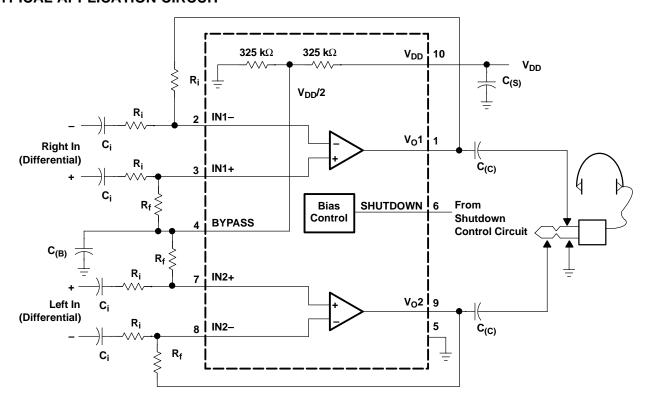


150-mW STEREO AUDIO POWER AMPLIFIER

FEATURES


- 150 mW Stereo Output
- **Differential Inputs**
- **PC Power Supply Compatible**
 - Fully Specified for 3.3 V and 5 V Operation
 - Operation to 2.5 V
- **Pop Reduction Circuitry**
- **Internal Mid-Rail Generation**
- Thermal and Short-Circuit Protection
- **Surface-Mount Packaging**
 - PowerPAD™ MSOP

DESCRIPTION

The TPA6112A2 is a stereo audio power amplifier with differential inputs packaged in a 10-pin PowerPAD MSOP package capable of delivering 150 mW of continuous RMS power per channel into 16-Ω loads. Amplifier gain is externally configured by means of two resistors per input channel and does not require external compensation for settings of 1 to 10.

TYPICAL APPLICATION CIRCUIT

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

THD+N when driving an 16- Ω load from 5 V is 0.03% at 1 kHz, and less than 1% across the audio band of 20 Hz to 20 kHz. For 32- Ω loads, the THD+N is reduced to less than 0.02% at 1 kHz, and is less than 1% across the audio band of 20 Hz to 20 kHz. For 10-k Ω loads, the THD+N performance is 0.005% at 1 kHz, and less than 0.5% across the audio band of 20 Hz to 20 kHz.

AVAILABLE OPTIONS

T _A	PACKAGED DEVICE MSOP ⁽¹⁾	MSOP SYMBOLIZATION
-40°C to 85°C	TPA6112A2DGQ	TI APD

(1) The DGQ package isavailable in left-ended tape and reel only (e.g., TPA6112A2DGQR).

Terminal Functions

TERMINA	TERMINAL		DESCRIPTION
NAME	NO	1/0	DESCRIPTION
BYPASS	4	I	Tap to voltage divider for internal mid-supply bias supply. Connect to a 0.1 μ F to 1 μ F low ESR capacitor for best performance.
GND	5	ı	GND is the ground connection.
IN1-	2	ı	IN1- is the negative input for channel 1.
IN1+	3	ı	IN1+ is the positive input for channel 1.
IN2-	8	ı	IN2- is the negative input for channel 2.
IN2+	7	ı	IN2+ is the positive input for channel 2.
SHUTDOWN	6	I	Puts the device in a low quiescent current mode when held high.
V_{DD}	10	I	V _{DD} is the supply voltage terminal.
V _O 1	1	0	V _O 1 is the audio output for channel 1.
V _O 2	9	0	V _O 2 is the audio output for channel 2.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature (unless otherwise noted(1))

		UNITS
V_{DD}	Supply voltage	6 V
V_{I}	Input voltage	-0.3 V to V _{DD} + 0.3 V
	Continuous total power dissipation	internally limited
T_J	Operating junction temperature range	-40°C to 150°C
T _{stg}	Storage temperature range	-65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

⁽¹⁾ Stresses beyond thoselisted under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at theseor any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions forextended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
DGQ	2.14 W ⁽¹⁾	17.1 mW/°C	1.37 W	1.11 W

(1) Please see the Texas Instrumentsdocument, PowerPAD Thermally EnhancedPackage Application Report (literature number SLMA002), for moreinformation on the PowerPAD package. The thermal data was measured on a PCBlayout based on the information in the section entitled Texas Instruments Recommended Board for PowerPAD on page 33 of the before mentioneddocument.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V_{DD}	Supply voltage	2.5	5.5	V
T _A	Operating free-air temperature	-40	85	°C
V _{IH} , (SHUTDOWN)	High-level input voltage	60% x V _{DD}		٧
V _{IL} , (SHUTDOWN)	Low-level input voltage		25% x V _{DD}	V

