True Low Power Platform (as low as $63 \mu \mathrm{~A} / \mathrm{MHz}$), 1.8 V to 5.5 V operation, 2 to 16 Kbyte Flash, 31 DMIPS at 24MHz, for General Purpose Applications

1. OUTLINE

1.1 Features

Ultra-low power consumption technology

- $V_{D D}=$ single power supply voltage of 1.8 to 5.5 V which can operate at a low voltage
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed $(0.04167 \mu \mathrm{~s}$: @ 24 MHz operation with high-speed on-chip oscillator) to ultra-low speed ($1 \mu \mathrm{~s}$: @ 1 MHz operation)
- Address space: 1 MB
- General-purpose registers: (8-bit register x 8) x 4 banks
- On-chip RAM: 256 B to 2 KB

Code flash memory

- Code flash memory: 2 to 16 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming (with flash shield window function)

Data flash memory Note

- Data flash memory: 2 KB
- Back ground operation (BGO): Instructions are executed from the program memory while rewriting the data flash memory.
- Number of rewrites: $1,000,000$ times (TYP.)
- Voltage of rewrites: VDD $=1.8$ to 5.5 V

High-speed on-chip oscillator

- Select from $24 \mathrm{MHz}, 16 \mathrm{MHz}, 12 \mathrm{MHz}, 8 \mathrm{MHz}, 6 \mathrm{MHz}$, $4 \mathrm{MHz}, 3 \mathrm{MHz}, 2 \mathrm{MHz}$, and 1 MHz
- High accuracy: +/- $1.0 \%\left(\mathrm{~V} D=1.8\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$)

Operating ambient temperature

- $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D : Industrial applications)
- $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications) Note

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 12 levels)

DMA (Direct Memory Access) controller Note

- 2 channels
- Number of clocks during transfer between 8/16-bit SFR and internal RAM: 2 clocks

Multiplier and divider/multiply-accumulator

- 16 bits $\times 16$ bits $=32$ bits (Unsigned or signed)
- 32 bits $\times 32$ bits $=32$ bits (Unsigned)
- 16 bits $\times 16$ bits +32 bits $=32$ bits (Unsigned or signed)

Serial interface

- CSI : 1 to 3 channels
- UART : 1 to 3 channels
- Simplified $I^{2} \mathrm{C}$ communication : 0 to 3 channels
- $I^{2} C$ communication : 1 channel

Timer

- 16-bit timer $: 4$ to 8 channels
- 12-bit interval timer : 1 channel
- Watchdog timer : 1 channel (operable with the dedicated low-speed on-chip oscillator)

A/D converter

- 8/10-bit resolution A/D converter (VDD $=1.8$ to 5.5 V)
- 8 to 11 channels, internal reference voltage (1.45 V), and temperature sensor Note

I/O port

- I/O port: 18 to 26 (N -ch open drain I/O [withstand voltage of 6 V]: 2, N -ch open drain I/O [VDD withstand voltage]: 4 to 9)
- Can be set to N -ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a $1.8 / 2.5 / 3$ \checkmark device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit

Note Can be selected only in HS (high-speed main) mode.

Remark The functions mounted depend on the product. See 1.7 Outline of Functions.

O ROM, RAM capacities

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	-	-	R5F102AA
	-		-	-	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A Note 1	-
	-		R5F1036A Note 1	R5F1037A Note 1	-
12 KB	2KB	1 KB	R5F10269 ${ }^{\text {Note } 1}$	R5F10279 Note 1	R5F102A9
	-		R5F10369 ${ }^{\text {Note } 1}$	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 ${ }^{\text {Note } 1}$	R5F10278 Note 1	R5F102A8
	-		R5F10368 ${ }^{\text {Note } 1}$	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	-		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 ${ }^{\text {Note } 2}$	-	-
	-		R5F10366 ${ }^{\text {Note }} 2$	-	-

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE in the RL78/G12 User's Manual.)
2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G12

Notes 1. For details about the differences between the R5F102 products and the R5F103 products of RL78/G12, see 1.1 Differences between the R5F102 Products and the R5F103 Products.
2. Products only for "A: Consumer applications $\left(T_{A}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ " and " D : Industrial applications $\left(T_{A}=-40\right.$ to $+85^{\circ} \mathrm{C}$)"

Table 1-1. List of Ordering Part Numbers

Pin count	Package	Data flash	Fields of Application Note	Part Number
20 pins	20-pin plastic LSSOP $(4.4 \times 6.5 \mathrm{~mm}$, 0.65 mm pitch)	Mounted	A	R5F1026AASP\#V5, R5F10269ASP\#V5, R5F10268ASP\#V5, R5F10267ASP\#V5, R5F10266ASP\#V5 R5F1026AASP\#X5, R5F10269ASP\#X5, R5F10268ASP\#X5, R5F10267ASP\#X5, R5F10266ASP\#X5
			D	```R5F1026ADSP#V5, R5F10269DSP#V5, R5F10268DSP#V5, R5F10267DSP#V5, R5F10266DSP#V5 R5F1026ADSP#X5, R5F10269DSP#X5, R5F10268DSP#X5, R5F10267DSP#X5, R5F10266DSP#X5```
			G	R5F1026AGSP\#V5, R5F10269GSP\#V5, R5F10268GSP\#V5, R5F10267GSP\#V5, R5F10266GSP\#V5 R5F1026AGSP\#X5, R5F10269GSP\#X5, R5F10268GSP\#X5, R5F10267GSP\#X5, R5F10266GSP\#X5
		Not mounted	A	$\begin{aligned} & \text { R5F1036AASP\#V5, R5F10369ASP\#V5, R5F10368ASP\#V5, R5F10367ASP\#V5, } \\ & \text { R5F10366ASP\#V5 } \\ & \text { R5F1036AASP\#X5, R5F10369ASP\#X5, R5F10368ASP\#X5, R5F10367ASP\#X5, } \\ & \text { R5F10366ASP\#X5 } \end{aligned}$
			D	R5F1036ADSP\#V5, R5F10369DSP\#V5, R5F10368DSP\#V5, R5F10367DSP\#V5, R5F10366DSP\#V5 R5F1036ADSP\#X5, R5F10369DSP\#X5, R5F10368DSP\#X5, R5F10367DSP\#X5, R5F10366DSP\#X5
24 pins	24-pin plastic HWQFN $(4 \times 4 \mathrm{~mm}, 0.5$ mm pitch)	Mounted	A	R5F1027AANA\#U5, R5F10279ANA\#U5, R5F10278ANA\#U5, R5F10277ANA\#U5 R5F1027AANA\#W5, R5F10279ANA\#W5, R5F10278ANA\#W5, R5F10277ANA\#W5
			D	R5F1027ADNA\#U5, R5F10279DNA\#U5, R5F10278DNA\#U5, R5F10277DNA\#U5 R5F1027ADNA\#W5, R5F10279DNA\#W5, R5F10278DNA\#W5, R5F10277DNA\#W5
			G	R5F1027AGNA\#U5, R5F10279GNA\#U5, R5F10278GNA\#U5, R5F10277GNA\#U5 R5F1027AGNA\#W5, R5F10279GNA\#W5, R5F10278GNA\#W5, R5F10277GNA\#W5
		Not mounted	A	R5F1037AANA\#U5, R5F10379ANA\#U5, R5F10378ANA\#U5, R5F10377ANA\#U5, R5F1037AANA\#W5, R5F10379ANA\#W5, R5F10378ANA\#W5, R5F10377ANA\#W5
			D	R5F1037ADNA\#U5, R5F10379DNA\#U5, R5F10378DNA\#U5, R5F10377DNA\#U5, R5F1037ADNA\#W5, R5F10379DNA\#W5, R5F10378DNA\#W5, R5F10377DNA\#W5
$\begin{aligned} & 30 \\ & \text { pins } \end{aligned}$	30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)	Mounted	A	R5F102AAASP\#V0, R5F102A9ASP\#V0, R5F102A8ASP\#V0, R5F102A7ASP\#V0 R5F102AAASP\#X0, R5F102A9ASP\#X0, R5F102A8ASP\#X0, R5F102A7ASP\#X0
			D	R5F102AADSP\#V0, R5F102A9DSP\#V0, R5F102A8DSP\#V0, R5F102A7DSP\#V0 R5F102AADSP\#X0, R5F102A9DSP\#X0, R5F102A8DSP\#X0, R5F102A7DSP\#X0
			G	```R5F102AAGSP#V0, R5F102A9GSP#V0, R5F102A8GSP#V0, R5F102A7GSP#V0 R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0, R5F102A7GSP#X0```
		Not mounted	A	R5F103AAASP\#V0, R5F103A9ASP\#V0, R5F103A8ASP\#V0, R5F103A7ASP\#V0 R5F103AAASP\#X0, R5F103A9ASP\#X0, R5F103A8ASP\#X0, R5F103A7ASP\#X0
			D	R5F103AADSP\#V0, R5F103A9DSP\#V0, R5F103A8DSP\#V0, R5F103A7DSP\#V0 R5F103AADSP\#X0, R5F103A9DSP\#X0, R5F103A8DSP\#X0, R5F103A7DSP\#X0

Note For fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G12.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Differences between the R5F102 Products and the R5F103 Products

The following are differences between the R5F102 products and the R5F103 products.
O Whether the data flash memory is mounted or not
O High-speed on-chip oscillator oscillation frequency accuracy
O Number of channels in serial interface
O Whether the DMA function is mounted or not
O Whether a part of the safety functions are mounted or not

1.3.1 Data Flash

The data flash memory of 2 KB is mounted on the R5F102 products, but not on the R5F103 products.

Product	Data Flash
R5F102 products	2 KB
R5F1026A, R5F1027A, R5F102AA,	
R5F10269, R5F10279, R5F102A9,	
R5F10268, R5F10278, R5F102A8,	
R5F10267, R5F10277, R5F102A7,	Not mounted
R5F10266 Note	
R5F103 products	
R5F1036A, R5F1037A, R5F103AA,	
R5F10369, R5F10379, R5F103A9,	
R5F10368, R5F10378 R5F103A8,	
R5F10367, R5F10377, R5F103A7,	
R5F10366	

Note The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.3.2 On-chip oscillator characteristics

(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip oscillator oscillation frequency accuracy	$\mathrm{T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$	-1.0	+1.0	$\%$
	$\mathrm{~T}_{\mathrm{A}}=-40$ to $-20^{\circ} \mathrm{C}$	-1.5	+1.5	
	$\mathrm{~T}_{\mathrm{A}}=+85$ to $+105^{\circ} \mathrm{C}$	-2.0	+2.0	

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip oscillator oscillation frequency accuracy	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	-5.0	+5.0	$\%$

1.3.3 Peripheral Functions

The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

		R5F	product	R5F1	duct
		20, 24 pin	30 pin product	$20,24 \text { pin }$	30 pin
Serial interface	UART	1 channel	3 channels	1 channel	
	CSI	2 channels	3 channels	1 channel	
	Simplified ${ }^{2} \mathrm{C}$	2 channels	3 channels	None	
DMA function		2 channels		None	
Safety function	CRC operation	Yes		None	
	RAM guard	Yes		None	
	SFR guard	Yes		None	

1.4 Pin Configuration (Top View)

1.4.1 20-pin products

- 20-pin plastic LSSOP ($4.4 \times 6.5 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$

Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G12 User's Manual.

1.4.2 24-pin products

- 24-pin plastic HWQFN ($4 \times 4 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G12 User's Manual.
3. It is recommended to connect an exposed die pad to Vss.

1.4.3 30-pin products

- 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Provided only in the R5F102 products.

Caution Connect the REGC pin to Vss via capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.5 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G12 User's Manual.

1.5 Pin Identification

ANI0 to ANI3,	
ANI16 to ANI22:	Analog input
AVREFM:	Analog Reference Voltage Minus
AVREFP:	Analog reference voltage plus
EXCLK:	External Clock Input
	(Main System Clock)
INTP0 to INTP5	Interrupt Request From Peripheral
KR0 to KR9:	Key Return
P00 to P03:	Port 0
P10 to P17:	Port 1 2
P20 to P23:	Port 3
P30 to P31:	Port 4
P40 to P42:	Port 5
P50, P51:	Port 12
P60, P61:	Port 13
P120 to P122, P125:	Port 14
P137:	Programmable Clock Output/
P147:	Buzzer Output
PCLBUZ0, PCLBUZ1:	

REGC:	Regulator Capacitance
RESET:	Reset
RxD0 to RxD2:	Receive Data
SCK00, SCK01, SCK11,	
SCK20:	Serial Clock Input/Output
SCL00, SCL01,	
SCL11, SCL20, SCLA0:	Serial Clock Input/Output
SDA00, SDA01, SDA11,	
SDA20, SDAA0:	Serial Data Input/Output
SI00, SI01, SI11, SI20:	Serial Data Input
SO00, SO01, SO11,	
SO20:	Serial Data Output
TI00 to TI07:	Timer Input
TO00 to TO07:	Timer Output
TOOL0:	Data Input/Output for Tool
TOOLRxD, TOOLTxD:	Data Input/Output for External
TxD0 to TxD2:	Device
VDD:	Transmit Data
Vss:	Power supply
X1, X2:	Ground
Crystal Oscillator (Main System	
Clock)	

1.6 Block Diagram

1.6.1 20-pin products

Note Provided only in the R5F102 products.

1.6.2 24-pin products

Note Provided only in the R5F102 products.

1.6.3 30-pin products

Note Provided only in the R5F102 products.

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR) in the RL78/G12 User's Manual.

1.7 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00 H .

