
 RoHS

Example recommended EM/EMC filter NAC-06-472

High voltage pulse noise type : NAP series ow leakage current type : NAM serie *A highercur may be recon raing EM/EMC filter other devices that could in view of the in parallel with the power connec in parallel with the power supply.
(1)Series name
(2)Single output
(3) Output wattage
(4) $100 / 120 \mathrm{~V}$ input
(5)Output voltage
(6) Optional

C :with Coating
G :Low leakage current
H :with the function to be acceptable to output peak current (only 24V)
J1:VH(J.S.T.)connector type
S :with Chassis
SN:with Chassis \& cover
Y :with Potentiometer

This power supply is manufactured by SMD technology. The stress to P.C.B like twisting or bending causes the defect of the unit,so handle the unit with care. * Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations

MODEL	LGA50A-3R3-Y	LGA50A-5	LGA50A-12	LGA50A-15	LGA50A-24	LGA50A-24-H	LGA50A-48
MAX OUTPUT WATTAGE[W]	33	50	51.6	52.5	60	60	62.4
DC OUTPUT	$3.3 \mathrm{~V} \mathrm{10A}$	$5 \mathrm{~V} \mathrm{10A}$	$12 \mathrm{~V} \mathrm{4.3A}$	15 V 3.5 A	24V 2.5A	24V 2.5 (Peak 3.2) A	48V 1.3A

SPECIFICATIONS

	MODEL		LGA50A-3R3-Y	LGA50A-5	LGA50A-12	LGA50A-15	LGA50A-24	LGA50A-24-H	LGA50A-48
INPUT	VOLTAGE[V]		AC85-132 1ϕ (Refer to Instruction Manual 1.1, and 3.2 Derating)						
	CURRENT[A]	ACIN 100 V	0.8typ ($10=100 \%$)	1.3typ (lo=100\%)					
	FREQUENCY[Hz]		47-440 (Refer to Instruction Manual 1.1)						
	EFFICIENCY[\%]	ACIN 100 V	74.0typ (10=100\%)	79.0typ (10=100\%)	82.0typ (10=100\%)	83.0typ (10=100\%)	85.0typ (10=100\%)	85.0typ (10=100\%)	85.0typ (10=100\%)
	INRUSH CURRENT[A] ACIN 100 V LEAKAGE CURRENT[mA]		30typ (lo=100\%), (At cold start), ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)						
			0.5 max (ACIN 100V, $60 \mathrm{~Hz}, \mathrm{lo}=100 \%$, According to IEC60950-1 and DEN-AN)						
OUTPUT	VOLTAGE[V]		3.3	5	12	15	24	24	48
	CURRENT[A]		10.0	10.0	4.3	3.5	2.5	2.5 (Peak 3.2)	1.3
	LINE REGULATION[mV]		20 max	20 max	48max	60max	96 max	96max	192max
	LOAD REGULATION[mV]		40max	40max	100max	120max	150max	150max	300max
	RIPPLE[mVp-p]	0 to $+50^{\circ} 0_{* 4}^{* 1}$	80max	80max	120max	120max	120max	240max	150max
		$-10 \cdot 0^{\circ} \mathrm{C} *$	140max	140max	160max	160max	160max	320max	200max
	RIPPLE NOISE[mVp-p]	$010+50^{\circ}{ }_{*}^{* / 4}$	120max	120max	150max	150max	150max	300max	350max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	160max	160max	180max	180max	180max	360max	400max
	TEMPERATURE REGULATION[mV]	0 to $+50^{\circ} \mathrm{C} * 4$	50max	50max	120max	150max	240max	240max	480max
		. 10 to $+50^{\circ} \mathrm{C}$ * 4	60max	60max	150max	180max	290max	290max	600max
	DRIFT[mV]		20 max	20max	48max	60 max	96max	96max	192max
	START-UP TIME[ms]		200max (ACIN 100V, Io=100\%)						
	HOLD-UP TIME[ms]		20typ (ACIN 100V, Io=100\%)						
	OUTPUT VOLTAGE ADJUSTMENT RANGE[V]		2.85-3.63	Fixed ("Y"which can be adjusted the output is available as optional $\pm 10 \%$)					
	OUTPUT VOLTAGE SETTING[V]		3.30-3.40	4.90-5.30	11.50-12.50	14.40-15.60	23.00-25.00	23.00-25.00	46.00-50.00
PROTECTION CIRCUIT AND OTHERS	OVERCURRENT PROTECTION		Works over 105\% of rating (works over 101\% of peak current at option -H) and recovers automatically						
	OVERVOLTAGE PROTECTION		4.00-5.25	5.75-7.00	13.80-16.80	17.30-21.00	27.60-35.00	27.60-35.00	55.20-67.20
	OPERATING INDICATION								
	REMOTE SENSING		Not provided						
	REMOTE ON/OFF			Not provided					
ISOLATION	INPUT-OUTPUT		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
	INPUT-FG		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
	OUTPUT-FG		AC500V 1minute, Cutoff current $=25 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
ENVIRONMENT	OPERATING TEMP.,HUMID.AND ALTITUDE		-10 to $+60^{\circ} \mathrm{C}, 20-90 \% \mathrm{RH}$ (Non condensing) (Refer to Instruction Manual 3.2), 3,000m (10,000feet) max						
	STORAGE TEMP.HUMID.AND ALTITUDE		-20 to $+75^{\circ} \mathrm{C}, 20-90 \%$ RH (Non condensing), 9,000m (30,000feet) max						
	VIBRATION		$10-55 \mathrm{~Hz}, 19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})$, 3minutes period, 60minutes each along X, Y and Z axis						
	IMPACT		$196.1 \mathrm{~m} / \mathrm{s}^{2}$ (20G), 11ms, once each X, Y and Z axis						
SAFETY AND NOISE REGULATIONS	AGENCY APPROVALS		UL60950-1, C-UL (CSA60950-1), EN60950-1 Complies with DEN-AN						
	CONDUCTED NOISE		Complies with FCC-B, VCCI-B, CISPR-B, EN55011-B, EN55022-B						
OTHERS	CASE SIZE/WEIGHT		$50 \times 28.5 \times 132 \mathrm{~mm}$ [1.97×1.12 $\times 5.2$ inches] ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) / 160g max (with chassis \& cover $: 320 \mathrm{~g} \mathrm{max}$)						
	COOLING METHOD		Convection (Refer to Instruction Manual 3.2)						

