Features

- Incorporates the ARM7TDMI[®] ARM[®] Thumb[®] Processor Core
 - High-performance 32-bit RISC Architecture
 - High-density 16-bit Instruction Set
 - Leader in MIPS/Watt
 - Little-endian
 - EmbeddedICE[™] (In-circuit Emulation)
- 8-, 16- and 32-bit Read and Write Support
- 256K Bytes of On-chip SRAM
 - 32-bit Data Bus
 - Single-clock Cycle Access
- Fully-programmable External Bus Interface (EBI)
 - Maximum External Address Space of 64M Bytes
 - Up to Eight Chip Selects
 - Software Programmable 8/16-bit External Data Bus
- Eight-level Priority, Individually Maskable, Vectored Interrupt Controller
 - Four External Interrupts, Including a High-priority, Low-latency Interrupt Request
- 32 Programmable I/O Lines
- Three-channel 16-bit Timer/Counter
 - Three External Clock Inputs
 - Two Multi-purpose I/O Pins per Channel
- Two USARTs
 - Two Dedicated Peripheral Data Controller (PDC) Channels per USART
- Programmable Watchdog Timer
- Advanced Power-saving Features
 - CPU and Peripheral Can be Deactivated Individually
- Fully Static Operation
 - 0 Hz to 75 MHz Internal Frequency Range at V_{DDCORE} = 1.8V, 85°C
- 2.7V to 3.6V I/O Operating Range
- 1.65V to 1.95V Core Operating Range
- Available in 100-lead TQFP Package
- -40° C to +85° C Temperature Range

1. Description

The AT91R40008 microcontroller is a member of the Atmel AT91 16-/32-bit microcontroller family, which is based on the ARM7TDMI processor core. This processor has a high-performance, 32-bit RISC architecture with a high-density, 16-bit instruction set and very low power consumption. Furthermore, it features 256K bytes of on-chip SRAM and a large number of internally banked registers, resulting in very fast exception handling, and making the device ideal for real-time control applications.

The AT91R40008 microcontroller features a direct connection to off-chip memory, including Flash, through the fully-programmable External Bus Interface (EBI). An 8-level priority vectored interrupt controller, in conjunction with the Peripheral Data Controller, significantly improves the real-time performance of the device.

The device is manufactured using Atmel's high-density CMOS technology. By combining the ARM7TDMI processor core with a large, on-chip, high-speed SRAM and a wide range of peripheral functions on a monolithic chip, the AT91R40008 is a powerful microcontroller that offers a flexible and high-performance solution to many computeintensive embedded control applications.

AT91 ARM[®] Thumb[®] Microcontrollers

AT91R40008 Electrical Characteristics

1795E-ATARM-12-Dec-05

2. Absolute Maximum Ratings*

Operating Temperature (Industrial)40° C to + 85° C
Storage Temperature60° C to + 150° C
Voltage on Any Input Pin with Respect to Ground
-0.3V to max of V _{DDIO}
Maximum Operating Voltage (V _{DDIO})
Maximum Operating Voltage (V _{DDCORE})1.95V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