DC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}C$, $V_{DD} = 2.5 \text{ V}$ (Unless Otherwise Noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{oo}	Output offset voltage	A _V = 2 V/V			15	mV
PSRR	Power supply rejection ratio	V _{DD} = 3.2 V to 3.4 V		83		dB
I _{DD}	Supply current	SHUTDOWN = 0 V		1.5	3	mA
I _{DD(SD)}	Supply current in SHUTDOWN mode	SHUTDOWN = V _{DD}		10	50	μΑ
Z _i	Input impedance			>1		$M\Omega$

AC OPERATING CHARACTERISTICS

 V_{DD} = 3.3 V, T_A = 25°C, R_L = 16 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP M	AX UNIT
Po	Output power (each channel)	THD≤ 0.1%, f = 1 kHz	60	mW
THD+N	Total harmonic distortion + noise	P _O = 40 mW, 20 - 20 kHz	0.4%	
B _{OM}	Maximum output power BW	G = 10, THD < 5%	> 20	kHz
	Phase margin	Open loop	96°	
	Supply ripple rejection ratio	f = 1 kHz	71	dB
	Channel/channel output separation	f = 1 kHz	89	dB
SNR	Signal-to-noise ratio	P _O = 50 mW, A _V = 1	100	dB
V _n	Noise output voltage	A _V = 1	11	μV(rms)

DC ELECTRICAL CHARACTERISTICS

At $T_A = 25^{\circ}C$, $V_{DD} = 5$.5 V (Unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OO}	Output offset voltage	A _V = 2 V/V			15	mV
PSRR	Power supply rejection ratio	V _{DD} = 4.9 V to 5.1 V		76		dB
I _{DD}	Supply current	SHUTDOWN = 0 V		1.5	3	mA
I _{DD(SD)}	Supply current in SHUTDOWN mode	SHUTDOWN = V _{DD}		60	100	μΑ
I _{IH}	High-level input current (SHUTDOWN)	$V_{DD} = 5.5 \text{ V}, V_{I} = V_{DD}$			1	μA
I _{IL}	Low-level input current (SHUTDOWN)	$V_{DD} = 5.5 \text{ V}, V_{I} = 0 \text{ V}$			1	μA
Z _i	Input impedance			>1		$M\Omega$

AC OPERATING CHARACTERISTICS

 V_{DD} = 5 V, T_A = 25°C, R_L = 16 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Po	Output power (each channel)	THD≤ 0.1%, f = 1 kHz	150		mW
THD+N	Total harmonic distortion + noise	P _O = 100 mW, 20 - 20 kHz	0.6%		
B _{OM}	Maximum output power BW	G = 10, THD < 5%	> 20		kHz
	Phase margin	Open loop	96°		
	Supply ripple rejection ratio	f = 1 kHz	61		dB
	Channel/channel output separation	f = 1 kHz	90		dB
SNR	Signal-to-noise ratio	P _O = 100 mW, A _V = 1	100		dB
V _n	Noise output voltage	A _V = 1	11.7		μV(rms)

AC OPERATING CHARACTERISTICS

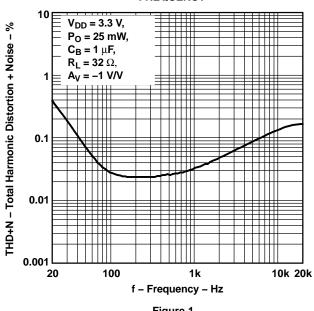
 V_{DD} = 3.3 V, T_A = 25°C, R_L = 32 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Po	Output power (each channel)	THD≤ 0.1%, f = 1 kHz	40		mW
THD+N	Total harmonic distortion + noise	P _O = 30 mW, 20 - 20 kHz	0.4%		
B _{OM}	Maximum output power BW	A _V = 10, THD < 2%	> 20		kHz
	Phase margin	Open loop	96°		
	Supply ripple rejection ratio	f = 1 kHz	71		dB
	Channel/channel output separation	f = 1 kHz	95		dB
SNR	Signal-to-noise ratio	P _O = 40 mW, A _V = 1	100		dB
V _n	Noise output voltage	A _V = 1	11		μV(rms)

AC OPERATING CHARACTERISTICS

 V_{DD} = 5 V, T_A = 25°C, R_L = 32 Ω

	PARAMETER	TEST CONDITIONS	MIN TYP N	IAX UNIT
Po	Output power (each channel)	THD≤ 0.1%, f = 1 kHz	90	mW
THD+N	Total harmonic distortion + noise	P _O = 60 mW, 20 - 20 kHz	0.4%	
B _{OM}	Maximum output power BW	A _V = 10, THD < 2%	> 20	kHz
	Phase margin	Open loop	97°	
	Supply ripple rejection ratio	f = 1 kHz	61	dB
	Channel/channel output separation	f = 1 kHz	98	dB
SNR	Signal-to-noise ratio	P _O = 90 mW, A _V = 1	100	dB
V _n	Noise output voltage	A _V = 1	11.7	μV(rms)