Item		20-pin		24-pin		30-pin	
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax
Code flash memory		2 to 16 KB Note 1		4 to 16 KB			
Data flash memory		2 KB	-	2 KB	-	2 KB	-
RAM		256 B to 1.5 KB		512 B to 1.5 KB		512 B to 2KB	
Address space		1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode : 1 to $20 \mathrm{MHz}(\mathrm{VDD}=2.7$ to 5.5 V), HS (High-speed main) mode : 1 to $16 \mathrm{MHz}(\mathrm{VDD}=2.4$ to 5.5 V), LS (Low-speed main) mode : 1 to 8 MHz ($\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)					
	High-speed on-chip oscillator clock	HS (High-speed main) mode : 1 to 24 MHz ($\mathrm{VDD}=2.7$ to 5.5 V), HS (High-speed main) mode : 1 to $16 \mathrm{MHz}(\mathrm{V} D \mathrm{DD}=2.4$ to 5.5 V$)$, LS (Low-speed main) mode : 1 to 8 MHz ($\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V)					
Low-speed on-chip oscillator clock		15 kHz (TYP)					
General-purpose register		(8-bit register $\times 8$) $\times 4$ banks					
Minimum instruction execution time		0.04167μ (High-speed on-chip oscillator clock: $\mathrm{fiH}^{\text {(}}=24 \mathrm{MHz}$ operation)					
		0.05μ s (High-speed system clock: $\mathrm{fmx}=20 \mathrm{MHz}$ operation)					
Instruction set		- Data transfer (8/16 bits) - Adder and subtractor/logical operation (8/16 bits) - Multiplication (8 bits $\times 8$ bits) - Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc.					
I/O port	Total	18		22		26	
	CMOS I/O	$\begin{gathered} 12 \\ \text { (N-ch O.D. I/O } \end{gathered}$ [Vod withstand voltage]: 4)		$\begin{gathered} 16 \\ \text { (N-ch O.D. I/O } \end{gathered}$ [VDD withstand voltage]: 5)		$\begin{gathered} 21 \\ \text { (N-ch O.D. I/O } \end{gathered}$ [Vdd withstand voltage]: 9)	
	CMOS input	4		4		3	
	N -ch open-drain I/O (6 V tolerance)	2					
Timer	16-bit timer	4 channels				8 channels	
	Watchdog timer	1 channel					
	12-bit Interval timer	1 channel					
	Timer output	4 channels (PWM outputs: $3^{\text {Note } 3}$)				8 channels (PWM outputs: $7^{\text {Notes } 2,3}$)	

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.
2. The maximum number of channels when PIORO is set to 1 .
3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See 6.9.3 Operation as multiple PWM output function in the RL78/G12 User's Manual.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

Item		20-pin		24-pin		30-pin	
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax
Clock output/buzzer output		1				2	
		2.44 kHz to 10 MHz : (Peripheral hardware clock: $\mathrm{fmain}^{\text {(}} 20 \mathrm{MHz}$ operation)					
8/10-bit resolution A/D converter		11 channels				8 channels	
Serial interface		[R5F1026x (20-pin), R5F1027x (24-pin)] - CSI: 2 channels/Simplified I ${ }^{2} \mathrm{C}: 2$ channels/UART: 1 channel [R5F102Ax (30-pin)] - CSI: 1 channel/Simplified $I^{2} \mathrm{C}: 1$ channeI/UART: 1 channel - CSI: 1 channel/Simplified $I^{2} \mathrm{C}: 1$ channel/UART: 1 channel - CSI: 1 channel/Simplified $I^{2} \mathrm{C}: 1$ channeI/UART: 1 channel [R5F1036x (20-pin), R5F1037x (24-pin)] - CSI: 1 channel/Simplified I ${ }^{2}$ C: 0 channeI/UART: 1 channel [R5F103Ax (30-pin)] - CSI: 1 channel/Simplified $I^{2} \mathrm{C}: 0$ channeI/UART: 1 channel					
	$1^{2} \mathrm{C}$ bus	1 channel					
Multiplier and divider/multiplyaccumulator		- 16 bits $\times 16$ bits $=32$ bits (unsigned or signed) - 32 bits $\times 32$ bits $=32$ bits (unsigned) - 16 bits $\times 16$ bits +32 bits $=32$ bits (unsigned or signed)					
DMA controller		2 channels	-	2 channels	-	2 channels	-
Vectored interrupt sources	Internal	18	16	18	16	26	19
	External	5				6	
Key interrupt		6		10		-	
Reset		- Reset by $\overline{\text { RESET }}$ pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access					
Power-on-reset circuit		$\begin{array}{ll}\text { - Power-on-reset: } & \text { 1.51 V (TYP) } \\ \text { - Power-down-reset: } & 1.50 \mathrm{~V} \text { (TYP) }\end{array}$					
Voltage detector		- Rising edge : 1.88 to 4.06 V (12 stages) - Falling edge : 1.84 to 3.98 V (12 stages)					
On-chip debug function		Provided					
Power supply voltage		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V					
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)					

Note The illegal instruction is generated when instruction code FFH is executed.
Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\left.+85^{\circ} \mathrm{C}\right)$

This chapter describes the following electrical specifications.
Target products A: Consumer applications $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ R5F102xxAxx, R5F103xxAxx

D: Industrial applications $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ R5F102xxDxx, R5F103xxDxx
G: Industrial applications when $T_{A}=-40$ to $+105^{\circ} \mathrm{C}$ products is used in the range of $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ R5F102xxGxx

Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G12 User's Manual.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Notes 1. 30-pin product only.
2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
3. Must be 6.5 V or lower.
4. Do not exceed $\operatorname{AVref}(+)+0.3 \mathrm{~V}$ in case of A / D conversion target pin.
5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
2. $A V_{\operatorname{REF}}(+)$: + side reference voltage of the A / D converter.
3. Vss : Reference voltage

Page 17 of 106

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ${ }^{\text {Note }}$	Ceramic resonator / crystal oscillator	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G12 User's Manual.

2.2.2 On-chip oscillator characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fiH			1		24	MHz
High-speed on-chip oscillator clock frequency accuracy		R5F102 products	$\mathrm{T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$	-1.0		+1.0	\%
			$\mathrm{T}_{\mathrm{A}}=-40$ to $-20^{\circ} \mathrm{C}$	-1.5		+1.5	\%
		R5F103 products		-5.0		+5.0	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000 C 2 H) and bits 0 to 2 of HOCODIV register.
2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	Іон1	20-, 24-pin products: Per pin for P00 to P03 ${ }^{\text {Note }} 4$, P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				$\begin{gathered} -10.0 \\ \text { Note } 2 \end{gathered}$	mA
		20-, 24-pin products: Total of P40 to P42 30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70 \%{ }^{\text {Note }}{ }^{3}$)	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {do }}<4.0 \mathrm{~V}$			-6.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-4.5	mA
		20-, 24-pin products: Total of P00 to P03 ${ }^{\text {Note }} 4, \mathrm{P} 10$ to P14 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty $\leq 70 \%{ }^{\text {Note }}{ }^{3}$)	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-80.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			-18.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			-10.0	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note } 3}$)				-100	mA
	IOH2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VdD pin to an output pin.
2. However, do not exceed the total current value.
3. The output current value under conditions where the duty factor $\leq 70 \%$.

If duty factor > 70\%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins $=($ Іон $\times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and I н $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \cong-8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to $\mathrm{P} 15, \mathrm{P} 17$, and P 50 for 30 -pin products do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ${ }^{\text {Note } 1}$	lol1	20-, 24-pin products: Per pin for P00 to P03 ${ }^{\text {Note } 4}$, P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				$\begin{aligned} & 20.0 \\ & \text { Note } 2 \end{aligned}$	mA
		Per pin for P60, P61				$\begin{aligned} & 15.0 \\ & \text { Note } 2 \end{aligned}$	mA
		20-, 24-pin products:	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			60.0	mA
		otal of P40 to P42	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{2} 4.0 \mathrm{~V}$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70 \%{ }^{\text {Note } 3}$)	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			1.8	mA
		20-, 24-pin products:	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			80.0	mA
		otal of P00 to P03 ${ }^{\text {Note } 4}$,	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$			27.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty $\leq 70 \%{ }^{\text {Note } 3}$)	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			5.4	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note }}{ }^{\text {3 }}$)				140	mA
	Iol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
2. However, do not exceed the total current value.
3. The output current value under conditions where the duty factor $\leq 70 \%$.

If duty factor $>70 \%$: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins $=($ los $\times 0.7) /(n \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and loL $=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \cong 8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

TA $=-40$ to $\left.+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$							
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{IH} 1}$	Normal input buffer 20-, 24-pin products: P00 to P03 ${ }^{\text {Note } 2}$, P10 to P14, P40 to P42 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		0.8 VDD		VdD	V
	V_{1+2}	TTL input buffer 20-, 24-pin products: P10, P11 30-pin products: P01, P10, P11, P13 to P17	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	2.2		VdD	V
			$3.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	2.0		VdD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}$	1.5		VdD	V
	V_{1+3}	P20 to P23		0.7 VdD		Vod	V
	VIH4	P60, P61		0.7 VdD		6.0	V
	$\mathrm{V}_{\text {IH5 }}$	P121, P122, P125 ${ }^{\text {Note } 1}, \mathrm{P} 137$, EXCLK, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
Input voltage, low	VIL1	Normal input buffer 20-, 24-pin products: P00 to P03 ${ }^{\text {Note } 2}$, P10 to P14, P40 to P42 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		0		0.2 VDD	V
	VIL2	TTL input buffer 20-, 24-pin products: P10, P11 30-pin products: P01, P10, P11, P13 to P17	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0		0.8	V
			$3.3 \mathrm{~V} \leq \mathrm{VdD}<4.0 \mathrm{~V}$	0		0.5	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}$	0		0.32	V
	VIL3	P20 to P23		0		0.3VDD	V
	VIL4	P60, P61		0		0.3 VdD	V
	VIL5	P121, P122, P125 ${ }^{\text {Note }}$ 1, P137, EXCLK, RESET		0		0.2 Vdo	V
Output voltage, high	Voh1	20-, 24-pin products: P00 to P03 ${ }^{\text {Note } 2, ~ P 10 ~ t o ~ P 14, ~}$ P40 to P42 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \text { Іон } 1=-10.0 \mathrm{~mA} \end{aligned}$	VDD-1.5			V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { Іон1 }=-3.0 \mathrm{~mA} \end{aligned}$	Vdd-0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH}_{\mathrm{O}}=-2.0 \mathrm{~mA} \end{aligned}$	VdD-0.6			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OH} 1}=-1.5 \mathrm{~mA} \end{aligned}$	VDD-0.5			V
	Voh2	P20 to P23	Іон2 $=-100 \mu \mathrm{~A}$	VDD-0.5			V

Notes 1. 20, 24-pin products only.
2. 24-pin products only.

Caution The maximum value of V_{it} of pins P 10 to P 12 and P 41 for 20 -pin products, $\mathrm{P} 01, \mathrm{P} 10$ to P 12 , and P 41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is Vdo even in N-ch opendrain mode.
High level is not output in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, low	VoL1	20-, 24-pin products: P00 to P03 ${ }^{\text {Note }, ~ P 10 ~ t o ~ P 14, ~}$ P40 to P42 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=20.0 \mathrm{~mA} \end{aligned}$			1.3	V
				$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
				$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
				$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
				$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
	VoL2	P20 to P23		$\mathrm{loL} 2=400 \mu \mathrm{~A}$			0.4	V
	Voı3	P60, P61		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=15.0 \mathrm{~mA} \end{aligned}$			2.0	V
				$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=5.0 \mathrm{~mA} \end{aligned}$			0.4	V
				$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
				$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL1 }=2.0 \mathrm{~mA} \end{aligned}$			0.4	V
Input leakage current, high	ILIH1	Other than P121, P122	$V_{1}=V_{D D}$				1	$\mu \mathrm{A}$
	LLH2	$\begin{aligned} & \text { P121, P122 } \\ & \text { (X1, X2/EXCLK) } \end{aligned}$	$V_{1}=V_{D D}$	Input port or external clock input			1	$\mu \mathrm{A}$
				When resonator connected			10	$\mu \mathrm{A}$
Input leakage current, low	ILL1	Other than P121, P122	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {ss }}$				-1	$\mu \mathrm{A}$
	LıL2	$\begin{aligned} & \text { P121, P122 } \\ & \text { (X1, X2/EXCLK) } \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {ss }}$	Input port or external clock input			-1	$\mu \mathrm{A}$
				When resonator connected			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	20-, 24-pin products: P00 to P03 ${ }^{\text {Note }, ~ P 10 ~ t o ~ P 14, ~}$ P40 to P42, P125, RESET 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		$\mathrm{V}_{1}=\mathrm{V}_{\text {ss, }}$, input port	10	20	100	k Ω

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) 20-, 24-pin products
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \mathrm{~V} s=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IDD1	Operating mode	HS(High-speed main) mode ${ }^{\text {Note } 4}$	$\mathrm{fiH}^{\text {a }}=24 \mathrm{MHz}^{\text {Note } 3}$	Basic operation	$V_{D D}=5.0 \mathrm{~V}$		1.5		mA
						$V_{\text {do }}=3.0 \mathrm{~V}$		1.5		
					Normal operation	$V_{D D}=5.0 \mathrm{~V}$		3.3	5.0	mA
						$V_{\text {do }}=3.0 \mathrm{~V}$		3.3	5.0	
				$\mathrm{fiH}=16 \mathrm{MHz}{ }^{\text {Note } 3}$		$V_{\text {do }}=5.0 \mathrm{~V}$		2.5	3.7	mA
						$V_{\text {dd }}=3.0 \mathrm{~V}$		2.5	3.7	
			LS(Low-speed main) mode ${ }^{\text {Note } 4}$	$\mathrm{fiH}^{\text {a }}=8 \mathrm{MHz}^{\text {Note }} 3$		$V_{\text {dd }}=3.0 \mathrm{~V}$		1.2	1.8	mA
						$V_{\text {do }}=2.0 \mathrm{~V}$		1.2	1.8	
			HS(High-speed main) mode ${ }^{\text {Note4 }}$	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$		Square wave input		2.8	4.4	mA
						Resonator connection		3.0	4.6	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		2.8	4.4	mA
						Resonator connection		3.0	4.6	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=10 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$		Square wave input		1.8	2.6	mA
						Resonator connection		1.8	2.6	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		1.8	2.6	mA
						Resonator connection		1.8	2.6	
			LS(Low-speed main) mode ${ }^{\text {Note } 4}$	$\begin{aligned} & f_{M x}=8 \mathrm{MHz}^{\text {Note } 2}, \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		1.1	1.7	mA
						Resonator connection		1.1	1.7	
				$\begin{aligned} & f_{M x}=8 \mathrm{MHz}^{\text {Note } 2,} \\ & V_{\mathrm{DD}}=2.0 \mathrm{~V} \end{aligned}$		Square wave input		1.1	1.7	mA
						Resonator connection		1.1	1.7	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to Vdd or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. When high-speed on-chip oscillator clock is stopped.
3. When high-speed system clock is stopped
4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDd $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
VdD $=2.4 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (Low speed main) mode: $V_{D D}=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: high-speed on-chip oscillator clock frequency
3. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$.