² AT91R40008

3. DC Characteristics

The following characteristics are applicable to the Operating Temperature range: $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, unless otherwise specified and are certified for a Junction Temperature up to 100° C.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{DDIO}	DC Supply I/Os			2.7		3.6	V
V _{DDCORE}	DC Supply Core			1.65		1.95	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
V _{IH}	Input High Voltage			2.0		V _{DDIO} + 0 .3	V
		Pin Group 1 ⁽²⁾ : $I_{OL} = 16 \text{ mA}^{(1)}$				0.4	V
		Pin Group $2^{(3)}$: I _{OL} = 8 mA ⁽¹⁾				0.4	V
V _{OL}	Output Low Voltage	Pin Group $3^{(4)}$: $I_{OL} = 2 \text{ mA}^{(1)}$				0.4	V
		All Output Pins: $I_{OL} = 0 \text{ mA}^{(1)}$				0.2	V
V _{OH} Output High Vo		Pin Group 1 ⁽²⁾ : I _{OH} = 16 mA ⁽¹⁾		V _{DDIO} - 0.4			V
	Output High Voltage	Pin Group 2 ⁽³⁾ : $I_{OH} = 8 \text{ mA}^{(1)}$		V _{DDIO} - 0.4			
		Pin Group $3^{(4)}$: $I_{OH} = 2 \text{ mA}^{(1)}$		V _{DDIO} - 0.4			
		All Output Pins: $I_{OH} = 0 \text{ mA}^{(1)}$		V _{DDIO} - 0.2			
I _{LEAK}	Input Leakage Current					10	μA
I _{PULL}	Input Pull-up Current	$V_{DDIO} = 3.6V, V_{IN} = 0V$				280	μA
		Pin Group 1 ⁽²⁾				16	mA
I _{OUT}	Output Current	Pin Group 2 ⁽³⁾ :				8	mA
		Pin Group 3 ⁽⁴⁾ :				2	mA
C _{IN}	Input Capacitance	TQFP100 Package				5.3	pF
1	Statia Current	VDDIO= 3.6V, V _{DDCORE} = 1.95V, MCKI = 0Hz	$T_A = 25^\circ C$			120	μA
I _{SC}	Static Current	All Inputs Driven TMS, TCK, TDI, NRST = 1	$T_A = 85^\circ C$			2.3	mA

Table 3-1.DC Characteristics

Notes: 1. I_{OL} = Output Current at low level. I_{OH} = Output Current at high level.

2. Pin Group 1 = NUB/NWR1, NWE/NWR0, NOE/NRD1

3. Pin Group 2 = D0-D15, A0/NLB, A1-A19, P28/A20/CS7, P29/A21/CS6, P30/A22/CS5, P31/A23/CS4, NCS0, NCS1, P26/NCS2, P27/NCS3

4. Pin Group 3 = All Others

4. Power Consumption

The values in the following tables are values measured in the typical operating conditions (i.e., $V_{DDIO} = 3.3V$, $V_{DDCORE} = 1.8V$, $T_A = 25^{\circ}$ C) on the AT91EB40A Evaluation Board and are given as demonstrative values.

Mode	Conditions	Consumption	Unit	
Reset		0.02		
	Fetch in ARM mode from internal SRAM All peripheral clocks activated	0.83		
Nerreel	Fetch in ARM mode from internal SRAM All peripheral clocks deactivated	0.73		
Normal	Fetch in ARM mode from external SRAM ⁽¹⁾ All peripheral clocks deactivated	0.20	mW/MHz	
	Fetch in Thumb mode from external SRAM ⁽¹⁾ All peripheral clocks deactivated	0.24		
Idla	All peripheral clocks activated	0.16		
Idle	All peripheral clocks deactivated	0.06		

Table 4-1.Power Consumption

Note: 1. With two Wait States.

Table 4-2.	Power Consumption per Peripheral
------------	----------------------------------

Peripheral	Consumption	Unit
PIO Controller	15.3	
Timer/Counter Channel	15.0	
Timer/Counter Block (3 Channels)	36.3	µW/MHz
USART	27.8	

4.1 Thermal and Reliability Considerations

4.1.1 Thermal Data

In Table 4-3, the device lifetime is estimated with the MIL-217 standard in the "moderately controlled" environmental model (this model is described as corresponding to an installation in a permanent rack with adequate cooling air), depending on the device Junction Temperature. (For details see the section "Junction Temperature" on page 5.)

Note that the user must be extremely cautious with this MTBF calculation: as the MIL-217 model is pessimistic with respect to observed values due to the way the data/models are obtained (test under severe conditions). The life test results that have been measured are always better than the predicted ones.

 Table 4-3.
 MTBF Versus Junction Temperature

Junction Temperature (T _J) (°C)	Estimated Lifetime (MTBF) (Year)
100	10
125	5
150	3
175	2

Table 4-4 summarizes the thermal resistance data related to the package of interest.

Table 4-4.	Thermal Resistance Data
------------	-------------------------

Symbol	Symbol Parameter		Package	Тур	Unit
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	TQFP100	40	°C/W
θ _{JC} Junction-to-case thermal resistance			TQFP100	6.4	0/00

4.1.2 Reliability Data

The number of gates and the device die size are provided for the user to calculate reliability data with another standard and/or in another environmental model.