TYPICAL CHARACTERISTICS

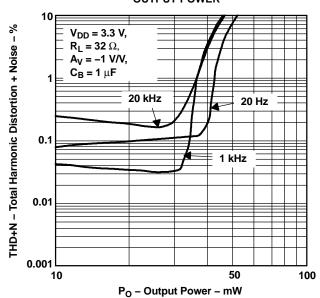
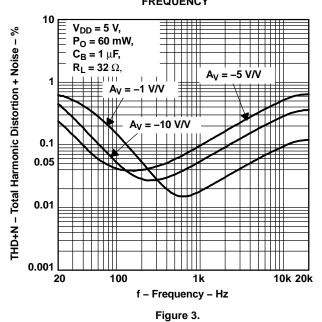
Table of Graphs

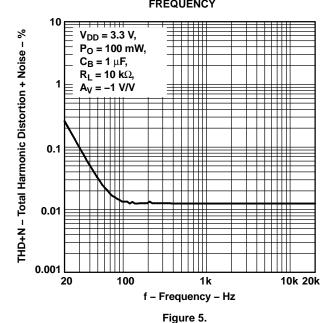
			FIGURE
THD+N	Total harmonia diatortian alua naisa	vs Frequency	1, 3, 5, 6, 7, 9, 11, 13,
I UD+IN	Total harmonic distortion plus noise	vs Output power	2, 4, 8, 10, 12, 14
	Supply ripple rejection ratio	vs Frequency	15, 16
V _n	Output noise voltage	vs Frequency	17, 18
	Crosstalk	vs Frequency	19 - 24
	Shutdown attenuation	vs Frequency	25, 26
	Open-loop gain and phase margin	vs Frequency	27, 28
	Output power	vs Load resistance	29, 30,
I _{DD}	Supply current	vs Supply voltage	31
SNR	Signal-to-noise ratio	vs Voltage gain	32
	Power dissipation/amplifier	vs Load power	33, 34

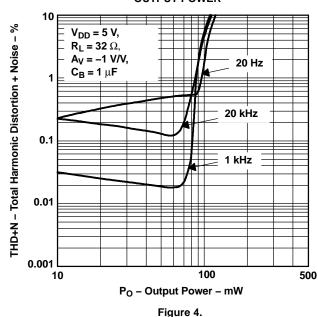
TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

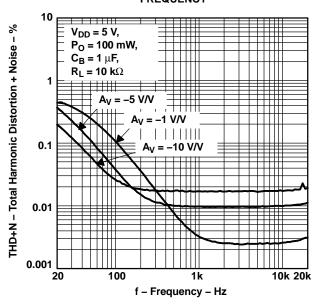
Figure 1.

TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER

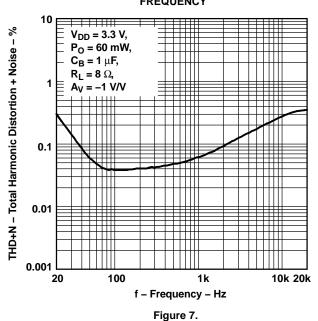




Figure 2.

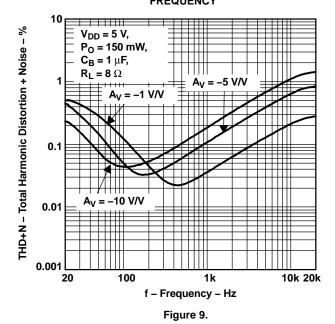

TOTAL HARMONIC DISTORTION + NOISE VS FREQUENCY

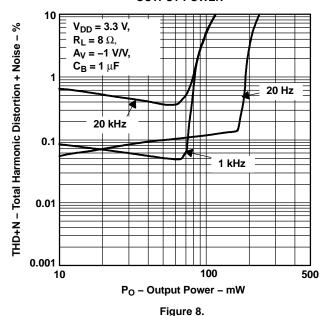

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

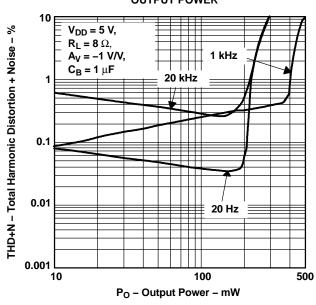
TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER



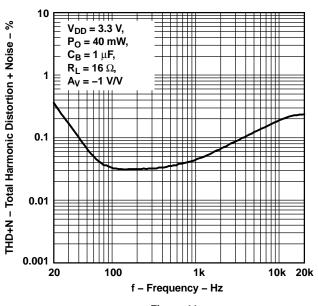
TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY




TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY


TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER



TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

Figure 11.