[^0]
Block diagram

External view

c9Nus $\triangle C \epsilon$
 RoHS

Example recommended EMI/EMC filter NAC-06-472

High voltage pulse noise type : NAP series Low leakage current type : NAM series * A higher current rating EMI/EMC filter may be recommended in view of the other devices that could be connected in parallel with the power supply.
1)Series name
(2)Single output
(3) Output wattage
(4) $100 / 120 \mathrm{~V}$ input
(5) Output voltage
(6) Optional

C :with Coating
G :Low leakage current
H :with the function to be acceptable to output peak current (only 24V)
J1:VH(J.S.T.)connector type
S :with Chassi
SN:with Chassis \& cover
Y :with Potentiometer

This power supply is manufactured by SMD technology. The stress to P.C.B like twisting or bending causes the defect of the unit,so handle the unit with care. * Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations.

MODEL	LGA75A-3R3-Y	LGA75A-5	LGA75A-12	LGA75A-15	LGA75A-24	LGA75A-24-H	LGA75A-48
MAX OUTPUT WATTAGE[W]	49.5	75	75.6	75	76.8	76.8	76.8
DC OUTPUT	$3.3 \mathrm{~V} \mathrm{15A}$	$5 \mathrm{~V} \mathrm{15A}$	$12 \mathrm{~V} \mathrm{6.3A}$	15V 5A	24V 3.2A	24V 3.2 (Peak 4.2) A	48V 1.6A

