

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FCP11N60/FCPF11N60

General Description

SuperFET® MOSFET is Fairchild Semiconductor's first genera-tion of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switch-ing performance, dv/dt rate and higher avalanche energy. Con-sequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.


Features

- 650V @T_j = 150°C
- Typ. Rds(on)=0.32Ω
- Ultra low gate charge (typ. Qg=40nC)
- Low effective output capacitance (typ. Coss.eff=95pF)

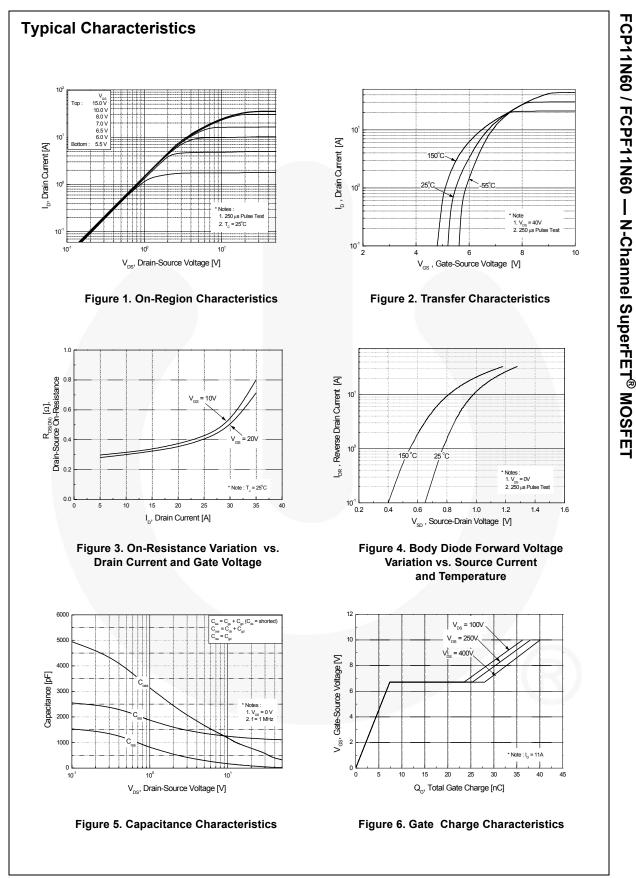
FCP11N60 / FCPF11N60 — N-Channel SuperFET[®] MOSFET

March 2014

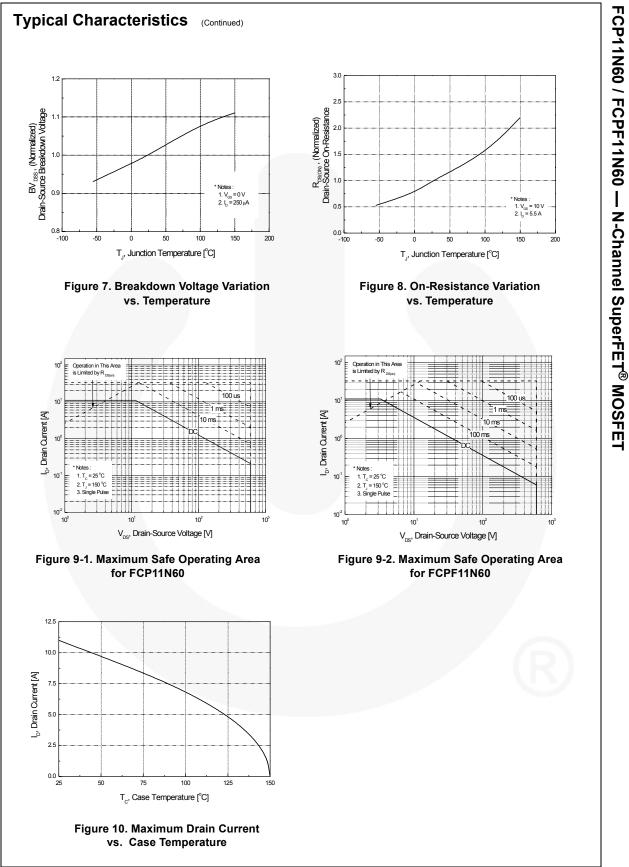
- 100% avalanche tested
- RoHS Compliant