Table 4-5.	Reliability Data
------------	------------------

Parameter	Data	Unit
Number of Logic Gates	280	K gates
Number of Memory Gates	12,897	K gates
Device Die Size	21.2	mm ²

4.2 Junction Temperature

The average chip-junction temperature T_J in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$

2.
$$T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$$

Where:

- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 4-4 on page 5.
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 4-4 on page 5.
- θ_{HEAT SINK} = cooling device thermal resistance (°C/W), provided in the device datasheet.
- P_D = device power consumption (W) estimated from data provided in the section "Power Consumption" on page 4.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and thereby decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_{j} in °C

5. Conditions

5.1 Timing Results

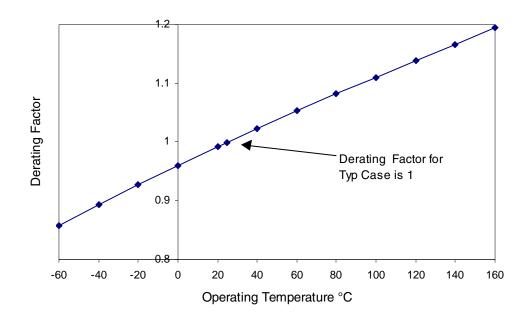
The delays are given as typical values in the following conditions:

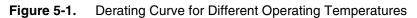
- *V_{DDIO}* = 3.0V
- *V*_{DDCORE} = 1.8V
- Ambient Temperature = 25° C
- Load Capacitance = 0 pF
- The output level change detection is 0.5 x V_{DDIO}
- The input level is 0.8V for a low-level detection and is 2.0V for a high level detection.

The minimum and maximum values given in the AC characteristic tables of this datasheet take into account the process variation and the design.

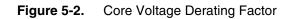
In order to obtain the timing for other conditions, the following equation should be used:

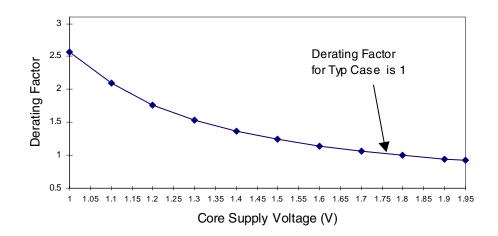
$$t = \delta_{T^{\circ}} \times \left((\delta_{VDDCORE} \times t_{DATASHEET}) + \left(\delta_{VDDIO} \times \sum C_{SIGNAL} \times \delta_{CSIGNAL}) \right) \right)$$


Where:


- δ_T° is the derating factor in temperature given in Figure 5-1.
- $\delta_{VDDCORE}$ is the derating factor for the Core Power Supply given in Figure 5-2 on page 7.
- *t*_{DATASHEET} is the minimum or maximum timing value given in this datasheet for a load capacitance of 0 pF.
- δ_{VDDIO} is the derating factor for the I/O Power Supply given in Figure 5-3 on page 8.
- C_{SIGNAL} is the capacitance load on the considered output pin.⁽¹⁾
- $\delta_{CSIGNAL}$ is the load derating factor depending on the capacitance load on the related output pins given in Min and Max values in this datasheet.

The input delays are given as typical values.


Note: The user must take into account the package capacitance load contribution (C_{IN}) described in Table 3-1 on page 3.


5.2 Temperature Derating Factor

5.3 Core Voltage Derating Factor

5.4 IO Voltage Derating Factor

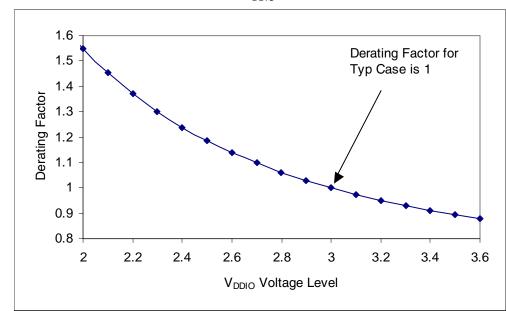
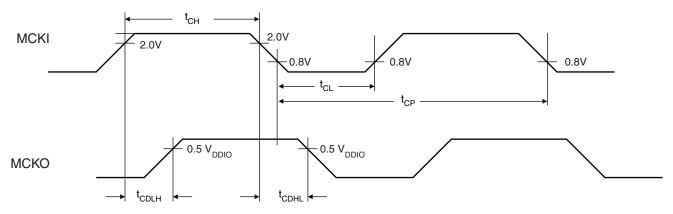


