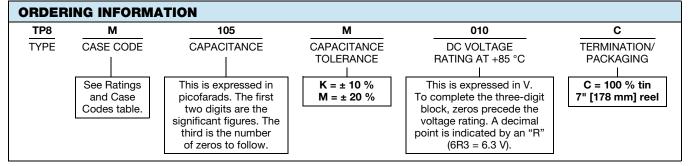


Solid Tantalum Chip Capacitors, MICROTAN[®], **High CV Leadframeless Molded Automotive Grade**

PERFORMANCE/ELECTRICAL CHARACTERISTICS

www.vishay.com/doc?40215

Operating Temperature: -55 °C to +125 °C (above 85 °C, voltage derating is required)


FEATURES

- · Highest capacitance-voltage product in industry in given case size
- Small sizes include 0603 footprint
- Lead (Pb)-free L-shaped terminations
- AEC-Q200 gualified. PPAP available upon request
- 8 mm tape and reel packaging available per EIA-481
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS

COMPLIANT HALOGEN FREE GREEN (5-2008)

Capacitance Range: 1.0 µF to 100 µF Capacitance Tolerance: ± 10 %, ± 20 % Voltage Rating: 6.3 V_{DC} to 40 V_{DC}

Note

We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size. Voltage substitutions will be marked with the higher voltage rating.

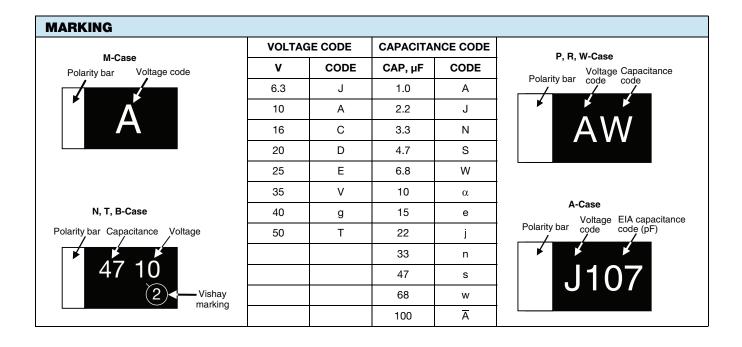
DIMENSIONS in inches [millimeters]								
Anode Termination C C P1 P2 P1 P2 P1 Anode Termination Anode Polarity Bar C Anode Polarity Bar C C C C C C C C C C C C C								
CASE CODE	L	W	H (MAX.)	P1	P2 (REF.)	С		
М	$\begin{array}{c} 0.063 \pm 0.008 \\ [1.60 \pm 0.2] \end{array}$	0.033 ± 0.008 [0.85 ± 0.2]	0.035 [0.9]	0.020 ± 0.004 [0.50 ± 0.1]	0.024 [0.60]	$\begin{array}{c} 0.024 \pm 0.004 \\ [0.60 \pm 0.1] \end{array}$		
W	$\begin{array}{c} 0.079 \pm 0.008 \\ [2.00 \pm 0.2] \end{array}$	$\begin{array}{c} 0.050 \pm 0.008 \\ [1.25 \pm 0.2] \end{array}$	0.048 [1.2]	$\begin{array}{c} 0.020 \pm 0.004 \\ [0.50 \pm 0.1] \end{array}$	0.040 [1.00]	$\begin{array}{c} 0.035 \pm 0.004 \\ [0.90 \pm 0.1] \end{array}$		
R	$\begin{array}{c} 0.081 \pm 0.008 \\ [2.05 \pm 0.2] \end{array}$	$\begin{array}{c} 0.053 \pm 0.008 \\ [1.35 \pm 0.2] \end{array}$	0.063 [1.6]	$\begin{array}{c} 0.020 \pm 0.004 \\ [0.50 \pm 0.1] \end{array}$	0.043 [1.1]	$\begin{array}{c} 0.035 \pm 0.004 \\ [0.9 \pm 0.1] \end{array}$		
Р	0.094 ± 0.004 [2.4 ± 0.1]	0.057 ± 0.004 [1.45 ± 0.1]	0.047 [1.2]	0.020 ± 0.004 [0.50 ± 0.1]	0.057 [1.40]	0.035 ± 0.004 [0.90 ± 0.1]		
А	0.126 ± 0.008 [3.2 ± 0.2]	0.063 ± 0.008 [1.6 ± 0.2]	0.071 [1.8]	0.031 ± 0.004 [0.80 ± 0.1]	0.063 [1.60]	0.047 ± 0.004 [1.20 ± 0.1]		
Ν	0.138 ± 0.008 [3.5 ± 0.2]	0.112 ± 0.008 [2.8 ± 0.2]	0.048 [1.2]	0.031 ± 0.008 [0.80 ± 0.2]	0.077 [1.95]	$\begin{array}{c} 0.094 \pm 0.004 \\ [2.4 \pm 0.1] \end{array}$		
Т	$\begin{array}{c} 0.138 \pm 0.008 \\ [3.5 \pm 0.2] \end{array}$	0.112 ± 0.008 [2.8 ± 0.2]	0.063 [1.6]	0.031 ± 0.008 [0.80 ± 0.2]	0.077 [1.95]	$\begin{array}{c} 0.094 \pm 0.004 \\ [2.4 \pm 0.1] \end{array}$		
В	$\begin{array}{c} 0.138 \pm 0.008 \\ [3.5 \pm 0.2] \end{array}$	0.112 ± 0.008 [2.8 ± 0.2]	0.08 [2.0]	$\begin{array}{c} 0.031 \pm 0.008 \\ [0.80 \pm 0.2] \end{array}$	0.077 [1.95]	$\begin{array}{c} 0.094 \pm 0.004 \\ [2.4 \pm 0.1] \end{array}$		

