

www.cypress.com Document No. 001-59389 Rev. *I 1

AN59389

Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L
and CY8C20xx7/S

Author: Chris Hammer
Associated Project: Yes

Associated Part Family: CY8C20xx6A, CY8C20xx6AS
CY8C20xx6L and CY8C20xx7

Software Version: PSoC Designer™ 5.4 CP1
Related Documents: ISSP Programming Specifications

Host Sourced Serial Programming (HSSP) is a method of in-circuit serial programming (using ISSP protocol) of the

CY8C20xx6A, CY8C20xx6AS, CY8C20xx6L and CY8C20xx7 devices from an onboard host processor. AN59389

explains how to use and port the HSSP code example, provided along with this application note, to the desired host

processor for programming the CY8C20xx6A, CY8C20xx6AS, CY8C20xx6L and CY8C20xx7 devices.

1 Introduction

Cypress’s PSoC microcontrollers are easy-to-use, flexible, and have a cost-effective mix of reprogrammable analog
and digital resources. These features provide many opportunities for creative designs, one of which is programming
the PSoC serially by an on-board host processor. This method is used to install or update firmware in-field or even
completely reprogram the PSoC for a different function.

Cypress created the HSSP Code Example to give system designers a starting point to create their own serial
programming software. Designers have to make minimal modifications to the code to make it compatible with their
specific host programmer. The Code Example covers only the CY8C20xx6A, CY8C20xx6AS, CY8C20xx6L, and
CY8C20xx7 devices and provides a high level of abstraction. For more information on serial programming, refer to
ISSP Programming Specifications.

This application note describes the implementation on a high level. Protocol details and meaning of the vectors are
proprietary and intentionally omitted.

2 Overview

The HSSP Code Example has four major parts: main function, sub functions for various programming steps, low-level
I/O functions, and definition files. The system designer's direct involvement with the code is to set certain properties
through #defines to provide code to fill a 128-byte buffer with programming data and to provide low-level drivers for

the host I/O.

PSoC devices are programmed in two different modes: Reset and Power Cycle. Reset mode, which is the preferred
programming mode, is used only when the system is powered externally. In this case, the XRES pin on the target
PSoC is toggled at the end of the process to bring it out of programming mode and resume normal operation. In the
Power Cycle mode, the host microcontroller switches the PSoC’s power on and off.

In each programming mode, the host needs three I/O pins. These are: serial data (SDATA), serial clock (SCLK), and
external reset (XRES) in the Reset mode, and SDATA, SCLK, and PSoC power (PWR) in the Power Cycle mode.
The software influences these pins.

The SDATA pin on the host processor must be bidirectional. The host must be able to change the properties of this
pin so that it drives a signal to the PSoC, is released to High-Z state, and is read.

http://www.cypress.com/
http://www.cypress.com/?rID=40048
http://www.cypress.com/?rID=40048

Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L and CY8C20xx7/S

www.cypress.com Document No. 001-59389 Rev. *I 2

3 Property Selection

The designer must set two properties: Label and Description. To do this, comment or uncomment certain #defines

in the ISSP_DIRECTIVES.H file. These #defines are clearly marked with "User Attention Required" and are easy

to find. You can also do a page search for individual labels. An explanation for each property and its label follows.

Property: Programming mode

Label: PROGRAMMING MODE

Description: Comment out this #define if you use the power cycle mode. Uncommenting the #define causes the

target to be programmed in reset mode.

Property: Target PSoC Device

Label: TARGET PSOC

Description: Select the target CY8C20xx6, or CY8C20xx7 PSoC in this section. Only one device is enabled at any

given time and every other device is commented out.

3.1 Low-Level Driver Modifications

The designer gives host-specific code to manipulate the pins involved in programming the target PSoC. These APIs
are marked "Processor Specific" and "User Attention Required" and are found in ISSP_DRIVER_ROUTINES.C.

▪ Port Bit Masks: There are four port bit masks that must be adjusted for the specific host processor being used.

Note that though there are four bits to set, only three are used in programming, depending on the choice of
programming method — SDATA, SCLK, and XRES in reset mode; SDATA, SCLK, and PWR in power cycle
mode.

▪ Delay(n) Function: This function is adjusted so that each iteration of the while loop takes at least 1 µs.

Generally, there is no upper limit for the loop time. However, the longer this loop takes, the longer it takes to
program the target. For example, if the host microcontroller is also a PSoC, each iteration takes about 1 µs and
there is a 3-µs overhead. Therefore, the function generates a delay of
n+3 µs, where n is the parameter passed to the function. To adjust the delay time for your host processor, modify

the #defines in ISSP_DELAYS.H.