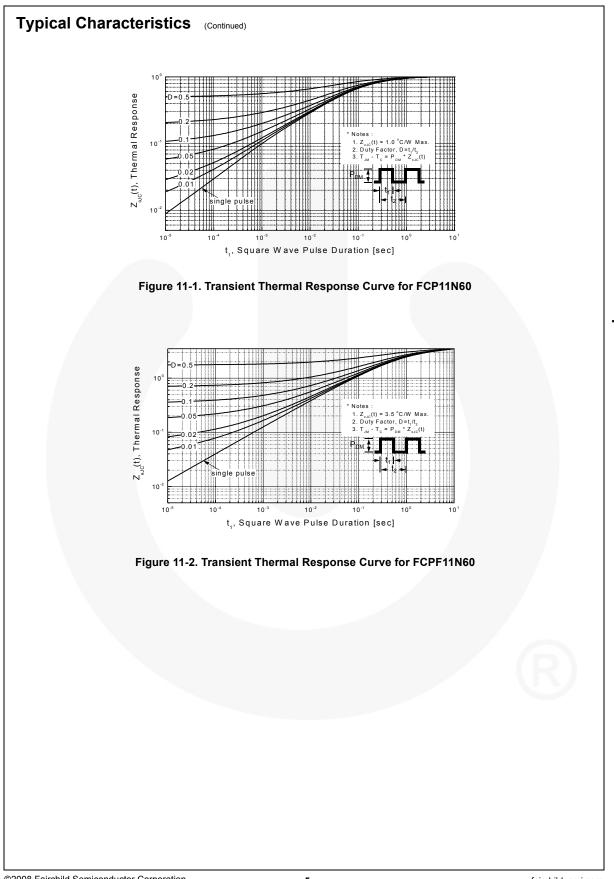
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

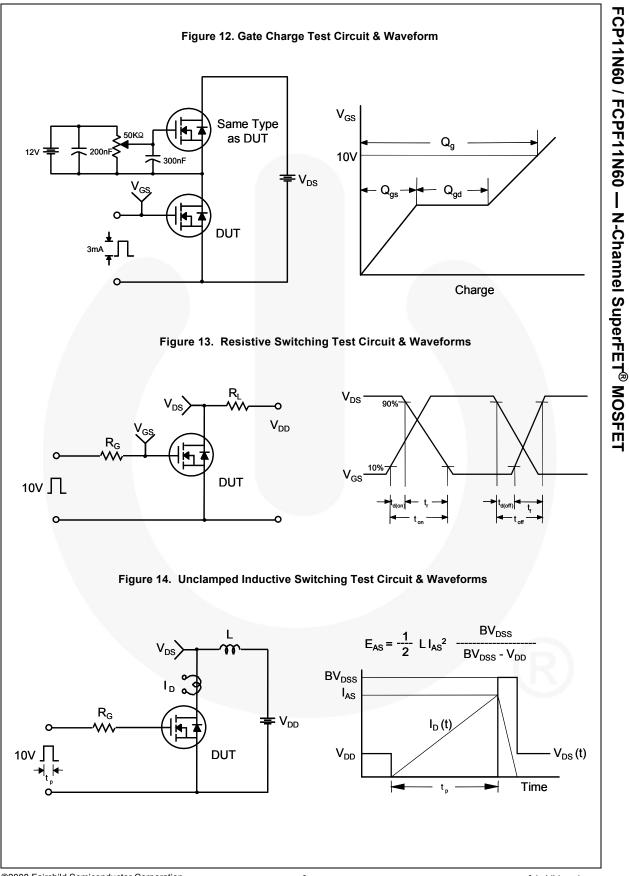
Symbol	Parameter		FCP11N60	FCPF11N60	Units
I _D	Drain Current - Continuous (T _C = 25°C	:)	11	11*	А
	- Continuous (T _C = 100°	C)	7	7*	А
I _{DM}	Drain Current - Pulsed	(Note 1)	33	33*	А
V _{GSS}	Gate-Source Voltage		± 30		V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	3	40	mJ
I _{AR}	Avalanche Current	(Note 1)	11		А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	12.5		mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5		V/ns
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		125	36	W
	- Derate above 25°C		1.0	0.29	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
т	Maximum lead temperature for soldering purposes,		300		°C
ΤL	1/8" from case for 5 seconds				

