REF.		
Distance Between Pads	G	0.20		
Distance Between Pads	K1	0.267		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2157A

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		Ν	ILLIMETER	S
Dimension	Dimension Limits		NOM	MAX
Number of Leads	Ν		44	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Width	Е	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Width	b	0.30	0.37	0.45
Lead Thickness	С	0.09	-	0.20
Lead Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0°	3.5°	7°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		N	ILLIMETER	S
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Microchip Technology Drawing C04-103D Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		44	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		Ν	/ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		48	
Pitch	е		0.40 BSC	
Overall Height	Α	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	4.45	4.60	4.75
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	4.45	4.60	4.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		Ν	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		ILLIMETER	S
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	И		64	
Pitch	e		0.50 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

DETAIL 1

Units		N	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width	Е	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11° 12° 13°		
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		Ν	IILLIMETER:	S
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1

APPENDIX A: REVISION HISTORY

Revision A (April 2011)

This is the initial released version of the document.

Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers and Microcontrollers"	Changed all pin diagrams references of VLAP to TLA.
Section 4.0 "Memory Organization"	Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).
Section 5.0 "Flash Program Memory"	Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation" .
Section 9.0 "Oscillator Configuration"	Updated the PLL Block Diagram (see Figure 9-2). Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).
	Changed (FRCDIVN + PLL) to (FRCPLL) for COSC[2:0] = 001 and NOSC[2:0] = 001 in the Oscillator Control Register (see Register 9-1).
	Changed the POR value from 0 to 1 for the DOZE[1:0] bits, from 1 to 0 for the FRCDIV[0] bit, and from 0 to 1 for the PLLPOST[0] bit; Updated the default definitions for the DOZE[2:0] and FRCDIV[2:0] bits and updated all bit definitions for the PLLPOST[1:0] bits in the Clock Divisor Register (see Register 9-2).
	Changed the POR value from 0 to 1 for the PLLDIV[5:4] bits and updated the default definitions for all PLLDIV[8:0] bits in the PLL Feedback Division Register (see Register 9-2).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the bit definitions for the IRNG[1:0] bits in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.
"Product Identification System"	Changed VLAP to TLA.

Revision C (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see Section 20.1 "UART Helpful Tips" and Section 3.6 "CPU Resources". All occurrences of TLA were updated to VTLA throughout the document, with the exception of the pin diagrams (updated diagrams were not available at time of publication).

A new chapter, Section 31.0 "DC and AC Device Characteristics Graphs", was added.

All other major changes are referenced by their respective section in Table A-2.

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 256-Kbyte Flash and 32-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	The content on the first page of this section was extensively reworked to provide the reader with the key features and functionality of this device family in an "at-a-glance" format.
Section 1.0 "Device Overview"	Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X Block Diagram (see Figure 1-1), which now contains a CPU block and a reference to the CPU diagram. Updated the description and Note references in the Pinout I/O Descriptions for these
	pins: C1IN2-, C2IN2-, C3IN2-, OA1OUT, OA2OUT, and OA3OUT (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers"	Updated the Recommended Minimum Connection diagram (see Figure 2-1).
Section 3.0 "CPU"	Updated the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X, and PIC24EPXXXGP/MC20X CPU Block Diagram (see Figure 3-1).
	Updated the Status register definition in the Programmer's Model (see Figure 3-2).
Section 4.0 "Memory Organization"	Updated the Data Memory Maps (see Figure 4-6 and Figure 4-11). Removed the DCB[1:0] bits from the OC1CON2, OC2CON2, OC3CON2, and OC4CON2 registers in the Output Compare 1 Through Output Compare 4 Register Map (see Table 4-10).
	Added the TRIG1 and TRGCON1 registers to the PWM Generator 1 Register Map (see Table 4-13).
	Added the TRIG2 and TRGCON2 registers to the PWM Generator 2 Register Map (see Table 4-14).
	Added the TRIG3 and TRGCON3 registers to the PWM Generator 3 Register Map (see Table 4-15).
	Updated the second note in Section 4.7.1 "Bit-Reversed Addressing Implementation".
Section 8.0 "Direct Memory Access (DMA)"	Updated the DMA Controller diagram (see Figure 8-1).
Section 14.0 "Input Capture"	Updated the bit values for the ICx clock source of the ICTSEL[12:10] bits in the ICxCON1 register (see Register 14-1).
Section 15.0 "Output Compare"	Updated the bit values for the OCx clock source of the OCTSEL[2:0] bits in the OCxCON1 register (see Register 15-1).
	Removed the DCB[1:0] bits from the Output Compare x Control Register 2 (see Register 15-2).

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
Section 16.0 "High-Speed PWM Module	Updated the High-Speed PWM Module Register Interconnection Diagram (see Figure 16-2).
(dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)"	Added the TRGCONx and TRIGx registers (see Register 16-12 and Register 16-14, respectively).
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the IRNG[1:0] bit value definitions and added Note 2 in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the Op amp/Comparator I/O Operating Modes Diagram (see Figure 25-1). Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3). Updated the Digital Filter Interconnect Block Diagram (see Figure 25-4). Added Section 25.1 "Op amp Application Considerations" . Added Note 2 to the Comparator Control Register (see Register 25-2). Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-5).
Section 27.0 "Special Features"	Updated the FICD Configuration Register, updated Note 1, and added Note 3 in the Configuration Byte Register Map (see Table 27-1). Added Section 27.2 "User ID Words ".
Section 30.0 "Electrical	Updated the following Absolute Maximum Ratings:
Characteristics"	 Maximum current out of Vss pin Maximum current into VDD pin
	Added Note 1 to the Operating MIPS vs. Voltage (see Table 30-1).
	Updated all Idle Current (IIDLE) Typical and Maximum DC Characteristics values (see Table 30-7).
	Updated all Doze Current (IDOZE) Typical and Maximum DC Characteristics values (see Table 30-9).
	Added Note 2, removed Parameter CM24, updated the Typical values Parameters CM10, CM20, CM21, CM32, CM41, CM44, and CM45, and updated the Minimum values for CM40 and CM41, and the Maximum value for CM40 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Updated Note 2 and the Typical value for Parameter VR310 in the Op amp/ Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Note 1, removed Parameter VRD312, and added Parameter VRD314 to the Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated the Minimum, Typical, and Maximum values for Internal LPRC Accuracy (see Table 30-22).
	Updated the Minimum, Typical, and Maximum values for Parameter SY37 in the Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer Timing Requirements (see Table 30-24).
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-35)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical	These SPI2 Timing Requirements were updated:
Characteristics" (Continued)	 Maximum value for Parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-36, Table 30-37, and Table 30-38)
	 Maximum value for Parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-40 and Table 30-42)
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-43)
	These SPI1 Timing Requirements were updated:
	 Maximum value for Parameters SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-44, Table 30-45, and Table 30-46)
	 Maximum value for Parameters SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-47 through Table 30-50)
	 Minimum value for Parameters SP40 and SP41 see Table 30-44 through Table 30-50)
	Updated all Typical values for the CTMU Current Source Specifications (see Table 30-55).
	Updated Note1, the Maximum value for Parameter AD06, the Minimum value for AD07, and the Typical values for AD09 in the ADC Module Specifications (see Table 30-56).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 30-57).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 30-58).
	Updated the Minimum and Maximum values for Parameter AD21b in the 10-bit Mode ADC Module Specifications (see Table 30-58).
	Updated Note 2 in the ADC Conversion (12-bit Mode) Timing Requirements (see Table 30-59).
	Updated Note 1 in the ADC Conversion (10-bit Mode) Timing Requirements (see Table 30-60).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Revision D (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	Removed the Analog Comparators column and updated the Op amps/Comparators column in Table 1 and Table 2.
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 30.0 "Electrical Characteristics"	Updated the VBOR specifications and/or its related note in the following electrical characteristics tables: Table 30-1 Table 30-4 Table 30-12 Table 30-14 Table 30-15 Table 30-16 Table 30-56 Table 30-57 Table 30-58 Table 30-59 Table 30-60