VS OUTPUT POWER

TOTAL HARMONIC DISTORTION + NOISE

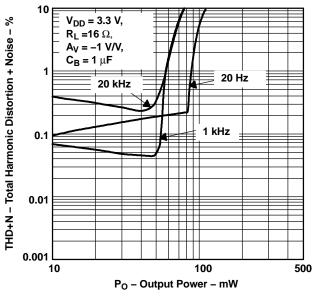


Figure 12.

TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY

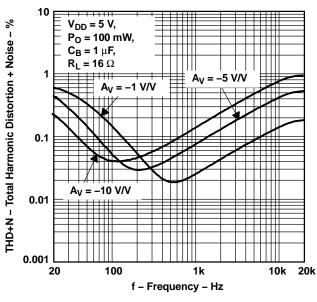


Figure 13.

TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT POWER

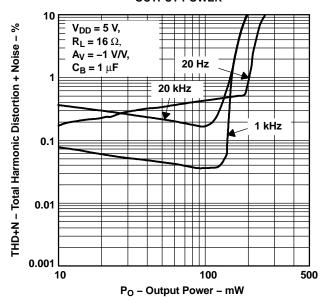



Figure 14.

OUTPUT NOISE VOLTAGE vs FREQUENCY 100 V_{DD} = 3.3 V, V_n – Output Noise Voltage – μ $V_{(RMS)}$ BW = 10 Hz to 22 kHz $R_L = 16 \Omega$ $A_V = -10 \text{ V/V}$ Ш $A_V = -1 \text{ V/V}$ 10 20 100 1k 10k 20k f - Frequency - Hz

Figure 17.

SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY

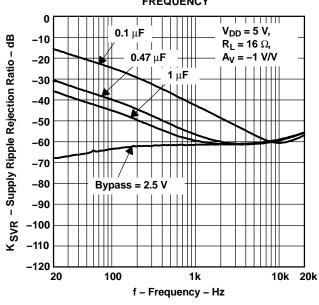
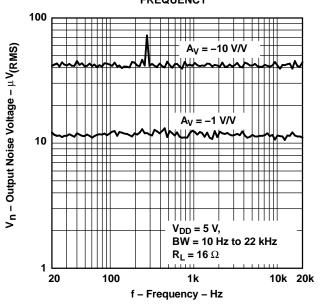
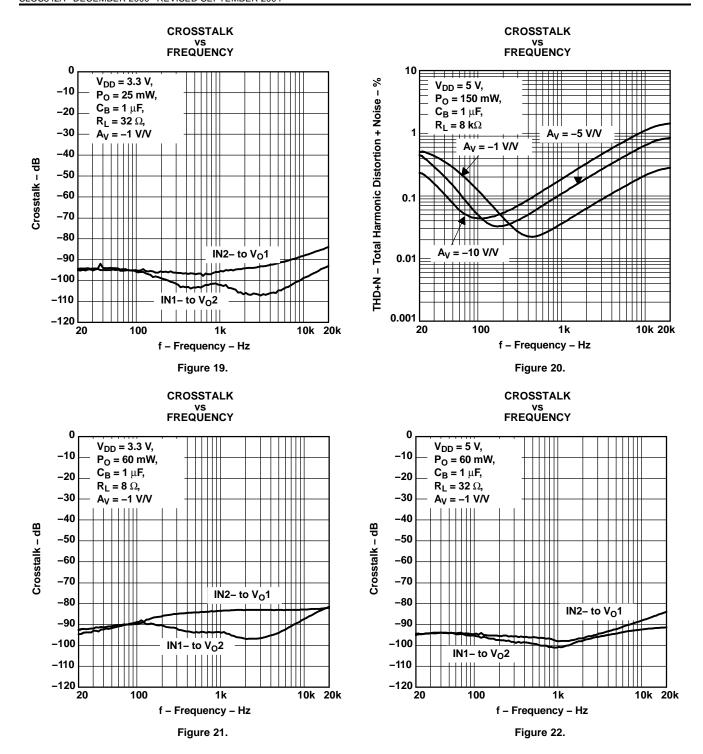
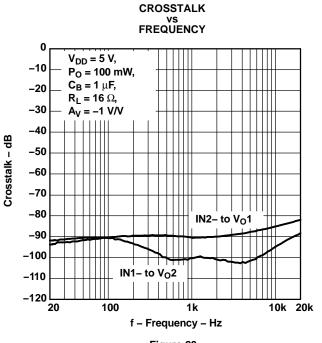


Figure 16.

OUTPUT NOISE VOLTAGE vs FREQUENCY


Figure 18.