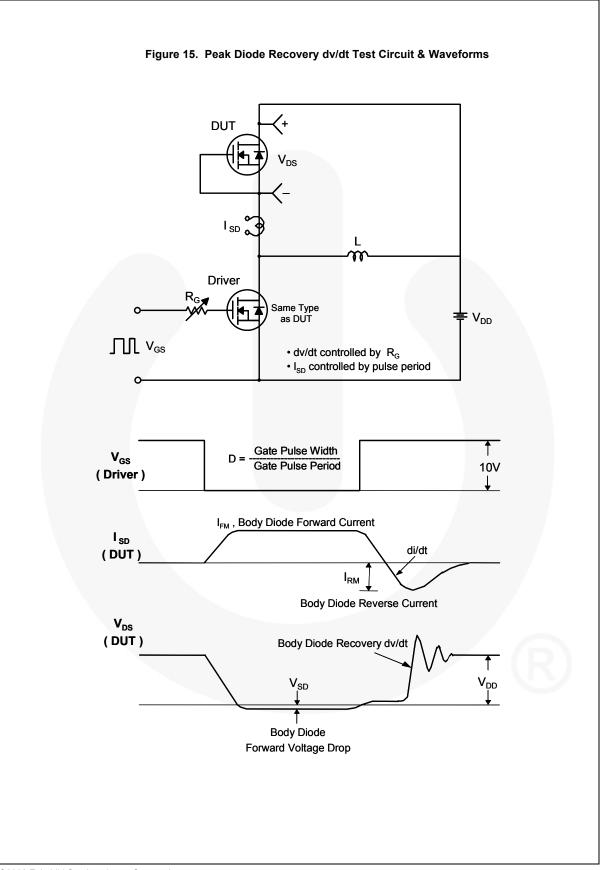

. . .

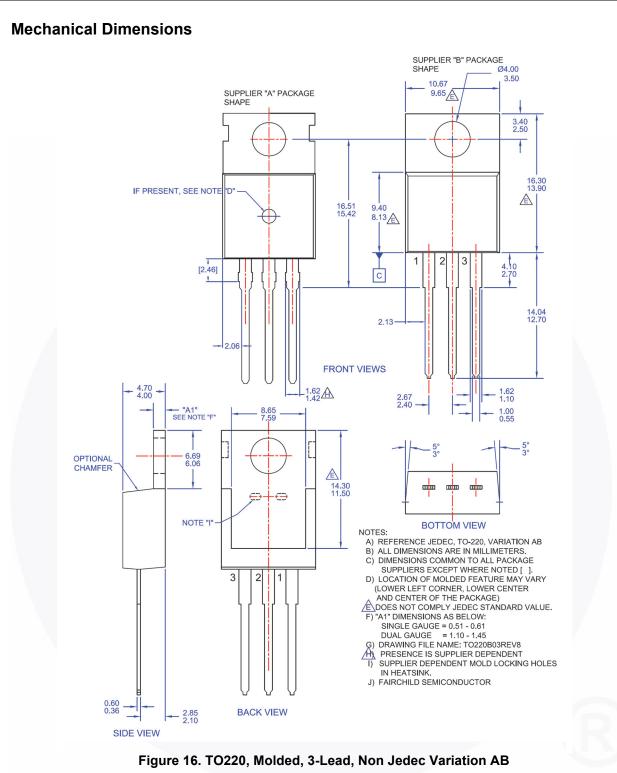
Thermal Characteristics


Symbol	Parameter	FCP11N60	FCPF11N60	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1.0	3.5	°C/W
R _{0CS}	Thermal Resistance, Case-to-Sink	0.5		°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	62.5	62.5	°C/W