Revision E (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-4:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal	The following 512-Kbyte devices were added to the General Purpose Families table (see Table 1):
Controllers (up to	• PIC24EP512GP202
512-Kbyte Flash and 48-Kbyte SRAM) with High-	• PIC24EP512GP204
Speed PWM, Op amps, and	• PIC24EP512GP206
Advanced Analog"	dsPIC33EP512GP502
	dsPIC33EP512GP504
	dsPIC33EP512GP506
	The following 512-Kbyte devices were added to the Motor Control Families table (see Table 2):
	• PIC24EP512MC202
	• PIC24EP512MC204
	• PIC24EP512MC206
	• dsPIC33EP512MC202
	• dsPIC33EP512MC204
	dsPIC33EP512MC206
	• dsPIC33EP512MC502
	• dsPIC33EP512MC504
	• dsPIC33EP512MC506
	Certain Pin Diagrams were updated to include the new 512-Kbyte devices.
Section 4.0 "Memory Organization"	Added a Program Memory Map for the new 512-Kbyte devices (see Figure 4-4).
Organization	Added a Data Memory Map for the new dsPIC 512-Kbyte devices (see Figure 4-11).
	Added a Data Memory Map for the new PIC24 512-Kbyte devices (see Figure 4-16).
Section 7.0 "Interrupt Controller"	Updated the VECNUM bits in the INTTREG register (see Register 7-7).
Section 11.0 "I/O Ports"	Added tip 6 to Section 11.5 "I/O Helpful Tips".
Section 27.0 "Special Features"	The following modifications were made to the Configuration Byte Register Map (see Table 27-1):
	 Added the column Device Memory Size (Kbytes)
	Removed Notes 1 through 4
	Added addresses for the new 512-Kbyte devices
Section 30.0 "Electrical	Updated the Minimum value for Parameter DC10 (see Table 30-4).
Characteristics"	Added Power-Down Current (Ipd) parameters for the new 512-Kbyte devices (see Table 30-8).
	Updated the Minimum value for Parameter CM34 (see Table 30-53).
	Updated the Minimum and Maximum values and the Conditions for paramteer SY12 (see Table 30-22).

Revision F (November 2012)

Removed "Preliminary" from data sheet footer.

Revision G (March 2013)

This revision includes the following global changes:

- changes "FLTx" pin function to "FLTx" on all occurrences
- adds Section 31.0 "High-Temperature Electrical Characteristics" for high-temperature (+150°C) data

This revision also includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-5.

Section Name	Update Description
Cover Section	 Changes internal oscillator specification to 1.0% Changes I/O sink/source values to 12 mA or 6 mA Corrects 44-pin VTLA pin diagram (pin 32 now shows as 5V tolerant)
Section 4.0 "Memory Organization"	 Deletes references to Configuration Shadow registers Corrects the spelling of the JTAGIP and PTGWDTIP bits throughout Corrects the Reset value of all IOCON registers as C000h Adds footnote to Table 4-42 to indicate the absence of Comparator 3 in 28-pin devices
Section 6.0 "Resets"	 Removes references to cold and warm Resets, and clarifies the initial configuration of the device clock source on all Resets
Section 7.0 "Interrupt Controller"	Corrects the definition of GIE as "Global Interrupt Enable" (not "General")
Section 9.0 "Oscillator Configuration"	 Clarifies the behavior of the CF bit when cleared in software Removes POR behavior footnotes from all control registers Corrects the tuning range of the TUN[5:0] bits in Register 9-4 to an overall range ±1.5%
Section 13.0 "Timer2/3 and Timer4/5"	 Clarifies the presence of the ADC Trigger in 16-bit Timer3 and Timer5, as well as the 32-bit timers
Section 15.0 "Output Compare"	Corrects the first trigger source for SYNCSEL[4:0] (OCxCON2[4:0]) as OCxRS match
Section 16.0 "High-Speed PWM Module"	 Clarifies the source of the PWM interrupts in Figure 16-1 Corrects the Reset states of IOCONx[15:14] in Register 16-13 as '11'
Section 17.0 "Quadrature Encoder Interface (QEI) Module"	 Clarifies the operation of the IMV[1:0] bits (QEICON[9:8]) with updated text and additional notes Corrects the first prescaler value for QFVDIV[2:0] (QEI10C[13:11]), now 1:128
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	 Adds note to Figure 23-1 that Op Amp 3 is not available in 28-pin devices Changes "sample clock" to "sample trigger" in AD1CON1 (Register 23-1) Clarifies footnotes on op amp usage in Registers 23-5 and 23-6
Section 25.0 "Op Amp/ Comparator Module"	 Adds Note text to indicate that Comparator 3 is unavailable in 28-pin devices Splits Figure 25-1 into two figures for clearer presentation (Figure 25-1 for Op amp/ Comparators 1 through 3, Figure 25-2 for Comparator 4). Subsequent figures are renumbered accordingly. Corrects reference description in xxxxx (now (AVDD+AVSS)/2)
Section 27.0 "Special Features"	Changes CMSTAT[15] in Register 25-1 to "PSIDL" Corrects the addresses of all Configuration bytes for 512 Kbyte devices

TABLE A-5: MAJOR SECTION UPDATES

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	 Throughout: qualifies all footnotes relating to the operation of analog modules below VDDMIN (replaces "will have" with "may have") Throughout: changes all references of SPI timing parameter symbol "TscP" to "FscP" Table 30-1: changes VDD range to 3.0V to 3.6V Table 30-4: removes Parameter DC12 (RAM Retention Voltage) Table 30-3: adds Maximum IPD values, and removes all ∆IWDT entries Adds new Table 30-6) (Watchdog Timer Delta Current) with consolidated values removed from Table 30-8. All subsequent tables are renumbered accordingly. Table 30-11: changes Minimum and Maximum values for D120 and D130 adds Minimum and Maximum values for D150 through D156, and removes Typical values Table 30-12: reformats table for readability changes IOL conditions for D010 Table 30-19: splits temperature range and adds new values for F20a reduces temperature range for F20b to extended temperatures only Table 30-20: adds Maximum value to CM30 adds Maximum value to CM30 adds Maximum value to CM30 adds Maximum values for AD20 to externed temperatures only
	- removes all specifications for accuracy with external voltage references
Section 32.0 "DC and AC Device Characteristics Graphs"	Updates Figure 32-6 (Typical IDD @ 3.3V) with individual current vs. processor speed curves for the different program memory sizes
Section 33.0 "Packaging Information"	 Replaces drawing C04-149C (64-pin QFN, 7.15 x 7.15 exposed pad) with C04-154A (64-pin QFN, 5.4 x 5.4 exposed pad)

TABLE A-5: MAJOR SECTION UPDATES (CONTINUED)

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

TABLE A-6:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
Cover Section	 Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	Corrects address range from 0x2FFF to 0x7FFF
	 Corrects DSRPAG and DSWPAG (now 3 hex digits)
	Changes Call Stack Frame from [15:1] to PC[15:0]
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program Memory"	Corrects descriptions of NVM registers
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	Corrects ICTSEL[12:10] bits (now ICTSEL[2:0])
Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)"	Corrects QCAPEN bit description
Section 19.0 "Inter- Integrated Circuit (I ² C)"	 Adds note to clarify that 100kbit/sec operation of I²C is not possible at high processor speeds
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	 Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON[10]) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC[2:0]
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High- Temperature Electrical Characteristics"	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)

Revision J (June 2020)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-7.

TABLE A-7:	MAJOR SECTION UPDATES
------------	------------------------------

Section Name	Update Description
Cover Section	 Removes "Planned" from the "Qualification and Class B Support" section. Adds UQFN package to Table 1 and Table 2. Adds two 36-pin UQFN pin diagrams. Changes the RD8 pin to non-5V tolerant. Adds the "Referenced Sources" section.
Section 2.7 "Oscillator Value Conditions on Device Start-up"	Corrects the oscillator source frequency.
Section 3.0 "CPU"	 Changes to Note 1 here and every chapter throughout document.
Section 4.0 "Memory Organization"	Changes to Figure 4-11 and Figure 4-16.Changes to Table 4-35.
Section 5.0 "Flash Program Memory"	Changes to Register 5-1.
Section 7.0 "Interrupt Controller"	Changes to Table 7-1.
Section 9.0 "Oscillator Configuration"	Changes to Table 9-1.
Section 10.0 "Power-Saving Features"	 Replaces Example 10-1 and adds Example 10-2. Changes to Section 10.2.1 "Sleep Mode".
Section 11.0 "I/O Ports"	Changes to Section 11.2 "Configuring Analog and Digital Port Pins".
Section 13.0 "Timer2/3 and Timer4/5"	Changes to Register 13-1 and Register 13-2.
Section 14.0 "Input Capture"	Changes to Register 14-2.
Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXMC20X Devices Only)"	 Changes to Note in Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)". Changes to Register 16-7 and Register 16-13.
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Changes to Register 23-8.
Section 25.0 "Op Amp/ Comparator Module"	 Changes to Figure 25-1. Changes to Section 25.1 "Op Amp Application Considerations". Changes to Register 25-2 and Register 25-7.
Section 27.0 "Special Features"	Changes to Table 27-2.
Section 30.0 "Electrical Characteristics"	• Changes to Table 30-3, Table 30-6, Table 30-11, Table 30-14 and Table 30-53.
Section 31.0 "High- Temperature Electrical Characteristics"	Changes to Table 31-2.Adds Table 31-9, Table 31-10 and Table 31-13.
Section 32.0 "DC and AC Device Characteristics Graphs"	Replaces Figure 32-10.
Section 33.0 "Packaging Information"	 Adds package marking diagram in Section 33.1 "Package Marking Information". Adds packaging diagrams to Section 33.2 "Package Details".
"Product Identification System"	Adds M5 packaging description.

