INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 September 1993

74HC/HCT132

FEATURES

- Output capability: standard
- I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT132 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT132 contain four 2-input NAND gates which accept standard input signals. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The gate switches at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the hysteresis voltage V_H .

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT		
STWBOL	FARAMETER	CONDITIONS	НС	нст		
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	11	17	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	24	20	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

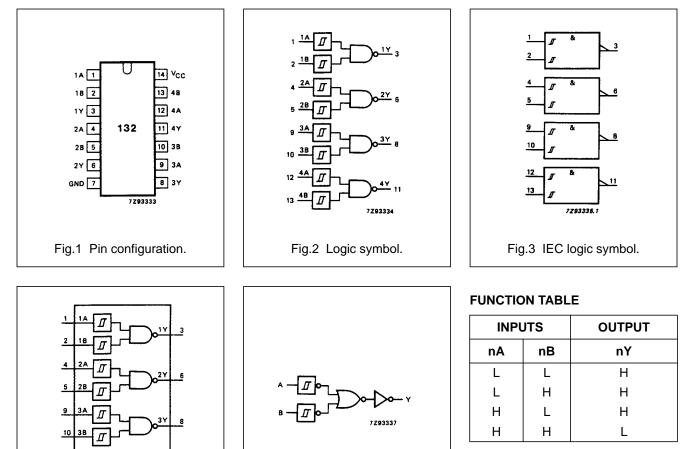
 $f_i = input frequency in MHz$

 $f_o = output frequency in MHz$

 Σ (C_L × V_{CC}² × f_o) = sum of outputs

C_L = output load capacitance in pF

 V_{CC} = supply voltage in V


2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	
1, 4, 9, 12	1A to 4A	data inputs	
2, 5, 10, 13	1B to 4B	data inputs	
3, 6, 8, 11	1Y to 4Y	data outputs	
7	GND	ground (0 V)	
14	V _{CC}	positive supply voltage	

Notes

1. H = HIGH voltage level L = LOW voltage level

APPLICATIONS

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

1:

13

7293336

Fig.4 Functional diagram.

Logic diagram

(one Schmitt trigger).

Fig.5

74HC/HCT132

74HC/HCT132

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard I_{CC} category: SSI

Transfer characteristics for 74HC

Voltages are referenced to GND (ground = 0 V)

					T _{amb} (°		TEST CONDITIONS				
SYMBOL					74H0						
SYMBOL	PARAMETER		+25		-40	to +85	-40 t	o +125	UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
V _{T+}	positive-going threshold	0.7	1.18	1.5	0.7	1.5	0.7	1.5	V	2.0	Figs 6 and 7
		1.7	2.38	3.15	1.7	3.15	1.7	3.15		4.5	
		2.1	3.14	4.2	2.1	4.2	2.1	4.2		6.0	
V _{T-}	negative-going threshold	0.3	0.63	1.0	0.3	1.0	0.3	1.0	V	2.0	Figs 6 and 7
		0.9	1.67	2.2	0.9	2.2	0.9	2.2		4.5	
		1.2	2.26	3.0	1.2	3.0	1.2	3.0		6.0	
V _H	hysteresis (V _{T+} – V _{T-})	0.2	0.55	1.0	0.2	1.0	0.2	1.0	V	2.0	Figs 6 and 7
		0.4	0.71	1.4	0.4	1.4	0.4	1.4		4.5	
		0.6	0.88	1.6	0.6	1.6	0.6	1.6		6.0	

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

SYMBOL					T _{amb} (TEST CONDITIONS				
	PARAMETER				74H0	C					WAVEFORMS
	FARAMETER		+25		-40 1	FO +85	-40 T	O +125		Vcc (V) 2.0 4.5 6.0 2.0 4.5	WAVEFORINS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay		36	125		155		190	ns	2.0	Fig.13
	nA, nB to nY		13	25		31		38		4.5	
			10	21		26		32		6.0	
t _{THL} / t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.13
			7	15		19		22		4.5	
			6	13		16		19		6.0	

74HC/HCT132

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Transfer characteristics are given below.

Output capability: standard I_{CC} category: SSI

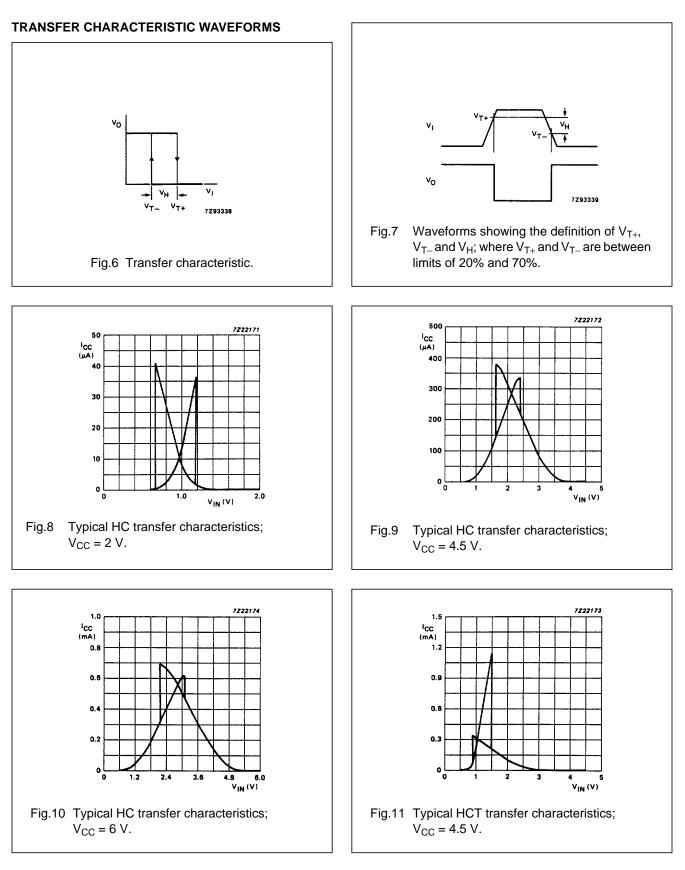
Notes to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