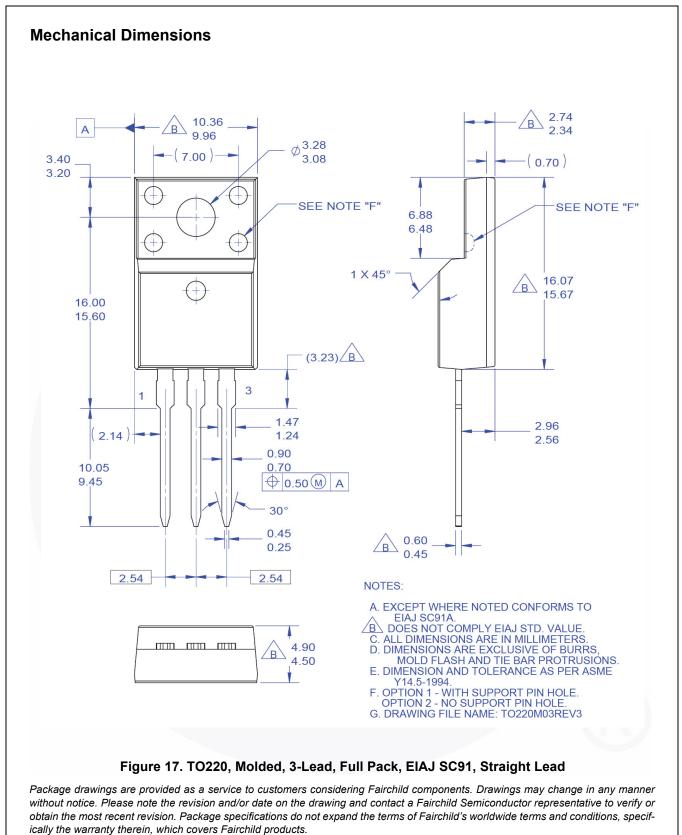

Symbol Off Characteri BV _{DSS} Drain-S ΔBV _{DSS} Breakd ΔTJ Ficient BV _{DS} Drain-S ΔBV _{DS} Drain-S ΔBV _{DS} Drain-S Voltage Drain-S DSS Zero Ga GSSF Gate-B On Characteri VGS(th) VGS(th) Gate TI RDS(on) Static ID On-Res Forward Dynamic Char Crass Coss Output Crss Revers Coss Output Coss eff. Effectiv Switching Char Fine Char Id(on) Turn-O Ir Turn-O	FCPF11N60T aracteristics Parameter stics cource Breakdown Voltage cown Voltage Temperatur cource Avalanche Breakd ate Voltage Drain Current ody Leakage Current, Fc ody Leakage Current, Re stics nreshold Voltage Drain-Source sistance d Transconductance	ge re Coef- down nt	Tube unless otherwise noted Test Condii $V_{GS} = 0 V, I_D = 250 \mu$ $V_{GS} = 0 V, I_D = 250 \mu$ $I_D = 250 \mu A$, Referent $V_{GS} = 0 V, I_D = 11 A$ $V_{DS} = 600 V, V_{GS} = 0$ $V_{DS} = 480 V, T_C = 12$ $V_{GS} = 30 V, V_{DS} = 0$ $V_{GS} = -30 V, V_{DS} = 0$ $V_{GS} = 10 V, I_D = 5.5$ $V_{DS} = 40 V, I_D = 5.5 \mu$ $V_{DS} = 25 V, V_{GS} = 0$	$\mu A, T_{J} = 25^{\circ}C$ $\mu A, T_{J} = 150^{\circ}C$ $\mu ced to 25^{\circ}C$ V V μA A $(Note 4)$		N/A N/A N/A Typ 650 0.6 700 0.32 9.7	50	units units Units V V/°C V/°C V/°C V/°C V μΑ ηΑ ηΑ ηΑ S
FCPF11N60T Ilectrical Ch Symbol Off Characteri BVDSS Drain-S ΔBVDSS Breakd ΔTJ ficient BVDS Drain-S ΔBVDS Breakd ΔTJ Drain-S ΔBVDS Breakd ΔTJ Strain-S Voltage DSS DSS Zero Ga GSSF Gate-B On Characteri On-Res VGS(th) Gate TI RDS(on) Static ID On-Res Forward Dynamic Char On-Res Ors Output Coss Output Coss Output Coss eff. Effectiv Switching Char Ga(on) Growitching Char Ga(on) Growitching Char Ga(on) Static ID Turn-O Growitching Char Ga(on) Growitching Char Ga(on) Growitching Char Ga(on) Gate TI Turn-O	FCPF11N60T aracteristics Parameter stics cource Breakdown Voltage cown Voltage Temperatur cource Avalanche Breakd ate Voltage Drain Current, Fc ody Leakage Current, Fc ody Leakage Current, Rd stics mreshold Voltage Drain-Source sistance d Transconductance apacitance Capacitance Capacitance	