NOTES:

INDEX

Α

Absolute Maximum Ratings	407
AC Characteristics	
10-Bit ADC Conversion Requirements	471
12-Bit ADC Conversion Requirements	469
ADC Module	465
ADC Module (10-Bit Mode)	
ADC Module (12-Bit Mode)	466, 479
Capacitive Loading Requirements on	
Output Pins	
DMA Module Requirements	
ECANx I/O Requirements	
External Clock	
High-Speed PWMx Requirements	
I/O Timing Requirements	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
Input Capture x Requirements	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Internal RC Accuracy	
Load Conditions	
OCx/PWMx Mode Requirements	427
Op Amp/Comparator Voltage Reference Settlin	
Time Specifications	
Output Compare x Requirements	
PLL Clock	
QEI External Clock Requirements	
QEI Index Pulse Requirements	
Quadrature Decoder Requirements	
Reset, Watchdog Timer, Oscillator Start-up Tin	
Power-up Timer Requirements SPI1 Master Mode (Full-Duplex, CKE = 0, CKF	
SMP = 1) Requirements	447
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements	447 9 = x, 446
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0,	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0,	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1,	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements	
SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements SPI2 Maximum Data/Clock Rate Summary SPI2 Maximum Data/Clock Rate Summary SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, CKP = 1, CLP = 1, CLP	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements SPI2 Maximum Data/Clock Rate Summary SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements SPI2 Maximum Data/Clock Rate Summary SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements SPI2 Maximum Data/Clock Rate Summary SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements SPI2 Maximum Data/Clock Rate Summary SPI2 Maximum Data/Clock Rate Summary SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements SPI2 Maximum Data/Clock Rate Summary SPI2 Maximum Data/Clock Rate Summary SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 	
 SMP = 1) Requirements SPI1 Master Mode (Full-Duplex, CKE = 1, CKF SMP = 1) Requirements SPI1 Master Mode (Half-Duplex, Transmit Only Requirements SPI1 Maximum Data/Clock Rate Summary SPI1 Maximum Data/Clock Rate Summary SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 1) Requirements SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements SPI2 Master Mode (Half-Duplex, Transmit Only Requirements SPI2 Maximum Data/Clock Rate Summary SPI2 Maximum Data/Clock Rate Summary SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements	

Timer2/Timer4 External Clock Requirements	
Timer3/Timer5 External Clock Requirements	425
UARTx I/O Requirements	460
ADC	
Control Registers	327
Helpful Tips	326
Key Features	323
Resources	326
Arithmetic Logic Unit (ALU)	
В	
Bit-Reversed Addressing	117
Example	
Implementation	
Sequence Table (16-Entry)	
Block Diagrams	110
	•
Data Access from Program Space Address	
Generation	
16-Bit Timer1 Module	
ADC Conversion Clock Period	325
ADC with Connection Options for ANx Pins	
and Op Amps	324
Arbiter Architecture	112
BEMF Voltage Measurement Using ADC	36
Boost Converter Implementation	34
CALL Stack Frame	113
Comparator (Module 4)	
Connections for On-Chip Voltage Regulator	
CPU Core	
CRC Module	
CRC Shift Engine	
CTMU Module	
Digital Filter Interconnect	
	250
5	
DMA Controller	143
DMA Controller DMA Controller Module	143 141
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202	143 141 X/50X
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X	143 141 X/50X 27
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module	143 141 X/50X 27 290
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation	143 141 X/50X 27 290 107
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation	143 141 X/50X 27 290 107 108
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Example of MCLR Pin Connections	143 141 X/50X 27 290 107 108 32
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation	143 141 X/50X 27 290 107 108 32
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Example of MCLR Pin Connections	143 141 X/50X 27 290 107 108 32 229
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation EXample of MCLR Pin Connections High-Speed PWMx Architectural Overview	143 141 X/50X 27 290 107 108 32 229 230
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation EDS Write Address Generation Example of MCLR Pin Connections High-Speed PWMx Architectural Overview High-Speed PWMx Register Interconnection I2Cx Module	143 141 X/50X 27 290 107 108 32 229 220 230 276
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation EDS Write Address Generation Example of MCLR Pin Connections High-Speed PWMx Architectural Overview High-Speed PWMx Register Interconnection I2Cx Module Input Capture x	143 141 X/50X 27 290 107 108 32 32 229 230 276 215
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation EXAMPLE OF MCLR Pin Connections High-Speed PWMx Register Interconnection I2Cx Module Input Capture x Interleaved PFC	143 141 X/50X 27 290 107 108 32 32 229 230 215
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation EXAMPLE OF MCLR Pin Connections High-Speed PWMx Register Interconnection IQC Module Interleaved PFC Multiphase Synchronous Buck Converter	143 141 X/50X 27 290 107 108 32 32 229 230 215
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Interlay of MCLR Pin Connections Ingh-Speed PWMx Register Interconnection I2Cx Module Input Capture x Interleaved PFC Multiphase Synchronous Buck Converter Multiplexing Remappable Output for RPn	143 141 X/50X 27 290 107 108 32 32 229 230
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation EXAMPLE OF MCLR Pin Connections High-Speed PWMx Register Interconnection Inght Capture x Interleaved PFC Multiphase Synchronous Buck Converter Multiplexing Remappable Output for RPn Op Amp Configuration A	143 141 X/50X 27 290 107 108 32 32 229 230 215 36 35 360
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Interlase of MCLR Pin Connections Ingh-Speed PWMx Register Interconnection I2Cx Module Interleaved PWMx Register Interconnection Interleaved PFC Multiphase Synchronous Buck Converter Multiplexing Remappable Output for RPn Op Amp Configuration A Op Amp Configuration B	143 141 X/50X 27 290 107 108 32 32 229 230 215 36 35 360 362
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Interleaved PFC Multiphase Synchronous Buck Converter Multiplexing Remappable Output for RPn Op Amp Configuration A Op Amp Configuration B Op Amp/Comparator Voltage Reference Module	143 141 X/50X 27 290 107 108 32 32
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC200 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Interleaved PFC Multiphase Synchronous Buck Converter Multiplexing Remappable Output for RPn Op Amp Configuration A Op Amp Configuration B Op Amp/Comparator Voltage Reference Module Op Amp/Comparator x (Modules 1, 2, 3)	143 141 X/50X 27 290 107 108 32
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Interleaved PFC Multiphase Synchronous Buck Converter Multiphase Synchronous Buck Converter Multiphase Synchronous Buck Converter Multiphase Synchronous Buck Converter Op Amp Configuration A Op Amp Configuration B Op Amp/Comparator Voltage Reference Module Op Amp/Comparator x (Modules 1, 2, 3) Oscillator System	143 141 X/50X 27 290 107 108 32 32 229 32 32 360 355 358 357 357
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC200 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Inght Speed PWMx Architectural Overview High-Speed PWMx Register Interconnection I2Cx Module Input Capture x Interleaved PFC Multiphase Synchronous Buck Converter Multiplexing Remappable Output for RPn Op Amp Configuration A Op Amp Configuration B Op Amp/Comparator Voltage Reference Module Op Amp/Comparator x (Modules 1, 2, 3) Oscillator System Output Compare x Module	143 141 X/50X 27 290 107 108 32
DMA Controller DMA Controller Module	143 141 X/50X 27 290 107 108 32
DMA Controller DMA Controller Module	143 141 X/50X 27 290 107 108 32
DMA Controller DMA Controller Module	143 141 X/50X 27 290 107 108 32 229 230 215 360 357 362 e358 357 362 e358 357 155 221 156 40 340
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Ingut Capture x Interleaved PFC Multiphase Synchronous Buck Converter Multiphase	143 141 X/50X 27 290 107 108 32 229 210 215 36 35 35 36 352 36 362 352 36 357 355 357 357 357 357 357 36 352 362 357
DMA Controller DMA Controller Module	143 141 X/50X 27 290 107 108 32 229 200 215 36 35 35 36 35 362 362 362 362 357 155 155 221 156 40 340 320 32
DMA Controller DMA Controller Module	143 141 X/50X 27 290 107 108 32 229 200 215 36 35 35 36 35 362 362 362 362 357 155 155 221 156 40 340 320 32
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC202 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Ingut Capture x Interleaved PFC Multiphase Synchronous Buck Converter Multiphase	143 141 X/50X 27 290 107 108 32 229 200 215 36 35 35 35 35 36 35 315 315 320
DMA Controller DMA Controller Module dsPIC33EPXXXGP50X, dsPIC33EPXXXMC203 and PIC24EPXXXGP/MC20X ECAN Module EDS Read Address Generation EDS Write Address Generation Example of MCLR Pin Connections High-Speed PWMx Architectural Overview High-Speed PWMx Register Interconnection I2Cx Module Input Capture x Interleaved PFC Multiphase Synchronous Buck Converter Multiplexing Remappable Output for RPn Op Amp Configuration A Op Amp Configuration B Op Amp/Comparator Voltage Reference Module Op Amp/Comparator x (Modules 1, 2, 3) Oscillator System Output Compare x Module PLL Module PTG Module Quadrature Encoder Interface Recommended Minimum Connection Remappable Input for U1RX	143 141 X/50X 27 290 107 108 32 229 20 215 36 35 35 35 35 360 352 360 352 357 352 352 357 352 355 352 3222 3222 3222 3222 3222
DMA Controller DMA Controller Module	143 141 X/50X 27 290 107 108 32 229 20 215 36 35 35 357 352 360 352 357 352 357 352 357 352 357 352 357 352 357 352 357 375