Revision: 11-May-16

Document Number: 40151

τρα

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000


TP8

www.vishay.com

Vishay Sprague

RATINGS AN	RATINGS AND CASE CODES							
μF	6.3 V	10 V	16 V	20 V	25 V	40 V		
1.0		М	М	M / W	R	Р		
2.2			М					
3.3		М		R				
4.7	М	М		Р	Р			
6.8		W		N / B				
10	М	R	A/R	A				
15		R						
22		А						
47		T/B						
100	A							

www.vishay.com

Vishay Sprague

TP8

CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DCL AT +25 °C (μΑ)	MAX. DF AT +25 °C 120 Hz (%)	MAX. ESR AT +25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{RMS} (A)
		6.3 V _{DC} AT +85	°C; 4 V _{DC} AT +125	°C		
4.7	М	TP8M475M6R3C	0.50	8	6	0.06
10	Μ	TP8M106M6R3C	0.63	8	5	0.07
100	А	TP8A107(1)6R3C	6.30	30	3	0.16
		10 V _{DC} AT +85	°C; 7 V _{DC} AT +125 °	°C		
1.0	М	TP8M105M010C	0.50	6	12	0.05
3.3	Μ	TP8M335(1)010C	0.50	8	6	0.06
4.7	М	TP8M475M010C	0.50	8	6	0.06
6.8	W	TP8W685(1)010C	0.68	8	8	0.06
10	R	TP8R106(1)010C	1.00	8	8	0.08
15	R	TP8R156(1)010C	1.50	8	5	0.09
22	А	TP8A226(1)010C	2.20	8	8	0.10
47	В	TP8B476(1)010C	4.70	8	2	0.20
47	т	TP8T476(1)010C	4.70	8	1	0.29
		16 V _{DC} AT +85	°C; 10 V _{DC} AT +125	°C		
1.0	М	TP8M105M016C	0.50	6	12	0.05
2.2	М	TP8M225M016C	0.50	10	12	0.05
10	А	TP8A106(1)016C	1.60	8	6	0.11
10	R	TP8R106(1)016C	1.60	8	8	0.08
		20 V _{DC} AT +85	°C; 13 V _{DC} AT +125	°C		
1.0	М	TP8M105M020C	0.50	6	12	0.05
1.0	W	TP8W105M020C	0.50	8	8	0.06
3.3	R	TP8R335(1)020C	0.70	8	8	0.08
4.7	Р	TP8P475(1)020C	0.90	6	6	0.09
6.8	В	TP8B685(1)020C	1.36	8	6	0.12
6.8	Ν	TP8N685(1)020C	1.36	8	6	0.11
10	А	TP8A106(1)020C	2.00	8	3	0.16
			°C; 17 V _{DC} AT +125	°C		
1.0	R	TP8R105(1)025C	0.50	6	10	0.07
4.7	Р	TP8P475(1)025C	1.20	6	6	0.09
		40 V _{DC} AT +85	°C; 28 V _{DC} AT +125	°C		
1.0	Р	TP8P105(1)040C	0.50	8	10	0.07

Note

• Part number definition:

(1) Tolerance: For 10 % tolerance, specify "K"; for 20 % tolerance, change to "M"

C-Q200 QUALIFIC	CATION TESTING	
NO.	AEC-Q200 TEST ITEM	REFERENCE
1	Pre- and post stress electrical test	Internal spec
3	High temperature exposure (storage)	AEC-Q200
4	Temperature cycling	AEC-Q200
7	Biased humidity	AEC-Q200
8	Operational life	AEC-Q200
9	External visual	AEC-Q200
10	Physical dimension	AEC-Q200
12	Resistance to solvents	AEC-Q200
13	Mechanical shock	AEC-Q200
14	Vibration	AEC-Q200
15	Resistance to soldering heat	AEC-Q200
17	ESD	AEC-Q200
18	Solderability ⁽¹⁾	AEC-Q200
19	Electrical characterization	Internal spec
22	Terminal strength (SMD)	AEC-Q200

Note

(1) Exception: Instead of Solder Bath/Dip and Look Test (J-STD-002, method B at 215 °C, category 3) was performed "Method 2 - Surface Mount Process Simulation Test" per JESD22-B102E as specified in AEC-Q005 REV-A.

STANDARD PACKAGING QUANTITY					
CASE CODE	QUANTITY (pcs/reel)				
CASE CODE	7" REEL				
М	4000				
W	2500				
R	2500				
Р	3000				
A	2000				
N	2500				
Т	2500				
В	2000				

POWER DISSIPATION	
CASE CODE	MAXIMUM PERMISSIBLE POWER DISSIPATION AT +25 °C (W) IN FREE AIR
М	0.025
W	0.040
R	0.045
Р	0.045
A	0.075
N	0.075
Т	0.084
В	0.085

PRODUCT INFORMATION	
Micro Guide	www.vishay.com/doc?40115
Moisture Sensitivity	www.vishay.com/doc?40135
SELECTOR GUIDES	
Solid Tantalum Selector Guide	www.vishay.com/doc?49053
FAQ	
Frequently Asked Questions	www.vishay.com/doc?40110

Guide for Leadframeless Molded Tantalum Capacitors

INTRODUCTION

Tantalum electrolytic capacitors are the preferred choice in applications where volumetric efficiency, stable electrical parameters, high reliability, and long service life are primary considerations. The stability and resistance to elevated temperatures of the tantalum / tantalum oxide / manganese dioxide system make solid tantalum capacitors an appropriate choice for today's surface mount assembly technology.

Vishay Sprague has been a pioneer and leader in this field, producing a large variety of tantalum capacitor types for consumer, industrial, automotive, military, and aerospace electronic applications.

Tantalum is not found in its pure state. Rather, it is commonly found in a number of oxide minerals, often in combination with Columbium ore. This combination is known as "tantalite" when its contents are more than one-half tantalum. Important sources of tantalite include Australia, Brazil, Canada, China, and several African countries. Synthetic tantalite concentrates produced from tin slags in Thailand, Malaysia, and Brazil are also a significant raw material for tantalum production.

Electronic applications, and particularly capacitors, consume the largest share of world tantalum production. Other important applications for tantalum include cutting tools (tantalum carbide), high temperature super alloys, chemical processing equipment, medical implants, and military ordnance.

Vishay Sprague is a major user of tantalum materials in the form of powder and wire for capacitor elements and rod and sheet for high temperature vacuum processing.

THE BASICS OF TANTALUM CAPACITORS

Most metals form crystalline oxides which are non-protecting, such as rust on iron or black oxide on copper. A few metals form dense, stable, tightly adhering, electrically insulating oxides. These are the so-called "valve" metals and include titanium, zirconium, niobium, tantalum, hafnium, and aluminum. Only a few of these permit the accurate control of oxide thickness by electrochemical means. Of these, the most valuable for the electronics industry are aluminum and tantalum.

Capacitors are basic to all kinds of electrical equipment, from radios and television sets to missile controls and automobile ignitions. Their function is to store an electrical charge for later use.

Capacitors consist of two conducting surfaces, usually metal plates, whose function is to conduct electricity. They are separated by an insulating material or dielectric. The dielectric used in all tantalum electrolytic capacitors is tantalum pentoxide.

Tantalum pentoxide compound possesses high-dielectric strength and a high-dielectric constant. As capacitors are being manufactured, a film of tantalum pentoxide is applied to their electrodes by means of an electrolytic process. The film is applied in various thicknesses and at various voltages and although transparent to begin with, it takes on different colors as light refracts through it. This coloring occurs on the tantalum electrodes of all types of tantalum capacitors.

Rating for rating, tantalum capacitors tend to have as much as three times better capacitance / volume efficiency than aluminum electrolytic capacitors. An approximation of the capacitance / volume efficiency of other types of capacitors may be inferred from the following table, which shows the dielectric constant ranges of the various materials used in each type. Note that tantalum pentoxide has a dielectric constant of 26, some three times greater than that of aluminum oxide. This, in addition to the fact that extremely thin films can be deposited during the electrolytic process mentioned earlier, makes the tantalum capacitor extremely efficient with respect to the number of microfarads available per unit volume. The capacitance of any capacitor is determined by the surface area of the two conducting plates, the distance between the plates, and the dielectric constant of the insulating material between the plates.

COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS

DIELECTRIC	e DIELECTRIC CONSTANT
Air or Vacuum	1.0
Paper	2.0 to 6.0
Plastic	2.1 to 6.0
Mineral Oil	2.2 to 2.3
Silicone Oil	2.7 to 2.8
Quartz	3.8 to 4.4
Glass	4.8 to 8.0
Porcelain	5.1 to 5.9
Mica	5.4 to 8.7
Aluminum Oxide	8.4
Tantalum Pentoxide	26
Ceramic	12 to 400K

In the tantalum electrolytic capacitor, the distance between the plates is very small since it is only the thickness of the tantalum pentoxide film. As the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor is high if the area of the plates is large:

$$C = \frac{eA}{t}$$

where

C = capacitance

e = dielectric constant

A = surface area of the dielectric

t = thickness of the dielectric

Tantalum capacitors contain either liquid or solid electrolytes. In solid electrolyte capacitors, a dry material (manganese dioxide) forms the cathode plate. A tantalum lead is embedded in or welded to the pellet, which is in turn connected to a termination or lead wire. The drawings show the construction details of the surface mount types of tantalum capacitors shown in this catalog.

SOLID ELECTROLYTE TANTALUM CAPACITORS

Solid electrolyte capacitors contain manganese dioxide, which is formed on the tantalum pentoxide dielectric layer by impregnating the pellet with a solution of manganous nitrate. The pellet is then heated in an oven, and the manganous nitrate is converted to manganese dioxide.

The pellet is next coated with graphite, followed by a layer of metallic silver, which provides a conductive surface between the pellet and the leadframe.

Molded chip tantalum capacitor encases the element in plastic resins, such as epoxy materials. After assembly, the capacitors are tested and inspected to assure long life and reliability. It offers excellent reliability and high stability for consumer and commercial electronics with the added feature of low cost.

Surface mount designs of "Solid Tantalum" capacitors use lead frames or lead frameless designs as shown in the accompanying drawings.

Vishay Sprague

TANTALUM CAPACITORS FOR ALL DESIGN CONSIDERATIONS

Solid electrolyte designs are the least expensive for a given rating and are used in many applications where their very small size for a given unit of capacitance is of importance. They will typically withstand up to about 10 % of the rated DC working voltage in a reverse direction. Also important are their good low temperature performance characteristics and freedom from corrosive electrolytes.

Vishay Sprague patented the original solid electrolyte capacitors and was the first to market them in 1956. Vishay Sprague has the broadest line of tantalum capacitors and has continued its position of leadership in this field. Data sheets covering the various types and styles of Vishay Sprague capacitors for consumer and entertainment electronics, industry, and military applications are available where detailed performance characteristics must be specified.

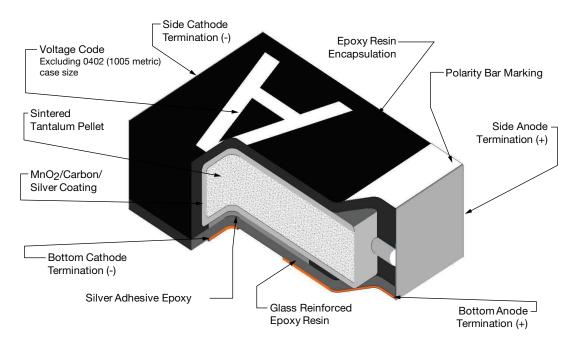
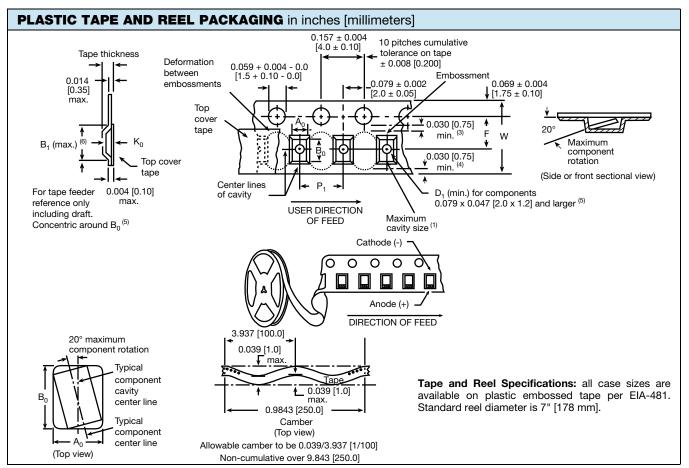


Fig. 1 - Leadframeless Molded Capacitors, All Types


Vishay Sprague

SOLID TANTALUM CAPACITORS - LEADFRAMELESS MOLDED									
SERIES	TL8	298D	298W	TR8					
PRODUCT IMAGE		5	9						
TYPE		Solid tantalum leadframele	ss molded chip capacitors						
	Small size including 0603 and 0402 foot print								
FEATURES	Ultra low profile	Industrial grade	Industrial grade, extended range	Low ESR					
TEMPERATURE RANGE Operating Temperature -55 °C to +125 °C (above 40 °C, voltage derating is required)		Operating Temperature: -55 °C to +125 °C (above 85 °C, voltage derating is required)	Operating Temperature: -55 °C to +125 °C (above 40 °C, voltage derating is required)	Operating Temperature: -55 °C to +125 °C (above 85 °C, voltage derating is required)					
CAPACITANCE RANGE	0.68 µF to 220 µF	0.33 µF to 220 µF	2.2 μF to 220 μF	1 μF to 220 μF					
VOLTAGE RANGE	4 V to 25 V 2.5 V to 50 V 4 V to 16 V 2.5 V to								
CAPACITANCE TOLERANCE	± 20 %, ± 10 %								
DISSIPATION FACTOR	6 % to 80 %	6 % to 80 % 30 % to 80 %		6 % to 80 %					
CASE CODES	W9, A0, B0	W9, A0, B0 K, M, R, P, Q, A, S, B K, M, Q		M, R, P, Q, A, B					
TERMINATION	100 % tin		100 % tin or gold plated						

SOLID TANTALUM CAPACITORS - LEADFRAMELESS MOLDED								
SERIES	TP8	TM8	DLA 11020	T42				
PRODUCT IMAGE			9					
TYPE		Solid tantalum leadframeless molded chip capacitors						
FEATURES	Small siz	Built in fuse, double-stacked						
FEATURES			High reliability, DLA approved	High reliability, ultra-low ESR				
TEMPERATURE RANGE	-55	Operating T ° °C to +125 °C (above 85 د	emperature: C, voltage derating is requi	red)				
CAPACITANCE RANGE	1 μF to 100 μF	0.68 µF to 47 µF	1 μF to 47 μF	10 μF to 470 μF				
VOLTAGE RANGE	6.3 V to 40 V	16 V to 75 V						
CAPACITANCE TOLERANCE		± 20 %,	± 10 %					
DISSIPATION FACTOR	6 % to 30 %	6 % to 30 % 6 % to 20 %		6 % to 15 %				
CASE CODES	M, W, R, P, A, N, T, B	K, M, G, W, R, P, A, N, T	M, W, R, P, A, N, T	M2				
TERMINATION	100 % tin	Tin / lead solder plated, 100 % tin and gold plated	Tin / lead solder plated or gold plated	Tin / lead solder plated or 100 % tin				

www.vishay.com

Vishay Sprague

Notes

- Metric dimensions will govern. Dimensions in inches are rounded and for reference only.
- A₀, B₀, K₀, are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A₀, B₀, K₀) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20°. Tape with components shall pass around radius "R" without damage. The minimum trailer length may require additional length to provide "B" minimum for 12 mm embossed tape for reals with hub diamaters approaching N minimum. (1)
- (2)"R" minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum.
- (3) This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less.
- (4) This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less.
- (5)The embossed hole location shall be measured from the sprocket hole controlling the location of the embossement. Dimensions of embossement location shall be applied independent of each other.
- (6) B₁ dimension is a reference dimension tape feeder clearance only.

CARRIER T	APE DIMENS	IONS in inche	s [millimeters]	FOR 298D,	298W, TR8,	TP8, TL8	
CASE CODE	TAPE SIZE	B ₁ (MAX.) ⁽¹⁾	D ₁ (MIN.)	F	K ₀ (MAX.)	P ₁	w
M ⁽²⁾	8 mm	0.075 [1.91]	0.02 [0.5]	0.138 [3.5]	0.043 [1.10]	0.157 [4.0]	0.315 [8.0]
W	8 mm	0.112 [2.85]	0.039 [1.0]	0.138 [3.5]	0.053 [1.35]	0.157 [4.0]	0.315 [8.0]
R	8 mm	0.098 [2.46]	0.039 [1.0]	0.138 [3.5]	0.066 [1.71]	0.157 [4.0]	0.315 [8.0]
Р	8 mm	0.108 [2.75]	0.02 [0.5]	0.138 [3.5]	0.054 [1.37]	0.157 [4.0]	0.315 [8.0]
А	8 mm	0.153 [3.90]	0.039 [1.0]	0.138 [3.5]	0.078 [2.00]	0.157 [4.0]	0.315 [8.0]
A0, Q	8 mm	-	0.02 [0.5]	0.138 [3.5]	0.049 [1.25]	0.157 [4.0]	0.315 [8.0]
В	8 mm	0.157 [4.0]	0.039 [1.0]	0.138 [3.5]	0.087[2.22]	0.157 [4.0]	0.315 [8.0]
W9, S	8 mm	0.126 [3.20]	0.029 [0.75]	0.138 [3.5]	0.045 [1.15]	0.157 [4.0]	0.315 [8.0]
B0	12 mm	0.181 [4.61]	0.059 [1.5]	0.217 [5.5]	0.049 [1.25]	0.157 [4.0]	0.472 [12.0]

Notes

⁽¹⁾ For reference only

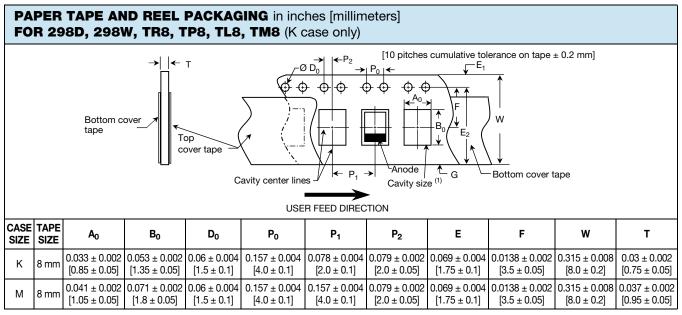
⁽²⁾ Packaging of M case in plastic tape is available per request

4

www.vishay.com

Vishay Sprague

CARRIER T	CARRIER TAPE DIMENSIONS in inches [millimeters] FOR TM8							
CASE CODE	TAPE SIZE	B ₁ (MAX.) ⁽¹⁾	D ₁ (MIN.)	F	K ₀ (MAX.)	P ₁	w	
М	8 mm	0.075 [1.91]	0.02 [0.5]	0.138 [3.5]	0.043 [1.10]	0.157 [4.0]	0.315 [8.0]	
G	8 mm	0.077 [1.96]	0.02 [0.5]	0.138 [3.5]	0.051 [1.30]	0.157 [4.0]	0.315 [8.0]	
W	8 mm	0.112 [2.85]	0.039 [1.0]	0.138 [3.5]	0.053 [1.35]	0.157 [4.0]	0.315 [8.0]	
R	8 mm	0.098 [2.46]	0.039 [1.0]	0.138 [3.5]	0.066 [1.71]	0.157 [4.0]	0.315 [8.0]	
Р	8 mm	0.108 [2.75]	0.02 [0.5]	0.138 [3.5]	0.054 [1.37]	0.157 [4.0]	0.315 [8.0]	
А	8 mm	0.153 [3.90]	0.039 [1.0]	0.138 [3.5]	0.078 [2.00]	0.157 [4.0]	0.315 [8.0]	
Ν	12 mm	0.154 [3.90]	0.059 [1.5]	0.216 [5.5]	0.051 [1.30]	0.157 [4.0]	0.472 [12.0]	
Т	12 mm	0.154 [3.90]	0.059 [1.5]	0.216 [5.5]	0.067 [1.70]	0.157 [4.0]	0.472 [12.0]	


Notes

⁽¹⁾ For reference only

CARRIER TAPE DIMENSIONS in inches [millimeters] FOR T42							
CASE CODE	TAPE SIZE	B ₁ (MAX.) ⁽¹⁾	D ₁ (MIN.)	F	K ₀ (MAX.)	P ₁	w
M2	16 mm	0.404 [10.3]	0.059 [1.5]	0.295 [7.5]	0.176 [4.5]	0.472 [12.0]	0.630 [16.0]

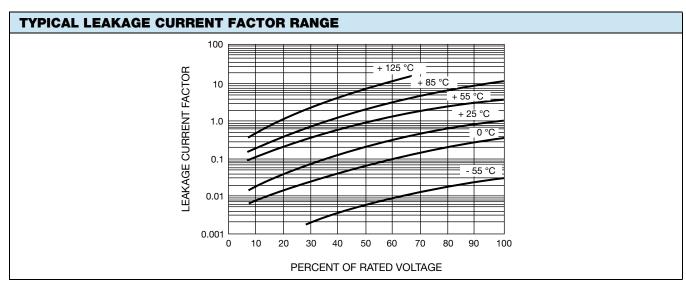
Note

⁽¹⁾ For reference only

Note

(1) A₀, B₀ are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A₀, B₀) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20°.

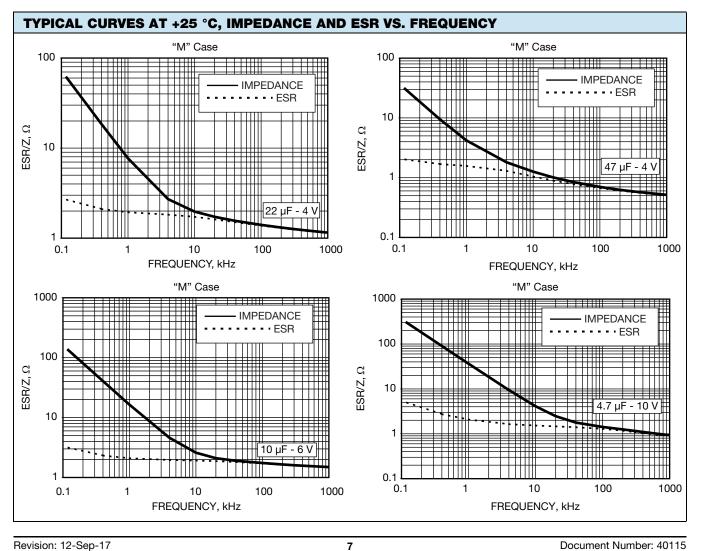
RECOMMENDED REFLOW PROFILES Capacitors should withstand reflow profile as per J-STD-020 standard, three cycles. T_{P} Max. Ramp Up Rate = 3 °C/s Max. Ramp Down Rate = 6 °C/s Т Temperature T_{Smax.} Preheat Area ¥ ¥ T_{Smin} 25 Time 25 °C to Peak Time **PROFILE FEATURE** SnPb EUTECTIC ASSEMBLY LEAD (Pb)-FREE ASSEMBLY PREHEAT AND SOAK Temperature min. (T_{Smin.}) 100 °C 150 °C Temperature max. (T_{Smax.}) 150 °C 200 °C Time (t_S) from (T_{Smin.} to T_{Smax.}) 60 s to 90 s 60 s to 150 s RAMP UP 3 °C/s maximum Ramp-up rate (T_L to T_p) Liquidus temperature (TL) 183 °C 217 °C Time (t_L) maintained above T_L 60 s to 150 s 235 °C Peak package body temperature (T_p) max. 260 °C Time (tp) within 5 °C of the peak max. temperature 20 s 30 s RAMP DOWN Ramp-down rate (Tp to TL) 6 °C/s maximum Time from 25 °C to peak temperature 6 min maximum 8 min maximum