SPECIFICATIONS

	MODEL		LGA75A-3R3-Y	LGA75A-5	LGA75A-12	LGA75A-15	LGA75A-24	LGA75A-24-H	LGA75A-48
INPUT	VOLTAGE[V]		AC85-132 1ϕ (Refer to Instruction Manual 1.1, and 3.2 Derating)						
	CURRENT[A]	ACIN 100 V	1.3 typ ($10=100 \%$)	1.7typ (Io=100\%)					
	FREQUENCY[Hz]		47-440 (Refer to Instruction Manual 1.1)						
	EFFICIENCY[\%]	ACIN 100V	75.0typ (10=100\%)	79.0typ (10=100\%)	83.0typ (10=100\%)	84.0typ (10=100\%)	86.0typ (10=100\%)	86.0typ (10=100\%)	86.0typ (10=100\%)
	INRUSH CURRENT[A] ACIN 100V		30typ (lo=100\%), (At cold start), ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)						
	LEAKAGE CURRENT[mA]		0.5 max (ACIN 100V, $60 \mathrm{~Hz}, \mathrm{lo}=100 \%$, According to IEC60950-1 and DEN-AN)						
OUTPUT	VOLTAGE[V]		3.3	5	12	15	24	24	48
	CURRENT[A]		15.0	15.0	6.3	5.0	3.2	3.2 (Peak 4.2)	1.6
	LINE REGULATION[mV]		20 max	$20 \max$	48max	60max	96 max	96max	192max
	LOAD REGULATION[mV]		40max	40max	100max	120max	150max	150max	300max
	RIPPLE[mVp-p]	$010+50^{\circ} \mathrm{C} *$	80max	80max	120max	120max	120max	240max	150max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	140max	140max	160max	160max	160max	320max	200max
	RIPPLE NOISE[mVp-p]	$010+50^{\circ} \mathrm{C} * 1$	120max	120max	150max	150max	150max	300max	350max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	160 max	160max	180max	180max	180max	360max	400max
	TEMPERATURE REGULATION[mV]	0 to $+50^{\circ} \mathrm{C}$	50 max	$50 \max$	$120 \max$	150max	240max	240max	480max
		-10 to +50 0°	$60 \max$	$60 \max$	150max	180max	290max	290max	600max
	DRIFT[mV]		$20 \max$	$20 \max$	48max	60 max	96max	96max	192max
	START-UP TIME[ms]		200max (ACIN 100V, Io=100\%)						
	HOLD-UP TIME[ms]		20typ (ACIN 100V, Io=100\%)						
	OUTPUT VOLTAGE ADJUSTMENT RANGE[V]		2.85-3.63	Fixed ("Y"which can be adjusted the output is available as optional $\pm 10 \%$)					
	OUTPUT VOLTAGE SETTING[V]		3.30-3.40	4.90-5.30	11.50-12.50	14.40-15.60	23.00-25.00	23.00-25.00	46.00-50.00
PROTECTION CIRCUIT AND OTHERS	OVERCURRENT PROTECTION		Works over 105\% of rating (works over 101\% of peak current at option -H) and recovers automatically						
	OVERVOLTAGE PROTECTION		4.00-5.25	5.75-7.00	13.80-16.80	17.30-21.00	27.60-35.00	27.60-35.00	55.20-67.20
	OPERATING INDICATION		Not provided						
	REMOTE SENSING		Not provided						
	REMOTE ON/OFF		Not provided						
ISOLATION	INPUT-OUTPUT		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
	INPUT-FG		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
	OUTPUT-FG		AC500V 1minute, Cutoff current $=25 \mathrm{~mA}, \mathrm{DC500V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
ENVIRONMEN	OPERATING TEMP.,HUMID.AND ALTITUDE		-10 to $+60^{\circ} \mathrm{C}, 20-90 \% \mathrm{RH}$ (Non condensing) (Refer to Instruction Manual 3.2), 3,000m (10,000feet) max						
	STORAGE TEMP.HUMID.AND ALTITUDE		-20 to $+75^{\circ} \mathrm{C}, 20-90 \% \mathrm{RH}$ (Non condensing), 9,000m (30,000feet) max						
	VIBRATION		$10-55 \mathrm{~Hz}, 19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})$, 3minutes period, 60minutes each along X, Y and Z axis						
	IMPACT		$196.1 \mathrm{~m} / \mathrm{s}^{2}$ (20G), 11 ms , once each X, Y and Z axis						
SAFETY AND NOISE REGULATIONS	AGENCY APPROVALS		UL60950-1, C-UL (CSA60950-1), EN60950-1 Complies with DEN-AN						
	CONDUCTED NOISE		Complies with FCC-B, VCCI-B, CISPR-B, EN55011-B, EN55022-B						
OTHERS	CASE SIZE/WEIGHT		$50 \times 34.5 \times 150 \mathrm{~mm}$ [1.97×1.36 $\times 5.91$ inches] ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) / 200 g max (with chassis \& cover : 410 g max)						
	COOLING METHOD		Convection (Refer to Instruction Manual 3.2)						