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Suggested Oscillator Circuit Placement	
Type B Timer (Timer2 and Timer4)	210
Type B/Type C Timer Pair (32-Bit Timer)	211
Type C Timer (Timer3 and Timer5)	210
UARTx Module	283
User-Programmable Blanking Function	359
Watchdog Timer (WDT)	393
Brown-out Reset (BOR)	392

С

Charge Time Measurement Unit. See CTMU.	
Code Examples	
IC1 Connection to QEI1 Input on Pin 43	
of dsPIC33EPXXXMC206	178
Port Write/Read	176
PWMx Write-Protected Register	
Unlock Sequence	
PWRSAV Instruction Syntax	165
Sleep Mode PWRSAV Instruction Syntax	166
Code Protection	381, 394
CodeGuard Security	381, 394
Configuration Bits	
Description	
Configuration Byte Register Map	
Configuring Analog and Digital Port Pins	176
Addressing Modes	
Clocking System Options	
Fast RC (FRC) Oscillator	
FRC Oscillator with PLL	
FRC Oscillator with Postscaler	156
Low-Power RC (LPRC) Oscillator	
Primary (XT, HS, EC) Oscillator	
Primary Oscillator with PLL	
Control Registers	
Data Space Addressing	
Instruction Set	
Resources	41
CTMU	
Control Registers	
Resources	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	540

D

Data Address Space	53
Memory Map for dsPIC33EP128MC20X/50X,	
dsPIC33EP128GP50X Devices	56
Memory Map for dsPIC33EP256MC20X/50X,	
dsPIC33EP256GP50X Devices	57
Memory Map for dsPIC33EP32MC20X/50X,	
dsPIC33EP32GP50X Devices	54
Memory Map for dsPIC33EP512MC20X/50X,	
dsPIC33EP512GP50X Devices	58
Memory Map for dsPIC33EP64MC20X/50X,	
dsPIC33EP64GP50X Devices	55
Memory Map for PIC24EP128GP/MC20X/50X	
Devices	61
Memory Map for PIC24EP256GP/MC20X/50X	
Devices	62
Memory Map for PIC24EP32GP/MC20X/50X	
Devices	59
Memory Map for PIC24EP512GP/MC20X/50X	
Devices	63

Devices	60
Near Data Space	53
Organization, Alignment	53
SFR Space	
Width	
Data Memory	
Arbitration and Bus Master Priority	112
Data Space	
Extended X	
Paged Memory Scheme	107
DC and AC Characteristics	
Graphs	481
DC Characteristics	
BOR	
CTMU Current Source Requirements	464
Doze Current (IDOZE)	413, 475
High Temperature	474
I/O Pin Input Specifications	414
I/O Pin Output Specifications	417, 476
Idle Current (IIDLE)	411, 475
Op Amp/Comparator Requirements	461, 478
Op Amp/Comparator Voltage Reference	
Requirements	463
Operating Current (IDD)	410, 475
Operating MIPS vs. Voltage	408, 474
Power-Down Current (IPD)	412, 475
Program Memory	
Temperature and Voltage	474
Temperature and Voltage Specifications	409
Thermal Operating Conditions	
Watchdog Timer Delta Current	413
Development Support	405
Device Overview	27
DMA Controller	
Channel to Peripheral Associations	142
Control Registers	143
DMAxCNT	143
DMAxCON	143
DMAxPAD	143
DMAxREQ	143
DMAxSTA	143
DMAxSTB	143
Resources	143
Supported Peripherals	141
Doze Mode	167
DSP Engine	46
E	

Memory Map for PIC24EP64GP/MC20X/50X

ECAN Module	
Control Registers	
Message Buffers	
Word 0	
Word 1	
Word 2	313
Word 3	
Word 4	
Word 5	
Word 6	
Word 7	
Modes of Operation	
Overview	
Resources	
Electrical Characteristics	407
AC	419, 477

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Enhanced CAN (ECAN) Module	289
Equations	
Device Operating Frequency	156
FPLLO Calculation	156
Fvco Calculation	156
Errata	25
_	

F RTSP Operation......122

G

Guidelines for Getting Started	31
Application Examples	34
Basic Connection Requirements	31
CPU Logic Filter Capacitor Connection (VCAP)	32
Decoupling Capacitors	31
External Oscillator Pins	33
ICSP Pins	33
Master Clear (MCLR) Pin	32
Oscillator Value Conditions on Start-up	34
Unused I/Os	34

н

High-Speed PWM	227
Control Registers	
Faults	227
Resources	
High-Temperature Electrical Characteristics	
Absolute Maximum Ratings	

L

I/O Ports	175
Helpful Tips	
Parallel I/O (PIO)	
Resources	
Write/Read Timing	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	. 381, 394
Input Capture	
Control Registers	
Resources	
Input Change Notification (ICN)	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	
MAC Instructions	
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	115
Instruction Set	
Overview	
Summary	
Symbols Used in Opcode Descriptions	
Inter-Integrated Circuit (I ² C)	
Control Registers	
Resources	

Internal RC Oscillator	
Use with WDT	393
Internet Address	540
Interrupt Controller	
Control and Status Registers	133
INTCON1	133
INTCON2	133
INTCON3	133
INTCON4	133
INTTREG	133
Interrupt Vector Details	131
Interrupt Vector Table (IVT)	129
Reset Sequence	129
Resources	133
J	
INTCON3 INTCON4 INTTREG Interrupt Vector Details Interrupt Vector Table (IVT) Reset Sequence	

JTAG	Boundary Scan Interface	381
JTAG	Interface	394

Μ

Memory Maps	
Extended Data Space	111
Memory Organization	47
Resources	64
Microchip Internet Web Site	540
Modulo Addressing	116
Operation Example	
Start and End Address	116
W Address Register Selection	116

0

Op Amp	
Application Considerations	360
Configuration A	360
Configuration B	
Op Amp/Comparator	357
Control Registers	363
Resources	362
Open-Drain Configuration	176
Oscillator	
Control Registers	158
Resources	157
Output Compare	221
Control Registers	223
Resources	222