Figure 5-3. Derating Factor for Different V_{DDIO} Power Supply Levels

6. Clock Waveforms

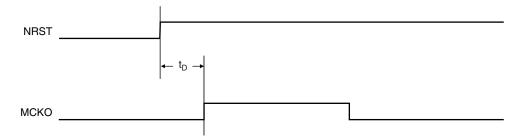

Table 6-1. Waster Clock waveform Parameters	Table 6-1.	Master Clock Waveform Parameters
--	------------	----------------------------------

Symbol	Parameter	Conditions	Min	Мах	Units
1/(t _{CP})	Oscillator Frequency			82.1	MHz
t _{CP}	Oscillator Period		12.2		ns
t _{CH}	High Half-period		5.0		ns
t _{CL}	Low Half-period		5.5		ns

Table 1. Clock Propagation Times

Symbol	Parameter	Conditions	Min	Max	Units
	Dising Edge Dreposition Time	C _{MCKO} = 0 pF	4.4	6.6	ns
^L CDLH	Rising Edge Propagation Time	C _{MCKO} derating	0.199	0.295	ns/pF
	Falling Edge Drepogetion Time	C _{MCKO} = 0 pF	4.5	6.7	ns
^I CDHL	Falling Edge Propagation Time	C _{MCKO} derating	0.153	0.228	ns/pF

Figure 6-1. Clock Waveform


Table 6-2. NRST to MCKO

Symbol	Parameter	Min	Max	Units
t _D	NRST Rising Edge to MCKO Valid Time	3(t _{CP} /2)	7(t _{CP} /2)	ns

Figure 6-2. MCKO Relative to NRST

7. AC Characteristics

7.1 EBI Signals Relative to MCKI

The following tables show timings relative to operating condition limits defined in the section "Timing Results" on page 6. See Figure 7-1 on page 14.

Symbol	Parameter	Conditions	Min	Max	Units
		C _{NUB} = 0 pF	4.4	8.9	ns
EBI ₁	MCKI Falling to NUB Valid	C _{NUB} derating	0.030	0.043	ns/pF
		C _{NLB} = 0 pF	3.7	6.7	ns
EBI ₂	MCKI Falling to NLB/A0 Valid	C _{NLB} derating	0.045	0.069	ns/pF
		C _{ADD} = 0 pF	3.4	7.8	ns
EBI ₃	MCKI Falling to A1 - A23 Valid	C _{ADD} derating	0.045	0.076	ns/pF
	MCKI Falling to Chip Select	C _{NCS} = 0 pF	3.7	8.6	ns
EBI ₄	Change	C _{NCS} derating	0.045	0.078	ns/pF
EBI ₅	NWAIT Setup before MCKI Rising		1.7		ns
EBI ₆	NWAIT Hold after MCKI Rising		1.7		ns