▪ Port Bit Manipulation Functions: These functions manipulate host pins to generate signals needed to program

the PSoC. They deal with driving pins high and low and releasing pins to High-Z state. A list of these functions
follows. Most of the functions are self explanatory, but they are all documented within the code. The descriptions
are also available in the Appendix.

 fSDATACheck()

 SCLKHigh()

 SCLKLow()

 SetSCLKStrong()

 SetSDATAHigh()

 SetSDATALow()

 SetSDATAHiZ()

 SetSDATAStrong()

 SetXRESStrong()

 AssertXRES()

 DeassertXRES()

 SetSCLKHiZ()

 SetTargetVDDStrong()

 ApplyTargetVDD()

 RemoveTargetVDD()

http://www.cypress.com/

Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L and CY8C20xx7/S

www.cypress.com Document No. 001-59389 Rev. *I 3

3.2 Loading Data into RAM Buffer

The HSSP code takes data from a 128-byte buffer to program PSoC flash blocks sequentially. This process starts at
the lowest block address. After the first block is programmed, the same buffer is used to program further flash blocks.

The designer must provide a code to fill this buffer depending on the data source (USB, RS-232, SD Card, and so
on). There are two functions to be written for the specific host processor used—LoadProgramData() and

fLoadSecurityData(). These functions are found in ISSP_DRIVER_ROUTINES.C and are marked with

"Processor Specific" and "User Attention Required." In their original state, these functions call two secondary
functions that load the buffer with pseudo test data for debugging purposes. In the final version, delete or comment
out these calls.

3.3 Modifying Flash Block Sequence or Quantity

In some cases you have to program a specific area in flash. An example is an area set aside for characterization,
calibration, or firmware field upgrades. These features are usually implemented using the EEPROM user module.
However, in some cases programming them directly into the PSoC saves code space if that is a limitation.

You can change the start address of the target block and the order in which the blocks are programmed. This does
not cause any problems as each programming sequence includes the block address. However, remember the
following points:

▪ If the programming loop is modified, the same changes must be applied to the verify loop to avoid verification
failure.

▪ The code accumulates the checksum as it goes. It examines the checksum against the entire flash up to that
point. If you program only a section of flash, set the variable iChecksumData accordingly.

4 Verifying with Built In Test Points

One of the most critical factors in successful host sourced programming is getting the erase and write pulse widths
right. To help you with the process, a few strategically placed test point (TP) calls are implemented in the program. To
enable this debugging mode, uncomment the USE_TP #ifdef in main.c. There are a few functions associated with

the debugging mode that are similar to pin manipulation functions mentioned earlier in this application note. The
system designer must provide host specific code to drive a pin high, low, or to toggle it.

Proper debugging requires monitoring TP and SDATA lines, and both erase and programming pulses must be
measured. The best way to do this is to use a two-channel oscilloscope and have it trigger in single sequence mode
from the rising edge of the TP channel.

The erase pulse width is measured from the end of the data burst to the TP falling edge, as shown in Figure 1. Note
that the TP rising edge does not line up with the end of the data burst. But the TP rising edge is expected to line up
due to the delay caused by the overhead between the instant the TP pin is driven high and the host starts sending the
data out.

http://www.cypress.com/

Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L and CY8C20xx7/S

www.cypress.com Document No. 001-59389 Rev. *I 4

Figure 1. Measuring the Erase Pulse Width

The programming pulse width is also measured from the end of the data burst to the TP falling edge. Figure 2 shows
the programming pulse width measurement. As with the erase pulse width, the rising edge of the TP signal does not
line up with the end of the data burst.

Figure 2. Measuring the Write Pulse Width

Refer to the device datasheets of CY8C20xx6A and CY8C20xx7 for ideal erase and write pulse widths. The
measured values must be within -3% to +15% of the ideal values. Failure to meet this requirement results in improper
programming, which has undesirable side effects, such as shorter than specified flash data retention [1] and fewer
flash erase and write cycles than expected [2].

1 Specified with a symbol of FlashDR in the DC Programming Specifications section of the device datasheets.
2 Specified with symbols of FlashENPB and FlashENT in the DC Programming Specifications section of the device datasheets.

http://www.cypress.com/
http://www.cypress.com/?rID=59680
http://www.cypress.com/?rID=59671

Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L and CY8C20xx7/S

www.cypress.com Document No. 001-59389 Rev. *I 5

5 Constraints

The comments at the beginning of main.c include useful and important information that the system designers should
consider. The HSSP code has some constraints that are explained in those comments; however, the following is a
brief summary.

▪ Serial programming occurs only within the temperature range of 5 °C and 50 °C.

▪ The HSSP program does not support voltages below 1.8 V.

▪ The programming procedure is completed in one voltage range only. If the device is initialized at 5.0 V, the entire
procedure must be completed in 5.0 V range.

▪ There is an upper limit on SCLK’s frequency. The frequency is specified with the FSCLK symbol in the AC
Programming Specifications section of the CY8C20xx6A and CY8C20xx7 device datasheets.

6 Summary

The HSSP program has a built-in error reporting section that is useful for debugging. Read the bErrorNumber

variable to find out about potential problems. The ISSP_ERRORS.H file contains a list of all caught errors.