CROSSTALK

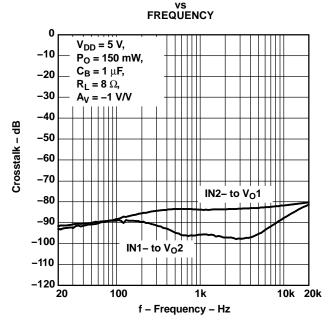


Figure 24.

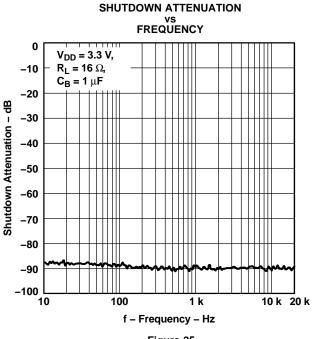


Figure 25.

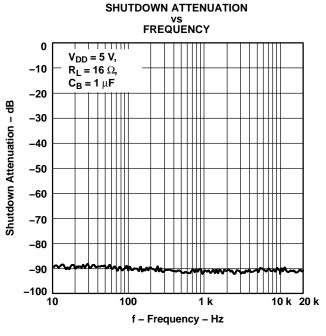


Figure 26.

10 M

OPEN-LOOP GAIN AND PHASE MARGIN vs FREQUENCY

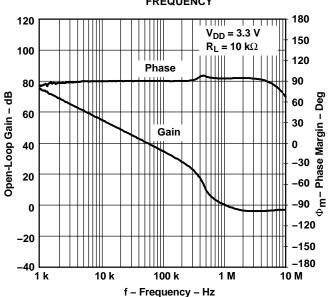


Figure 27.

vs FREQUENCY 180 120 V_{DD} = 5 V 150 $R_L = 10 \text{ k}\Omega$ 100 Gain 120 90 80 Phase Margin - Deg Open-Loop Gain – dB 60 30 Phase -60 -90 0 -120 -20 -150 -180

OPEN-LOOP GAIN AND PHASE MARGIN

Figure 28.

1 M

100 k

f - Frequency - Hz

-40

1 k

10 k

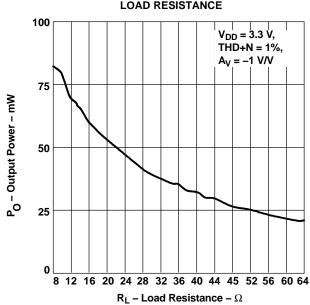
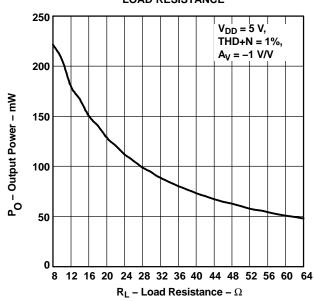
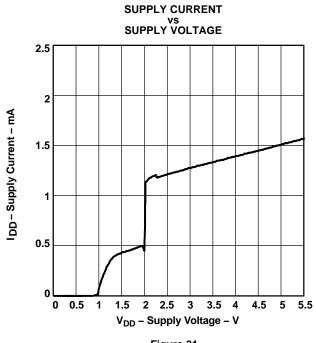
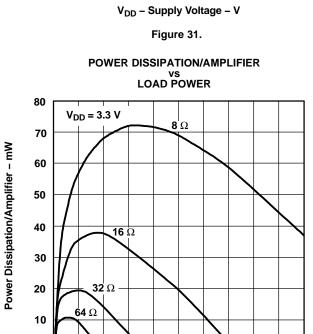


Figure 29.

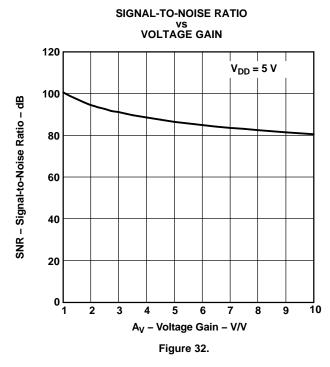
OUTPUT POWER vs LOAD RESISTANCE


Figure 30.

0

20 40 60



Load Power – mW Figure 33.

80 100 120 140 160 180

200

POWER DISSIPATION/AMPLIFIER vs LOAD POWER

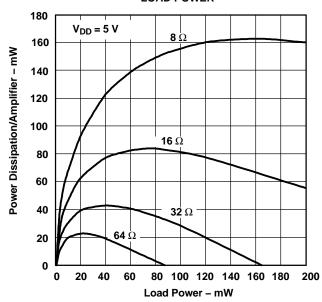


Figure 34.