 Table 7-1.
 General-purpose EBI Signals

Table 7-2.	EBI Write Signals
------------	-------------------

Symbol	Parameter	Conditions	Min	Max	Units
		C _{NWR} = 0 pF	3.9	6.3	ns
EBI ₇	MCKI Rising to NWR Active (No Wait States)	C _{NWR} derating	0.029	0.043	ns/pF
		C _{NWR} = 0 pF	4.4	7.0	ns
EBI ₈	MCKI Rising to NWR Active (Wait States)	C _{NWR} derating	0.029	0.043	ns/pF
	MCKI Falling to NWD Inasting (No Woit States)	$C_{NWR} = 0 \text{ pF}$	3.8	6.3	ns
EBI ₉	MCKI Falling to NWR Inactive (No Wait States)	C _{NWR} derating	0.029	0.044	ns/pF
		C _{NWR} = 0 pF	4.2	6.7	ns
EBI ₁₀	MCKI Rising to NWR Inactive (Wait States)	C _{NWR} derating	0.029	0.044	ns/pF
	MCKI Dising to D0 D15 Out Valid	C _{DATA} = 0 pF	4.2	7.5	ns
EBI ₁₁	MCKI Rising to D0 - D15 Out Valid	C _{DATA} derating	0.045	0.080	ns/pF
		C _{NUB} = 0 pF	3.1	7.0	ns
EBI ₁₂	NWR High to NUB Change	C _{NUB} derating	0.030	0.043	ns/pF
		C _{NLB} = 0 pF	3.1	5.4	ns
EBI ₁₃	NWR High to NLB/A0 Change	C _{NLB} derating	0.043	0.073	ns/pF
		C _{ADD} = 0 pF	2.9	7.0	ns
EBI ₁₄	NWR High to A1 - A23 Change	C _{ADD} derating	0.043	0.076	ns/pF

Table 7-2.	EBI Write Signals	(Continued)
------------	-------------------	-------------

Symbol	Parameter	Conditions	Min	Max	Units
	NWD Lights Chip Scleet Inactive	C _{NCS} = 0 pF	2.9	6.8	ns
EBI ₁₅	NWR High to Chip Select Inactive	C _{NCS} derating	0.052	0.067	ns/pF
		C = 0 pF	t _{CH} - 1.8		ns
EBI ₁₆	Data Out Valid before NWR High (No Wait States) ⁽¹⁾	C _{DATA} derating	-0.080		ns/pF
		C _{NWR} derating	0.044		ns/pF
		C = 0 pF	n x t _{CP} - 1.3 ⁽²⁾		ns
EBI ₁₇	Data Out Valid before NWR High (Wait States) ⁽¹⁾	C _{DATA} derating	-0.080		ns/pF
		C _{DATA} defailing -0.080 C _{NWR} derating 0.044		ns/pF	
EBI ₁₈	Data Out Valid after NWR High		2.2		ns
		C _{NWR} = 0 pF	t _{CH} - 0.6		ns
EBI ₁₉	NWR Minimum Pulse Width (No Wait States) ⁽¹⁾	C _{NWR} derating	0		ns/pF
		C _{NWR} = 0 pF	n x t _{CP} - 0.9 ⁽²⁾		ns
EBI ₂₀	NWR Minimum Pulse Width (Wait States) ⁽¹⁾	C _{NWR} derating	0		ns/pF

Notes: 1. The derating factor should not be applied to t_{CH} or t_{CP} 2. n = number of standard wait states inserted.

Table 7-3.	EBI Read Signals
------------	------------------

Symbol	Parameter	Conditions	Min	Max	Units
	MCKI Falling to NDD Active(1)	C _{NRD} = 0 pF	4.5	7.9	ns
EBI ₂₁	MCKI Falling to NRD Active ⁽¹⁾	C _{NRD} derating	0.029	0.043	ns/pF
		C _{NRD} = 0 pF	3.8	7.3	ns
EBI ₂₂	MCKI Rising to NRD Active ⁽²⁾	C _{NRD} derating	0.029	0.043	ns/pF
	MCKI Falling to NDD Inactive(1)	C _{NRD} = 0 pF	4.1	6.5	ns
EBI ₂₃	MCKI Falling to NRD Inactive ⁽¹⁾	C _{NRD} derating	0.030	0.044	ns/pF
		C _{NRD} = 0 pF	3.9	5.8	ns
EBI ₂₄	MCKI Falling to NRD Inactive ⁽²⁾	C _{NRD} derating	0.030	0.044	ns/pF
EBI ₂₅	D0 - D15 In Setup before MCKI Falling Edge ⁽⁵⁾		1.5		ns
EBI ₂₆	D0 - D15 In Hold after MCKI Falling Edge ⁽⁶⁾		1.2		ns
		C _{NUB} = 0 pF	3.2	7.1	ns
EBI ₂₇	NRD High to NUB Change	C _{NUB} derating	0.030	0.043	ns/pF
		C _{NLB} = 0 pF	3.2	4.6	ns
EBI ₂₈	NRD High to NLB/A0 Change	C _{NLB} derating	0.043	0.073	ns/pF
		C _{ADD} = 0 pF	2.8	6.1	ns
EBI ₂₉	NRD High to A1 - A23 Change	C _{ADD} derating	0.043	0.076	ns/pF
		C _{NCS} = 0 pF	2.9	6.2	ns
EBI ₃₀	NRD High to Chip Select Inactive	C _{NCS} derating	0.052	0.067	ns/pF