[^1]Block diagram

External view

-9Nus $\triangle C \epsilon$
 RoHS

Example recommended EMI/EMC filter NAC-06-472

High voltage pulse noise type : NAP series Low leakage current type : NAM series *A higher current rating EMI/EMC filter may be recommended in view of the other devices that could be connected in parallel with the power supply.
1)Series name
(2)Single output
(3)Output wattage
(4) $100 / 120 \mathrm{~V}$ input
(5) Output voltage
(6) Optional

C :with Coating
G :Low leakage current
H :with the function to be acceptable to output peak current (only 24V)
J1:VH(J.S.T.)connector type
S :with Chassis
SN:with Chassis \& cover
Y :with Potentiometer

This power supply is manufactured by SMD technology. The stress to P.C.B like twisting or bending causes the defect of the unit,so handle the unit with care. * Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations.

MODEL	LGA100A-3R3-Y	LGA100A-5-Y	LGA100A-12	LGA100A-15	LGA100A-24	LGA100A-24-H	LGA100A-48
MAX OUTPUT WATTAGE[W]	66	100	102	105	103.2	103.2	100.8
DC OUTPUT	$3.3 \mathrm{~V} \mathrm{20A}$	5 V 20 A	$12 \mathrm{~V} \mathrm{8.5A}$	15V 7A	24V 4.3A	24 V 4.3 (Peak 5.4) A	48 2.1 A

SPECIFICATIONS

	MODEL		LGA100A-3R3-Y	LGA100A-5-Y	LGA100A-12	LGA100A-15	LGA100A-24	LGA100A-24-H	LGA100A-48
INPUT	VOLTAGE[V]		AC85-132 1ϕ (Refer to Instruction Manual 1.1, and 3.2 Derating)						
	CURRENT[A]	ACIN 100V	1.6 typ ($10=100 \%$)	2.4typ (lo=100\%)					
	FREQUENCY[Hz]		47-440 (Refer to Instruction Manual 1.1)						
	EFFICIENCY[\%]	ACIN 100V	76.0typ (10=100\%)	80.0typ ($10=100 \%$)	83.0typ (10=100\%)	84.0typ (10=100\%)	85.5typ ($10=100 \%$)	85.5typ (10=100\%)	85.5 typ (10=100\%)
	INRUSH CURRENT[A] ACIN 100V		15typ (Io=100\%, More than 10sec. to re-start)						
	LEAKAGE CURRENT[mA]		$0.5 \mathrm{max}(\mathrm{ACIN} 100 \mathrm{~V}, 60 \mathrm{~Hz}, \mathrm{lo}=100 \%$, According to IEC60950-1 and DEN-AN)						
OUTPUT	VOLTAGE[V]		3.3	5	12	15	24	24	48
	CURRENT[A]		20.0	20.0	8.5	7.0	4.3	4.3 (Peak 5.4)	2.1
	LINE REGULATION[mV]		20 max	$20 \max$	48max	60max	96 max	96max	192max
	LOAD REGULATION[mV]		40max	40max	100max	120max	150max	150max	300max
	RIPPLE[mVp-p]	0 to $500^{\circ} \mathrm{C}$ *	80max	$80 \max$	120max	120max	120max	240max	150max
		$-10-0^{\circ} \mathrm{C}$ *	140max	140max	160max	160max	160max	320max	200max
	RIPPLE NOISE[mVp-p]	0 0 $0+50^{\circ} \mathrm{C} *$	120max	120max	150max	150max	150max	300max	350max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	160max	160max	180max	180max	180max	360max	400max
	TEMPERATURE REGULATION[mV]	0 to $+50^{\circ} \mathrm{C}$	$50 \max$	50max	120max	150max	240max	240max	480max
		-10 to +50 ${ }^{\circ}$	$60 \max$	60max	150max	180max	290max	290max	600max
	DRIFT[mV]		20 max	$20 \max$	48max	60 max	96max	96max	192max
	START-UP TIME[ms]		$200 \max$ (ACIN 100V, Io=100\%)						
	HOLD-UP TIME[ms]		20typ (ACIN 100V, Io=100\%)						
	OUTPUT VOLTAGE ADJUSTMENT RANGE[V]		2.85-3.63	4.50-5.50	Fixed ("Y"which can be adjusted the output is available as optional $\pm 10 \%$)				
	OUTPUT VOLTAGE SETTING[V]		3.30-3.40	5.00-5.15	11.50-12.50	14.40-15.60	23.00-25.00	23.00-25.00	46.00-50.00
PROTECTION CIRCUIT AND OTHERS	OVERCURRENT PROTECTION		Works over 105% of rating (works over 101% of peak current at option -H) and recovers automatically						
	OVERVOLTAGE PROTECTION								
	OPERATING INDICATION								
	REMOTE SENSING		Not provided						
	REMOTE ON/OFF		Not provided						
ISOLATION	INPUT-OUTPUT		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
	INPUT-FG		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC} 500 \mathrm{~V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
	OUTPUT-FG		AC500V 1minute, Cutoff current $=25 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
ENVIRONMENT	OPERATING TEMP.,HUMID.AND ALTITUDE		-10 to $+60^{\circ} \mathrm{C}, 20-90 \% \mathrm{RH}$ (Non condensing) (Refer to Instruction Manual 3.2), 3,000m (10,000feet) max						
	STORAGE TEMP.HUMID.AND ALTITUDE		-20 to $+75^{\circ} \mathrm{C}, 20-90 \%$ RH (Non condensing), 9,000m (30,000feet) max						
	VIBRATION		$10-55 \mathrm{~Hz}, 19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})$, 3minutes period, 60minutes each along X, Y and Z axis						
	IMPACT		$196.1 \mathrm{~m} / \mathrm{s}^{2}$ (20G), 11ms, once each X, Y and Z axis						
SAFETY AND NOISE REGULATIONS	AGENCY APPROVALS		UL60950-1, C-UL (CSA60950-1), EN60950-1 Complies with DEN-AN						
	CONDUCTED NOISE		Complies with FCC-B, VCCI-B, CISPR-B, EN55011-B, EN55022-B						
OTHERS	CASE SIZE/WEIGHT		$62 \times 35.5 \times 155 \mathrm{~mm}$ [$2.44 \times 1.4 \times 6.1$ inches] ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) / 300g max (with chassis \& cover : 530 g max)						
	COOLING METHOD		Convection (Refer to Instruction Manual 3.2)						