APPLICATION INFORMATION

GAIN SETTING RESISTORS, R, and R;

The gain for the TPA6112A2 is set by resistors R_f and R_i according to Equation 1.

$$Gain = -\left(\frac{R_f}{R_i}\right)$$
 (1)

Given that the TPA6112A2 is a MOS amplifier, the input impedance is very high. Consequently input leakage currents are not generally a concern. However, noise in the circuit increases as the value of $R_{\rm f}$ increases. In addition, a certain range of $R_{\rm f}$ values is required for proper start-up operation of the amplifier. Considering these factors, it is recommended that the effective impedance seen by the inverting node of the amplifier be set between 5 k Ω and 20 k Ω . The effective impedance is calculated using Equation 2.

Effective Impedance =
$$\frac{R_f R_i}{R_f + R_i}$$
 (2)

For example, if the input resistance is 20 $k\Omega$ and the feedback resistor is 20 $k\Omega$, the gain of the amplifier is -1, and the effective impedance at the inverting terminal is 10 $k\Omega$, a value within the recommended range.

For high performance applications, metal-film resistors are recommended because they tend to have lower noise levels than carbon resistors. For values of $R_{\rm f}$ above 50 $k\Omega,$ the amplifier tends to become unstable due to a pole formed from $R_{\rm f}$ and the inherent input capacitance of the MOS input structure. For this reason, a small compensation capacitor of approximately 5 pF should be placed in parallel with $R_{\rm f}.$ This, in effect, creates a low-pass filter network with the cutoff frequency defined by Equation 3.

$$f_{c(lowpass)} = \frac{1}{2\pi R_f C_F}$$
 (3)

For example, if $R_{\rm f}$ is 100 $k\Omega$ and $C_{\rm F}$ is 5 pF then $f_{c(lowpass)}$ is 318 kHz, which is well outside the audio range.

INPUT CAPACITOR, C;

In the typical application, an input capacitor, C_i , is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. In this case, C_i and R_i form a high-pass filter with the corner frequency determined in Equation 4.

$$f_{c(highpass)} = \frac{1}{2\pi R_i C_i}$$
 (4)

The value of C_i directly affects the bass (low frequency) performance of the circuit. Consider the example where R_i is 20 k Ω and the specification calls for a flat bass response down to 20 Hz. Equation 4 is reconfigured as Equation 5.

$$C_{i} = \frac{1}{2\pi R_{i}f_{c(highpass)}}$$
 (5)

In this example, C_i is 0.40 μF , so one would likely choose a value in the range of 0.47 μF to 1 μF . A further consideration for this capacitor is the leakage path from the input source through the input network formed by R_i , C_i , and the feedback resistor (R_f) to the load. This leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially in high-gain applications (gain >10). For this reason a low-leakage tantalum or ceramic capacitor is the best choice. When polarized capacitors are used, connect the positive side of the capacitor to the amplifier input in most applications. The dc level there is held at $V_{DD}/2$ —likely higher than the source dc level. It is important to confirm the capacitor polarity in the application.

POWER SUPPLY DECOUPLING, C(S)

The TPA6112A2 is a high-performance CMOS audio amplifier that requires adequate power-supply decoupling to minimize the output total harmonic distortion (THD). Power-supply decoupling also prevents oscillations when long lead lengths are used between the amplifier and the speaker. The optimum decoupling is achieved by using two capacitors of different types that target different types of noise on the power supply leads. For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically 0.1 µF, placed as close as possible to the device V_{DD} lead, works best. For filtering lower-frequency noise signals, a larger aluminum electrolytic capacitor of 10 µF or greater placed near the power amplifier is recommended.

MIDRAIL BYPASS CAPACITOR, C(B)

The midrail bypass capacitor, $C_{(B)}$, serves several important functions. During start up, $C_{(B)}$ determines the rate at which the amplifier starts up. This helps to push the start-up pop noise into the subaudible range (so low it can not be heard). The second function is to reduce noise produced by the power supply caused by coupling into the output drive signal. This noise is from the midrail generation circuit internal to the amplifier. The capacitor is fed from a 230-k Ω source inside the amplifier. To keep the start-up pop as low as possible, maintain the relationship shown in Equation 6.

$$\frac{1}{\left(C_{(B)} \times 230 \text{ k}\Omega\right)} \leq \frac{1}{\left(C_{i}R_{i}\right)}$$
(6)

Consider an example circuit where $C_{(B)}$ is 1 μF , C_i is 1 μF , and R_i is 20 $k\Omega$. Substituting these values into the equation 9 results in: $6.25 \le 50$ which satisfies the rule. Bypass capacitor, $C_{(B)}$, values of 0.1 μF to 1 μF ceramic or tantalum low-ESR capacitors are recommended for the best THD and noise performance.

