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Host Sourced Serial Programming (HSSP) is a method of in-circuit serial programming (using ISSP protocol) of the 

CY8C20xx6A, CY8C20xx6AS, CY8C20xx6L and CY8C20xx7 devices from an onboard host processor. AN59389 

explains how to use and port the HSSP code example, provided along with this application note, to the desired host 

processor for programming the CY8C20xx6A, CY8C20xx6AS, CY8C20xx6L and CY8C20xx7 devices.  

 

1 Introduction 

Cypress’s PSoC microcontrollers are easy-to-use, flexible, and have a cost-effective mix of reprogrammable analog 
and digital resources. These features provide many opportunities for creative designs, one of which is programming 
the PSoC serially by an on-board host processor. This method is used to install or update firmware in-field or even 
completely reprogram the PSoC for a different function. 

Cypress created the HSSP Code Example to give system designers a starting point to create their own serial 
programming software. Designers have to make minimal modifications to the code to make it compatible with their 
specific host programmer. The Code Example covers only the CY8C20xx6A, CY8C20xx6AS, CY8C20xx6L, and 
CY8C20xx7 devices and provides a high level of abstraction. For more information on serial programming, refer to 
ISSP Programming Specifications. 

This application note describes the implementation on a high level. Protocol details and meaning of the vectors are 
proprietary and intentionally omitted. 

2 Overview 

The HSSP Code Example has four major parts: main function, sub functions for various programming steps, low-level 
I/O functions, and definition files. The system designer's direct involvement with the code is to set certain properties 
through #defines to provide code to fill a 128-byte buffer with programming data and to provide low-level drivers for 

the host I/O. 

PSoC devices are programmed in two different modes: Reset and Power Cycle. Reset mode, which is the preferred 
programming mode, is used only when the system is powered externally. In this case, the XRES pin on the target 
PSoC is toggled at the end of the process to bring it out of programming mode and resume normal operation. In the 
Power Cycle mode, the host microcontroller switches the PSoC’s power on and off. 

In each programming mode, the host needs three I/O pins. These are: serial data (SDATA), serial clock (SCLK), and 
external reset (XRES) in the Reset mode, and SDATA, SCLK, and PSoC power (PWR) in the Power Cycle mode. 
The software influences these pins. 

The SDATA pin on the host processor must be bidirectional. The host must be able to change the properties of this 
pin so that it drives a signal to the PSoC, is released to High-Z state, and is read. 
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3 Property Selection 

The designer must set two properties: Label and Description. To do this, comment or uncomment certain #defines 

in the ISSP_DIRECTIVES.H file. These #defines are clearly marked with "User Attention Required" and are easy 

to find. You can also do a page search for individual labels. An explanation for each property and its label follows. 

Property: Programming mode 

Label: PROGRAMMING MODE 

Description: Comment out this #define if you use the power cycle mode. Uncommenting the #define causes the 

target to be programmed in reset mode. 

Property: Target PSoC Device 

Label: TARGET PSOC 

Description: Select the target CY8C20xx6, or CY8C20xx7 PSoC in this section. Only one device is enabled at any 

given time and every other device is commented out.  

3.1 Low-Level Driver Modifications 

The designer gives host-specific code to manipulate the pins involved in programming the target PSoC. These APIs 
are marked "Processor Specific" and "User Attention Required" and are found in ISSP_DRIVER_ROUTINES.C. 

▪ Port Bit Masks: There are four port bit masks that must be adjusted for the specific host processor being used. 

Note that though there are four bits to set, only three are used in programming, depending on the choice of 
programming method — SDATA, SCLK, and XRES in reset mode; SDATA, SCLK, and PWR in power cycle 
mode. 

▪ Delay(n) Function: This function is adjusted so that each iteration of the while loop takes at least 1 µs. 

Generally, there is no upper limit for the loop time. However, the longer this loop takes, the longer it takes to 
program the target. For example, if the host microcontroller is also a PSoC, each iteration takes about 1 µs and 
there is a 3-µs overhead. Therefore, the function generates a delay of  
n+3 µs, where n is the parameter passed to the function. To adjust the delay time for your host processor, modify 

the #defines in ISSP_DELAYS.H. 

▪ Port Bit Manipulation Functions: These functions manipulate host pins to generate signals needed to program 

the PSoC. They deal with driving pins high and low and releasing pins to High-Z state. A list of these functions 
follows. Most of the functions are self explanatory, but they are all documented within the code. The descriptions 
are also available in the Appendix. 

 fSDATACheck() 

 SCLKHigh() 

 SCLKLow() 

 SetSCLKStrong() 

 SetSDATAHigh() 

 SetSDATALow() 

 SetSDATAHiZ() 

 SetSDATAStrong() 

 SetXRESStrong() 

 AssertXRES() 

 DeassertXRES() 

 SetSCLKHiZ() 

 SetTargetVDDStrong() 

 ApplyTargetVDD() 

 RemoveTargetVDD() 
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3.2 Loading Data into RAM Buffer 

The HSSP code takes data from a 128-byte buffer to program PSoC flash blocks sequentially. This process starts at 
the lowest block address. After the first block is programmed, the same buffer is used to program further flash blocks. 