Table 7-3.EBI Read Signals

Symbol	Parameter	Conditions	Min	Max	Units
	Data Catura hafara NDD Llish ⁽⁶⁾	C _{NRD} = 0 pF	8.0		ns
EBI ₃₁	Data Setup before NRD High ⁽⁶⁾	C _{NRD} derating	0.044		ns/pF
		C _{NRD} = 0 pF	-3.1		ns
EBI ₃₂	Data Hold after NRD High ⁽⁶⁾	C _{NRD} derating	-0.030		ns/pF
		C _{NRD} = 0 pF	(n +1) t _{CP} - 1.9 ⁽⁴⁾		ns
EBI ₃₃	NRD Minimum Pulse Width ^{(1) (3)}	C _{NRD} derating	0.001		ns/pF
	NDD Minimum Dulas $Misk(2)(3)$	C _{NRD} = 0 pF	n x t _{CP} + (t _{CH} - 1.5) ⁽⁴⁾		ns
EBI ₃₄	NRD Minimum Pulse Width ^{(2) (3)}	C _{NRD} derating	0.001		ns/pF

Notes: 1. Early Read Protocol.

2. Standard Read Protocol.

3. The derating factor should not be applied to $t_{\mbox{\scriptsize CH}}$ or $t_{\mbox{\scriptsize CP}}$

4. n = number of standard wait states inserted.

5. Only one of these two timings, EB_{25} or EBI_{31} , needs to be met.

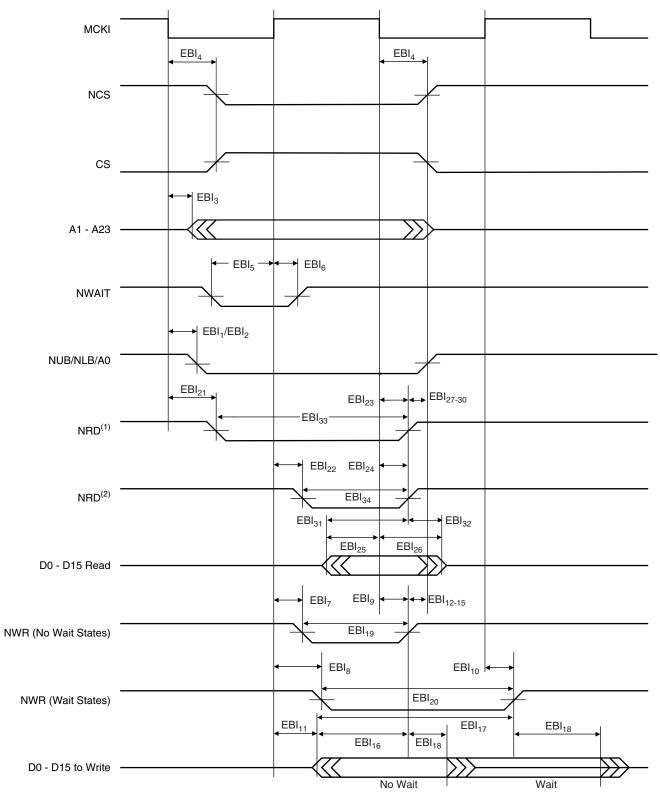
6. Only one of these two timings, EB_{26} or EBI_{32} , needs to be met.