Page 23 of 106
(1) 20-, 24-pin products
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{Cs}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IdD2 ${ }^{\text {Note } 2}$	HALT mode	HS (High-speed main) modeNote 6	$\mathrm{fiH}=24 \mathrm{MHz}^{\text {Note }} 4$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		440	1210	$\mu \mathrm{A}$
					$\mathrm{V}_{\text {dD }}=3.0 \mathrm{~V}$		440	1210	
				$\mathrm{fiH}^{\prime}=16 \mathrm{MHz}{ }^{\text {Note }} 4$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		400	950	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		400	950	
			LS (Low-speed main) mode ${ }^{\text {Note } 6}$	$\mathrm{fiH}=8 \mathrm{MHz}{ }^{\text {Note }} 4$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		270	542	$\mu \mathrm{A}$
					$V_{D D}=2.0 \mathrm{~V}$		270	542	
			HS (High-speed main) mode ${ }^{\text {Note } 6}$	$\begin{aligned} & f_{M X}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		280	1000	$\mu \mathrm{A}$
					Resonator connection		450	1170	
				$\begin{aligned} & f_{M X}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		280	1000	$\mu \mathrm{A}$
					Resonator connection		450	1170	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=10 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		190	590	$\mu \mathrm{A}$
					Resonator connection		260	660	
				$\begin{aligned} & \mathrm{f} M \mathrm{x}=10 \mathrm{MHz}{ }^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		190	590	$\mu \mathrm{A}$
					Resonator connection		260	660	
			LS (Low-speed main) mode ${ }^{\text {Note } 6}$	$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		110	360	$\mu \mathrm{A}$
					Resonator connection		150	416	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		110	360	$\mu \mathrm{A}$
					Resonator connection		150	416	
	IdD3 ${ }^{\text {Note } 5}$	STOP mode	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.24	0.50	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.32	0.80	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.48	1.20	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.74	2.20	

Notes 1. Total current flowing into $V_{D D}$, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. During HALT instruction execution by flash memory.
3. When high-speed on-chip oscillator clock is stopped.
4. When high-speed system clock is stopped.
5. Not including the current flowing into the 12 -bit interval timer and watchdog timer.
6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: Vdd $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
VDD $=2.4 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (Low speed main) mode: $V_{D D}=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: high-speed on-chip oscillator clock frequency
3. Except temperature condition of the TYP. value is $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, other than STOP mode

Page 24 of 106

(2) 30-pin products

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IDD1	Operating mode	HS (High-speed main) mode ${ }^{\text {Note } 4}$	$\mathrm{fiH}^{\prime}=24 \mathrm{MHz}^{\text {Note } 3}$	Basic operation	$V_{D D}=5.0 \mathrm{~V}$		1.5		mA
						$V_{\text {do }}=3.0 \mathrm{~V}$		1.5		
					Normal operation	$V_{D D}=5.0 \mathrm{~V}$		3.7	5.5	mA
						$V_{\text {do }}=3.0 \mathrm{~V}$		3.7	5.5	
				$\mathrm{fiH}=16 \mathrm{MHz}{ }^{\text {Note } 3}$		$V_{\text {do }}=5.0 \mathrm{~V}$		2.7	4.0	mA
						$V_{\text {do }}=3.0 \mathrm{~V}$		2.7	4.0	
			LS (Low-speed main) mode ${ }^{\text {Note } 4}$	$\mathrm{fiH}_{\mathrm{H}}=8 \mathrm{MHz}^{\text {Note } 3}$		$V_{\text {dD }}=3.0 \mathrm{~V}$		1.2	1.8	mA
						$V_{\text {do }}=2.0 \mathrm{~V}$		1.2	1.8	
			HS (High-speed main) mode ${ }^{\text {Note } 4}$	$\begin{aligned} & f_{\mathrm{Mx}}=20 \mathrm{MHz}^{\text {Note } 2}, \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$		Square wave input		3.0	4.6	mA
						Resonator connection		3.2	4.8	
				$\begin{aligned} & f_{\mathrm{Mx}}=20 \mathrm{MHz}^{\text {Note } 2,} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		3.0	4.6	mA
						Resonator connection		3.2	4.8	
				$\begin{aligned} & \mathrm{fmx}_{\mathrm{Mx}}=10 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$		Square wave input		1.9	2.7	mA
						Resonator connection		1.9	2.7	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		1.9	2.7	mA
						Resonator connection		1.9	2.7	
			LS (Low-speed main) mode ${ }^{\text {Note } 4}$	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		1.1	1.7	mA
						Resonator connection		1.1	1.7	
				$\begin{aligned} & f_{M x}=8 \mathrm{MHz}^{\text {Note } 2}, \\ & V_{D D}=2.0 \mathrm{~V} \end{aligned}$		Square wave input		1.1	1.7	mA
						Resonator connection		1.1	1.7	

Notes 1. Total current flowing into $V_{D D}$, including the input leakage current flowing when the level of the input pin is fixed to Vdd or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. When high-speed on-chip oscillator clock is stopped.
3. When high-speed system clock is stopped
4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
VDD $=2.4 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (Low speed main) mode: VdD $=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fir: high-speed on-chip oscillator clock frequency
3. Temperature condition of the TYP. value is $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) 30-pin products
($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{C}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note }} 1$	IdD2 ${ }^{\text {Note } 2}$	HALT mode	HS (High-speed main) mode ${ }^{\text {Note } 6}$	$\mathrm{fiH}_{\mathrm{H}}=24 \mathrm{MHz}^{\text {Note }} 4$	$V_{\text {dD }}=5.0 \mathrm{~V}$		440	1280	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$		440	1280	
				$\mathrm{fiH}^{\prime}=16 \mathrm{MHz}{ }^{\text {Note }} 4$	$V_{D D}=5.0 \mathrm{~V}$		400	1000	$\mu \mathrm{A}$
					$V_{\text {do }}=3.0 \mathrm{~V}$		400	1000	
			LS (Low-speed main) mode ${ }^{\text {Note } 6}$	$\mathrm{fiH}=8 \mathrm{MHz}{ }^{\text {Note } 4}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		260	530	$\mu \mathrm{A}$
					$V_{\text {do }}=2.0 \mathrm{~V}$		260	530	
			HS (High-speed main) mode ${ }^{\text {Note } 6}$	$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		280	1000	$\mu \mathrm{A}$
					Resonator connection		450	1170	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		280	1000	$\mu \mathrm{A}$
					Resonator connection		450	1170	
				$\begin{aligned} & f_{M X}=10 \mathrm{MHz}^{\text {Note } 3}, \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		190	600	$\mu \mathrm{A}$
					Resonator connection		260	670	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=10 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		190	600	$\mu \mathrm{A}$
					Resonator connection		260	670	
			LS (Low-speed main) mode $^{\text {Note } 6}$	$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{VDD}^{3}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		95	330	$\mu \mathrm{A}$
					Resonator connection		145	380	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz} \mathrm{Mote}^{\text {N }}, \\ & \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		95	330	$\mu \mathrm{A}$
					Resonator connection		145	380	
	IdD3 ${ }^{\text {Note }} 5$	STOP mode	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.23	0.50	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.30	1.10	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.46	1.90	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.75	3.30	

Notes 1. Total current flowing into $V_{D D}$, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. During HALT instruction execution by flash memory.
3. When high-speed on-chip oscillator clock is stopped.
4. When high-speed system clock is stopped.
5. Not including the current flowing into the 12 -bit interval timer and watchdog timer.
6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: Vdd $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
VDD $=2.4 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (Low speed main) mode: $V_{D D}=1.8 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: high-speed on-chip oscillator clock frequency
3. Except STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Page 26 of 106

(3) Peripheral functions (Common to all products)

$$
\left(\mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL Note 1				0.20		$\mu \mathrm{A}$
12-bit interval timer operating current	Ітмка Notes 1, 2, 3				0.02		$\mu \mathrm{A}$
Watchdog timer operating current	IwdT Notes 1, 2, 4	$\mathrm{fiL}=15 \mathrm{kHz}$			0.22		$\mu \mathrm{A}$
A/D converter operating current	IADC ${ }^{\text {Notes 1, } 5}$	When conversion at maximum speed	Normal mode, $\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		1.30	1.70	mA
			Low voltage mode, $\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\text {dD }}=3.0 \mathrm{~V}$		0.50	0.70	mA
A/D converter reference voltage operating current	IAdref Note 1				75.0		$\mu \mathrm{A}$
Temperature sensor operating current	ITmps $^{\text {Note }} 1$				75.0		$\mu \mathrm{A}$
LVD operating current	ILVD Notes 1,6				0.08		$\mu \mathrm{A}$
Selfprogramming operating current	IFSP Notes 1, 8				2.00	12.20	mA
BGO operating current	Ibgo ${ }^{\text {Notes } 1,7}$				2.00	12.20	mA
SNOOZE operating current	Isnoz ${ }^{\text {Note } 1}$	ADC operation	The mode is performed ${ }^{\text {Note } 9}$		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, $A V_{\text {REFP }}=V_{D D}=3.0 \mathrm{~V}$		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to the Vdd.
2. When high speed on-chip oscillator and high-speed system clock are stopped.
3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IdD1, IdD2 or Iddz, and Ifil and Itmka when the 12-bit interval timer operates.
4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IdD1, IDD2 or IdD3 and IwDt when the watchdog timer operates.
5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IdD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IdD3 and ILVD when the LVD circuit operates.
7. Current flowing only during data flash rewrite.
8. Current flowing only during self programming.
9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode in the RL78/G12 User's Manual.

Remarks 1. fL: Low-speed on-chip oscillator clock frequency
2. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

2.4 AC Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (Highspeed main) mode	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{do}}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (Lowspeed main) mode	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
		During self programming	HS (High-	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{s}$
			speed main) mode	$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
			LS (Lowspeed main) mode	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
External main system clock frequency	fEX	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			1.0		16.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.4 \mathrm{~V}$			1.0		8.0	MHz
External main system clock input high-level width, lowlevel width	texh, texı	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			30			ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.4 \mathrm{~V}$			60			ns
TIOO to TIO7 input high-level width, low-level width	tтIH, tтLL				1/fmск + 10			ns
TO00 to TO07 output frequency	fto	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$					12	MHz
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$					8	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$					4	MHz
PCLBUZ0, or PCLBUZ1 output frequency	$\mathrm{f}_{\mathrm{PCL}}$	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$					16	MHz
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$					8	MHz
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$					4	MHz
INTP0 to INTP5 input highlevel width, low-level width	tinth, tintl				1			$\mu \mathrm{s}$
KR0 to KR9 input available width	tKR				250			ns
$\overline{\text { RESET }}$ low-level width	trsL				10			$\mu \mathrm{s}$

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the timer clock select register 0 (TPSO) and the CKSOn bit of timer mode register 0 n (TMROn). n : Channel number ($\mathrm{n}=0$ to 7))

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs Vdd (LS (low-speed main) mode)

AC Timing Test Point

External Main System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1				fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $\mathrm{fcLK}=\mathrm{f}_{\text {MCK }}{ }^{\text {Note }} \mathbf{2}$		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $8 \mathrm{MHz}\left(1.8 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}\right)$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q : UART number ($q=0$ to 2), g : PIM, POM number $(g=0,1$)
2. $f_{м с к: ~ S e r i a l ~ a r r a y ~ u n i t ~ o p e r a t i o n ~ c l o c k ~ f r e q u e n c y ~}^{\text {a }}$
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00$ to $03,10,11$)
(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSIOO only)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{Cs}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkcy1	tкč1 $\geq 2 / \mathrm{fcLk}$	83.3		250		ns
SCK00 high-/lowlevel width	tkH1, $^{\text {, }}$ tкL1	$4.0 \mathrm{~V} \leq \mathrm{V}$ DD $\leq 5.5 \mathrm{~V}$	tксү1/2-7		tксү1/2-50		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	tKCrı/2-10		tkcrı $1 / 2-50 ~_{\text {- }}$		ns
SIOO setup time (to SCK00个) Note 1	tsık1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	23		110		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	33		110		ns
SIOO hold time (from SCK00 \uparrow) ${ }^{\text {Note } 2}$	tksı1		10		10		ns
Delay time from SCK00 \downarrow to SO00 output Note 3	tksO1	$\mathrm{C}=20 \mathrm{pF}$ Note 4		10		10	ns

Notes 1. When DAPOO $=0$ and CKPOO = 0 , or DAPOO $=1$ and CKPOO = 1. The SIOO setup time becomes "to SCK00 \downarrow " when DAP00 $=0$ and CKP00 $=1$, or DAP00 $=1$ and CKP00 $=0$.
2. When DAPOO $=0$ and CKPOO $=0$, or DAPOO $=1$ and CKPOO $=1$. The SIOO hold time becomes "from SCK00 \downarrow " when DAPOO $=0$ and CKPOO $=1$, or DAPOO $=1$ and CKPOO $=0$.
3. When DAPOO $=0$ and CKPOO $=0$, or DAPOO $=1$ and CKPOO $=1$. The delay time to SOOO output becomes "from SCK00 " when DAP00 $=0$ and CKP00 $=1$, or DAP00 $=1$ and CKP00 $=0$.
4. C is the load capacitance of the SCK00 and SOOO output lines.

Caution Select the normal input buffer for the SIOO pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).

Remarks 1. This specification is valid only when CSIOO's peripheral I/O redirect function is not used.
2. f_{mc} : Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register 0 (SPSO) and the CKS00 bit of serial mode register 00 (SMR00).)
(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkç1	$t_{K C Y 1} \geq 4 / f \mathrm{fcLk}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	167		500		ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	250		500		ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	-		500		ns
SCKp high-/low-level width	tkH1, tkL1	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		tксү1/2-12		tксу1/2-50		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tксү1/2-18		tксуү $/ 2-50$		ns
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		tксү1/2-38		tксу1/2-50		ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		-		tксу1/2-50		ns
SIp setup time (to SCKp \uparrow) Note 1	tsik1	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		44		110		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		44		110		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		75		110		ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		-		110		ns
Slp hold time (from SCKp \uparrow) ${ }^{\text {Note } 2}$	tks 11			19		19		ns
Delay time from SCKp \downarrow to SOp output Note 3	tkso1	$\mathrm{C}=30 \mathrm{pF}$ Not			25		25	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

Remarks 1. p: CSI number ($p=00,01,11,20$), m : Unit number $(m=0,1)$, n : Channel number $(n=0,1,3$: " 1,3 " is only for the R5F102 products)
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register $\mathrm{m}(\mathrm{SPSm})$ and the CKSmn bit of serial mode register $m n(S M R m n)$. m : Unit number ($m=0,1$), n : Channel number ($n=0,1,3$: " 1,3 " is only for the R5F102 products.))
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ${ }^{\text {Note } 5}$	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	20 MHz < fmCk	8/fmск		-		ns
			$\mathrm{fmCK} \leq 20 \mathrm{MHz}$	6/fмск		6/fmск		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	16 MHz < fmск	8/fмск		-		ns
			$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	6/fмск		6/fmск		ns
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		6/fмск and 500		6/fмск and 500		ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		-		6/fмск and 750		ns
SCKp high-/low-level width	tкH2, tкL2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		tkcy2/2-7		tксү2/2-7		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		tксү2/2-8		tксү2/2-8		ns
		$2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		tксү2/2-18		tксү2/2-18		ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		-		tксү2/2-18		ns
SIp setup time (to SCKp \uparrow) Note 1	tsik2	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		1/fмск +20		1/fмск +30		ns
		$2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		1/fмск +30		1/fмск +30		ns
		$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		-		1/fмск +30		ns
Slp hold time (from SCKp \uparrow) ${ }^{\text {Note } 2}$	tks12			1/fмск +31		1/fмск +31		ns
Delay time from SCKp \downarrow to SOp output Note 3	tksO2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		$\text { 2/fмек }+$ 44		$\begin{gathered} \text { 2/fmck }+ \\ 110 \end{gathered}$	ns
			$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		$\text { 2/fıск }+$ 75		$\begin{gathered} \text { 2/fмск }+ \\ 110 \end{gathered}$	ns
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		-		$\begin{gathered} \text { 2/fмск }+ \\ 110 \end{gathered}$	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. C is the load capacitance of the SOp output lines.
5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps.

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

Remarks 1. p : CSI number $(p=00,01,11,20)$, m : Unit number $(m=0,1), n$: Channel number $(n=0,1,3$: " 1,3 " is only for the R5F102 products.)
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register $m \mathrm{n}(\mathrm{SMRmn})$. m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0,1,3$: " 1,3 " is only for the R5F102 products.))
(5) During communication at same potential (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode LS (low-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$		$400{ }^{\text {Note } 1}$	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		$300 \begin{aligned} & \text { Note } 1\end{aligned}$	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1550		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{D} \leq 5.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1550		ns
Data setup time (reception)	tsu:dat	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmck $+145^{\text {Note } 2}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmck $+230^{\text {Note } 2}$		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	0	405	ns

Notes 1. The value must be equal to or less than $f_{м с к / 4}$.
2. Set tsu:DAt so that it will not exceed the hold time when $\mathrm{SCLr}=$ " L " or $\mathrm{SCLr}=$ " H ".