[^2]
Block diagram

External view

${ }_{c} \mathrm{~N}_{\text {us }} \triangleq C \epsilon$
 RoHS

Example recommended EM/EMC filter NAC-06-472

High voltage pulse noise type : NAP series Low leakage current type : NAM series *A higher current rating EMI/EMC filter may be recommended in view of the other devices that could be connected in parallel with the power supply.
1)Series name
(2)Single output
(3)Output wattage
(4) $100 / 120 \mathrm{~V}$ input
(5) Output voltage
(6) Optional

C :with Coating
G :Low leakage current
H :with the function to be acceptable to output peak current (only 24V)
J1:VH(J.S.T.)connector type
S :with Chassi
SN:with Chassis \& cover
Y :with Potentiometer

This power supply is manufactured by SMD technology. The stress to P.C.B like twisting or bending causes the defect of the unit,so handle the unit with care. * Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations.

MODEL	LGA150A-3R3-Y	LGA150A-5-Y	LGA150A-12	LGA150A-15	LGA150A-24	LGA150A-24-H	LGA150A-48
MAX OUTPUT WATTAGE[W]	99	150	150	150	151.2	151.2	153.6
DC OUTPUT	$3.3 \mathrm{~V} \mathrm{30A}$	$5 \mathrm{~V} \mathrm{30A}$	$12 \mathrm{~V} \mathrm{12.5A}$	15V 10A	24V 6.3A	24V 6.3 (Peak 7.9) A	48V 3.2A