The last step in successful HSSP programming is to reset the PSoC device to bring it out of programming mode. To
do this, call the ReStartTarget() function.

This application note provides some HSSP codes that give designers the flexibility to create their own serial
programming software. This document also explains how to set the right erase and write pulse widths to ensure
successful programming.

http://www.cypress.com/
http://www.cypress.com/?rID=59680
http://www.cypress.com/?rID=59671

Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L and CY8C20xx7/S

www.cypress.com Document No. 001-59389 Rev. *I 6

Appendix A. Port Bit Manipulation Functions

Function Name Description

SetSCLKStrong() Sets the SCLK pin to an output (Strong drive mode)

SetSCLKHiZ() Releases the SCLK pin to HI-Z

SetSDATAHigh() Sets the SDATA pin HIGH

SetSDATALow() Sets the SDATA pin LOW

SetSDATAStrong() Sets the SDATA pin to an output (Strong drive mode)

SetSDATAHiZ() Releases the SDATA pin to High Z (to be driven by the target)

AssertXRES() Sets the XRES pin HIGH

DeassertXRES() Sets the XRES pin LOW

SetXRESStrong() Sets the XRES pin to an output (Strong drive mode)

ApplyTargetVDD() Provide power to the target PSoC

RemoveTargetVDD() Remove power from the target PSoC

SetTargetVDDStrong() Sets the PWR pin to an output (Strong drive mode)

http://www.cypress.com/

Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L and CY8C20xx7/S

www.cypress.com Document No. 001-59389 Rev. *I 7

Document History

Document Title: AN59389 - Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L and
CY8C20xx7/S

Document Number: 001-59389

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2878828 XCH 02/15/2010 New Application Note.

*A 3211470 PPKS 03/31/2011 Updated Introduction:

Updated description.

*B 3543236 KPOL 03/06/2012 Added CY8C20766A and CY8C20746A parts related information in all instances
across the document.

Removed CY8CTMG2xx and CY8CTST2xx family of devices related information
in all instances across the document.

Updated attached Associated Project:

Changed security setting from 0x1B to 0x00 (Unprotected Mode) in API
fLoadSecurityData().

Updated to new template.

*C 3628131 ZINE 05/30/2012 Added CY8C20xx6L and CY8C20xx6AS parts related information in all instances
across the document.

*D 3702931 ZINE 08/03/2012 Added CY8C20xx7 part related information in all instances across the document.

*E 3759065 ZINE 09/28/2012 Added CY8C20x45 and CY8C20x55 parts related information in all instances
across the document.

*F 4646445 KPOL 02/14/2015 Updated Software Version as “PSoC Designer™ 5.4 CP1” in page 1.

Updated Document Title to read as “Host Sourced Serial Programming for
CY8C20xx6A, CY8C20xx6AS, CY8C20xx6L and CY8C20xx7/S - AN59389”.

Removed CY8C20045 and CY8C20055 parts related information in all instances
across the document.

Updated attached Associated Project:

Code example is rebuild in PSoC Designer 5.4 CP1.

Updated to new template.

*G 4729112 VAIR 04/17/2015 No content change, triggered by sunset review.

*H 5832279 AESATMP8 07/27/2017 Updated logo and Copyright.

*I 6167430 VAIR 05/07/2018 Updated template

http://www.cypress.com/

Host Sourced Serial Programming for CY8C20xx6A,CY8C20xx6AS, CY8C20xx6L and CY8C20xx7/S

www.cypress.com Document No. 001-59389 Rev. *I 8

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |
Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2010-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite
security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach,
such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or
errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress
reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of
any product or circuit described in this document. Any information provided in this document, including any sample design information or programming
code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality
and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Cypress Semiconductor:

 CY8C20045-24LKXI CY8C20045-24LKXIT CY8C20055-24LKXI CY8C20055-24LKXIT CY8C20055-24SXI

CY8C20055-24SXIT CY8C20066A-24LTXI CY8C20066A-24LTXIT

https://www.mouser.com/cypress-semiconductor
https://www.mouser.com/access/?pn=CY8C20045-24LKXI
https://www.mouser.com/access/?pn=CY8C20045-24LKXIT
https://www.mouser.com/access/?pn=CY8C20055-24LKXI
https://www.mouser.com/access/?pn=CY8C20055-24LKXIT
https://www.mouser.com/access/?pn=CY8C20055-24SXI
https://www.mouser.com/access/?pn=CY8C20055-24SXIT
https://www.mouser.com/access/?pn=CY8C20066A-24LTXI
https://www.mouser.com/access/?pn=CY8C20066A-24LTXIT

	1 Introduction
	2 Overview
	3 Property Selection
	3.1 Low-Level Driver Modifications
	3.2 Loading Data into RAM Buffer
	3.3 Modifying Flash Block Sequence or Quantity

	4 Verifying with Built In Test Points
	5 Constraints
	6 Summary
	Appendix A. Port Bit Manipulation Functions
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