Table 7-4. EBI Read and Write Control Signals. Capacitance Limitation

Symbol	Parameter	Conditions	Min	Max	Units
	$C_{NRD} = 0 \text{ pF}$	7.3		ns	
CPLNRD	Master Clock Low Due to NRD Capacitance	C _{NRD} derating	0.044		ns/pF
T (2)	T _{CPLNWB} ⁽²⁾ Master CLock Low Due to NWR Capacitance	$C_{NWR} = 0 \text{ pF}$	7.6		ns
I CPLNWR ⁽²⁾		C _{NWR} derating	0.044		ns/pF

Notes: 1. If this condition is not met, the action depends on the read protocol intended for use.

• Early Read Protocol: Programing an additional t_{DF} (Data Float Output Time) cycle.


• Standard Read Protocol: Programming an additional t_{DF} Cycle and an additional wait state.

2. Applicable only for chip select programmed with 0 wait state. If this condition is not met, at least one wait state must be programmed.

Figure 7-1. EBI Signals Relative to MCKI

Notes: 1. Early Read Protocol.

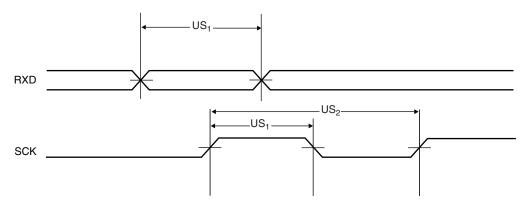
2. Standard Read Protocol.

14 **AT91R40008**

7.2 Peripheral Signals

7.2.1 USART Signals

The inputs have to meet the minimum pulse width and period constraints shown in Table 7-5 and Table 7-6, and represented in Figure 7-2.


 Table 7-5.
 USART Input Minimum Pulse Width

Symbol	Parameter	Min Pulse Width	Units
US ₁	SCK/RXD Minimum Pulse Width	5(t _{CP} /2)	ns

Table 7-6. USART Minimum Input Period

Symbol	Parameter	Min Input Period	Units
US ₂	SCK Minimum Input Period	9(t _{CP} /2)	ns

Figure 7-2. USART Signals

7.2.2 Timer/Counter Signals

Due to internal synchronization of input signals, there is a delay between an input event and a corresponding output event. This delay is $3(t_{CP})$ in Waveform Event Detection mode and $4(t_{CP})$ in Waveform Total-count Detection mode. The inputs have to meet the minimum pulse width and minimum input period shown in Table 7-7 and Table 7-8, and as represented in Figure 7-3.

 Table 7-7.
 Timer Input Minimum Pulse Width

Symbol	Parameter	Min Pulse Width	Units
TC ₁	TCLK/TIOA/TIOB Minimum Pulse Width	3(t _{CP} /2)	ns

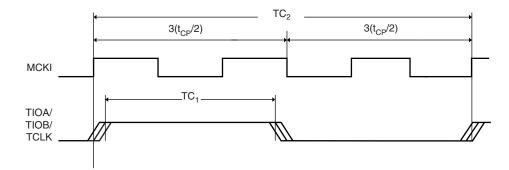


 Table 7-8.
 Timer Input Minimum Period

Symbol	Parameter	Min Input Period	Units
TC ₂	TCLK/TIOA/TIOB Minimum Input Period	5(t _{CP} /2)	ns

Figure 7-3. Timer Input

7.2.3 Reset Signals

A minimum pulse width is necessary, as shown in Table 7-9 and as represented in Figure 7-4.

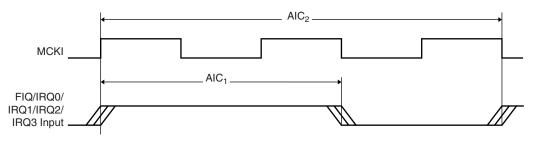
 Table 7-9.
 Reset Minimum Pulse Width

Symbol	Parameter	Min Pulse-width	Units
RST ₁	NRST Minimum Pulse Width	10(t _{CP})	ns

Only the NRST rising edge is synchronized with MCKI. The falling edge is asynchronous.