SPECIFICATIONS

	MODEL		LGA150A-3R3-Y	LGA150A-5-Y	LGA150A-12	LGA150A-15	LGA150A-24	LGA150A-24-H	LGA150A-48
INPUT	VOLTAGE[V]		AC85-132 1ϕ (Refer to Instruction Manual 1.1, and 3.2 Derating)						
	CURRENT[A]	ACIN 100 V	2.6 typ ($10=100 \%$)	3.6 typ (lo=100\%)					
	FREQUENCY[Hz]		47-440 (Refer to Instruction Manual 1.1)						
	EFFICIENCY[\%]	ACIN 100V	76.0typ (10=100\%)	82.0typ (10=100\%)	84.5 typ (10=100\%)	85.5typ (10=100\%)	87.0typ (10=100\%)	87.0typ (10=100\%)	87.0typ ($10=100 \%$)
	INRUSH CURRENT[A] ACIN 100V		$15 / 15$ typ (Primary / Secondary Surge Current, Io=100\%, More than 10sec. to re-start)						
	LEAKAGE CURRENT[mA]		0.5 max (ACIN 100V, 60 Hz , Io=100\%, According to IEC60950-1 and DEN-AN)						
OUTPUT	VOLTAGE[V]		3.3	5	12	15	24	24	48
	CURRENT[A]		30.0	30.0	12.5	10.0	6.3	6.3 (Peak 7.9)	3.2
	LINE REGULATION[mV]		20 max	20 max	48max	60max	96 max	96max	192max
	LOAD REGULATION[mV]		40max	40max	100max	120max	150max	150max	300max
	RIPPLE[mVp-p]	$010+40^{\circ} \mathrm{C}$ *	80max	$80 \max$	120max	120max	120max	240max	150max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	140max	140max	160max	160max	160max	320max	200max
	RIPPLE NOISE[mVp-p]	0 0 $0+400^{\circ}$ *	120max	120max	150max	150max	150max	300max	350max
		$-10 \cdot 0^{\circ} \mathrm{C}$ *	160max	160max	180max	180max	180max	360max	400max
	TEMPERATURE REGULATION[mV]	0 to $+40^{\circ} \mathrm{C}$	50 max	$50 \max$	120max	150max	240max	240max	480max
		-10 to $+40^{\circ} \mathrm{C}$	60max	60max	150max	180max	290max	290max	600max
	DRIFT[mV]		$20 \max$	$20 \max$	48max	$60 \max$	96 max	96max	192max
	START-UP TIME[ms]		200max (ACIN 100V, Io=100\%)						
	HOLD-UP TIME[ms]		20typ (ACIN 100V, Io=100\%)						
	OUTPUT VOLTAGE ADJUSTMENT RANGE[V]		2.85-3.63	4.50-5.50	Fixed ("Y"which can be adjusted the output is available as optional $\pm 10 \%$)				
	OUTPUT VOLTAGE SETTING[V]		3.30-3.40	5.00-5.15	11.50-12.50	14.40-15.60	23.00-25.00	23.00-25.00	46.00-50.00
PROTECTION CIRCUIT AND OTHERS	OVERCURRENT PROTECTION		Works over 105% of rating (works over 101% of peak current at option -H) and recovers automatically						
	OVERVOLTAGE PROTECTION		4.00-5.25	5.75-7.00	13.80-16.80	17.30-21.00	27.60-35.00	27.60-35.00	55.20-67.20
	OPERATING INDICATION		Not provided						
	REMOTE SENSING		Not provided						
	REMOTE ON/OFF		Not provided						
ISOLATION	INPUT-OUTPUT		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}, \mathrm{DC500V} 50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
	INPUT-FG		AC2,000V 1minute, Cutoff current $=10 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
	OUTPUT-FG		AC500V 1minute, Cutoff current $=25 \mathrm{~mA}$, DC500V $50 \mathrm{M} \Omega \mathrm{min}$ (At Room Temperature)						
ENVIRONMENT	OPERATING TEMP.,HUMID.AND ALTITUDE		-10 to $+60^{\circ} \mathrm{C}, 20-90 \% \mathrm{RH}$ (Non condensing) (Refer to Instruction Manual 3.2), 3,000m (10,000feet) max						
	STORAGE TEMP.HUMID.AND ALTITUDE		-20 to $+75^{\circ} \mathrm{C}, 20-90 \%$ RH (Non condensing), 9,000m (30,000feet) max						
	VIBRATION		$10-55 \mathrm{~Hz}, 19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})$, 3minutes period, 60minutes each along X, Y and Z axis						
	IMPACT		$196.1 \mathrm{~m} / \mathrm{s}^{2}$ (20G), 11ms, once each X, Y and Z axis						
SAFETY AND NOISE REGULATIONS	AGENCY APPROVALS		UL60950-1, C-UL (CSA60950-1), EN60950-1 Complies with DEN-AN						
	CONDUCTED NOISE		Complies with FCC-B, VCCI-B, CISPR-B, EN55011-B, EN55022-B						
OTHERS	CASE SIZE/WEIGHT		$75 \times 39 \times 160 \mathrm{~mm}$ [$2.95 \times 1.54 \times 6.3$ inches] ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$) / 420g max (with chassis \& cover : 650 g max)						
	COOLING METHOD		Convection (Refer to Instruction Manual 3.2)						