Caution Select the N-ch open drain output (VdD tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Remarks 1. $\mathrm{R}_{\mathrm{b}}[\Omega]$]:Communication line (SDAr) pull-up resistance
$\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCLr, SDAr) load capacitance
2. r : IIC number ($r=00,01,11,20$), $h:=\operatorname{POM}$ number $(h=0,1,4,5)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register $\mathrm{mn}(\mathrm{SMRmn})$. m : Unit number ($\mathrm{m}=0,1$), n : Channel number ($0,1,3$)
4. Simplified $\mathrm{I}^{2} \mathrm{C}$ mode is supported only by the R5F102 products.
(6) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate ${ }^{\text {Note4 }}$		Reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		fмск/6 Note1		fмск/6 Note1	bps
			Theoretical value of the maximum transfer rate $\mathrm{f}_{\text {MCK }}=\mathrm{f} \text { LLK } \text { Note } 3$		4.0		1.3	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		fмск/6 Note1		fмск/6 Note1	bps
			Theoretical value of the maximum transfer rate $\mathrm{f}_{\text {MCK }}=\mathrm{f}_{\mathrm{f} L \mathrm{~K}} \text { Note3 }$		4.0		1.3	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		fмск/6 Notes1, 2		fмск/6 Notes1, 2	bps
			Theoretical value of the maximum transfer rate $\mathrm{f}_{\mathrm{MCK}}=\mathrm{fcLK}^{\text {Note }} 3$		4.0		1.3	Mbps
		Transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		Note4		Note4	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{b}}=2.7 \mathrm{~V}$		2.8 Note5		2.8 Note5	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		Note6		Note6	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=2.3 \mathrm{~V}$		1.2 Note7		$\begin{gathered} 1.2 \\ \text { Note7 } \end{gathered}$	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{<} 3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		Notes $\text { 2, } 8$		Notes $\text { 2, } 8$	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=1.6 \mathrm{~V}$		0.43 Note9		$\begin{gathered} 0.43 \\ \text { Note9 } \end{gathered}$	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
2. Use it with $V_{D D} \geq V_{b}$.
3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcık) are:

HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$)
4. The smaller maximum transfer rate derived by using fмск/6 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$

$$
\text { Maximum transfer rate }=\frac{1}{\left\{-\mathrm{C}_{b} \times \mathrm{R}_{\mathrm{b}} \times \ln \left(1-\frac{2.2}{\mathrm{~V}_{b}}\right)\right\} \times 3}[\mathrm{bps}]
$$

$$
\text { Baud rate error (theoretical value) }=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.2}{V_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100[\%]
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Page 38 of 106
5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
6. The smaller maximum transfer rate derived by using fмск/6 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note $\mathbf{6}$ above to calculate the maximum transfer rate under conditions of the customer.
8. The smaller maximum transfer rate derived by using fмск/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-\mathrm{C}_{\mathrm{b}} \times \mathrm{R}_{\mathrm{b}} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\} \times 3} \quad[\mathrm{bps}]$

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb}_{\mathrm{b}} \times \ln \left(1-\frac{1.5}{\mathrm{Vb}_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100$ [\%]

* This value is the theoretical value of the relative difference between the transmission and reception sides.

9. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 8 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdo tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register \mathbf{g} (POMg). For Viн and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remarks 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. q : UART number ($q=0$ to 2), g : PIM and POM number $(g=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register $\mathrm{m}(\mathrm{SPSm})$ and the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00$ to $03,10,11$))
4. UARTO of the 20-and 24 -pin products supports communication at different potential only when the peripheral I/O redirection function is not used.
(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSIOO only)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkcy1	$\mathrm{tkCr}_{1} \geq 2 / \mathrm{fCLK}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	200		1150		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	300		1150		ns
SCK00 high-level width	tKH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \mathrm{t}_{\mathrm{KCr}} 1 / 2- \\ 50 \end{gathered}$		$\begin{gathered} \mathrm{tKCY}^{1} / 2- \\ 50 \end{gathered}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \mathrm{tkCr}_{\mathrm{L}} / 2- \\ 120 \end{gathered}$		$\begin{gathered} \mathrm{tKCY}^{1} / 2 \\ 120 \end{gathered}$		ns
SCK00 low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VoD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \mathrm{tkCr}_{1} / 2- \\ 7 \end{gathered}$		$\begin{gathered} \mathrm{t}_{\mathrm{KCY}} 1 / 2- \\ 50 \end{gathered}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} \mathrm{tKCr}_{1} / 2- \\ 10 \end{gathered}$		$\begin{gathered} \mathrm{tKCy}_{1} / 2 \\ 50 \end{gathered}$		ns
SIOO setup time (to SCKOO \uparrow) ${ }^{\text {Note } 1}$	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}^{\mathrm{L}} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		58		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{D}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		121		479		ns
SIOO hold time (from SCK00 ${ }^{\text {) Note } 1}$	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{<} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		10		10		ns
Delay time from SCK00 \downarrow to SOOO output Note 1	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			60		60	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}^{\mathrm{c}} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			130		130	ns
SIOO setup time (to SCKOO \downarrow) Note 2	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		23		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		33		110		ns
SIOO hold time (from SCK00 \downarrow) Note 2	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{t}} \end{aligned}$	$\begin{aligned} & \mathrm{V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & 1.4 \mathrm{k} \Omega \end{aligned}$	10		10		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}< \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & 2.7 \mathrm{k} \Omega \end{aligned}$	10		10		ns
Delay time from SCK00 \uparrow to SOOO output Note 2	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & 1.4 \mathrm{k} \Omega \end{aligned}$		10		10	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}< \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R} \end{aligned}$	$\begin{aligned} & \mathrm{V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & 2.7 \mathrm{k} \Omega \end{aligned}$		10		10	ns

(Notes, Caution, and Remarks are listed on the next page.)

Notes 1. When DAPOO $=0$ and $\operatorname{CKPOO}=0$, or $\mathrm{DAPOO}=1$ and $\mathrm{CKPO}=1$
2. When DAPOO $=0$ and $C K P 00=1$, or DAPOO $=1$ and CKPOO $=0$.

Caution Select the TTL input buffer for the SIOO pin and the N-ch open drain output (Vdd tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the $D C$ characteristics with TTL input buffer selected.

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line (SCK00, SO 00) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCK00, SO00) load capacitance, V_{b} [V]: Communication line voltage
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register 0 (SPSO) and the CKSOO bit of serial mode register 00 (SMR00).)
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{dD}} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$\mathrm{tkCr1}^{2} \geq 4 /$ fcLk	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	300		1150		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	500		1150		ns
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note, } \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1150		1150		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{Vod} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tксү1/2-75		tkcyı $^{\text {/ }} \mathbf{2 - 7 5}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\mathrm{tkcrı}^{\text {/ } / 2-170 ~}$		tkcr1/2-170		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note }, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, R_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tkcy1/2-458		$\mathrm{tkč1}^{\text {/ }} \mathbf{2 - 4 5 8}$		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tkcı1/2 -12				ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\mathrm{tkcy}^{1 / 2-18}$		tkcy $^{\text {/ }} \mathbf{2 - 5 0}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note, }, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		$\mathrm{tkcy}_{1} / 2-50$		tксү1/2-50 $^{\text {/ }}$		ns

Note Use it with $V_{D D} \geq V_{b}$.

Cautions 1. Select the TTL input buffer for the SIp pin and the N -ch open drain output (Vod tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIн and VIL, see the DC characteristics with TTL input buffer selected.
2. CSIO1 and CSI11 cannot communicate at different potential.

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(\mathrm{p}=00,20)$
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~F}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp \uparrow) ${ }^{\text {Note } 1}$	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	81		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	177		479		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 2}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	479		479		ns
Slp hold time (from SCKp \uparrow) ${ }^{\text {Note } 1}$	tks11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		ns
Delay time from SCKp \downarrow to SOp output Note 1	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		100		100	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		195		195	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 2}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		483		483	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
2. Use it with $V_{D D} \geq V_{b}$.
(Cautions and Remarks are listed on the next page.)
(8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output) (3/3)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~F}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp \downarrow) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	44		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	44		110		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}^{<}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 2}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	110		110		ns
Slp hold time (from SCKp \downarrow) Note 1	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		ns
Delay time from SCKp \uparrow to SOp output Note 1	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		25		25	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		25		25	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 2}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		25		25	ns

Notes 1. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. Use it with $V_{D D} \geq V_{b}$.

Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIн and VIL, see the DC characteristics with TTL input buffer selected.
2. CSIO1 and CSI11 cannot communicate at different potential.

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00,20)$, m : Unit number $(m=0,1)$, n : Channel number $(n=0)$

CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.)

(9) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time ${ }^{\text {Note } 1}$	tkcy2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$	$20 \mathrm{MHz}<\mathrm{fmck}^{5} \mathbf{2 4} \mathrm{MHz}$	12/fmck		-		ns
			$8 \mathrm{MHz}<\mathrm{fmCk}^{5} 520 \mathrm{MHz}$	10/fıск		-		ns
			$4 \mathrm{MHz}<\mathrm{fmck}^{5}$ ¢ 8 MHz	8/fmск		16/fmск		ns
			$\mathrm{fmCk} \leq 4 \mathrm{MHz}$	6/fmск		10/fмск		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$	$20 \mathrm{MHz}<\mathrm{fmCK}^{5} \leq 24 \mathrm{MHz}$	16/fм мск		-		ns
			$16 \mathrm{MHz}<\mathrm{fmCK}^{5} 20 \mathrm{MHz}$	14/fmск		-		ns
			$8 \mathrm{MHz}<\mathrm{fmCK}^{5} 16 \mathrm{MHz}$	12/fмск		-		ns
			$4 \mathrm{MHz}<\mathrm{fmck} \leq 8 \mathrm{MHz}$	8/fmск		16/fм мск		ns
			$\mathrm{f}_{\text {MCK }} \leq 4 \mathrm{MHz}$	6/fmск		10/fmск		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$ Note 2	$20 \mathrm{MHz}<\mathrm{fmCK}^{5} \leq 24 \mathrm{MHz}$	36/fmск		-		ns
			$16 \mathrm{MHz}<\mathrm{fmCK}^{5} \leq 20 \mathrm{MHz}$	32/fıск		-		ns
			$8 \mathrm{MHz}<\mathrm{f}_{\text {MCK }} \leq 16 \mathrm{MHz}$	26/fмск		-		ns
			$4 \mathrm{MHz}<\mathrm{fmck}^{5} \leq 8 \mathrm{MHz}$	16/fmск		16/fмск		ns
			$\mathrm{fmCK} \leq 4 \mathrm{MHz}$	10/fmск		10/fmск		ns
SCKp high-/low-level width	tкH2, tkL2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$		tkcy2/2-12		tк¢ү2/2-50		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$		tkcy2/2-18		tксү2/2-50		ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 2}$		tkcy2/2-50		tксү2/2-50		ns
Slp setup time (to SCKp \uparrow) ${ }^{\text {Note } 3}$	tsiк2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 4.0 \mathrm{~V}$		1/fıск + 20		1/fмск +30		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$		1/fıск + 20		1/fмск +30		ns
		$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.0 \mathrm{~V}$ Note 2		1/fıск + 30		1/fмск +30		ns
SIp hold time (from SCKp \uparrow) Note 4	tkSI2			1/fıск + 31		1/fмск +31		ns
Delay time from SCKp \downarrow to SOp output Note 5	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			$\begin{gathered} \text { 2/fмск }+ \\ 120 \end{gathered}$		$\begin{gathered} \text { 2/fмск + } \\ 573 \end{gathered}$	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			$\begin{gathered} 2 / \text { fмск }+ \\ 214 \end{gathered}$		$\begin{gathered} \text { 2/fмск }+ \\ 573 \end{gathered}$	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$			$\begin{gathered} 2 / \text { fмск }+ \\ 573 \end{gathered}$		$\begin{gathered} \text { 2/fмск }+ \\ 573 \end{gathered}$	ns

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
2. Use it with $V_{D D} \geq V_{b}$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For Vін and Vı, see the DC characteristics with TTL input buffer selected.
2. CSIO1 and CSI11 cannot communicate at different potential.

Page 47 of 106

CSI mode connection diagram (during communication at different potential)

Remarks 1. $R_{b}[\Omega]$: Communication line (SOp) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00,20), m$: Unit number $(m=0,1), n$: Channel number $(n=0)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register $\mathrm{m}(\mathrm{SPSm}$) and the CKSmn bit of serial mode register $m n(S M R m n)$. m : Unit number, n : Channel number ($m n=00,10$)

CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)

Remark p : CSI number $(p=00,20)$, m : Unit number $(m=0,1)$, n : Channel number $(n=0)$
(10) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$		$400^{\text {Note1 }}$		$300^{\text {Note1 }}$	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$400{ }^{\text {Note1 }}$		$300^{\text {Note1 }}$	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V},{ }^{\text {Note2 }} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		$300{ }^{\text {Note1 } 1}$		$300^{\text {Note1 }}$	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	1150		1550		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1150		1550		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{D}^{<} 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V},{ }^{\text {Note2 }} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{b}=5.5 \mathrm{k} \Omega \end{aligned}$	1550		1550		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	675		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{D}^{<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	600		610		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V},{ }^{\text {Note2 }}} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	610		610		ns
Data setup time (reception)	tsu:dat	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1 / \mathrm{fmck} \\ & +190 \\ & \text { Note3 } \end{aligned}$		$\begin{aligned} & \text { 1/fмск } \\ & +190 \\ & \text { Note3 } \end{aligned}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1 / \mathrm{fmCK}_{\mathrm{M}} \\ & +190 \\ & \text { Note3 } \end{aligned}$		1/fмск $+190$ Note3		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V},{ }^{\text {Note2 }} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1 / \mathrm{fmck} \\ & +190 \\ & \text { Note3 } \end{aligned}$		1/fмск $+190$ Note3		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V},{ }^{\text {Note2 } 2} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	ns

Notes 1. The value must be equal to or less than fмск/4.
2. Use it with $V_{D D} \geq V_{b}$.
3. Set tsu:dat so that it will not exceed the hold time when $\mathrm{SCLr}=$ " L " or $\mathrm{SCLr}=$ " H ".

Cautions 1. Select the TTL input buffer and the \mathbf{N}-ch open drain output (Vod tolerance) mode for the SDAr pin and the N -ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and VIL, see the DC characteristics with TTL input buffer selected.
2. IIC01 and IIC11 cannot communicate at different potential.
(Remarks are listed on the next page.)

Page 50 of 106

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. r : IIC Number $(r=00,20)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number ($\mathrm{m}=0,1$), n : Channel number ($\mathrm{n}=0)$)
4. Simplified $\mathrm{I}^{2} \mathrm{C}$ mode is supported only by the R5F102 products.