TO-220F T _c = 25°C t ge re Coef- down nt	Tube unless otherwise noted Test Condii $V_{GS} = 0 V, I_D = 250 \mu$ $V_{GS} = 0 V, I_D = 250 \mu$ $I_D = 250 \mu A$, Referent $V_{GS} = 0 V, I_D = 11 A$ $V_{DS} = 600 V, V_{GS} = 0$ $V_{DS} = 480 V, T_C = 12$ $V_{GS} = 30 V, V_{DS} = 0$ $V_{GS} = -30 V, V_{DS} = 0$ $V_{GS} = 10 V, I_D = 5.5$ $V_{DS} = 40 V, I_D = 5.5 \mu$ $V_{DS} = 25 V, V_{GS} = 0$	N/AtionsIA, $T_J = 25^{\circ}C$ IA, $T_J = 150^{\circ}C$ Iced to $25^{\circ}C$ ICE <th>Min 600 3.0 3.0</th> <th>N/A Typ 650 0.6 700 0.32 9.7</th> <th>50 Max 1 10 100 -100 5.0 0.38 </th> <th>units Units V V/°C V/°C V/°C V μΑ ηΑ ηΑ ηΑ Ν Ω S</th>	Min 600 3.0 3.0	N/A Typ 650 0.6 700 0.32 9.7	50 Max 1 10 100 -100 5.0 0.38 	units Units V V/°C V/°C V/°C V μΑ ηΑ ηΑ ηΑ Ν Ω S
Symbol Symbol Off Characteri BVDSS Drain-S ABVDSS Breakd ABVDSS Breakd ABVDSS Breakd ABVDSS Drain-S ABVDS Drain-S ABVDS Drain-S ABVDS Drain-S ABVDS Drain-S Voltage Drain-S DSS Zero G GSSF Gate-B GSSR Gate-B On Characteri On-Res VGS(th) Gate TI RDS(on) Static D On-Res On-Res GFS Forward Coss Output Crss Revers Coss Output Crss Output Switching Cha Ga(on) Turn-O Turn-O	Aracteristics Parameter stics cource Breakdown Voltage cown Voltage Temperatur cource Avalanche Breakd ate Voltage Drain Current ody Leakage Current, For ody Leakage Current, Ro stics nreshold Voltage Drain-Source sistance d Transconductance apacitance Capacitance	T _C = 25°C to ge re Coef- down nt	unless otherwise noted Test Condi $V_{GS} = 0 V, I_D = 250 \mu$ $V_{GS} = 0 V, I_D = 250 \mu$ $I_D = 250 \mu A, Referen V_{GS} = 0 V, I_D = 11 AV_{DS} = 600 V, V_{GS} = 0V_{DS} = 480 V, T_C = 12V_{GS} = 30 V, V_{DS} = 0V_{GS} = -30 V, V_{DS} = 0V_{GS} = 10 V, I_D = 5.5 \muV_{DS} = 40 V, I_D = 5.5 \muV_{DS} = 25 V, V_{GS} = 0$	tions $IA, T_J = 25^{\circ}C$ $IA, T_J = 150^{\circ}C$ aced to 25°C V V V V V μA A A (Note 4)	Min 600 3.0 3.0	Typ 650 0.6 700 0.32 9.7	Max 1 10 100 -100 5.0 0.38	V V V/°C V μA nA NA NA S