[^3]Block diagram

External view

Example recommended EMI/EMC filter NAC-16-472

High voltage pulse noise type : NAP series Low leakage current type : NAM series *A higher current rating EMI/EMC filter may be recommended in view of the other devices that could be connected in parallel with the power supply.
(1)Series name
(2)Single output
(3)Output wattage
(4) $100 / 120 \mathrm{~V}$ input
(5)Output voltage
(6) Optional

C : with Coating
G :Low leakage current
H :with the function to be acceptable to output peak current (only 24V)
J1:VH(J.S.T.)connector type
S :with Chassis
SN:with Chassis \& cover
T :Vertical terminal block
Y :with Potentiometer

This power supply is manufactured by SMD technology. The stress to P.C.B like twisting or bending causes the defect of the unit,so handle the unit with care. * Make sure necessary tests will be carried out on your end equipment with the power supply installed in accordance with any required EMC/EMI regulations.

MODEL	LGA240A-24	LGA240A-24-H
MAX OUTPUT WATTAGE[W]	240	240
DC OUTPUT	$24 \mathrm{~V} \mathrm{10A}$	24 V 10 (Peak 12.5) A

SPECIFICATIONS

[^4]Block diagram

External view

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Cosel:
LGA75A-12-S LGA100A-24-HSN LGA75A-5-C LGA100A-24-SNJ1 LGA150A-12-GJ1 LGA75A-24-SNJ1 LGA50A-
12-SY LGA150A-24-Y LGA50A-24-SNJ1 LGA240A-24-SNJ1Y LGA50A-12-G LGA100A-24-HJ1Y LGA240A-24-SJ1
LGA50A-5-SNJ1 LGA50A-5-Y LGA150A-48-C LGA75A-5-J1 LGA100A-5-J1Y LGA75A-24-S LGA50A-12-SN
LGA150A-12-Y LGA50A-24-J1Y LGA100A-12-C N-LGA100 LGA100A-24-GJ1 LGA75A-5-SN LGA150A-24-HSNJ1
LGA150A-24-J1Y LGA150A-12-S LGA240A-24-HSNJ1 LGA150A-5-GY LGA150A-24-SNJ1 LGA50A-5 LGA100A-
24-C LGA150A-5-SNY LGA240A-24-HSJ1 LGA50A-24-GJ1 LGA75A-24-CJ1 LGA150A-24-C LGA100A-24-Y LGA100A-24-HSNY LGA75A-12-GJ1 LGA150A-24-HJ1 LGA50A-3R3-Y LGA50A-5-SJ1Y LGA50A-12 LGA100A-24S LGA240A-24-H LGA100A-12-Y LGA100A-12-GJ1 LGA50A-24-SJ1 LGA50A-5-G LGA100A-12-SNC S-LGA240 LGA75A-24-H LGA100A-5-SNY LGA50A-12-Y LGA50A-24-SN LGA100A-24-HSNJ1 LGA50A-12-C LGA150A-12SN LGA50A-24-HJ1Y LGA100A-24-H N-LGA75 LGA50A-24-SNJ1Y LGA100A-3R3-Y LGA50A-12-SCJ1 LGA240A-24-T LGA50A-5-J1 LGA75A-12-SNJ1Y LGA240A-24-C LGA150A-15 LGA100A-24-CJ1Y LGA50A-12-SNJ1 LGA75A-5-J1Y LGA150A-12-J1 LGA75A-5-CY LGA75A-12-SJ1 LGA75A-24-G LGA50A-24-H LGA150A-24-H LGA150A-12-SNJ1 LGA75A-12-SNJ1 LGA240A-24 LGA50A-24-HSN LGA100A-12-S LGA100A-5-SJ1Y LGA150A-3R3-Y LGA75A-24-SN LGA50A-5-SNY LGA150A-5-SY LGA100A-12-SJ1Y LGA100A-12-CJ1Y LGA75A-12 LGA75A-5-Y LGA75A-3R3-Y LGA150A-24-S LGA75A-24-HGJ1 LGA100A-5-SY LGA50A-24-HJ1