2.5.2 Serial interface IICA

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~F}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) mode LS (low-speed main) mode				Unit
			Standard Mode		Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fcLk $\geq 3.5 \mathrm{MHz}$			0	400	kHz
		Normal mode: fcLk $\geq 1 \mathrm{MHz}$	0	100			kHz
Setup time of restart condition	tsu:STA		4.7		0.6		$\mu \mathrm{s}$
Hold time ${ }^{\text {Note } 1}$	thd:STA		4.0		0.6		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ " L "	tıow		4.7		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh		4.0		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd:dAT		0	3.45	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu:sto		4.0		0.6		$\mu \mathrm{s}$
Bus-free time	tbuF		4.7		1.3		$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1 . At this time, the pin characteristics (Іон1, Іоц1, Vон1, Voli) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

$$
\text { Normal mode: } \quad \mathrm{C}_{\mathrm{b}}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega
$$

$$
\text { Fast mode: } \quad \mathrm{C}_{\mathrm{b}}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega
$$

IICA serial transfer timing

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage		
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM
ANIO to ANI3	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI22	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1).		-

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFm/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$, Reference voltage (+) = $\mathrm{A} \mathrm{V}_{\mathrm{REFP}}$, Reference voltage $(-)=$ $\mathrm{AV}_{\text {refm }}=\mathbf{0} \mathrm{V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution$A V_{\text {REFP }}=V_{D D} \text { Note } 3$			1.2	± 3.5	LSB
					1.2	± 7.0 Note 4	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2, ANI3	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
				57		95	$\mu \mathrm{s}$
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes }} 1,2$	EZS	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note }} 3$				± 0.25	\%FSR
						± 0.50 Note 4	\%FSR
Full-scale error ${ }^{\text {Notes }} 1,2$	EFS	10-bit resolution $A V_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}{ }^{\text {Note }} 3$				± 0.25	\%FSR
						± 0.50 Note 4	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution $\mathrm{AV}_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}{ }^{\text {Note }} 3$				± 2.5	LSB
						± 5.0 Note 4	LSB
Differential linearity error Note 1	DLE	10-bit resolution$A V_{\text {REFP }}=V_{D D} \text { Note } 3$				± 1.5	LSB
						± 2.0 Note 4	LSB
Analog input voltage	Vain	ANI2, ANI3		0		$\mathrm{AV}_{\text {REFP }}$	V
		Internal reference voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		$V_{B G R}{ }^{\text {Note }} 5$			V
		Temperature sensor output voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		$V_{\text {TMPS25 }}{ }^{\text {Note }} 5$			V

(Notes are listed on the next page.)

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When $A V_{\text {refp }}$ < $V_{d d}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when $A V_{\text {Refp }}=V_{\text {Dd }}$.
Zero-scale error/Full-scale error: Add $\pm 0.05 \% F S R$ to the $M A X$. value when $A V_{\text {REFP }}=V_{D D}$.
Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
4. Values when the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
5. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
(2) When reference voltage (+) = AVrefp/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) =AVREm/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\mathrm{REFP}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{sS}}=0 \mathrm{~V}$, Reference voltage $(+)=\mathrm{A} \mathrm{V}_{\mathrm{REFP}}$, Reference voltage $(-)=$ $\mathbf{A V}_{\text {refm }}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$			1.2	± 5.0	LSB
					1.2	$\pm 8.5^{\text {Note }} 4$	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI22	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
			$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
				57		95	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes 1, } 2}$	EZS	10-bit resolution$A V_{R E F P}=V_{D D} \text { Note } 3$				± 0.35	\%FSR
						± 0.60 Note 4	\%FSR
Full-scale error ${ }^{\text {Notes 1, } 2}$	EFS	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$				± 0.35	\%FSR
						± 0.60 Note 4	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note } 3}$				± 3.5	LSB
						$\pm 6.0^{\text {Note } 4}$	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	10-bit resolution$A V_{R E F P}=V_{D D} \text { Note } 3$				± 2.0	LSB
						± 2.5 Note 4	LSB
Analog input voltage	$V_{\text {AIN }}$	ANI16 to ANI22		0		$A V_{\text {Refp }}$ and VDD	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When $A V_{\text {refp }} \leq V_{D D}$, the MAX. values are as follows.

Overall error: Add $\pm 4.0 \mathrm{LSB}$ to the MAX. value when $A V_{\text {REFP }}=\mathrm{V}_{\mathrm{DD}}$.
Zero-scale error/Full-scale error: Add $\pm 0.20 \%$ FSR to the $M A X$. value when $A V_{\text {REFP }}=V_{D D}$.
Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
4. When the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
(3) When reference voltage (+) = Vdd (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANIO to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = 0 V , Reference voltage (+) = Vdd, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution			1.2	± 7.0	LSB
					1.2	$\pm 10.5^{\text {Note } 3}$	LSB
Conversion time	tconv	10-bit resolution Target pin: ANIO to ANI3, ANI16 to ANI22	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
				57		95	$\mu \mathrm{s}$
Conversion time	tconv	10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes } 1,2}$	EZS	10-bit resolution				± 0.60	\%FSR
						± 0.85 Note 3	\%FSR
Full-scale error ${ }^{\text {Notes 1, }} 2$	EFS	10-bit resolution				± 0.60	\%FSR
						± 0.85 Note 3	\%FSR
Integral linearity error ${ }^{\text {Note }} 1$	ILE	10-bit resolution				± 4.0	LSB
						$\pm 6.5^{\text {Note } 3}$	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	10-bit resolution				± 2.0	LSB
						$\pm 2.5^{\text {Note } 3}$	LSB
Analog input voltage	$V_{\text {AIN }}$	ANI0 to ANI3, ANI16 to ANI22		0		Vdd	V
		Internal reference voltage (2.4 V \leq VDD $\leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		$V_{b G R}$ Note 4			V
		Temperature sensor output voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{HS}$ (high-speed main) mode)		$\mathrm{V}_{\text {TMPS } 25}{ }^{\text {Note }} 4$			V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
4. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 $=0$), reference voltage $(-)=$ AVrefm (ADREFM = 1), target pin: ANIO, ANI2, ANI3, and ANI16 to ANI22
 Note $4=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		
Conversion time	tconv	8-bit resolution	17		39	$\mu \mathrm{~s}$
Zero-scale error ${ }^{\text {Notes 1, 2 }}$	EZS	8-bit resolution			± 0.60	$\%$ FSR
Integral linearity error ${ }^{\text {Note 1 }}$	ILE	8-bit resolution			± 2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			± 1.0	LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.
4. When reference voltage $(-)=\mathrm{Vss}$, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage $(-)=A V_{\text {REFM }}$. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage $(-)=A V_{\text {REFm }}$. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVRefm.

2.6.2 Temperature sensor/internal reference voltage characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{~V} s=0 \mathrm{~V}$, HS (high-speed main) mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}$, $T_{A}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VBGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tamp		5			

2.6.3 POR circuit characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPoR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	TPW		300			$\mu \mathrm{~s}$

Note Minimum time required for a POR reset when $V_{D D}$ exceeds below $V_{\text {PDR. }}$. This is also the minimum time required for a POR reset from when $V_{D D}$ exceeds below 0.7 V to when $V_{D D}$ exceeds $V_{\text {Por }}$ while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{PDR}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	Vıvio	Power supply rise time	3.98	4.06	4.14	V
		Power supply fall time	3.90	3.98	4.06	V
	VLvD1	Power supply rise time	3.68	3.75	3.82	V
		Power supply fall time	3.60	3.67	3.74	V
	VLvD2	Power supply rise time	3.07	3.13	3.19	V
		Power supply fall time	3.00	3.06	3.12	V
	VlvD3	Power supply rise time	2.96	3.02	3.08	V
		Power supply fall time	2.90	2.96	3.02	V
	VLvD4	Power supply rise time	2.86	2.92	2.97	V
		Power supply fall time	2.80	2.86	2.91	V
	VLvD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V
	Vlvde	Power supply rise time	2.66	2.71	2.76	V
		Power supply fall time	2.60	2.65	2.70	V
	V LVD7	Power supply rise time	2.56	2.61	2.66	V
		Power supply fall time	2.50	2.55	2.60	V
	VLvD8	Power supply rise time	2.45	2.50	2.55	V
		Power supply fall time	2.40	2.45	2.50	V
	Vıvd9	Power supply rise time	2.05	2.09	2.13	V
		Power supply fall time	2.00	2.04	2.08	V
	VLvD10	Power supply rise time	1.94	1.98	2.02	V
		Power supply fall time	1.90	1.94	1.98	V
	VLvD11	Power supply rise time	1.84	1.88	1.91	V
		Power supply fall time	1.80	1.84	1.87	V
Minimum pulse width	tıw		300			$\mu \mathrm{s}$
Detection delay time					300	$\mu \mathrm{s}$

LVD detection voltage of interrupt \& reset mode
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{PDR}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX	Unit
Interrupt and reset mode	Vlvdbo	Vpoc2, Vpoc1, Vpoco $=0,0,1$, falling reset voltage		1.80	1.84	1.87	V
	VLvDB1	LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	V ${ }_{\text {LVdb3 }}$	LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	Vlvdco	$V_{P O C 2}, V_{P O C 1}, V_{P O C 0}=0,1,0$, falling reset voltage		2.40	2.45	2.50	V
	VLVDC1	LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	Vlvdc2	LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	V LVdC3	LVIS1, LVIS0 $=0,0$	Rising reset release voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	Vlvddo	VPOC2, VPOC1, VPOC1 $=0,1,1$, falling reset voltage		2.70	2.75	2.81	V
	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	Vlvdd3	LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {ss }}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
Uower supply voltage rising slope	SvDD				54

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}\right.$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}, \mathbf{V} \mathbf{~ s s}=\mathbf{0 ~ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VodDr		1.46 Note		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fcık		1		24	MHz
Code flash memory rewritable times Notes 1, 2,3	Cerwr	Retained for 20 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	1,000			Times
Data flash memory rewritable times Notes $1,2,3$		Retained for 1 year $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	100,000			
		Retained for 20 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	10,000			

Notes 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
2. When using flash memory programmer and Renesas Electronics self programming library
3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~F}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		$1,000,000$	bps

2.10 Timing of Entry to Flash Memory Programming Modes

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0 \mathrm{~V}$)

| Parameter | Symbol | Conditions | MIN. | TYP. | MAX. |
| :--- | :--- | :--- | :--- | :---: | :---: | Unit | M |
| :--- |

$<1>$ The low level is input to the TOOLO pin.
$<2>$ The external reset is released (POR and LVD reset must be released before the external reset is released.).
$<3>$ The TOOLO pin is set to the high level.
<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
tsu: Time to release the external reset after the TOOLO pin is set to the low level
thd: Time to hold the TOOLO pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+105^{\circ} \mathrm{C}$)

This chapter describes the following electrical specifications.
Target products G : Industrial applications $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ R5F102xxGxx

Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G12 User's Manual.
3. Please contact Renesas Electronics sales office for derating of operation under $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When the RL78 microcontroller is used in the range of $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$, see 2. ELECTRICAL SPECIFICATIONS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$).

There are following differences between the products " G : Industrial applications ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$)" and the products " A : Consumer applications, and D: Industrial applications".

Parameter	Application	
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$
Operating mode Operating voltage range	HS (high-speed main) mode: $2.7 \mathrm{~V} \leq \mathrm{VDD}^{\mathrm{L}} 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz	HS (high-speed main) mode only: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz $2.4 \mathrm{~V} \leq \mathrm{Vod} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
High-speed on-chip oscillator clock accuracy	R5F102 products, $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$: $\pm 1.0 \% @ T_{A}=-20$ to $+85^{\circ} \mathrm{C}$ $\pm 1.5 \% @ T_{A}=-40$ to $-20^{\circ} \mathrm{C}$ R5F103 products, $1.8 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V}$: $\pm 5.0 \% @ T_{A}=-40$ to $+85^{\circ} \mathrm{C}$	R5F102 products, $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$: $\begin{aligned} & \pm 2.0 \% @ T_{A}=+85 \text { to }+105^{\circ} \mathrm{C} \\ & \pm 1.0 \% @ T_{A}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 1.5 \% @ T_{A}=-40 \text { to }-20^{\circ} \mathrm{C} \end{aligned}$
Serial array unit	UART CSI: fčk/2 (supporting 12 Mbps), fcck/4 Simplified $I^{2} C$ communication	UART CSI: fclk/4 Simplified $I^{2} \mathrm{C}$ communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V (12 levels) Fall detection voltage: 1.84 V to 3.98 V (12 levels)	Rise detection voltage: 2.61 V to 4.06 V (8 levels) Fall detection voltage: 2.55 V to 3.98 V (8 levels)

Remark The electrical characteristics of the products G: Industrial applications ($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 3.1 to 3.10 .

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbols	Conditions		Ratings	Unit
Supply Voltage	VDD			-0.5 to +6.5	V
REGC terminal input voltage ${ }^{\text {Note1 }}$	Viregc	REGC		$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to } \begin{array}{c} \text { VDD } \\ \text { Note } 2 \end{array}+0.3 \end{gathered}$	V
Input Voltage	V_{11}	Other than P60, P61		-0.3 to $\mathrm{V}_{\mathrm{dD}}+0.3^{\text {Note } 3}$	V
	V12	P60, P61 (N-ch open drain)		-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to $\mathrm{V}_{\text {dD }}+0.3^{\text {Note } 3}$	V
Analog input voltage	V_{Al}	20, 24-pin products: ANIO to ANI3, ANI16 to ANI22 30-pin products: ANIO to ANI3, ANI16 to ANI19		$\begin{gathered} -0.3 \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \\ \text { and }-0.3 \text { to } \\ \mathrm{AV}_{\mathrm{REF}}(+)+0.3^{\text {Notes } 3,4} \end{gathered}$	V
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	-70	mA
			20-, 24-pin products: P00 to P03 ${ }^{\text {Note } 5}$, P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Ioh2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P 00 to P 03 Note 5 , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	IoL2	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA			-40 to +105	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Notes 1. 30-pin product only.
2. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
3. Must be 6.5 V or lower.
4. Do not exceed $A V_{\operatorname{Ref}}(+)+0.3 \mathrm{~V}$ in case of A / D conversion target pin.
5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
2. $A V_{\operatorname{REF}}(+):+$ side reference voltage of the A / D converter.
3. Vss: Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1 oscillator characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx)						

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G12 User's Manual.