7.2.4 Advanced Interrupt Controller Signals

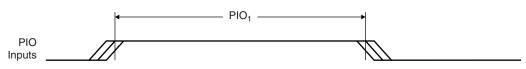
Inputs have to meet the minimum pulse width and minimum input period shown in Table 7-10 and Table 7-11 and represented in Figure 7-5.


 Table 7-10.
 AIC Input Minimum Pulse Width

Symbol	Parameter	Min Pulse Width	Units
AIC ₁	FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Minimum Pulse Width	3(t _{CP} /2)	ns

Table 7-11. AIC Input Minimum Period

Symbol	Parameter	Min Input Period	Units
AIC ₂	AIC Minimum Input Period	5(t _{CP} /2)	ns

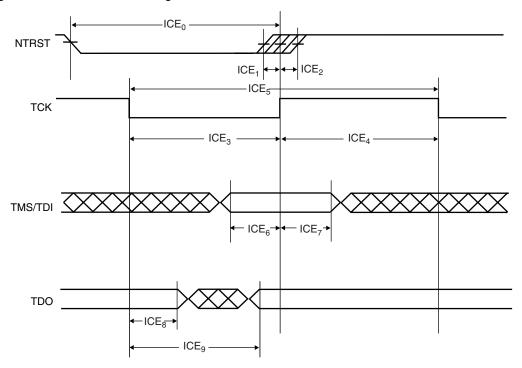

7.2.5 Parallel I/O Signals

The inputs have to meet the minimum pulse width shown in Table 7-12 and represented in Figure 7-6.

Table 7-12. PIO Input Minimum Pulse Width

Symbol	Parameter	Min Pulse Width	Units
PIO ₁	PIO Input Minimum Pulse Width	3(t _{CP} /2)	ns

Figure 7-6. PIO Signal



7.2.6 ICE Interface Signals

Symbol	Parameter	Conditions	Min	Max	Units
ICE ₀	NTRST Minimum Pulse 10.9			ns	
ICE1	NTRST High Recovery to TCK High		0.9		ns
ICE ₂	NTRST High Removal from TCK High		-0.3		ns
ICE ₃	TCK Low Half-period		23.5		ns
ICE ₄ TCK High Half-period			22.7		ns
ICE ₅	TCK Period		46.1		ns
ICE ₆	TDI, TMS Setup before TCK High		0.4		ns
ICE7	TDI, TMS Hold after TCK High		0.4		ns
	TDO Hold Time	$C_{TDO} = 0 \text{ pF}$	3.3		ns
ICE ₈		C _{TDO} derating	0.001		ns/pF
105	TCK Low to TDO Valid	$C_{TDO} = 0 \text{ pF}$		7.4	ns
ICE ₉		C _{TDO} derating		0.28	ns/pF

 Table 7-13.
 ICE Interface Timing Specifications

Figure 7-7. ICE Interface Signal

18 **AT91R40008**

Revision History

Version	page	Comments		
1795A		10-Dec-01 First Issue		
1795B		7-Aug-2002		
	page 2	Absolute Maximum Ratings: changed		
	page 2	Table 1. DC Characteristics: changed		
	page 3	Table 2. Power Consumption: changed		
	page 3	Table 3. Power Consumption per Peripheral: changed		
	page 9	Table 7. Master Waveclock Parameters: changed		
1795C		24-Mar-2004		
	page 1	Features: Change to "Fully Static Operation" values.		
	page 9	Figure 4. Clock Waveform: t_R and t_F removed, t_{CL} measurement changed.		
	page 13	Table 12. Footnote 5 changed and footnote 6 added to clarify selection needs.		
1795D		22-Oct-04		
	page 6	Change to Timing Results (CSR 04-320)		
	page 9	Change to Table 7 and Figure 4 (CSR 04-320)		
1795E		12-Dec-05		
	all	Reformatted in Atmel template version 5.2. Numbering properties are changed as a result.		
	page 9	Table 6-1, "Master Clock Waveform Parameters," note deleted. (CSR 05-446)		

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM®, the ARM Powered® logo, and others, are registered trademarks or trademarks of ARM Limited. Other terms and product names may be trademarks of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: <u>AT91R40008-66AU</u> <u>AT91R40008-66AU-999</u>