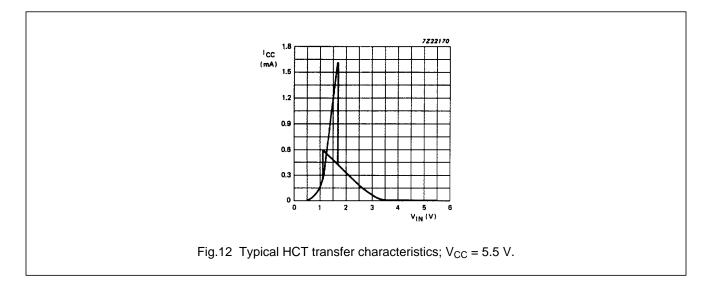
INPUT	UNIT LOAD COEFFICIENT
nA, nB	0.3

Transfer characteristics for 74HCT

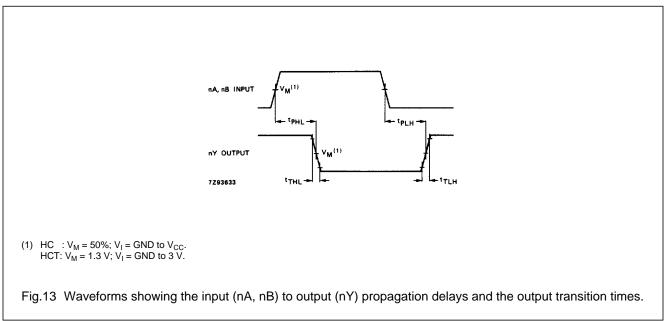
Voltages are referenced to GND (ground = 0 V)


					T _{amb} (°	°C)				TEST CONDITIONS	
	PARAMETER					v _{cc}					
SYMBOL	PARAWIETER		+25		-40	to +85	-40 t	o +125	UNIT		WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(V)	
V _{T+}	positive-going threshold	1.2	1.41	1.9	1.2	1.9	1.2	1.9	V	4.5	Figs 6 and 7
		1.4	1.59	2.1	1.4	2.1	1.4	2.1		5.5	
V _{T-}	negative-going threshold	0.5	0.85	1.2	0.5	1.2	0.5	1.2	V	4.5	Figs 6 and 7
		0.6	0.99	1.4	0.6	1.4	0.6	1.4		5.5	
V _H	hysteresis ($V_{T+} - V_{T-}$)	0.4	0.56	-	0.4	-	0.4	_	V	4.5	Figs 6 and 7
		0.4	0.60	-	0.4	-	0.4	-		5.5	

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

SYMBOL					T _{amb} (°	°C)				TEST CONDITIONS		
	PARAMETER				74HC	т			UNIT		WAVEFORMS	
	FARAMETER		+25		- 40 t	to +85	-40 to	o +125		V _{CC} (V)	WAVEFURINS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay nA, nB to nY		20	33		41		50	ns	4.5	Fig.13	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.13	

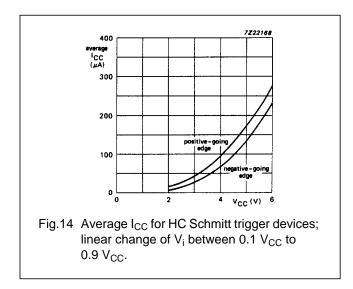

74HC/HCT132

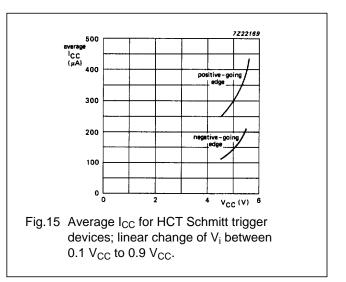
74HC/HCT132

AC WAVEFORMS

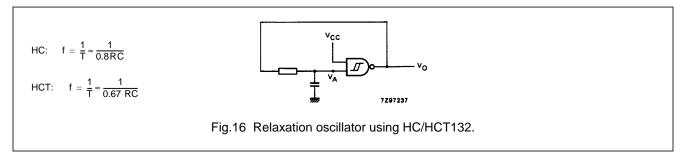
74HC/HCT132

Application information


The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:


 $\label{eq:Pad} \mathsf{P}_{ad} = \mathsf{f}_i \times (\mathsf{t}_r \times \mathsf{I}_{CCa} + \mathsf{t}_f \ \times \ \mathsf{I}_{CCa}) \times \mathsf{V}_{CC}.$

Where:


 $\begin{array}{lll} P_{ad} & = additional \ power \ dissipation \ (\mu W) \\ f_i & = input \ frequency \ (MHz) \\ t_r & = input \ rise \ time \ (ns); \ 10\% - 90\% \\ t_f & = input \ fall \ time \ (ns); \ 10\% - 90\% \\ l_{CCa} & = average \ additional \ supply \ current \ (\mu A) \end{array}$

Average I_{CCa} differs with positive or negative input transitions, as shown in Figs 14 and 15.

HC/HCT132 used in a relaxation oscillator circuit, see Fig.16.

Note to Application information

All values given are typical unless otherwise specified.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

September 1993

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Nexperia:

 74HC132PW
 74HC132DB