PAD DIMENSIONS in inches [millimeters]				
CASE CODE	A (NOM.)	B (MIN.)	C (NOM.)	D (MIN.)
К	0.021 [0.53]	0.016 [0.41]	0.022 [0.55]	0.054 [1.37]
M, G	0.024 [0.61]	0.027 [0.70]	0.025 [0.64]	0.080 [2.03]
R, W9, S	0.035 [0.89]	0.029 [0.74]	0.041 [1.05]	0.099 [2.52]
W	0.035 [0.89]	0.029 [0.74]	0.037 [0.95]	0.095 [2.41]
Р	0.035 [0.89]	0.029 [0.74]	0.054 [1.37]	0.112 [2.84]
A, Q, A0	0.047 [1.19]	0.042 [1.06]	0.065 [1.65]	0.148 [3.76]
B, B0	0.094 [2.39]	0.044 [1.11]	0.072 [1.82]	0.159 [4.03]
Ν, Τ	0.094 [2.39]	0.044 [1.11]	0.065 [1.65]	0.152 [3.86]
M2	0.315 [8.00]	0.098 [2.50]	0.197 [5.00]	0.394 [10.0]

Revision: 12-Sep-17

Document Number: 40115

Vishay Sprague



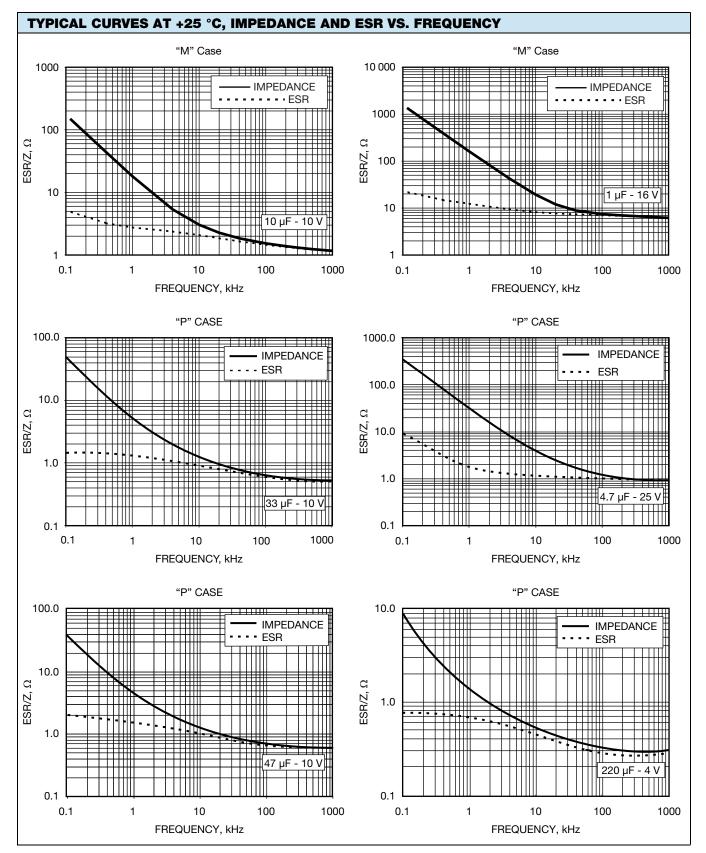
Notes

At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table

At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table

At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table

Revision: 12-Sep-17


For technical questions, contact: tantalum@vishay.com

Document Number: 40115

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay Sprague

Revision: 12-Sep-17

8 For technical questions, contact: <u>tantalum@vishav.com</u> Document Number: 40115

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

GUIDE TO APPLICATION

1. **AC Ripple Current:** the maximum allowable ripple current shall be determined from the formula:

$$I_{RMS} = \sqrt{\frac{P}{R_{ESR}}}$$

where,

- P = power dissipation in watts at +25 °C (see paragraph number 5 and the table Power Dissipation as given in the tables in the product datasheets)
- R_{ESR} = the capacitor equivalent series resistance at the specified frequency
- 2. **AC Ripple Voltage:** the maximum allowable ripple voltage shall be determined from the formula:

$$V_{\rm RMS} = Z_{\rm V} \frac{P}{R_{\rm ESR}}$$

or, from the formula:

$$V_{RMS} = I_{RMS} \times Z$$

where,

- P = power dissipation in watts at +25 °C (see paragraph number 5 and the table Power Dissipation as given in the tables in the product datasheets)
- R_{ESR} = the capacitor equivalent series resistance at the specified frequency
- Z = the capacitor impedance at the specified frequency
- 2.1 The sum of the peak AC voltage plus the applied DC voltage shall not exceed the DC voltage rating of the capacitor.
- 2.2 The sum of the negative peak AC voltage plus the applied DC voltage shall not allow a voltage reversal exceeding 10 % of the DC working voltage at +25 °C.
- 3. **Reverse Voltage:** these capacitors are capable of withstanding peak voltages in the reverse direction equal to 10 % of the DC rating at +25 °C, 5 % of the DC rating at +25 °C, 5 % of the DC rating at +85 °C, and 1 % of the DC rating at +125 °C.
- 4. **Temperature Derating:** if these capacitors are to be operated at temperatures above +25 °C, the permissible RMS ripple current shall be calculated using the derating factors as shown:

TEMPERATURE	DERATING FACTOR
+25 °C	1.0
+85 °C	0.9
+125 °C	0.4

5. **Power Dissipation:** power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those shown. It is important that the equivalent I_{RMS} value be established when calculating permissible operating levels. (Power Dissipation calculated using +25 °C temperature rise.)

Vishay Sprague

6. **Printed Circuit Board Materials:** molded capacitors are compatible with commonly used printed circuit board materials (alumina substrates, FR4, FR5, G10, PTFE-fluorocarbon and porcelanized steel).

7. Attachment:

- 7.1 **Solder Paste:** the recommended thickness of the solder paste after application is $0.007" \pm 0.001"$ [0.178 mm ± 0.025 mm]. Care should be exercised in selecting the solder paste. The metal purity should be as high as practical. The flux (in the paste) must be active enough to remove the oxides formed on the metallization prior to the exposure to soldering heat. In practice this can be aided by extending the solder preheat time at temperatures below the liquidous state of the solder.
- 7.2 **Soldering:** capacitors can be attached by conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering and hot plate methods. The Soldering Profile charts show recommended time / temperature conditions for soldering. Preheating is recommended. The recommended maximum ramp rate is 2 °C per s. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor.
- 7.2.1 **Backward and Forward Compatibility:** capacitors with SnPb or 100 % tin termination finishes can be soldered using SnPb or lead (Pb)-free soldering processes.
- 8. Cleaning (Flux Removal) After Soldering: molded capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chlorethane, Terpene and aqueous cleaning media. However, CFC / ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material.
- 8.1 When using ultrasonic cleaning, the board may resonate if the output power is too high. This vibration can cause cracking or a decrease in the adherence of the termination. DO NOT EXCEED 9W/I at 40 kHz for 2 min.
- 9. Recommended Mounting Pad Geometries: proper mounting pad geometries are essential for successful solder connections. These dimensions are highly process sensitive and should be designed to minimize component rework due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and / or circuit board design.

Molded Chip Tantalum Capacitors, Automotive Grade

		RACTERISTICS				
ITEM		HARACTERISTICS				
Category temperature range				raph "Category Voltage	e vs. Temperature") ⁽¹⁾	
Capacitance tolerance		sted via bridge method				
Dissipation factor	Limits per Standard	Ratings table. Tested	via bridge method, a	t 25 °C, 120 Hz		
ESR	Limits per Standard	Ratings table. Tested	via bridge method, a	t 25 °C, 100 kHz		
Leakage current	resistor in series wit whichever is greater <i>"Typical Leakage Cu</i>	After application of rated voltage applied to capacitors for 5 min using a steady source of power with 1 k Ω resistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or 0.5 μ A, whichever is greater. Note that the leakage current varies with temperature and applied voltage. See graph "Typical Leakage Current Temperature Factor" for the appropriate adjustment factor.				
Capacitance change by temperature	+30 % max. (at +175 °C) +20 % max. (at +125 °C and +150 °C) +10 % max. (at +85 °C) -10 % max. (at -55 °C)					
Reverse voltage	Capacitors are capable of withstanding peak voltages in the reverse direction equal to: 10 % of the DC rating at +25 °C 5 % of the DC rating at +85 °C 1 % of the DC rating at +125 °C					
Ripple current	For maximum ripple current values (at 25 °C) refer to relevant datasheet. If capacitors are to be used at temperatures above +25 °C, the permissible RMS ripple current (or voltage) shall be calculated using the derating factors: 1.0 at +25 °C 0.9 at +85 °C 0.4 at +125 °C 0.3 at +150 °C 0.2 at +175 °C					
Maximum operating	+85 °C		+125 °C		+150 °C / +175 °C	
and surge voltages vs. temperature	RATED VOLTAGE (V)	SURGE VOLTAGE (V)	CATEGORY VOLTAGE (V)	SURGE VOLTAGE (V)	CATEGORY VOLTAGE (V)	
	4	5.2	2.7	3.4	n/a	
	6.3	8	4	5	3	
	10	13	7	8	5	
	16	20	10	12	8	
	20	26	13	16	10	
	25	32	17	20	12.5	
	35	46	23	28	17.5	
	50	65	33	40	25	
	50 ⁽²⁾	60	33	40	n/a	
	50 ⁽²⁾ 63 75 ⁽³⁾	60 75 75	33 42 50	40 50 50	n/a n/a	

Notes

All information presented in this document reflects typical performance characteristics

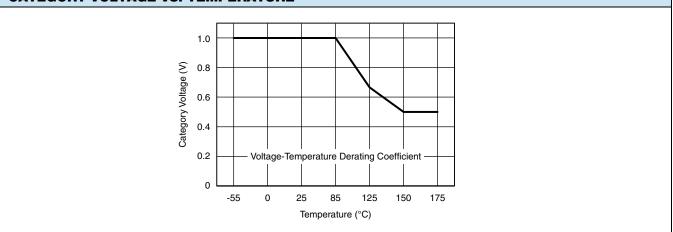
⁽¹⁾ Series TH3 - up to 150 °C; TH4 - up to 175 °C

⁽²⁾ Capacitance value 15 µF and higher

⁽³⁾ For 293D and TR3 only

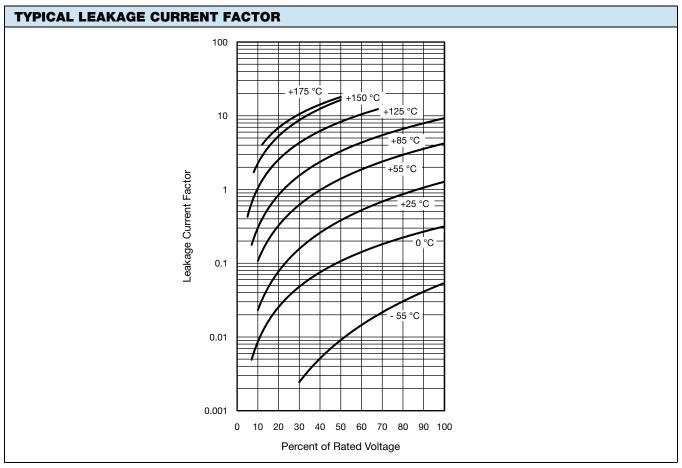
RECOMMENDED VOLTAGE DERATING GUIDELINES (for temperature below +85 °C)			
VOLTAGE RAIL	CAPACITOR VOLTAGE RATING		
≤ 3.3	6.3		
5	10		
10	20		
12	25		
15	35		
≥ 24	50 or series configuration		

Note


For temperatures above +85 °C the same voltage derating ratio is recommended, but with respect to category voltage.