Ρ

Packaging	485
Marking	. 485, 487
Peripheral Module Disable (PMD)	167
Peripheral Pin Select (PPS)	177
Available Peripherals	177
Available Pins	177
Control	177
Control Registers	185
Input Mapping	178
Output Selection for Remappable Pins	182
Pin Selection for Selectable Input Sources	180
Selectable Input Sources	179
Peripheral Trigger Generator (PTG) Module	339
Pinout I/O Descriptions (table)	

Power-Saving Features165
Clock Frequency
Clock Switching
Instruction-Based Modes
Idle
Interrupts Coincident with Power Save
Instructions
Sleep
Resources
Program Address Space
Construction119
Data Access from Program Memory Using
Table Instructions120
Memory Map (dsPIC33EP128GP50X,
dsPIC33EP128MC20X/50X,
PIC24EP128GP/MC20X Devices)49
Memory Map (dsPIC33EP256GP50X,
dsPIC33EP256MC20X/50X,
PIC24EP256GP/MC20X Devices)50
Memory Map (dsPIC33EP32GP50X,
dsPIC33EP32MC20X/50X,
PIC24EP32GP/MC20X Devices)
Memory Map (dsPIC33EP512GP50X,
dsPIC33EP512MC20X/50X,
PIC24EP512GP/MC20X Devices)
Memory Map (dsPIC33EP64GP50X,
dsPIC33EP64MC20X/50X.
PIC24EP64GP/MC20X Devices)
Table Read High Instructions (TBLRDH) 120
Table Read Low Instructions (TBLRDL)
Program Memory
Organization
-
Reset Vector
Programmable CRC Generator
Control Registers
Overview
Resources
Programmer's Model
Register Descriptions
PTG
Control Registers
Introduction339
Output Descriptions
Resources
Step Commands and Format352

gisters	
-	
oder Interface (QEI)	251
	gisters oder Interface (QEI)

R

Referenced Sources Register Maps	26
ADC1	
CPU Core (dsPIC33EPXXXMC20X/50X,	
dsPIC33EPXXXGP50X Devices)	65
CPU Core (PIC24EPXXXGP/MC20X Devices)	67
CRC	90
CTMU	
DMAC	100
ECAN1 (When WIN (C1CTRL1) = 0 or 1) for	
dsPIC33EPXXXMC/GP50X Devices	
ECAN1 (When WIN (C1CTRL1) = 0) for	
dsPIC33EPXXXMC/GP50X Devices	

ECAN1 (WIN (C1CTRL1) = 1) for dsPIC33EPXXXMC/GP50X Devices
I2C1 and I2C2
Input Capture 1 through Input Capture 4 78
Interrupt Controller
(dsPIC33EPXXXGP50X Devices)71
Interrupt Controller
(dsPIC33EPXXXMC20X Devices)
Interrupt Controller
(dsPIC33EPXXXMC50X Devices)
Interrupt Controller
(PIC24EPXXXGP20X Devices)68
Interrupt Controller
(PIC24EPXXXMC20X Devices) 69
JTAG Interface
NVM
Op Amp/Comparator
Output Compare 1 through Output Compare 4
Duput Compare 1 tillough Output Compare 4
PMD (dsPIC33EPXXXGP50X Devices)
PMD (dsPIC33EPXXXMC20X Devices)
PMD (dsPIC33EPXXXMC50X Devices)
PMD (PIC24EPXXXGP20X Devices)
PMD (PIC24EPXXXMC20X Devices)
PORTA (PIC24EPXXXGP/MC202,
dsPIC33EPXXXGP/MC202/502 Devices) 106
PORTA (PIC24EPXXXGP/MC203,
dsPIC33EPXXXGP/MC203/503 Devices) 105
PORTA (PIC24EPXXXGP/MC204,
dsPIC33EPXXXGP/MC204/504 Devices) 104
PORTA (PIC24EPXXXGP/MC206,
dsPIC33EPXXXGP/MC206/506 Devices) 101
PORTB (PIC24EPXXXGP/MC202,
dsPIC33EPXXXGP/MC202/502 Devices) 106
PORTB (PIC24EPXXXGP/MC203,
dsPIC33EPXXXGP/MC203/503 Devices) 105
PORTB (PIC24EPXXXGP/MC204,
dsPIC33EPXXXGP/MC204/504 Devices) 104
PORTB (PIC24EPXXXGP/MC206,
dsPIC33EPXXXGP/MC206/506 Devices) 101
PORTC (PIC23EPXXXGP/MC203,
dsPIC33EPXXXGP/MC203/503 Devices) 105
PORTC (PIC24EPXXXGP/MC204,
dsPIC33EPXXXGP/MC204/504 Devices) 104
PORTC (PIC24EPXXXGP/MC206,
dsPIC33EPXXXGP/MC206/506 Devices) 101
PORTD (PIC24EPXXXGP/MC206,
dsPIC33EPXXXGP/MC206/506 Devices) 102
PORTE (PIC24EPXXXGP/MC206,
dsPIC33EPXXXGP/MC206/506 Devices) 102
PORTF (PIC24EPXXXGP/MC206,
dsPIC33EPXXXGP/MC206/506 Devices) 102
PORTG (PIC24EPXXXGP/MC206 and
dsPIC33EPXXXGP/MC206/506 Devices) 103
PPS Input (dsPIC33EPXXXGP50X Devices)
PPS Input (dsPIC33EPXXXMC20X Devices)
PPS Input (dsPIC33EPXXXMC50X Devices)
PPS Input (PIC24EPXXXGP20X Devices)
PPS Input (PIC24EPXXXMC20X Devices)
PPS Output (dsPIC33EPXXXGP/MC202/502,
PIC24EPXXXGP/MC202 Devices)
PPS Output (dsPIC33EPXXXGP/MC203/503,
PIC24EPXXXGP/MC203 Devices)
PPS Output (dsPIC33EPXXXGP/MC204/504,
PIC24EPXXXGP/MC204 Devices)

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

PPS Output (dsPIC33EPXXXGP/MC206/506,	
PIC24EPXXGP/MC206 Devices)	1
PTG	
PWM (dsPIC33EPXXXMC20X/50X,	0
PIC24EPXXXMC20X Devices)	1
PWM Generator 1 (dsPIC33EPXXXMC20X/50X,	•
PIC24EPXXXMC20X Devices)	1
	i.
PWM Generator 2 (dsPIC33EPXXXMC20X/50X,	~
PIC24EPXXXMC20X Devices)	2
PWM Generator 3 (dsPIC33EPXXXMC20X/50X,	_
PIC24EPXXXMC20X Devices)8	2
QEI1 (dsPIC33EPXXXMC20X/50X,	
PIC24EPXXXMC20X Devices)8	
Reference Clock9	
SPI1 and SPI28	
System Control9	5
Timer1 through Timer57	7
UART1 and UART28	4
Registers	
AD1CHS0 (ADC1 Input Channel 0 Select)	5
AD1CHS123 (ADC1 Input	
Channels 1, 2, 3 Select)	3
AD1CON1 (ADC1 Control 1)	
AD1CON2 (ADC1 Control 2)	
AD1CON3 (ADC1 Control 3)	
AD1CON4 (ADC1 Control 4)33	
AD1CSSH (ADC1 Input Scan Select High)	
AD1CSSL (ADC1 Input Scan Select Low)	
ALTDTRx (PWMx Alternate Dead-Time)	0
AUXCONx (PWMx Auxiliary Control)24	9
CHOP (PWMx Chop Clock Generator)	
CLKDIV (Clock Divisor)16	
CM4CON (Comparator 4 Control)	
CMSTAT (Op Amp/Comparator Status)	2
CMvCON (Comparator v Control v = 1.2.2)	5
CMxCON (Comparator x Control, x = 1,2,3)	
CMxFLTR (Comparator x Filter Control)	3
CMxMSKCON (Comparator x	
Mask Gating Control)37	1
CMxMSKSRC (Comparator x	
Mask Source Select Control)	
CORCON (Core Control) 44, 13	5
CRCCON1 (CRC Control 1)37	7
CRCCON2 (CRC Control 2)	
CRCXORH (CRC XOR Polynomial High)	
CRCXORL (CRC XOR Polynomial Low)	
CTMUCON1 (CTMU Control 1)	
CTMUCON2 (CTMU Control 2)	
CTMUICON (CTMU Current Control)	
	I
CVRCON (Comparator Voltage	
Reference Control)	4
CxBUFPNT1 (ECANx Filter 0-3	
Buffer Pointer 1)30	
CxBUFPNT2 (ECANx Filter 4-7 Buffer Pointer 2) 30	3
CxBUFPNT3 (ECANx Filter 8-11	
Buffer Pointer 3)30	3
CxBUFPNT4 (ECANx Filter 12-15	
Buffer Pointer 4)	4
CxCFG1 (ECANx Baud Rate Configuration 1)	
CxCFG2 (ECANX Baud Rate Configuration 1)	
CxCTRL1 (ECANx Control 1)	
CxCTRL2 (ECANx Control 2)	
CxEC (ECANx Transmit/Receive Error Count)	
CxFCTRL (ECANx FIFO Control)	
CxFEN1 (ECANx Acceptance Filter Enable 1) 30	
CxFIFO (ECANx FIFO Status)29	6