[^0]: *1 This is the value that measured on measuring board with capacitor of $22 \mu \mathrm{~F}$ at 150 mm from output terminal.
 Measured by 20 MHz oscilloscope or Ripple-Noise meter (Equivalent to KEISOKU-GIKEN: RM-103).
 *2 Drift is the change in DC output for an eight hour period after a half-hour warm-up at $25^{\circ} \mathrm{C}$, with the input voltage held constant at the rated input/output.
 *3 Peak loading for 10sec.And Duty 35\% max.or less is acceptable if the total wattage is less than the rated wattage ($24 \mathrm{~V}: 60 \mathrm{~W}$).
 Refer to instruction Manual 5. In detail

[^1]: *1 This is the value that measured on measuring board with capacitor of $22 \mu \mathrm{~F}$ at 150 mm from output terminal. Measured by 20MHz oscilloscope or Ripple-Noise meter (Equivalent to KEISOKU-GIKEN: RM-103).
 *2 Drift is the change in DC output for an eight hour period after a half-hour warm-up at $25^{\circ} \mathrm{C}$, with the input voltage held constant at the rated input/output.
 *3 Peak loading for 10 sec .And Duty 35% max.or less is acceptable if the total wattage is less than the rated wattage.
 Refer to instruction Manual 5. In detail.

 * Avoid prolonged use under over - load
 * Parallel operation with other model is not possible
 * Derating is required when operated with chassis and cover.
 * A sound may occur from power supply at pulse loading

[^2]: *1 This is the value that measured on measuring board with capacitor of $22 \mu \mathrm{~F}$ at 150 mm from output terminal. Measured by 20MHz oscilloscope or Ripple-Noise meter (Equivalent to KEISOKU-GIKEN: RM-103).
 *2 Drift is the change in DC output for an eight hour period after a half-hour warm-up at $25^{\circ} \mathrm{C}$, with the input voltage held constant at the rated input/output.
 *3 Peak loading for 10 sec .And Duty 35% max.or less is acceptable if the total wattage is less than the rated wattage.
 Refer to instruction Manual 5. In detail.

 * Avoid prolonged use under over - load
 * Parallel operation with other model is not possible.
 * Derating is required when operated with chassis and cover.
 * A sound may occur from power supply at pulse loading

[^3]: *1 This is the value that measured on measuring board with capacitor of $22 \mu \mathrm{~F}$ at 150 mm from output terminal. Measured by 20MHz oscilloscope or Ripple-Noise meter (Equivalent to KEISOKU-GIKEN: RM-103).
 *2 Drift is the change in DC output for an eight hour period after a half-hour warm-up at $25^{\circ} \mathrm{C}$, with the input voltage held constant at the rated input/output.
 *3 Peak loading for 10 sec .And Duty 35% max.or less is acceptable if the total wattage is less than the rated wattage.
 Refer to instruction Manual 5. In detail.

 * Avoid prolonged use under over - load
 * Parallel operation with other model is not possible
 * Derating is required when operated with chassis and cover.
 * A sound may occur from power supply at pulse loading

[^4]: *1 This is the value that measured on measuring board with capacitor of $22 \mu \mathrm{~F}$ at 150 mm from output terminal. Measured by 20MHz oscilloscope or Ripple-Noise meter (Equivalent to KEISOKU-GIKEN: RM-103).
 *2 Drift is the change in DC output for an eight hour period after a half-hour warm-up at $25^{\circ} \mathrm{C}$, with the input voltage held constant at the rated input/output.
 *3 Peak loading for 10 sec .And Duty 35% max.or less is acceptable if the total wattage is less than the rated wattage.
 Refer to instruction Manual 5. In detail.

 * Avoid prolonged use under over - load
 * Parallel operation with other model is not possible.
 * Derating is required when operated with chassis and cover.
 * A sound may occur from power supply at pulse loading.