The designer must provide a code to fill this buffer depending on the data source (USB, RS-232, SD Card, and so 
on). There are two functions to be written for the specific host processor used—LoadProgramData() and 

fLoadSecurityData(). These functions are found in ISSP_DRIVER_ROUTINES.C and are marked with 

"Processor Specific" and "User Attention Required." In their original state, these functions call two secondary 
functions that load the buffer with pseudo test data for debugging purposes. In the final version, delete or comment 
out these calls. 

3.3 Modifying Flash Block Sequence or Quantity 

In some cases you have to program a specific area in flash. An example is an area set aside for characterization, 
calibration, or firmware field upgrades. These features are usually implemented using the EEPROM user module. 
However, in some cases programming them directly into the PSoC saves code space if that is a limitation. 

You can change the start address of the target block and the order in which the blocks are programmed. This does 
not cause any problems as each programming sequence includes the block address. However, remember the 
following points: 

▪ If the programming loop is modified, the same changes must be applied to the verify loop to avoid verification 
failure. 

▪ The code accumulates the checksum as it goes. It examines the checksum against the entire flash up to that 
point. If you program only a section of flash, set the variable iChecksumData accordingly.  

 

4 Verifying with Built In Test Points 

One of the most critical factors in successful host sourced programming is getting the erase and write pulse widths 
right. To help you with the process, a few strategically placed test point (TP) calls are implemented in the program. To 
enable this debugging mode, uncomment the USE_TP #ifdef in main.c. There are a few functions associated with 

the debugging mode that are similar to pin manipulation functions mentioned earlier in this application note. The 
system designer must provide host specific code to drive a pin high, low, or to toggle it. 

Proper debugging requires monitoring TP and SDATA lines, and both erase and programming pulses must be 
measured. The best way to do this is to use a two-channel oscilloscope and have it trigger in single sequence mode 
from the rising edge of the TP channel. 

The erase pulse width is measured from the end of the data burst to the TP falling edge, as shown in Figure 1. Note 
that the TP rising edge does not line up with the end of the data burst. But the TP rising edge is expected to line up 
due to the delay caused by the overhead between the instant the TP pin is driven high and the host starts sending the 
data out. 
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Figure 1. Measuring the Erase Pulse Width 

 
 

The programming pulse width is also measured from the end of the data burst to the TP falling edge. Figure 2 shows 
the programming pulse width measurement. As with the erase pulse width, the rising edge of the TP signal does not 
line up with the end of the data burst. 

Figure 2. Measuring the Write Pulse Width 

 

Refer to the device datasheets of CY8C20xx6A and CY8C20xx7 for ideal erase and write pulse widths. The 
measured values must be within -3% to +15% of the ideal values. Failure to meet this requirement results in improper 
programming, which has undesirable side effects, such as shorter than specified flash data retention [1] and fewer 
flash erase and write cycles than expected [2]. 

                                            
1 Specified with a symbol of FlashDR in the DC Programming Specifications section of the device datasheets. 
2 Specified with symbols of FlashENPB and FlashENT in the DC Programming Specifications section of the device datasheets. 
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5 Constraints 

The comments at the beginning of main.c include useful and important information that the system designers should 
consider. The HSSP code has some constraints that are explained in those comments; however, the following is a 
brief summary. 

▪ Serial programming occurs only within the temperature range of 5 °C and 50 °C. 

▪ The HSSP program does not support voltages below 1.8 V. 

▪ The programming procedure is completed in one voltage range only. If the device is initialized at 5.0 V, the entire 
procedure must be completed in 5.0 V range. 

▪ There is an upper limit on SCLK’s frequency. The frequency is specified with the FSCLK symbol in the AC 
Programming Specifications section of the CY8C20xx6A and CY8C20xx7 device datasheets.  

6 Summary 

The HSSP program has a built-in error reporting section that is useful for debugging. Read the bErrorNumber 

variable to find out about potential problems. The ISSP_ERRORS.H file contains a list of all caught errors. 

The last step in successful HSSP programming is to reset the PSoC device to bring it out of programming mode. To 
do this, call the ReStartTarget() function. 

This application note provides some HSSP codes that give designers the flexibility to create their own serial 
programming software. This document also explains how to set the right erase and write pulse widths to ensure 
successful programming. 
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Appendix A. Port Bit Manipulation Functions 

Function Name Description 

SetSCLKStrong() Sets the SCLK pin to an output (Strong drive mode) 

SetSCLKHiZ() Releases the SCLK pin to HI-Z 

SetSDATAHigh() Sets the SDATA pin HIGH 

SetSDATALow() Sets the SDATA pin LOW 

SetSDATAStrong() Sets the SDATA pin to an output (Strong drive mode) 

SetSDATAHiZ() Releases the SDATA pin to High Z (to be driven by the target) 

AssertXRES() Sets the XRES pin HIGH 

DeassertXRES() Sets the XRES pin LOW 

SetXRESStrong() Sets the XRES pin to an output (Strong drive mode) 

ApplyTargetVDD() Provide power to the target PSoC 

RemoveTargetVDD() Remove power from the target PSoC 

SetTargetVDDStrong() Sets the PWR pin to an output (Strong drive mode) 
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