CxFMSKSEL1 (ECANx Filter 7-0	
Mask Selection 1) 306	5
CxFMSKSEL2 (ECANx Filter 15-8	
Mask Selection 2) 307	,
CxINTE (ECANx Interrupt Enable) 299	
CxINTF (ECANx Interrupt Flag) 297	,
CxRXFnEID (ECANx Acceptance Filter n	
Extended Identifier) 306	5
CxRXFnSID (ECANx Acceptance Filter n	
Standard Identifier) 305	;
CxRXFUL1 (ECANx Receive Buffer Full 1) 309)
CxRXFUL2 (ECANx Receive Buffer Full 2) 309)
CxRXMnEID (ECANx Acceptance Filter Mask n	
Extended Identifier)	3
CxRXMnSID (ECANx Acceptance Filter Mask n	
Standard Identifier)	3
CxRXOVF1 (ECANx Receive Buffer Overflow 1) 310	
CxRXOVF2 (ECANx Receive Buffer Overflow 2) 310)
CxTRmnCON (ECANx TX/RX Buffer mn	
Control)	
CxVEC (ECANx Interrupt Code) 294	
DEVID (Device ID) 391	
DEVREV (Device Revision)	
DMALCA (DMA Last Channel Active Status)	
DMAPPS (DMA Ping-Pong Status) 153	
DMAPWC (DMA Peripheral Write	
Collision Status))
DMARQC (DMA Request Collision Status)	
DMAxCNT (DMA Channel x Transfer Count)	
DMAxCON (DMA Channel x Control)	
DMAxPAD (DMA Channel x	
Peripheral Address)	2
DMAxREQ (DMA Channel x IRQ Select)	
DMAxSTAH (DMA Channel x	, ,
Start Address A, High)	\$
DMAxSTAL (DMA Channel x	<i>'</i>
Start Address A, Low)	\$
DMAxSTBH (DMA Channel x S	<i>'</i>
tart Address B, High) 147	,
DMAxSTBL (DMA Channel x	
Start Address B, Low)	,
DSADRH (DMA Most Recent RAM	
High Address)	2
DSADRL (DMA Most Recent RAM	'
Low Address)	2
DTRx (PWMx Dead-Time)	
FCLCONx (PWMx Fault Current-Limit Control)	
FGS Configuration	
FICD Configuration	
FOSC Configuration	
FOSCSEL Configuration	
FPOR Configuration	
FWDT Configuration	
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	
I2CxSTAT (I2Cx Status)	
ICxCON1 (Input Capture x Control 1)	,
ICxCON2 (Input Capture x Control 2)	
INDX1CNTH (Index Counter 1 High Word)	
INDX1CNTL (Index Counter 1 Low Word)	
INDX16112 (Index Counter 1 Hold)	
INT1HI DH (Interval 1 Timer Hold High Word) 266	2
INT1HLDH (Interval 1 Timer Hold High Word)	2
INT1HLDL (Interval 1 Timer Hold Low Word) 266	5
INT1HLDH (Interval 1 Timer Hold High Word)	2000