3.2.2 On-chip oscillator characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fiH^{\prime}			1		24	MHz
High-speed on-chip oscillator clock frequency accuracy		R5F102 products	$\mathrm{T}_{\mathrm{A}}=-20$ to $+85^{\circ} \mathrm{C}$	-1.0		+1.0	\%
			$\mathrm{T}_{\mathrm{A}}=-40$ to $-20^{\circ} \mathrm{C}$	-1.5		+1.5	\%
			$\mathrm{T}_{\mathrm{A}}=+85$ to $+105^{\circ} \mathrm{C}$	-2.0		+2.0	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000 C 2 H) and bits 0 to 2 of HOCODIV register.
2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	Ioh1	20-, 24-pin products: Per pin for P00 to P03 ${ }^{\text {Note } 4}$, P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				$\begin{aligned} & -3.0 \\ & \text { Note } 2 \end{aligned}$	mA
		20-, 24-pin products: Total of P40 to P42 30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70 \%{ }^{\text {Note }}{ }^{3}$)	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-9.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{do}}<4.0 \mathrm{~V}$			-6.0	mA
			$2.4 \mathrm{~V} \leq \mathrm{V}_{\text {do }}<2.7 \mathrm{~V}$			-4.5	mA
		20-, 24-pin products: Total of P00 to P03 ${ }^{\text {Note } 4, ~ P 10 ~ t o ~ P 14 ~}$ 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty $\leq 70 \%{ }^{\text {Note } 3}$)	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			-27.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {do }}<4.0 \mathrm{~V}$			-18.0	mA
			$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<2.7 \mathrm{~V}$			-10.0	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note }}{ }^{3}$)				-36.0	mA
	Ioh2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the Vod pin to an output pin.
2. However, do not exceed the total current value.
3. The output current value under conditions where the duty factor $\leq 70 \%$.

If duty factor > 70\%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins $=($ Іон $\times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and I он $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \cong-8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to $\mathrm{P} 15, \mathrm{P} 17$, and P 50 for 30 -pin products do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ${ }^{\text {Note } 1}$	IoL1	20-, 24-pin products: Per pin for P00 to P03 ${ }^{\text {Note } 4, ~}$ P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				$\begin{gathered} 8.5 \\ \text { Note } 2 \end{gathered}$	mA
		Per pin for P60, P61				$\begin{aligned} & 15.0 \\ & \text { Note } 2 \end{aligned}$	mA
		20-, 24-pin products:	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			25.5	mA
		Total of P40 to P42	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70 \%{ }^{\text {Note }}{ }^{3}$)	$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			1.8	mA
		20-, 24-pin products:	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			40.0	mA
		Total of P00 to P03 ${ }^{\text {Note } 4}$,	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}}<4.0 \mathrm{~V}$			27.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty $\leq 70 \%{ }^{\text {Note }}{ }^{3}$)	$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			5.4	mA
		Total of all pins (When duty $\leq 70 \%{ }^{\text {Note }}{ }^{3}$)				65.5	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
2. However, do not exceed the total current value.
3. The output current value under conditions where the duty factor $\leq 70 \%$.

If duty factor > 70\%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins $=($ lot $\times 0.7) /(n \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{loL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \cong 8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	Normal input buffer 20-, 24-pin products: P 00 to $\mathrm{P} 03^{\text {Note } 2}$, P10 to P 14 , P40 to P42 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		0.8VDD		VdD	V
	V_{1+2}	TTL input buffer 20-, 24-pin products: P10, P11 30-pin products: P01, P10, P11, P13 to P17	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	2.2		VdD	V
			$3.3 \mathrm{~V} \leq \mathrm{V} D \mathrm{LD}$ < 4.0 V	2.0		Vdo	V
			$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}$	1.5		Vdo	V
	V_{1+3}	Normal input buffer P20 to P23		0.7 V VD		VdD	V
	VIH4	P60, P61		0.7VdD		6.0	V
	V145	P121, P122, P125 ${ }^{\text {Note }}$, P137, EXCLK, $\overline{\text { RESET }}$		0.8VDD		Vdd	V
Input voltage, low	VIL1	Normal input buffer 20-, 24-pin products: P00 to P03 ${ }^{\text {Note } 2}, \mathrm{P} 10$ to P 14 , P40 to P42 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		0		0.2VdD	V
	VIL2	TTL input buffer 20-, 24-pin products: P10, P11 30-pin products: P01, P10, P11, P13 to P17	$4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	0		0.8	V
			$3.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$	0		0.5	V
			$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}$	0		0.32	V
	VIL3	P20 to P23		0		0.3 VdD	V
	VIL4	P60, P61		0		0.3 VdD	V
	VIL5	P121, P122, P125 ${ }^{\text {Note 1 }}$, P137, EXCLK, $\overline{\text { RESET }}$		0		0.2 Vdd	V
Output voltage, high	Voh1	20-, 24-pin products: P00 to P03 ${ }^{\text {Note } 2, ~ P 10 ~ t o ~ P 14, ~}$ P40 to P42 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{H}} 1=-3.0 \mathrm{~mA} \end{aligned}$	Vdo-0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loH1}=-2.0 \mathrm{~mA} \end{aligned}$	VdD-0.6			V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{H}} 1=-1.5 \mathrm{~mA} \end{aligned}$	VdD-0.5			V
	Voh2	P20 to P23	$\mathrm{I}_{\mathrm{H} 2}=-100 \mu \mathrm{~A}$	VdD-0.5			V

Notes 1. 20, 24 -pin products only.
2. 24-pin products only.

Caution The maximum value of V_{i} of pins P 10 to P 12 and P 41 for 20 -pin products, $\mathrm{P} 01, \mathrm{P} 10$ to P 12 , and P 41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is Vdd even in N-ch opendrain mode.
High level is not output in the N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	$\begin{aligned} & \text { 20-, 24-pin products: } \\ & \text { P00 to P03 Note, P10 to P14, } \\ & \text { P40 to P42 } \\ & \text { 30-pin products: P00, P01, } \\ & \text { P10 to P17, P30, P31, P40, } \\ & \text { P50, P51, P120, P147 } \end{aligned}$		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
				$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
				$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
				$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	P20 to P23		lol2 $=400 \mu \mathrm{~A}$			0.4	V
	Vol3	P60, P61		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=15.0 \mathrm{~mA} \end{aligned}$			2.0	V
				$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=5.0 \mathrm{~mA} \end{aligned}$			0.4	V
				$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL1}=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
				$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=2.0 \mathrm{~mA} \end{aligned}$			0.4	V
Input leakage current, high	ILIH1	Other than P121, P122	$V_{1}=V_{D D}$				1	$\mu \mathrm{A}$
	ILIH2	P121, P122 (X1, X2/EXCLK)	$V_{I}=V_{D D}$	Input port or external clock input			1	$\mu \mathrm{A}$
				When resonator connected			10	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	Other than P121, P122	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {ss }}$				-1	$\mu \mathrm{A}$
	ILIL2	$\begin{aligned} & \text { P121, P122 } \\ & \text { (X1, X2/EXCLK) } \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$	Input port or external clock input			-1	$\mu \mathrm{A}$
				When resonator connected			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	20-, 24-pin products: P00 to P03 ${ }^{\text {Note }, ~ P 10 ~ t o ~ P 14, ~}$ P40 to P42, P125, RESET 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\text {ss }}$, input port	10	20	100	$\mathrm{k} \Omega$

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

(1) 20-, 24-pin products
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IDD1	Operating mode	HS (High-speed main) mode ${ }^{\text {Note } 4}$	$\mathrm{fiH}^{\text {H }}=24 \mathrm{MHz}^{\text {Note } 3}$	Basic operation	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		1.5		mA
						$V_{\text {dd }}=3.0 \mathrm{~V}$		1.5		
					Normal operation	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		3.3	5.3	mA
						$V_{\text {do }}=3.0 \mathrm{~V}$		3.3	5.3	
				$\mathrm{fiH}_{\text {H }}=16 \mathrm{MHz}^{\text {Note } 3}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		2.5	3.9	mA
						$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		2.5	3.9	
				$\begin{aligned} & f_{\mathrm{Mx}}=20 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$		Square wave input		2.8	4.7	mA
						Resonator connection		3.0	4.8	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHZ}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		2.8	4.7	mA
						Resonator connection		3.0	4.8	
				$\begin{aligned} & \mathrm{f}_{\mathrm{Mx}}=10 \mathrm{MHz}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$		Square wave input		1.8	2.8	mA
						Resonator connection		1.8	2.8	
				$\begin{aligned} & f_{M x}=10 \mathrm{MHz}^{\text {Note } 2}, \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		1.8	2.8	mA
						Resonator connection		1.8	2.8	

Notes 1. Total current flowing into $V_{D D}$, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. When high-speed on-chip oscillator clock is stopped.
3. When high-speed system clock is stopped
4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.
HS (High speed main) mode: VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
$V_{D D}=2.4 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fis: high-speed on-chip oscillator clock frequency
3. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$.
(1) 20-, 24-pin products
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IDD2 ${ }^{\text {Note } 2}$	HALT mode	HS (High-speed main) mode ${ }^{\text {Note } 6}$	$\mathrm{fiH}=24 \mathrm{MHz}{ }^{\text {Note }} 4$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		440	2230	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		440	2230	
				$\mathrm{fiH}_{\mathrm{H}}=16 \mathrm{MHz}{ }^{\text {Note }} 4$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		400	1650	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		400	1650	
				$\begin{aligned} & f_{M x}=20 \mathrm{MHz}^{\text {Note } 3,} \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		280	1900	$\mu \mathrm{A}$
					Resonator connection		450	2000	
				$\begin{aligned} & \text { fmx }=20 \mathrm{MHz}^{\text {Note } 3,} \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		280	1900	$\mu \mathrm{A}$
					Resonator connection		450	2000	
				$\begin{aligned} & f_{M x}=10 \mathrm{MHz}^{\text {Note } 3,} \\ & V_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		190	1010	$\mu \mathrm{A}$
					Resonator connection		260	1090	
				$\begin{aligned} & f_{M x}=10 \mathrm{MHz}^{\text {Note } 3,} \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		190	1010	$\mu \mathrm{A}$
					Resonator connection		260	1090	
	IDo3 ${ }^{\text {Note }} 5$	STOP mode	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.24	0.50	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.32	0.80	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.48	1.20	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.74	2.20	
			$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$				1.50	10.20	

Notes 1. Total current flowing into $V_{D D}$, including the input leakage current flowing when the level of the input pin is fixed to Vod or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. During HALT instruction execution by flash memory.
3. When high-speed on-chip oscillator clock is stopped
4. When high-speed system clock is stopped.
5. Not including the current flowing into the 12 -bit interval timer and watchdog timer.
6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.
HS (High speed main) mode: $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
VDD $=2.4 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: high-speed on-chip oscillator clock frequency
3. Except temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$, other than STOP mode

(2) 30-pin products

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note }} 1$	lod1	Operating mode	HS (High-speed main) mode ${ }^{\text {Note } 4}$	$\mathrm{fH}_{\mathrm{H}}=24 \mathrm{MHZ}^{\text {Note } 3}$	Basic operation	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		1.5		mA
						$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		1.5		
					Normal operation	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		3.7	5.8	mA
						$V_{\text {DD }}=3.0 \mathrm{~V}$		3.7	5.8	
				$\mathrm{fH}_{\mathrm{H}}=16 \mathrm{MHz}^{\text {Note } 3}$		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		2.7	4.2	mA
						$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		2.7	4.2	
				$\begin{aligned} & \text { fux }=20 \mathrm{MHZ}^{\text {Note } 2}, \\ & V_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$		Square wave input		3.0	4.9	mA
						Resonator connection		3.2	5.0	
				$\begin{aligned} & \mathrm{fuxx}=20 \mathrm{MHZ}^{\mathrm{Note}} \mathrm{2}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		3.0	4.9	mA
						Resonator connection		3.2	5.0	
				$\begin{aligned} & \text { fux }=10 \mathrm{MHZ}^{\text {Note } 2,}, \\ & V_{\text {DD }}=5.0 \mathrm{~V} \end{aligned}$		Square wave input		1.9	2.9	mA
						Resonator connection		1.9	2.9	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHZ}^{\text {Note } 2}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$		Square wave input		1.9	2.9	mA
						Resonator connection		1.9	2.9	

Notes 1. Total current flowing into $V_{D D}$, including the input leakage current flowing when the level of the input pin is fixed to Vdd or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. When high-speed on-chip oscillator clock is stopped.
3. When high-speed system clock is stopped
4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
Vod = 2.4 V to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: high-speed on-chip oscillator clock frequency
3. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$.

(2) 30-pin products

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	Ido2 ${ }^{\text {Note } 2}$	HALT mode	HS (High-speed main) mode ${ }^{\text {Note } 6}$	$\mathrm{fiH}^{\prime}=24 \mathrm{MHz}{ }^{\text {Note }} 4$	$V_{D D}=5.0 \mathrm{~V}$		440	2300	$\mu \mathrm{A}$
					$V_{\text {do }}=3.0 \mathrm{~V}$		440	2300	
				$\mathrm{fiH}^{\prime}=16 \mathrm{MHz}^{\text {Note }} 4$	$V_{\text {do }}=5.0 \mathrm{~V}$		400	1700	$\mu \mathrm{A}$
					$\mathrm{V}_{\mathrm{dd}}=3.0 \mathrm{~V}$		400	1700	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		280	1900	$\mu \mathrm{A}$
					Resonator connection		450	2000	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		280	1900	$\mu \mathrm{A}$
					Resonator connection		450	2000	
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=10 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		190	1020	$\mu \mathrm{A}$
					Resonator connection		260	1100	
				$\begin{aligned} & f M x=10 \mathrm{MHz}^{\text {Note } 3}, \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		190	1020	$\mu \mathrm{A}$
					Resonator connection		260	1100	
	IdD3 ${ }^{\text {Note } 5}$	STOP mode	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.23	0.50	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.30	1.10	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.46	1.90	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.75	3.30	
			$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$				2.94	15.30	

Notes 1. Total current flowing into $V_{D D}$, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
2. During HALT instruction execution by flash memory.
3. When high-speed on-chip oscillator clock is stopped.
4. When high-speed system clock is stopped.
5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.
HS (High speed main) mode: VDD $=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 24 MHz
$V_{D D}=2.4 \mathrm{~V}$ to $5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: high-speed on-chip oscillator clock frequency
3. Except STOP mode, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$.

(3) Peripheral functions (Common to all products)

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Notes 1. Current flowing to the VDD.
2. When high speed on-chip oscillator and high-speed system clock are stopped.
3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IdD1, IdD2 or Idd3, and IFIL and Itmka when the 12-bit interval timer operates.
4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IdD1, IDD2 or IdD3 and IwDt when the watchdog timer operates.
5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILvD when the LVD circuit operates.
7. Current flowing only during data flash rewrite.
8. Current flowing only during self programming.
9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode in the RL78/G12 User's Manual.

