- Ideal for 418.00 MHz Remote Control and Security Transmitters
- Very Low Series Resistance
- Quartz Stability
- Surface-mount Ceramic Case

The RO3103E is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of fixed-frequency transmitters operating at 418.00 MHz . This SAW is designed specifically for AM transmitters used in remote control and wireless security applications.

## Absolute Maximum Ratings

| Rating | Value | Units |
| :--- | :---: | :---: |
| CW RF Power Dissipation (See Test Circuit) | 0 | dBm |
| DC Voltage Between Terminals (Observe ESD Precautions) | 12 | VDC |
| Case Temperature | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Soldering Temperature (10 seconds / 5 cycles maximum) | +260 | ${ }^{\circ} \mathrm{C}$ |



SM3030-6 Case $3.0 \times 3.0$

## Electrical Characteristics

| Characteristic |  | Sym | Notes | Minimum | Typical | Maximum | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency, $+25^{\circ} \mathrm{C}$ | Nominal Frequency | $\mathrm{f}_{\mathrm{C}}$ | 2, 3, 4, 5 | 417.925 |  | 418.075 | MHz |
|  | Tolerance from 418.00 MHz | $\Delta \mathrm{f}_{\mathrm{C}}$ |  |  |  | $\pm 75$ | kHz |
| Insertion Loss |  | IL | 2, 5, 6 |  | 1.3 | 2.0 | dB |
| Quality Factor | Unloaded Q | $Q_{U}$ | 5, 6, 7 |  | 10700 |  |  |
|  | $50 \Omega$ Loaded Q | $\mathrm{Q}_{\mathrm{L}}$ |  |  | 1500 |  |  |
| Temperature Stability | Turnover Temperature | To | 6, 7, 8 | 10 | 25 | 40 | ${ }^{\circ} \mathrm{C}$ |
|  | Turnover Frequency | $\mathrm{f}_{0}$ |  |  | $\mathrm{f}_{\mathrm{C}}$ |  |  |
|  | Frequency Temperature Coefficient | FTC |  |  | 0.032 |  | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$ |
| Frequency Aging | Absolute Value during the First Year | $\left\|\mathrm{f}_{\mathrm{A}}\right\|$ | 1,6 |  | 10 |  | ppm/yr |
| DC Insulation Resistance between Any Two Terminals |  |  | 5 | 1.0 |  |  | $\mathrm{M} \Omega$ |
| RF Equivalent RLC Model | Motional Resistance | $\mathrm{R}_{\mathrm{M}}$ | $\begin{gathered} 5,6,7, \\ 9, \end{gathered}$ |  | 16.7 |  | $\Omega$ |
|  | Motional Inductance | $\mathrm{L}_{\mathrm{M}}$ |  |  | 67 |  | $\mu \mathrm{H}$ |
|  | Motional Capacitance | $\mathrm{C}_{\mathrm{M}}$ |  |  | 2.2 |  | fF |
|  | Transducer Static Capacitance | $\mathrm{C}_{0}$ | 5, 6, 9 |  | 2.4 |  | pF |
| Test Fixture Shunt Inductance |  | $\mathrm{L}_{\text {TEST }}$ | 2, 7 |  | 62 |  | nH |
| Lid Symbolization |  | 676 // YWWS |  |  |  |  |  |
| Standard Reel Quantity | Reel Size 7 Inch |  | 10 | 500 Pieces/Reel |  |  |  |
|  | Reel Size 13 Inch |  |  | 3000 Pieces/Reel |  |  |  |