OUTPUT COUPLING CAPACITOR, C(C)

In a typical single-supply, single-ended (SE) configuration, an output coupling capacitor ($C_{(C)}$) is required to block the dc bias at the output of the amplifier, thus preventing dc currents in the load. As with the input coupling capacitor, the output coupling capacitor and impedance of the load form a high-pass filter governed by Equation 7.

$$f_{C} = \frac{1}{2\pi R_{L} C_{(C)}} \tag{7}$$

The main disadvantage, from a performance stand-point, is that the typically-small load impedance drives the low-frequency corner higher. Large values of $C_{(C)}$ are required to pass low frequencies into the load. Consider the example where a $C_{(C)}$ of 68 μF is chosen and loads vary from 32 Ω to 47 $k\Omega.$ Table 1 summarizes the frequency response characteristics of each configuration.

Table 1. Common Load Impedances vs Low-Frequency Output Characteristics in SE Mode

R _L	C _(C)	LOWEST FREQUENCY
32 Ω	68 µF	73 Hz
10,000 Ω	68 µF	0.23 Hz
47,000 Ω	68 µF	0.05 Hz

As Table 1 indicates, headphone response is adequate, and drive into line level inputs (a home stereo for example) is very good.

The output coupling capacitor required in single-supply SE mode also places additional constraints on the selection of other components in the amplifier circuit. With the rules described earlier still valid, add the following relationship:

$$\frac{1}{\left(C_{(B)} \times 230 \text{ k}\Omega\right)} \le \frac{1}{\left(C_{i}R_{i}\right)} \le \frac{1}{R_{L}C_{(C)}}$$
(8)

USING LOW-ESR CAPACITORS

Low-ESR capacitors are recommended throughout this application. A real capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial effects of the capacitor in the circuit. The lower the equivalent value of this resistance, the more the real capacitor behaves like an ideal capacitor

5-V VERSUS 3.3-V OPERATION

The TPA6112A2 was designed for operation over a supply range of 2.5 V to 5.5 V. This data sheet provides full specifications for 5-V and 3.3-V operation, since these are considered to be the two most common supply voltages. There are no special considerations for 3.3-V versus 5-V operation as far as supply bypassing, gain setting, or stability. The most important consideration is that of output power. Each amplifier in theTPA6112A2 can produce a maximum voltage swing of V_{DD}- 1 V. This means, for 3.3-V operation, clipping starts to occur when V_{O(PP)} = 2.3 V as opposed when V_{O(PP)} = 4 V while operating at 5 V. The reduced voltage swing subsequently reduces maximum output power into the load before distortion becomes significant.

PACKAGE OPTION ADDENDUM

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPA6112A2DGQ	ACTIVE	MSOP- PowerPAD	DGQ	10	80	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	APD	Samples
TPA6112A2DGQR	ACTIVE	MSOP- PowerPAD	DGQ	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	APD	Samples
TPA6112A2DGQRG4	ACTIVE	MSOP- PowerPAD	DGQ	10	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	APD	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

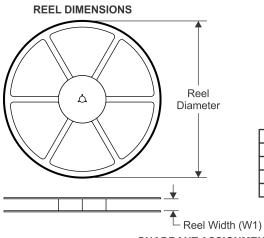
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

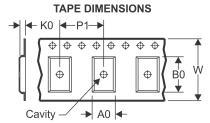
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