Remarks 1. fiL: Low-speed on-chip oscillator clock frequency
2. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

3.4 AC Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (Highspeed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{Vdo}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
		During self programming	HS (Highspeed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{s}$
External main system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD}<2.7 \mathrm{~V}$			1.0		16.0	MHz
External main system clock input high-level width, lowlevel width	texh, texL	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$			30			ns
TI00 to TI07 input high-level width, low-level width	tTH, tTLL				1/fмск + 10			ns
TO00 to TO07 output frequency	fто	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$					12	MHz
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$					8	MHz
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$					4	MHz
PCLBUZ0, or PCLBUZ1 output frequency	fPCL	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$					16	MHz
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$					8	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$					4	MHz
INTP0 to INTP5 input highlevel width, low-level width	tinth, tint				1			$\mu \mathrm{s}$
KR0 to KR9 input available width	tKR				250			ns
RESET low-level width	trsL				10			$\mu \mathrm{s}$

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the timer clock select register 0 (TPSO) and the CKSOn bit of timer mode register On (TMROn). n: Channel number ($\mathrm{n}=0$ to 7))

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Point

External Main System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

KR0 to KR9

RESET Input Timing

3.5 Peripheral Functions Characteristics

AC Timing Test Point

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate Note 1				$\mathrm{fmck}^{\text {/ }} 12$	bps
		Theoretical value of the maximum transfer rate fcLK $=\mathrm{fmCK}^{\text {Note }} 2$		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: $24 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. $\mathrm{q}: ~$ UART number ($\mathrm{q}=0$ to 2), g : PIM, POM number $(\mathrm{g}=0,1$)
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number $(\mathrm{mn}=00$ to $03,10,11)$)
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	$\mathrm{tkCY} 1 \geq$ 4/fcLK	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	334		ns
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	500		ns
SCKp high-/low-level width	tкн1, tkL1	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		$\mathrm{tkcyı}^{\text {/ }} \mathbf{2 - 2 4}$		ns
		$2.7 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V}$		tkcyı/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tkırı/2-76		ns
SIp setup time (to SCKp \uparrow) Note 1	tsik1	$4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		66		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		66		ns
		$2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		113		ns
SIp hold time (from SCKp \uparrow) ${ }^{\text {Note } 2}$	tksı11			38		ns
Delay time from SCKp \downarrow to SOp output Note 3	tkso1	$\mathrm{C}=30 \mathrm{pF}$ Not			50	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and $\operatorname{CKPmn}=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn = 1, or DAPmn = 1 and CKPmn = 0 .
4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

Remarks 1. p : CSI number $(\mathrm{p}=00,01,11,20)$, m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0,1,3)$
2. fmck^{2} Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register $\mathrm{m}(\mathrm{SPSm}$) and the CKSmn bit of serial mode register $m n(S M R m n)$. m : Unit number $(m=0,1)$, n : Channel number ($n=0,1,3)$)
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V} D \leq 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time ${ }^{\text {Note } 5}$	tkcy2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	20 MHz < fmck	16/fмск		ns
			$\mathrm{fmCK} \leq 20 \mathrm{MHz}$	12/fмск		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	16 MHz < fmck	16/fmск		ns
			$\mathrm{fmCK} \leq 16 \mathrm{MHz}$	12/fмск		ns
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		12/fмск and 1000		ns
SCKp high-/low-level width	tkH2, tкı2	$4.0 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		tк¢ү2/2-14		ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tкCY2/2-16 $^{\text {cher }}$		ns
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		tксү2/2-36		ns
Slp setup time (to SCKp \uparrow) Note 1	tsik2	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1/fмск +40		ns
		$2.4 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$		1/fмск +60		ns
Slp hold time (from SCKp \uparrow) ${ }^{\text {Note } 2}$	tks 12			1/fмск +62		ns
Delay time from SCKp \downarrow to SOp output Note 3	tkso2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		2/fıск +66	ns
			$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		$2 /$ Імск +113	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. C is the load capacitance of the SOp output lines.
5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps.

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.)

Remarks 1. p : CSI number $(p=00,01,11,20)$, m : Unit number $(m=0,1), n$: Channel number $(n=0,1,3)$
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0,1$), n : Channel number ($n=0,1,3$)

(4) During communication at same potential (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega$		100 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega$	4600		ns
Hold time when SCLr = "H"	thigh	$\mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega$	4600		ns
Data setup time (reception)	tsu:dat	$\mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega$	1/fmск +580 Note 2		ns
Data hold time (transmission)	thd:dat	$\mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega$	0	1420	ns

Notes 1. The value must be equal to or less than fmск/4.
2. Set tsu:dat so that it will not exceed the hold time when $\mathrm{SCLr}=$ " L " or $\mathrm{SCLr}=$ " H ".

Caution Select the N-ch open drain output (VdD tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Remarks 1. Rb [$\Omega]$:Communication line (SDAr) pull-up resistance
$\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCLr, SDAr) load capacitance
2. r : IIC number $(\mathrm{r}=00,01,11,20)$, $\mathrm{h}:=\mathrm{POM}$ number $(\mathrm{h}=0,1,4,5)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number $(m=0,1), n$: Channel number $(0,1,3)$)
(5) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate ${ }^{\text {Note4 }}$		Reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $\mathrm{fmCK}=\mathrm{fcLK}^{\text {Note }} \mathbf{2}$		2.0	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}^{<} 4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{\text {MCK }}=\text { fcLK }^{\text {Note }} 2$		2.0	Mbps
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V} \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		fmck/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{\text {MCK }}=\text { fcLK }^{\text {Note }} 2$		2.0	Mbps
		Transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		Note 3	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=2.7 \mathrm{~V}$		2.0 Note 4	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \end{aligned}$		Note 5	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=2.3 \mathrm{~V}$		1.2 Note 6	Mbps
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		Notes $2,7$	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=1.6 \mathrm{~V}$		0.43 Note 8	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: $24 \mathrm{MHz}\left(2.7 \mathrm{~V} \leq \mathrm{VdD}^{5} 5.5 \mathrm{~V}\right)$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V})$
3. The smaller maximum transfer rate derived by using fмck/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$

$$
\text { Maximum transfer rate }=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.2}{V_{b}}\right)\right\} \times 3}[b p s]
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
5. The smaller maximum transfer rate derived by using fмск/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\} \times 3}[\mathrm{bps}]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
7. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.4 \mathrm{~V} \leq \mathrm{VDD}^{<} 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

8. This value as an example is calculated when the conditions described in the "Conditions" column are met.

Refer to Note $\mathbf{7}$ above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the \mathbf{N}-ch open drain output (Vdo tolerance) mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg). For Viн and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remarks 1. $R_{b}[\Omega]$: Communication line (TxDq) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. q : UART number ($q=0$ to 2), g : PIM and POM number $(g=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register $\mathrm{m}(\mathrm{SPSm})$ and the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00$ to $03,10,11$))
4. UARTO of the 20 - and 24 -pin products supports communication at different potential only when the peripheral I/O redirection function is not used.
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{dD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	$\mathrm{tkcr}_{1} \geq 4 / \mathrm{fcLk}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	600		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1000		ns
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	2300		ns
SCKp high-level width	tKH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tkcrı $/ 2-150$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{D}^{<} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tкcy1/2 - 340		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tксу1/2-916		ns
SCKp low-level width	tKL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		$\mathrm{tkCr}_{1 / 2} \mathbf{- 2 4}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$\mathrm{tkcy}_{1 / 2} \mathbf{- 3 6}$		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tксү1/2-100		ns

Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VdD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For Vін and VIL, see the DC characteristics with TTL input buffer selected.
2. CSIO1 and CSI11 cannot communicate at different potential.

Remarks 1. $\mathrm{R}_{\mathrm{b}}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00,20)$
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Slp setup time (to SCKp \uparrow) Note	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{5} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	162		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	354		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}=3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	958		ns
Slp hold time (from SCKp \uparrow) ${ }^{\text {Note }}$	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{D}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	38		ns
Delay time from SCKp \downarrow to SOp output ${ }^{\text {Note }}$	tksor	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{5} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		200	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{Vod}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		390	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		966	ns

Note When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
(Cautions and Remarks are listed on the next page.)
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp \downarrow) Note	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	88		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	88		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	220		ns
Slp hold time (from SCKp \downarrow) Note	tksı1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}_{\mathrm{DD}} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V} D \mathrm{D}^{<} 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	38		ns
Delay time from SCKp \uparrow to SOp output Note	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		50	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		50	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V} D \mathrm{D}^{<} 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		50	ns

Note When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdo tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
2. CSIO1 and CSI11 cannot communicate at different potential.

Remarks 1. $R_{b}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00,20)$, m : Unit number $(m=0,1)$, n : Channel number $(n=0)$

CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p : CSI number $(p=00,20), m$: Unit number $(m=0,1), n$: Channel number $(n=0)$
(7) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time ${ }^{\text {Note } 1}$	tKCY2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$	$20 \mathrm{MHz}<\mathrm{fmck}^{5} \leq 24 \mathrm{MHz}$	24/fıck		ns
			$8 \mathrm{MHz}<\mathrm{fmск}^{5} 520 \mathrm{MHz}$	20/fmck		ns
			$4 \mathrm{MHz}<$ fмск $^{5} 8 \mathrm{MHz}$	16/fmск		ns
			$\mathrm{fmck} \leq 4 \mathrm{MHz}$	12/fmck		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$	$20 \mathrm{MHz}<\mathrm{fmck}^{5} \leq 24 \mathrm{MHz}$	32/fmск		ns
			$16 \mathrm{MHz}<\mathrm{fmck}^{5} 520 \mathrm{MHz}$	28/fmск		ns
			$8 \mathrm{MHz}<\mathrm{fmCk}^{5} 16 \mathrm{MHz}$	24/fмск		ns
			$4 \mathrm{MHz}<\mathrm{fmck}^{5} 8 \mathrm{MHz}$	16/fмск		ns
			$\mathrm{fmCK} \leq 4 \mathrm{MHz}$	12/fmск		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$	$20 \mathrm{MHz}<\mathrm{f}_{\text {mck }} \leq 24 \mathrm{MHz}$	72/fmск		ns
			$16 \mathrm{MHz}<\mathrm{fmCK} \leq 20 \mathrm{MHz}$	64/fмск		ns
			$8 \mathrm{MHz}<\mathrm{fmск}^{5} 516 \mathrm{MHz}$	52/fmск		ns
			$4 \mathrm{MHz}<$ fмск $^{5} 8 \mathrm{MHz}$	32/fıск		ns
			$\mathrm{fmCk} \leq 4 \mathrm{MHz}$	20/fmск		ns
SCKp high-/low-level width	$\begin{aligned} & \text { t }_{\mathrm{k} H 2}, \\ & \mathrm{t}_{\mathrm{k} L 2} \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}$		tkcy2/2-24		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$		tkcy2/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}$		tkcy2/2-100		ns
Slp setup time (to SCKp \uparrow) ${ }^{\text {Note } 2}$	tsık2	$4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 4.0 \mathrm{~V}$		1/fмск + 40		ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$		1/fмск + 40		ns
		$2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 2.0 \mathrm{~V}$		1/fıск + 60		ns
Slp hold time (from SCKp \uparrow) Note 3	tksI2			1/fıск + 62		ns
Delay time from $\operatorname{SCKp} \downarrow$ to SOp output Note 4	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			$\begin{gathered} \text { 2/fмск }+ \\ 240 \end{gathered}$	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{D}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			$\begin{gathered} 2 / \text { fмск }+ \\ 428 \end{gathered}$	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$			$\begin{gathered} \text { 2/fмск }+ \\ 1146 \end{gathered}$	ns

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vdd tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and VIL, see the DC characteristics with TTL input buffer selected.
2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0 , or DAPmn = 1 and CKPmn =1.)

Remarks 1. Rb [$\Omega]$: Communication line (SOp) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00,20)$, m : Unit number $(m=0,1), n$: Channel number $(n=0)$
3. $f_{м с к}$: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0 .)

Remark p: CSI number $(p=00,20), m$: Unit number $(m=0,1), n$: Channel number $(n=0)$
(8) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$		$100^{\text {Note1 }}$	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		$100^{\text {Note1 }}$	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		$100^{\text {Note1 }}$	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	4650		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	2700		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	2400		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1830		ns
Data setup time (reception)	tsu:dat	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1 / \mathrm{f} \text { мск } \\ + & 760 \text { Note2 } \end{aligned}$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}^{\mathrm{L}} 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} \text { 1/fmck } \\ +760^{\text {Note2 }} \\ \hline \end{gathered}$		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V} D \mathrm{DD}^{<} 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 1 / \mathrm{fmck} \\ + & 570 \text { Note2 } \end{aligned}$		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{Vod}_{\mathrm{od}} 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	1215	ns

Notes 1. The value must be equal to or less than fmск/4.
2. Set tsu:dat so that it will not exceed the hold time when $\mathrm{SCLr}=$ " L " or $\mathrm{SCLr}=$ " H ".

Cautions 1. Select the TTL input buffer and the \mathbf{N}-ch open drain output (VdD tolerance) mode for the SDAr pin and the N-ch open drain output (Vod tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and VIL, see the DC characteristics with TTL input buffer selected.
2. IIC01 and IIC11 cannot communicate at different potential.
(Remarks are listed on the next page.)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)

Simplified $I^{2} C$ mode serial transfer timing (during communication at different potential)

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{C}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. r : IIC Number $(r=00,20)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number $(\mathrm{m}=0,1)$, n : Channel number $(\mathrm{n}=0)$)

3.5.2 Serial interface IICA

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) mode				Unit
			Standard Mode		Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fcLk $\geq 3.5 \mathrm{MHz}$			0	400	kHz
		Normal mode: fcLk $\geq 1 \mathrm{MHz}$	0	100			kHz
Setup time of restart condition	tsu:STA		4.7		0.6		$\mu \mathrm{s}$
Hold time ${ }^{\text {Note } 1}$	thd:STA		4.0		0.6		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ " L "	tıow		4.7		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh		4.0		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd:dAT		0	3.45	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu:sto		4.0		0.6		$\mu \mathrm{s}$
Bus-free time	tBuF		4.7		1.3		$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1 . At this time, the pin characteristics (Іон1, Іоц1, Vон1, Voli) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: $\quad \mathrm{C}_{\mathrm{b}}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$ Fast mode: $\quad \mathrm{C}_{\mathrm{b}}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$

IICA serial transfer timing

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage		
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM
ANIO to ANI3	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI22	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1).		-

(1) When reference voltage (+) $=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage $(-)=A V_{\text {refm }} / A N I 1$ (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{A} V_{\text {refp }} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage (+) = AVRefp, Reference voltage (-) = AV refm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ${ }^{\text {Note }} 1$	AINL	10-bit resolution $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note }} 3$			1.2	± 3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2, ANI3	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes } 1,2}$	EZS	10-bit resolution$A V_{\text {REFP }}=V_{D D}{ }^{\text {Note }} 3$				± 0.25	\%FSR
Full-scale error ${ }^{\text {Notes } 1,2}$	EFS	10-bit resolution $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note }} 3$				± 0.25	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution$A V_{\text {REFP }}=V_{D D} \text { Note } 3$				± 2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution$A V_{\text {REFP }}=V_{D D} \text { Note } 3$				± 1.5	LSB
Analog input voltage	Vain	ANI2, ANI3		0		AV REFFP	V
		Internal reference voltage (HS (high-speed main) mode)		$V_{B G R}$ Note 4			V
		Temperature sensor output voltage (HS (high-speed main) mode)		$V_{\text {TMPS25 }}{ }^{\text {Note }} 4$			V

(Notes are listed on the next page.)

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When $A V_{\text {refp }}$ < $V_{d d}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when $A V_{\text {Refp }}=V_{\text {do }}$.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the $M A X$. value when $A V_{\text {REFP }}=V_{D D}$.
Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) =AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{A} \mathrm{V}_{\mathrm{REFP}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{VSS}=0 \mathrm{~V}$, Reference voltage $(+)=A V_{\text {REFP, Reference }}$ voltage $(-)=$ AVrefm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution $A V_{\text {REFP }}=V_{D D}{ }^{\text {Note }} 3$			1.2	± 5.0	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI22	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes 1, } 2}$	EZS	10-bit resolution$A V_{\text {REFP }}=V_{D D} \text { Note } 3$				± 0.35	\%FSR
Full-scale error ${ }^{\text {Notes 1,2 }}$	EFS	10-bit resolution $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note }} 3$				± 0.35	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution$A V_{\text {REFP }}=V_{\text {DD }} \text { Note } 3$				± 3.5	LSB
Differential linearity error ${ }^{\text {Note }} 1$	DLE	10-bit resolution $A V_{\text {REFP }}=V_{\text {DD }}{ }^{\text {Note }} 3$				± 2.0	LSB
Analog input voltage	$V_{\text {AIN }}$	ANI16 to ANI22		0		AVrefp and $V_{D D}$	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. When $A V_{\text {refp }} \leq V_{D d}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when $A V_{\text {REFP }}=V_{D D}$.
Zero-scale error/Full-scale error: Add $\pm 0.20 \%$ FSR to the $M A X$. value when $A V_{R E F P}=V_{D D}$. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when $A V_{\text {REFP }}=V_{\mathrm{DD}}$.
(3) When reference voltage (+) = Vdd (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = 0 V , Reference voltage (+) = VDd, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ${ }^{\text {Note } 1}$	AINL	10-bit resolution			1.2	± 7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANIO to ANI3, ANI16 to ANI22	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Conversion time	tconv	10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes } 1,2}$	EZS	10-bit resolution				± 0.60	\%FSR
Full-scale error ${ }^{\text {Notes } 1,2}$	EFS	10-bit resolution				± 0.60	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	10-bit resolution				± 4.0	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	10-bit resolution				± 2.0	LSB
Analog input voltage	$V_{\text {AIN }}$	ANIO to ANI3, ANI16 to ANI22		0		V ${ }_{\text {do }}$	V
		Internal reference voltage (HS (high-speed main) mode)		$V_{\text {bGr }}{ }^{\text {Note }} 3$			V
		Temperature sensor output voltage (HS (high-speed main) mode)		$\mathrm{V}_{\text {TMPS } 25}{ }^{\text {Note }} 3$			V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 $=0$), reference voltage $(-)=$ AVrefm (ADREFM = 1), target pin: ANIO, ANI2, ANI3, and ANI16 to ANI22
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VdD}^{\mathrm{C}} 55.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage $(+)=\mathrm{V}_{\mathrm{BGR}}{ }^{\text {Note } 3}$, Reference voltage $(-)=$ AV Refm ${ }^{\text {Note } 4} \mathbf{~ = ~} 0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8			bit
Conversion time	tconv	8-bit resolution	17		39	$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes } 1,2}$	EZS	8-bit resolution			± 0.60	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	8-bit resolution			± 2.0	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	8-bit resolution			± 1.0	LSB
Analog input voltage	$V_{\text {AIN }}$		0		$V_{B G R}{ }^{\text {Note }} 3$	V

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.
3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.
4. When reference voltage $(-)=\mathrm{Vss}$, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage $(-)=A V_{\text {REFM }}$. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage $(-)=A V_{\text {refm }}$. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVRefm.
3.6.2 Temperature sensor/internal reference voltage characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=0 \mathrm{~V}$, HS (high-speed main) mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	$V_{\text {TMPS } 25}$	Setting ADS register $=80 \mathrm{H}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	Vbgr	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.50	V
Temperature coefficient	FVtmps	Temperature sensor output voltage that depends on the temperature		-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tamp		5			$\mu \mathrm{s}$

3.6.3 POR circuit characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Vpor	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ${ }^{\text {Note }}$	Tpw		300			$\mu \mathrm{s}$

Note Minimum time required for a POR reset when $V_{D D}$ exceeds below $V_{\text {PDR }}$. This is also the minimum time required for a POR reset from when $V_{D D}$ exceeds below 0.7 V to when $V_{D D}$ exceeds $V_{\text {por }}$ while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{PDR}} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VlvDo	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	VLVD3	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLvD5	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	Vlvde	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLvD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	tıw		300			$\mu \mathrm{s}$
Detection delay time					300	$\mu \mathrm{s}$

LVD detection voltage of interrupt \& reset mode
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{PDR}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	Vlvddo	VPOC2, VPOC1, VPOC1 $=0,1,1$, falling reset voltage		2.64	2.75	2.86	V
	Vtvod1	LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	V LVdD2	LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	V Lvdd3	LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SvDD				54	$\mathrm{~V} / \mathrm{ms}$

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until Vod reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vodor		1.44 Note		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fcLk		1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \text { Note } 4$	1,000			Times
Data flash memory rewritable times Notes 1, 2, 3		Retained for 1 year $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}^{\text {Note } 4}$	100,000			
		Retained for 20 years $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}^{\text {Note } 4}$	10,000			

Notes 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
2. When using flash memory programmer and Renesas Electronics self programming library
3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		$1,000,000$	bps

3.10 Timing of Entry to Flash Memory Programming Modes

($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external release			100	ms
Time to release the external reset after the TOOLO pin is set to the low level	tsu	POR and LVD reset are released before external release	10			$\mu \mathrm{s}$
Time to hold the TOOLO pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset are released before external release	1			ms

$<1>$ The low level is input to the TOOLO pin.
<2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
$<3>$ The TOOLO pin is set to the high level.
<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
tsu: Time to release the external reset after the TOOLO pin is set to the low level
thd: Time to hold the TOOLO pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

4.1 20-pin products

R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP
R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP
R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP
R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP
R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4×6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50 ± 0.10
E	4.40 ± 0.10
HE	6.40 ± 0.20
A	1.45 MAX.
A1	0.10 ± 0.10
A2	1.15
e	0.65 ± 0.12
bp	$0.22+0.10$
c	$0.15{ }_{-0}^{+0.05}$
L	0.50 ± 0.20
y	0.10
θ	0° to 10°

© 2012 Renesas Electronics Corporation. All rights reserved.

4.2 24-pin products

R5F1027AANA, R5F10279ANA, R5F10278ANA, R5F10277ANA R5F1037AANA, R5F10379ANA, R5F10378ANA, R5F10377ANA R5F1027ADNA, R5F10279DNA, R5F10278DNA, R5F10277DNA R5F1037ADNA, R5F10379DNA, R5F10378DNA, R5F10377DNA R5F1027AGNA, R5F10279GNA, R5F10278GNA, R5F10277GNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN24-4×4-0.50	PWQN0024KE-A	P24K8-50-CAB-1	0.04

DETAIL OF (A) PART

	(UNIT:mm)
ITEM	DIMENSIONS
D	4.00 ± 0.05
E	4.00 ± 0.05
A	0.75 ± 0.05
b	$0.25_{-0.05}^{+0.05}$
e	0.50
Lp	0.40 ± 0.10
x	0.05
y	0.05

ITEM		D2		E2	
	MIN		NOM	MAX	MIN

© 2012 Renesas Electronics Corporation. All rights reserved.

4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP
R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP
R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP
R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

NOTE
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	9.85 ± 0.15
B	0.45 MAX.
C	0.65 (T.P.)
D	$0.24_{-0.07}^{+0.08}$
E	0.1 ± 0.05
F	1.3 ± 0.1
G	1.2
H	8.1 ± 0.2
I	6.1 ± 0.2
J	1.0 ± 0.2
K	0.17 ± 0.03
L	0.5
M	0.13
N	0.10
P	$3^{\circ}{ }_{-3}^{\circ}{ }^{\circ}$
T	0.25
U	0.6 ± 0.15

© 2012 Renesas Electronics Corporation. All rights reserved.

Rev.	Date	Description	
		Page	Summary
1.00	Dec 10, 2012	-	First Edition issued
2.00	Sep 06, 2013	1	Modification of 1.1 Features
		3	Modification of 1.2 List of Part Numbers
		4	Modification of Table 1-1. List of Ordering Part Numbers, Note, and Caution
		7 to 9	Modification of package name in 1.4.1 to 1.4.3
		14	Modification of tables in 1.7 Outline of Functions
		17	Modification of description of table in 2.1 Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$)
		18	Modification of table, Note, and Caution in 2.2.1 X1 oscillator characteristics
		18	Modification of table in 2.2.2 On-chip oscillator characteristics
		19	Modification of Note 3 in 2.3.1 Pin characteristics (1/4)
		20	Modification of Note 3 in 2.3.1 Pin characteristics (2/4)
		23	Modification of Notes 1 and 2 in (1) 20-, 24-pin products (1/2)
		24	Modification of Notes 1 and 3 in (1) 20-, 24-pin products (2/2)
		25	Modification of Notes 1 and 2 in (2) 30-pin products (1/2)
		26	Modification of Notes 1 and 3 in (2) 30-pin products (2/2)
		27	Modification of (3) Peripheral functions (Common to all products)
		28	Modification of table in 2.4 AC Characteristics
		29	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		30	Modification of figures of AC Timing Test Point and External Main System Clock Timing
		31	Modification of figure of AC Timing Test Point
		31	Modification of description and Note 2 in (1) During communication at same potential (UART mode)
		32	Modification of description in (2) During communication at same potential (CSI mode)
		33	Modification of description in (3) During communication at same potential (CSI mode)
		34	Modification of description in (4) During communication at same potential (CSI mode)
		36	Modification of table and Note 2 in (5) During communication at same potential (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
		38, 39	Modification of table and Notes 1 to 9 in (6) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode)
		40	Modification of Remarks 1 to 3 in (6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode)
		41	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)
		42	Modification of Caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)
		43	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V , 3 V) (CSI mode) ($1 / 3$)
		44	Modification of table and Notes 1 and 2 in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) ($2 / 3$)
		45	Modification of table, Note 1, and Caution 1 in (8) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (3/3)
		47	Modification of table in (9) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3$ V) (CSI mode)
		50	Modification of table, Note 1, and Caution 1 in (10) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)

Rev.	Date	Description	
		Page	Summary
2.00	Sep 06, 2013	52	Modification of Remark in 2.5.2 Serial interface IICA
		53	Addition of table to 2.6.1 A/D converter characteristics
		53	Modification of description in 2.6.1 (1)
		54	Modification of Notes 3 to 5 in 2.6.1 (1)
		54	Modification of description and Notes 2 to 4 in 2.6.1 (2)
2.00	Sep 06, 2013	55	Modification of description and Notes 3 and 4 in 2.6.1 (3)
		56	Modification of description and Notes 3 and 4 in 2.6.1 (4)
		57	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		57	Modification of table and Note in 2.6.3 POR circuit characteristics
		58	Modification of table in 2.6.4 LVD circuit characteristics
		59	Modification of table of LVD detection voltage of interrupt \& reset mode
		59	Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics
		61	Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory Programming Modes
		62 to 103	Addition of products of industrial applications (G: $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$)
		$\begin{aligned} & 104 \text { to } \\ & 106 \end{aligned}$	Addition of products of industrial applications (G: $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$)
2.10	Mar 25, 2016	6	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G12
		7	Modification of Table 1-1 List of Ordering Part Numbers
		8	Addition of product name (RL78/G12) and description (Top View) in 1.4.1 20pin products
		9	Addition of product name (RL78/G12) and description (Top View) in 1.4.2 24pin products
		10	Addition of product name (RL78/G12) and description (Top View) in 1.4.3 30pin products
		15	Modification of description in 1.7 Outline of Functions
		16	Modification of description, and addition of target products
		52	Modification of note 2 in 2.5.2 Serial interface IICA
		60	Modification of title and note, and addition of caution in 2.7 RAM Data Retention Characteristics
		60	Modification of conditions in 2.8 Flash Memory Programming Characteristics
		62	Modification of description, and addition of target products and remark
		94	Modification of note 2 in 3.5.2 Serial interface IICA
		102	Modification of title and note in 3.7 RAM Data Retention Characteristics
		102	Modification of conditions in 3.8 Flash Memory Programming Characteristics
		$\begin{aligned} & 104 \text { to } \\ & 106 \end{aligned}$	Addition of package name
2.20	Oct 31, 2018	4	Modification of Table 1-1 List of Ordering Part Numbers
		7	Modification of pin configuration diagram in 1.4.1 20-pin products

All trademarks and registered trademarks are the property of their respective owners.
SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
 TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
 Renesas Electronics America Inc.

1001 Murphy Ranch Road, Milpitas, CA 95035 U S.A
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Dukes Meadow, Miliboard
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No. 27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 5555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13 F No 363 Fu Shing North Road Taip
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn. Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Renesas Electronics:				
R5F102A8ASP\#X0	R5F102A9AS	R5F10366ASP\#X0	369DS	P\#X5
R5F10267ASP\#X5 R5	R5F1036AASP\#X5	R5F10279ANA\#U5	R5F1037AANA\#U5	R5F10278ANA\#U5
R5F1027AANA\#U5	R5F10268ASP\#X5	R5F10267GSP\#V5	R5F10367ASP\#X5	R5F10279ANA\#W5
R5F1027AANA\#W5				
R5F1037AANA\#W5				
R5F10368ASP\#V0				
R5F10377DNA\#U0				
R5F10278DNA\#W0 R5F10267GSP\#V0 R5F1026AASP\#X0 R5F10277ANA\#U0 R5F10379ANA\#U5				
R5F10269ASP\#X0 R5F1026ADSP\#V0 R5F10269GSP\#X5 R5F10377ANA\#U5 R5F10366ASP\#X5				
R5F10267DSP\#X0 R5F10266ASP\#V0 R5F10268GSP\#V5 R5F10378ANA\#W5 R5F10269ASP\#X5				
R5F10269GSP\#V5 R5F1026AASP\#X5 R5F10368ASP\#X5 R5F10378ANA\#U5 R5F1026AASP\#V5				
R5F10366ASP\#V5 R5F10368ASP\#V5 R5F10369ASP\#V5 R5F10277ANA\#U5 R5F10266GSP\#V5				
R5F10268ASP\#V5 R5F10268GSP\#X5 R5F10266ASP\#V5 R5F10266GSP\#X5 R5F10266ASP\#X5				
R5F102A8GSP\#V0 R5F1027AGNA\#U5 R5F10267GSP\#X5 R5F10277ANA\#W5 R5F10269ASP\#V5				
R5F10278ANA\#W5 R5F10267ASP\#V5 R5F103A7DSP\#V0 R5F103AADSP\#V0 R5F103A7ASP\#V0				
R5F1036AASP\#X0	R5F10378ANA\#W0	R5F102AAASP\#X0	R5F10378DNA\#U0	R5F10369ASP\#X0
R5F103AAASP\#V0 R5F10366DSP\#V0 R5F102A8ASP\#V0 R5F102A9DSP\#V0 R5F10269ASP\#V0				
R5F1027AANA\#W0 R5F102AAASP\#V0 R5F102AADSP\#X0 R5F10267ASP\#V0 R5F1037ADNA\#U0				
R5F10279ANA\#U0	R5F10369ASP\#V0	R5F10377ANA\#W0	R5F102A7ASP\#X0	R5F1027AANA\#U0
R5F102A7ASP\#V0	R5F102A9ASP\#X0	R5F102AADSP\#V0	R5F10367ASP\#X0	R5F103A9ASP\#V0