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

1. Frequency aging is the change in $\mathrm{f}_{\mathrm{C}}$ with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years
2. The center frequency, $\mathrm{f}_{\mathrm{C}}$, is measured at the minimum insertion loss point, $\mathrm{IL}_{\mathrm{MIN}}$, with the resonator in the $50 \Omega$ test system (VSWR $\leq 1.2: 1$ ). The shunt inductance, $L_{\text {TEST }}$, is tuned for parallel resonance with $\mathrm{C}_{\mathrm{O}}$ at $\mathrm{f}_{\mathrm{C}}$. Typically, $\mathrm{f}_{\text {OSCILLATOR }}$ or $\mathrm{f}_{\text {TRANSMITTER }}$ is approximately equal to the resonator $\mathrm{f}_{\mathrm{C}}$.
3. One or more of the following United States patents apply: $4,454,488$ and 4,616,197.
4. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
5. Unless noted otherwise, case temperature $\mathrm{T}_{\mathrm{C}}=+25 \pm 2^{\circ} \mathrm{C}$
6. The design, manufacturing process, and specifications of this device are
subject to change.
7. Derived mathematically from one or more of the following directly measured parameters: $\mathrm{f}_{\mathrm{C}}, \mathrm{IL}, 3 \mathrm{~dB}$ bandwidth, $\mathrm{f}_{\mathrm{C}}$ versus $\mathrm{T}_{\mathrm{C}}$, and $\mathrm{C}_{\mathrm{O}}$.
8. Turnover temperature, $\mathrm{T}_{\mathrm{O}}$, is the temperature of maximum (or turnover) frequency, $f_{O}$. The nominal frequency at any case temperature, $T_{C}$, may be calculated from: $f=f_{O}\left[1-\right.$ FTC $\left.\left(T_{O}-T_{C}\right)^{2}\right]$. Typically oscillator $T_{O}$ is approximately equal to the specified resonator $\mathrm{T}_{\mathrm{O}}$.
9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance $\mathrm{C}_{\mathrm{O}}$ is the static (nonmotional) capacitance between the two terminals measured at low frequency ( 10 MHz ) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF . Transducer parallel capacitance can by calculated as: $\mathrm{C}_{\mathrm{P}} \approx \mathrm{C}_{\mathrm{O}}-0.05 \mathrm{pF}$.
10. Tape and Reel Standard Per ANSI / EIA 481.

## Electrical Connections

The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.

| Pin | Connection |
| :---: | :--- |
| 1 | NC |
| 2 | Terminal |
| 3 | NC |
| 4 | NC |
| 5 | Terminal |
| 6 | NC |



## Case and Typical PCB Land Dimensions

| Ref | $\mathbf{m m}$ |  |  | Inches |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Nom | Max | Min | Nom | Max |
| $\mathbf{A}$ | 2.87 | 3.00 | 3.13 | 0.113 | 0.118 | 0.123 |
| B | 2.87 | 3.00 | 3.13 | 0.113 | 0.118 | 0.123 |
| C | 1.12 | 1.25 | 1.38 | 0.044 | 0.049 | 0.054 |
| D | 0.77 | 0.90 | 1.03 | 0.030 | 0.035 | 0.040 |
| E | 2.67 | 2.80 | 2.93 | 0.105 | 0.110 | 0.115 |
| F | 1.47 | 1.60 | 1.73 | 0.058 | 0.063 | 0.068 |
| G | 0.72 | 0.85 | 0.98 | 0.028 | 0.033 | 0.038 |
| H | 1.37 | 1.50 | 1.63 | 0.054 | 0.059 | 0.064 |
| I | 0.47 | 0.60 | 0.73 | 0.019 | 0.024 | 0.029 |
| J | 1.17 | 1.30 | 1.43 | 0.046 | 0.051 | 0.056 |
| K |  | 3.20 |  |  | 0.126 |  |
| L |  | 1.70 |  |  | 0.067 |  |
| M |  | 1.05 |  |  | 0.041 |  |
| N |  | 0.81 |  |  | 0.032 |  |
| $\mathbf{O}$ |  | 0.38 |  |  | 0.015 |  |

## Equivalent RLC Model



## Temperature Characteristics

The curve shown accounts for resonator contribution only and does not include external LC component temperature effects.


Characterization Test Circuit
Inductor $L_{T E S T}$ is tuned to resonate with the static capacitance, $\mathrm{C}_{\mathrm{O}}$, at $\mathrm{F}_{\mathrm{C}}$.


Power Dissipation Test


## Example Application Circuits