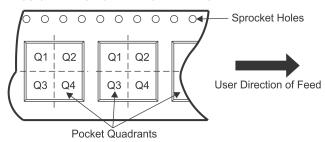
PACKAGE OPTION ADDENDUM


24-Aug-2018

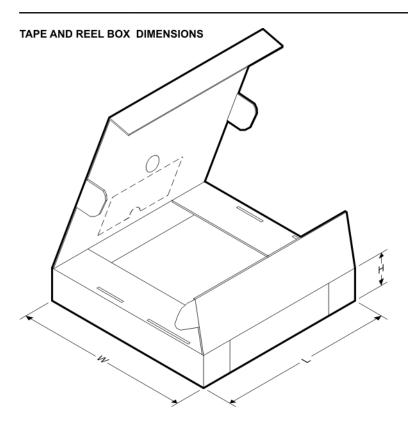

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

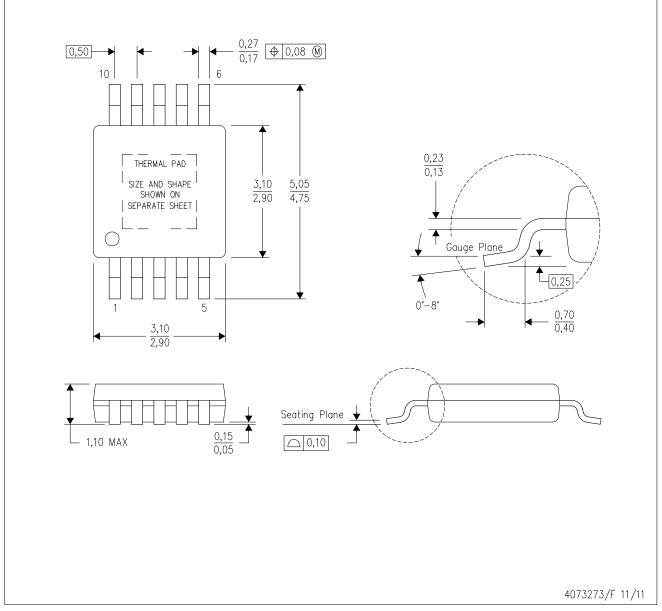

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPA6112A2DGQR	MSOP- Power PAD	DGQ	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPA6112A2DGQR	MSOP- Power PAD	DGQ	10	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1


www.ti.com 3-Aug-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPA6112A2DGQR	MSOP-PowerPAD	DGQ	10	2500	364.0	364.0	27.0
TPA6112A2DGQR	MSOP-PowerPAD	DGQ	10	2500	358.0	335.0	35.0

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com>.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. F. Falls within JEDEC MO-187 variation BA-T.

PowerPAD™ PLASTIC SMALL OUTLINE

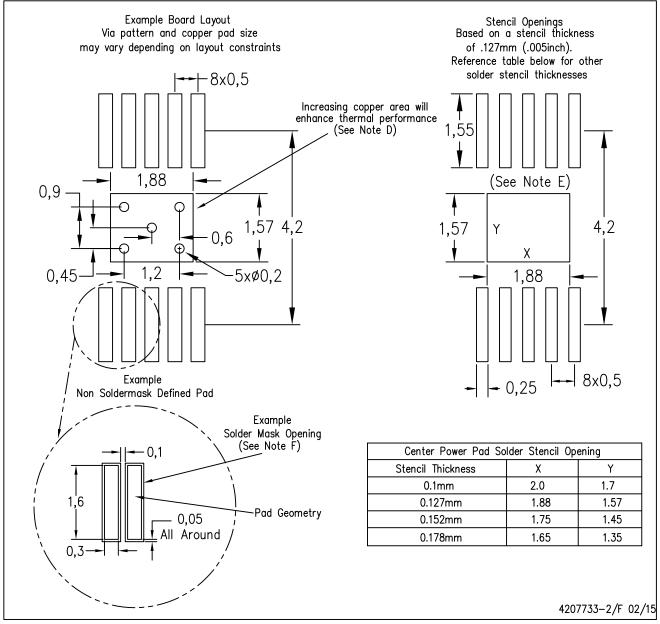
THERMAL INFORMATION

This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Top View


Exposed Thermal Pad Dimensions

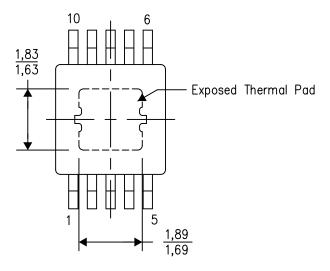
4206324-2/H 12/14

NOTE: A. All linear dimensions are in millimeters

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PowerPAD™ PLASTIC SMALL OUTLINE

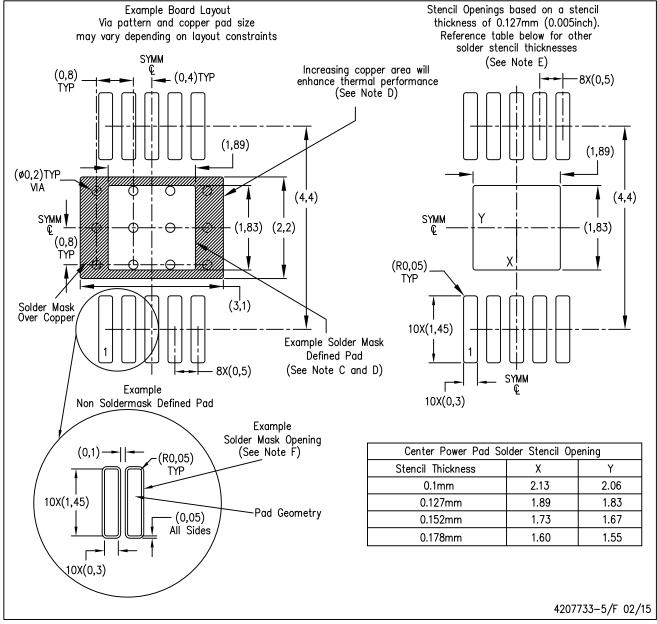
THERMAL INFORMATION

This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Top View


Exposed Thermal Pad Dimensions

4206324-7/H 12/14

NOTE: A. All linear dimensions are in millimeters

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated