MOS FET Relays

Smallest 80V MOS FET Relay In The Market (USOP Package Size)

- Specifically Designed for low Output Capacitance of 5 pF (typical).
- Dielectric strength of 500 Vrms between I/O.
- · RoHS compliant.

■ Application Examples

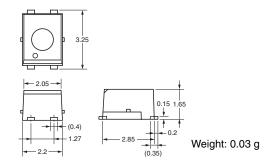
- Semiconductor test equipment
- Test & Measurement devices and Data loggers
- Communication equipment

Note: The actual product is marked differently from the image shown here.

■ List of Models

Package type	Contact form	Terminals	Load voltage (peak value)	Model	Number per tape	
USOP4		Surface-mounting terminals	80 VAC or VDC	G3VM-81PR		
	(1FormA)			G3VM-81PR(TR05)	500	

■ Dimensions

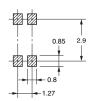

Note: All units are in millimeters unless otherwise indicated.

G3VM-81PR

Note: The actual product is marked differently from the image shown here.

from the image shown here.

■ Terminal Arrangement/Internal Connections (Top View)


G3VM-81PR

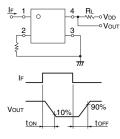
Model name OMRON mark LOT No. 103

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-81PR

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement Conditions		
Input	LED forward current	I _F	50	mA			
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	T _a ≥ 25°C		
	LED reverse voltage	V _R	5	V			
	Connection temperature	T _j	125	°C			
Output	Load voltage (AC peak/DC)	V _{OFF}	80	V			
	Continuous load current	Io	120	mA			
	ON current reduction rate	Δ I _{ON} /°C	-1.2	mA/°C	$T_a \ge 25^{\circ}C$		
	Pulse ON currrent	I _{OP}	360	mA	t=100ms, Duty=1/10		
	Connection temperature	T _j	125	°C			
	ric strength between input and (See note 1.)	V _{I-O}	500	V _{rms}	AC for 1 min		
Ambient operating temperature		Ta	-40 to +85	°C	With no icing or condensation		
Ambient storage temperature		T _{stg}	-40 to +125	°C	With no icing or condensation		
Soldering temperature			260	°C	10 s		

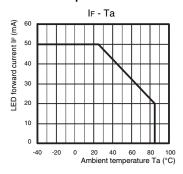

Note:

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

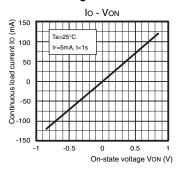
■ Electrical Characteristics (Ta = 25°C)

Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μΑ	V _R = 5 V	
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		0.6	3	mA	I _O = 100 mA	
Output	Maximum resistance with output ON	R _{ON}		7	12	Ω	I _F = 5 mA, I _O = 120 mA t < 1 s	
	Current leakage when the relay is open	I _{LEAK}			20	pA	V _{OFF} = 80 V	
	Capacity between terminals	C _{OFF}		5	7	pF	V = 0, f = 100 MHz, t < 1 s	
Capacity between I/O terminals		C _{I-O}		0.4		pF	f = 1 MHz, V _s = 0 V	
Insulation resistance between I/O terminals		R _{I-O}	1,000			ΜΩ	$V_{I-O} = 500 \text{ VDC}, R_{oH} \le 60\%$	
Turn-ON time		t _{ON}		0.14	0.5	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$	
Turn-OFF time		t _{OFF}		0.16	0.2	ms	V _{DD} = 20 V (See note 2.)	

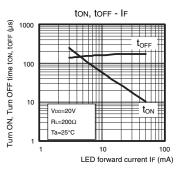
Note: 2. Turn-ON and Turn-OFF Times

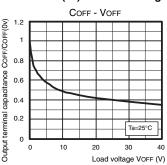

■ Recommended Operating Conditions

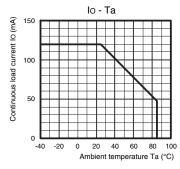
Use the G3VM under the following conditions so that the Relay will operate properly.

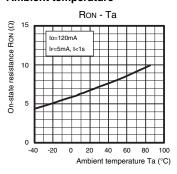

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			64	V
Operating LED forward current	I _F	5	7.5	20	mA
Continuous load current (AC peak/DC)	Io			120	mA
Operating temperature	T _a	-20		65	°C

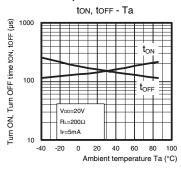
■ Engineering Data

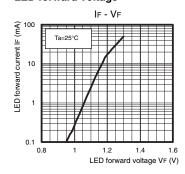

LED forward current vs. Ambient temperature

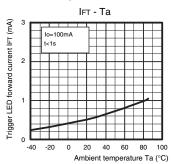

Continuous load current vs. On-state voltage

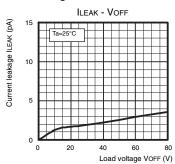

Turn ON, Turn OFF time vs. LED forward current


Output terminal capacitance COFF/COFF(0v) vs. Load voltage


Continuous load current vs. Ambient temperature


On-state resistance vs. Ambient temperature


Turn ON, Turn OFF time vs. Ambient temperature


LED forward current vs. LED forward voltage

Trigger LED forward current vs. Ambient temperature

Current leakage vs. Load voltage

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

Cat. No. K215-E-01

03/14

Specifications subject to change without notice

Printed in USA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Omron:

G3VM-81PR(TR05)