INTCON1 (Interrupt Control 1)136
INTCON2 (Interrupt Control 2)138
INTCON3 (Interrupt Control 3)139
INTCON4 (Interrupt Control 4)139
INTTREG (Interrupt Control and Status)140
IOCONx (PWMx I/O Control)242
LEBCONx (PWMx Leading-Edge
Blanking Control)247
LEBDLYx (PWMx Leading-Edge
Blanking Delay)
MDC (PWMx Master Duty Cycle)
NVMADRH (Nonvolatile Memory Address High) 124
NVMADRL (Nonvolatile Memory Address Low) 124
NVMCON (Nonvolatile Memory (NVM) Control) 123
NVMKEY (Nonvolatile Memory Key)124
OCxCON1 (Output Compare x Control 1)223
OCxCON2 (Output Compare x Control 2)
OSCCON (Oscillator Control)
OSCTUN (FRC Oscillator Tuning) 163
PDCx (PWMx Generator Duty Cycle)239
PHASEx (PWMx Primary Phase-Shift)
PLLFBD (PLL Feedback Divisor)162
PMD1 (Peripheral Module Disable Control 1)169
PMD2 (Peripheral Module Disable Control 2)
PMD3 (Peripheral Module Disable Control 3)
PMD4 (Peripheral Module Disable Control 4)172
PMD6 (Peripheral Module Disable Control 6)
PMD7 (Peripheral Module Disable Control 7)174
POS1CNTH (Position Counter 1 High Word)260
POS1CNTL (Position Counter1 Low Word)260
POS1HLD (Position Counter 1 Hold)260
PTCON (PWMx Time Base Control)
PTCON2 (PWMx Primary Master
PTCON2 (PWMx Primary Master Clock Divider Select 2) 234
Clock Divider Select 2)234
Clock Divider Select 2)234 PTGADJ (PTG Adjust)350
Clock Divider Select 2)234 PTGADJ (PTG Adjust)350
Clock Divider Select 2)234 PTGADJ (PTG Adjust)350 PTGBTE (PTG Broadcast Trigger Enable)345
Clock Divider Select 2)
Clock Divider Select 2)234 PTGADJ (PTG Adjust)350 PTGBTE (PTG Broadcast Trigger Enable)345 PTGC0LIM (PTG Counter 0 Limit)348 PTGC1LIM (PTG Counter 1 Limit)349
Clock Divider Select 2)234 PTGADJ (PTG Adjust)350 PTGBTE (PTG Broadcast Trigger Enable)345 PTGC0LIM (PTG Counter 0 Limit)348 PTGC1LIM (PTG Counter 1 Limit)349
Clock Divider Select 2)
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGC0LIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGC0LIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGC0LIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGC0LIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGC0LIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQPTR (PTG Step Queue Pointer)351
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGC0LIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEX (PTG Step Queue Pointer)351PTGQUEX (PTG Step Queue x)351
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGC0LIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEX (PTG Step Queue Pointer)351PTGQUEX (PTG Step Queue x)351
Clock Divider Select 2) 234 PTGADJ (PTG Adjust) 350 PTGBTE (PTG Broadcast Trigger Enable) 345 PTGCOLIM (PTG Counter 0 Limit) 348 PTGC1LIM (PTG Counter 1 Limit) 349 PTGCON (PTG Control) 344 PTGCST (PTG Control) 342 PTGHOLD (PTG Hold) 349 PTGL0 (PTG Literal 0) 350 PTGQUEX (PTG Step Queue Pointer) 351 PTGSDLIM (PTG Step Delay Limit) 348
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEx (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347
Clock Divider Select 2) 234 PTGADJ (PTG Adjust) 350 PTGBTE (PTG Broadcast Trigger Enable) 345 PTGCOLIM (PTG Counter 0 Limit) 348 PTGC1LIM (PTG Counter 1 Limit) 349 PTGCON (PTG Control) 344 PTGCST (PTG Control) 342 PTGHOLD (PTG Hold) 349 PTGL0 (PTG Literal 0) 350 PTGQUEX (PTG Step Queue Pointer) 351 PTGSDLIM (PTG Step Delay Limit) 348
Clock Divider Select 2) 234 PTGADJ (PTG Adjust) 350 PTGBTE (PTG Broadcast Trigger Enable) 345 PTGCOLIM (PTG Counter 0 Limit) 348 PTGC1LIM (PTG Counter 1 Limit) 349 PTGCON (PTG Control) 344 PTGCST (PTG Control) 342 PTGHOLD (PTG Hold) 349 PTGL0 (PTG Literal 0) 350 PTGQUEX (PTG Step Queue Pointer) 351 PTGSDLIM (PTG Step Delay Limit) 348 PTGT0LIM (PTG Timer0 Limit) 347
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEx (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer1 Limit)347PTPER (PWMx Primary Master347
Clock Divider Select 2) 234 PTGADJ (PTG Adjust) 350 PTGBTE (PTG Broadcast Trigger Enable) 345 PTGCOLIM (PTG Counter 0 Limit) 348 PTGC1LIM (PTG Counter 1 Limit) 349 PTGCON (PTG Control) 344 PTGCST (PTG Control) 342 PTGHOLD (PTG Hold) 349 PTGL0 (PTG Literal 0) 350 PTGQUEX (PTG Step Queue Pointer) 351 PTGSDLIM (PTG Step Delay Limit) 348 PTGT0LIM (PTG Timer0 Limit) 347 PTGT1LIM (PTG Timer1 Limit) 347 PTER (PWMx Primary Master 325
Clock Divider Select 2) 234 PTGADJ (PTG Adjust) 350 PTGBTE (PTG Broadcast Trigger Enable) 345 PTGCOLIM (PTG Counter 0 Limit) 348 PTGC1LIM (PTG Counter 1 Limit) 349 PTGCON (PTG Control) 344 PTGCST (PTG Control) 342 PTGHOLD (PTG Hold) 349 PTGL0 (PTG Literal 0) 350 PTGQUEX (PTG Step Queue Pointer) 351 PTGSDLIM (PTG Step Delay Limit) 348 PTGT0LIM (PTG Timer0 Limit) 347 PTGT1LIM (PTG Timer1 Limit) 347 PTER (PWMx Primary Master 325
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGC0LIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEx (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer1 Limit)347PTPER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237
Clock Divider Select 2) 234 PTGADJ (PTG Adjust) 350 PTGBTE (PTG Broadcast Trigger Enable) 345 PTGCOLIM (PTG Counter 0 Limit) 348 PTGC1LIM (PTG Counter 1 Limit) 349 PTGCON (PTG Control) 344 PTGCST (PTG Control) 344 PTGCON (PTG Control) 342 PTGHOLD (PTG Hold) 349 PTGL0 (PTG Literal 0) 350 PTGQUEX (PTG Step Queue Pointer) 351 PTGSDLIM (PTG Step Queue x) 351 PTGSDLIM (PTG Timer0 Limit) 347 PTGT1LIM (PTG Timer1 Limit) 347 PTPER (PWMx Primary Master 351 TIME Base Period) 235 PWMCONx (PWMx Control) 237 QEI1CON (QEI1 Control) 254
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGQUEX (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGQUEX (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEx (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer1 Limit)347PTPER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare High Word)264
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGQUEX (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare High Word)264QEI1GECL (QEI1 Greater Than or Equal Compare
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGQUEX (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare High Word)264QEI1GECL (QEI1 Greater Than or Equal Compare
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGQUEX (PTG Step Queue Pointer)351PTGQUEX (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare Low Word)264
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEX (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFR (PWMx Primary Master235Time Base Period)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare Low Word)264QEI1ICH (QEI1 Initialization/Capture264
Clock Divider Select 2) 234 PTGADJ (PTG Adjust) 350 PTGBTE (PTG Broadcast Trigger Enable) 345 PTGCOLIM (PTG Counter 0 Limit) 348 PTGC1LIM (PTG Counter 1 Limit) 349 PTGCON (PTG Control) 344 PTGCON (PTG Control/Status) 342 PTGHOLD (PTG Hold) 349 PTGL0 (PTG Literal 0) 350 PTGQPTR (PTG Step Queue Pointer) 351 PTGSDLIM (PTG Step Queue x) 351 PTGSDLIM (PTG Step Delay Limit) 347 PTGT0LIM (PTG Timer0 Limit) 347 PTGT1LIM (PTG Timer0 Limit) 347 PTFR (PWMx Primary Master 235 Time Base Period) 237 QEI1CON (QEI1 Control) 254 QEI1GECH (QEI1 Greater Than or Equal Compare 164 High Word) 264 QEI1ICH (QEI1 Initialization/Capture 264
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEX (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFR (PWMx Primary Master235Time Base Period)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare Low Word)264QEI1ICH (QEI1 Initialization/Capture264
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQPTR (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFR (PWMx Primary Master235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare264QEI1ICH (QEI1 Initialization/Capture262QEI1ICL (QEI1 Initialization/Capture262
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGC0N (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQPTR (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer0 Limit)347PTPER (PWMx Primary Master235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare264QEI1ICH (QEI1 Initialization/Capture262QEI1ICL (QEI1 Initialization/Capture262QEI1ICL (QEI1 Initialization/Capture262Low Word)262
Clock Divider Select 2) 234 PTGADJ (PTG Adjust) 350 PTGBTE (PTG Broadcast Trigger Enable) 345 PTGCOLIM (PTG Counter 0 Limit) 348 PTGC1LIM (PTG Counter 1 Limit) 349 PTGC0N (PTG Control) 344 PTGCON (PTG Control) 344 PTGCON (PTG Control/Status) 342 PTGHOLD (PTG Hold) 349 PTGL0 (PTG Literal 0) 350 PTGQPTR (PTG Step Queue Pointer) 351 PTGSDLIM (PTG Step Queue x) 351 PTGSDLIM (PTG Step Delay Limit) 348 PTGT1LIM (PTG Timer0 Limit) 347 PTER (PWMx Primary Master 235 Time Base Period) 235 PWMCONx (PWMx Control) 237 QEI1CON (QEI1 Control) 254 QEI1GECH (QEI1 Greater Than or Equal Compare 149 Word) Low Word) 264 QEI1ICH (QEI1 Initialization/Capture 262 QEI11CL (QEI1 Initialization/Capture 262 QEI11CC (QEI1 Initialization/Capture 262 QEI11COC (QEI1 I/O Control) 256
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGC0N (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQPTR (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer0 Limit)347PTPER (PWMx Primary Master235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare264QEI1ICH (QEI1 Initialization/Capture262QEI1ICL (QEI1 Initialization/Capture262QEI1ICL (QEI1 Initialization/Capture262Low Word)262
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGC0N (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQPTR (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)348PTGT1LIM (PTG Timer0 Limit)347PTFR (PWMx Primary Master235Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare264QEI1ICH (QEI1 Initialization/Capture262QEI1ICL (QEI1 Initialization/Capture262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)264QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)262QEI1ICC (QEI1 INITIALIZION)264QEI1ICC (QEI1 INITIALIZION)264QEI1ICC (QEI1 INITIALIZION)265QEI1ICC (QEI1 INITIALIZION)
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEx (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFR (PWMx Primary Master235Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECL (QEI1 Greater Than or Equal CompareLow Word)Low Word)262QEI1ICL (QEI1 Initialization/Capture262QEI1ICL (QEI1 Initialization/Capture262QEI1ICC (QEI1 I/O Control)256QEI1LECH (QEI1 Less Than or Equal Compare169High Word)263
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGCON (PTG Control)344PTGCON (PTG Control)344PTGCON (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEx (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Queue x)351PTGTOLIM (PTG Step Delay Limit)347PTGTOLIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer1 Limit)347PTPER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECL (QEI1 Greater Than or Equal Compare High Word)264QEI1ICH (QEI1 Initialization/Capture Low Word)262QEI1IOC (QEI1 I/O Control)256QEI1LECH (QEI1 Less Than or Equal Compare High Word)263QEI1LECL (QEI1 Less Than or Equal Compare High Word)263QEI1LECL (QEI1 Less Than or Equal Compare High Word)263QEI1LECL (QEI1 Less Than or Equal Compare High Word)263
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEx (PTG Step Queue Pointer)351PTGQUEx (PTG Step Queue x)351PTGSDLIM (PTG Step Delay Limit)347PTGT1LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer1 Limit)347PTPER (PWMx Primary Master Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECH (QEI1 Greater Than or Equal Compare High Word)264QEI1ICL (QEI1 Initialization/Capture High Word)262QEI1ICL (QEI1 Initialization/Capture High Word)262QEI1LECH (QEI1 Less Than or Equal Compare High Word)263QEI1LECL (QEI1 Less Than or Equal Compare Low Word)263QEI1LECL (QEI1 Less Than or Equal Compare High Word)263
Clock Divider Select 2)234PTGADJ (PTG Adjust)350PTGBTE (PTG Broadcast Trigger Enable)345PTGCOLIM (PTG Counter 0 Limit)348PTGC1LIM (PTG Counter 1 Limit)349PTGCON (PTG Control)344PTGCST (PTG Control/Status)342PTGHOLD (PTG Hold)349PTGL0 (PTG Literal 0)350PTGQUEx (PTG Step Queue Pointer)351PTGSDLIM (PTG Step Delay Limit)348PTGT0LIM (PTG Timer0 Limit)347PTGT1LIM (PTG Timer0 Limit)347PTFR (PWMx Primary Master235Time Base Period)235PWMCONx (PWMx Control)237QEI1CON (QEI1 Control)254QEI1GECL (QEI1 Greater Than or Equal CompareLow Word)Low Word)262QEI1ICL (QEI1 Initialization/Capture262QEI1ICL (QEI1 Initialization/Capture262QEI1ICC (QEI1 I/O Control)256QEI1LECH (QEI1 Less Than or Equal Compare169High Word)263

	407					
RCON (Reset Control)						
REFOCON (Reference Oscillator Control)						
RPINR0 (Peripheral Pin Select Input 0)						
RPINR1 (Peripheral Pin Select Input 1)						
RPINR11 (Peripheral Pin Select Input 11)						
RPINR12 (Peripheral Pin Select Input 12)						
RPINR14 (Peripheral Pin Select Input 14)						
RPINR15 (Peripheral Pin Select Input 15)						
RPINR18 (Peripheral Pin Select Input 18)						
RPINR19 (Peripheral Pin Select Input 19)						
RPINR22 (Peripheral Pin Select Input 22)						
RPINR23 (Peripheral Pin Select Input 23)						
RPINR26 (Peripheral Pin Select Input 26)						
RPINR3 (Peripheral Pin Select Input 3)						
RPINR37 (Peripheral Pin Select Input 37)						
RPINR38 (Peripheral Pin Select Input 38)	197					
RPINR39 (Peripheral Pin Select Input 39)	198					
RPINR7 (Peripheral Pin Select Input 7)						
RPINR8 (Peripheral Pin Select Input 8)						
RPOR0 (Peripheral Pin Select Output 0)						
RPOR1 (Peripheral Pin Select Output 0)						
RPOR2 (Peripheral Pin Select Output 2)						
RPOR3 (Peripheral Pin Select Output 3)						
RPOR4 (Peripheral Pin Select Output 4)						
RPOR5 (Peripheral Pin Select Output 5)						
RPOR6 (Peripheral Pin Select Output 6)						
RPOR7 (Peripheral Pin Select Output 7)	202					
RPOR8 (Peripheral Pin Select Output 8)	203					
RPOR9 (Peripheral Pin Select Output 9)	203					
SEVTCMP (PWMx Primary						
Special Event Compare)	235					
SPIxCON1 (SPIx Control 1)						
SPIxCON2 (SPIx Control 2)						
SPIxSTAT (SPIx Status and Control)						
SR (CPU STATUS)						
T1CON (Timer1 Control)						
TRGCONx (PWMx Trigger Control)						
TRIGx (PWMx Primary Trigger Compare Value).						
TxCON (Timer2 and Timer4 Control)						
TyCON (Timer3 and Timer5 Control)						
UxMODE (UARTx Mode)						
UxSTA (UARTx Status and Control)						
VEL1CNT (Velocity Counter 1)	261					
Resets	125					
Brown-out Reset (BOR)	125					
Configuration Mismatch Reset (CM)	125					
Illegal Condition Reset (IOPUWR)						
Illegal Opcode						
Security						
Uninitialized W Register						
Master Clear (MCLR) Pin Reset						
Power-on Reset (POR)						
RESET Instruction (SWR)						
Resources						
Trap Conflict Reset (TRAPR)						
Watchdog Timer Time-out Reset (WDTO)	125					
Revision History						
-						
S						

Serial Peripheral Interface (SPI) 267 Software Stack Pointer (SSP) 113 Special Features of the CPU 381 SPI 270 Helpful Tips 269 Resources 269

Т

Temperature and Voltage Specifications	
AC	
Thermal Operating Conditions	408
Thermal Packaging Characteristics	408
Timer1	205
Control Register	207
Resources	206
Timer2/3 and Timer4/52	209
Control Registers	212
Resources	211
Timing Diagrams	
10-Bit ADC Conversion (CHPS<1:0> = 01, SIMSAM =	÷ 0,
ASAM = 0, SSRC<2:0> = 000, SSRCG = 0) 4	
10-Bit ADC Conversion (CHPS<1:0> = 01, SIMSAM =	
ASAM = 1, SSRC<2:0> = 111, SSRCG = 0,	
SAMC<4:0> = 00010)	470
12-Bit ADC Conversion (ASAM = 0, SSRC<2:0> = 00)0.
SSRCG = 0)	
BOR and Master Clear Reset	
ECANx I/O	
External Clock	420
High-Speed PWMx Fault	428
High-Speed PWMx Module4	
I/O Characteristics	
I2Cx Bus Data (Master Mode)	456
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture x (ICx)	426
OCx/PWMx	
Output Compare x (OCx)	
QEA/QEB Input	
QEI Module Index Pulse	431
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	147
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	146
SPI1 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	144
SPI1 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	145
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	154

SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	452
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	448
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	450
SPI2 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	435
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	434
SPI2 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	432
SPI2 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	433
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	442
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	440
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	436
SPI2 Slave Mode (Full-Duplex, CKE = 1,	400
CKP = 1, SMP = 0)	
Timer1-Timer5 External Clock	
TimerQ (QEI Module) External Clock	
UARTx I/O	460

U

Universal Asynchronous Receiver	
Transmitter (UART)	283
Control Registers	
Helpful Tips	284
Resources	284
User ID Words	392
V	
Voltage Regulator (On-Chip)	392
W	
Watchdog Timer (WDT)	381, 393

Watchdog Timer (WDT)	381, 393
Programming Considerations	393
WWW Address	540
WWW, On-Line Support	25

NOTES:

THE MICROCHIP WEBSITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Temperature Ran	mily Size ag (if ge _	e (K ap	byte)	Examples: dsPIC33EP64MC504-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, Motor Control, 44-Pin, Industrial Temperature, TQFP package.
Architecture:			16-bit Digital Signal Controller 16-bit Microcontroller	
Flash Memory Family:	EP	=	Enhanced Performance	
Product Group:			General Purpose family Motor Control family	
Pin Count:	03	= =	28-pin 36-pin 44-pin 64-pin	
Temperature Range:	I E H	=	-40°C to +85°C (Industrial) -40°C to +125°C (Extended) -40°C to +150°C (High)	
Package:	ML MM MR MV PT		Ultra Thin Plastic Quad Flat, No Lead - (36-pin) 5x5 mm body (UQFN) Plastic Quad, No Lead Package - (44-pin) 8x8 mm body (QFN) Plastic Quad, No Lead Package - (28-pin) 6x6 mm body (QFN-S) Plastic Quad, No Lead Package - (64-pin) 9x9 mm body (QFN) Thin Quad, No Lead Package - (48-pin) 6x6 mm body (UQFN) Plastic Thin Quad Flatpack - (44-pin) 10x10 mm body (TQFP) Plastic Thin Quad Flatpack - (44-pin) 10x10 mm body (TQFP) Plastic Small Outline, Wide - (28-pin) 7.50 mm body (SOIC) Skinny Plastic Dual In-Line - (28-pin) 300 mil body (SSOP) Very Thin Leadless Array - (36-pin) 5x5 mm body (VTLA) Very Thin Leadless Array - (44-pin) 6x6 mm body (VTLA)	

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-6208-8

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Tel: 60-3-7651-7906

Tel: 60-4-227-8870

Tel: 63-2-634-9065

Tel: 65-6334-8870

Taiwan - Kaohsiung

Tel: 886-2-2508-8600

Thailand - Bangkok

Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Malaysia - Kuala Lumpur Malaysia - Penang

Philippines - Manila

Singapore

Taiwan - Hsin Chu Tel: 886-3-577-8366

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

China - Zhuhai