Up to +85 °C: category voltage = rated voltage At +125 °C: category voltage = 2/3 of rated voltage

At 150 °C / 175 °C: category voltage = 1/2 of rated voltage



CATEGORY VOLTAGE VS. TEMPERATURE

Note

• Below 85 °C category voltage is equal to rated voltage

Note • At

At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.

At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.

At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.

At +150 °C, the leakage current shall not exceed 15 times the value listed in the Standard Ratings table.

At +175 °C, the leakage current shall not exceed 18 times the value listed in the Standard Ratings table

Revision: 26-Jun-17	2	Document Number: 40215
	For technical questions, contact: technical-questions , contact:	

ENVIRONMENTAL PERFORMANCE CHARACTERISTICS				
ITEM	CONDITION	POST TEST PERFOR	MANCE	
High temperature exposure (storage)	MIL-STD-202, method 108 1000 h, at maximum rated temperature, unpowered	Capacitance change Dissipation factor Leakage current ESR	Within ± 20 % of initial value Initial specified limit Initial specified limit Initial specified limit	
Operational life test at +125 °C	AEC-Q200 1000 h application 2/3 of rated voltage	Capacitance change Dissipation factor Leakage current ESR	Within ± 20 % of initial value Initial specified limit Shall not exceed 10 times the initial limit Initial specified limit	
Operational life test at +150 °C (for TH3) and at +175 °C (for TH4)	AEC-Q200 1000 h application 1/2 of rated voltage	Capacitance change Dissipation factor Leakage current ESR	Within \pm 20 % of initial value Shall not exceed 3 times the initial limit Shall not exceed 10 times the initial limit Shall not exceed 3 times the initial limit	
Surge voltage	MIL-PRF-55365: 1000 successive test cycles at 85 °C of surge voltage (as specified in the table above), in series with a 33 Ω resistor at the rate of 30 s ON, 30 s OFF	Capacitance change Dissipation factor Leakage current ESR	Within \pm 30 % of initial value Shall not exceed 1.5 times the initial limit Shall not exceed 2 times the initial limit Shall not exceed 1.5 times the initial limit	
Biased humidity test	AEC-Q200 At 85 °C / 85 % RH, 1000 h, with rated voltage applied	Capacitance change Dissipation factor Leakage current ESR	Within \pm 20 % of initial value Shall not exceed 3 times the initial limit Shall not exceed 10 times the initial limit Shall not exceed 3 times the initial limit	
Temperature cycling	AEC-Q200 / JESD22, method JA-104 -55 °C / +125 °C, for 1000 cycles	Capacitance change Dissipation factor Leakage current ESR	Within ± 20 % of initial value Initial specified limit Initial specified limit Initial specified limit	

MECHANICAL	PERFORMANCE CHARACTERISTICS			
ITEM	CONDITION	POST TEST PERFORMANCE		
Vibration	MIL-STD-202, method 204: 10 Hz to 2000 Hz, 5 <i>g</i> peak for 20 min, 12 cycles each of 3 orientations (total 36 cycles), at rated voltage	Capacitance changeWithin ± 20 % of initial valueDissipation factorInitial specified limitLeakage currentInitial specified limit		
		There shall be no mechanical or visual damage to capacitors post-conditioning.		
Mechanical shock	MIL-STD-202, method 213, condition F, 1500 <i>g</i> peak, 0.5 ms, half-sine	Capacitance changeWithin ± 20 % of initial valueDissipation factorInitial specified limitLeakage currentInitial specified limit		
		There shall be no mechanical or visual damage to capacitors post-conditioning.		
Resistance to solder heat	MIL-STD-202, method 210, condition D Solder dip 260 °C \pm 5 °C, 10 s	Capacitance changeWithin ± 20 % of initial valueDissipation factorInitial specified limitLeakage currentInitial specified limit		
Resistance to solvents	MIL-STD-202, method 215	Capacitance changeWithin ± 20 % of initial valueDissipation factorInitial specified limitLeakage currentInitial specified limit		
		There shall be no mechanical or visual damage to capacitors post-conditioning. Body marking shall remain legible.		
Solderability	AEC-Q200 / J-STD-002	Electrical test not required		
Terminal strength / Shear force test	AEC-Q200-006 Apply a pressure load of 17.7 N (1.8 kg) for 60 s horizontally to the center of capacitor side body Exception: for case size 0603 pressure load is 5N	Part should not be sheared off the pads and no body cracking post-conditioning. Electrical test not required.		
Flammability	Encapsulation materials meet UL 94 V-0 with an oxygen index of 32 %	n/a		

Revision: 26-Jun-17

3

Document Number: 40215

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

 TP8B476M010C
 TP8M335M010C
 TP8P475M020C
 TP8M105M020C
 TP8R106M016C
 TP8R106M010C

 TP8T476M010C
 TP8A226M010C
 TP8A106M016C
 TP8M475M6R3C
 TP8P105M040C
 TP8B685M020C

 TP8W105M020C
 TP8M475M010C
 TP8R105M025C
 TP8M105M016C
 TP8M225M016C
 TP8R335M020C

 TP8R156M010C
 TP8N685M020C
 TP8A107M6R3C
 TP8W685M010C
 TP8P475M025C
 TP8M105M010C

 TP8M106M6R3C
 TP8N685M020C
 TP8A107M6R3C
 TP8W685M010C
 TP8P475M025C
 TP8M105M010C