Symbol Off Characteri BV _{DSS} Drain-S ΔBV _{DSS} Breakd ΔTJ ficient BV _{DS} Drain-S ΔBV _{DS} Drain-S ΔSV _{DS} Drain-S Voltage Dss DSS Zero Ga GSSF Gate-B On Characteri VGS(th) VGS(th) Gate TI RDS(on) Static ID On-Res Forward Dynamic Char Output Crss Input C Coss Output Crss Revers Coss eff. Effectiv Switching Char Gradiant Ga(on) Turn-O Gr Turn-O	Parameter stics cource Breakdown Voltag cown Voltage Temperatur cource Avalanche Breakd ate Voltage Drain Current cody Leakage Current, Re stics reshold Voltage rain-Source sistance d Transconductance apacitance Capacitance	ge re Coef- down nt	Test Condi $V_{GS} = 0 V$, $I_D = 250 \mu$ $V_{GS} = 0 V$, $I_D = 250 \mu$ $I_D = 250 \mu$ A, Referen $V_{GS} = 0 V$, $I_D = 11 A$ $V_{DS} = 600 V$, $V_{GS} = 0$ $V_{DS} = 480 V$, $T_C = 12$ $V_{GS} = 30 V$, $V_{DS} = 0$ $V_{GS} = -30 V$, $V_{DS} = 0$ $V_{DS} = V_{GS}$, $I_D = 250$ $V_{DS} = 10 V$, $I_D = 5.5 \mu$ $V_{DS} = 40 V$, $I_D = 5.5 \mu$ $V_{DS} = 25 V$, $V_{GS} = 0$	$\mu A, T_{J} = 25^{\circ}C$ $\mu A, T_{J} = 150^{\circ}C$ $\mu ced to 25^{\circ}C$ V V μA A $(Note 4)$	600 3.0 3.0	 650 0.6 700 0.32 9.7	 1 100 -100 5.0 0.38 	V V/°C V/°C V μΑ μΑ nA nA
Off Characteri BV _{DSS} Drain-S ΔBV _{DSS} Breakd ΔΔI ficient BV _{DS} Drain-S ΔBV _{DS} Drain-S BV _{DS} Drain-S Voltage Voltage DSS Zero G GSSF Gate-B GSSR Gate-B On Characteri On-Res VGS(th) Gate TI RDS(on) Static D On-Res On-Res GFS Forwar Dynamic Char Char Coss Output Crss Revers Coss Output Coss eff. Effectiv Switching Char Char td(on) Turn-O tr Turn-O	stics cource Breakdown Voltage cown Voltage Temperatur cource Avalanche Breakd ate Voltage Drain Curren ody Leakage Current, Fo ody Leakage Current, Ro stics meshold Voltage Drain-Source sistance d Transconductance acteristics apacitance Capacitance	re Coef- down nt	$\begin{split} & V_{GS} = 0 \ V, \ I_D = 250 \ \mu \\ & V_{GS} = 0 \ V, \ I_D = 250 \ \mu \\ & I_D = 250 \ \mu A, \ Reference \\ & V_{GS} = 0 \ V, \ I_D = 11 \ A \\ & V_{DS} = 600 \ V, \ V_{GS} = 11 \ A \\ & V_{DS} = 600 \ V, \ V_{GS} = 0 \\ & V_{DS} = 480 \ V, \ T_C = 12 \\ & V_{GS} = 30 \ V, \ V_{DS} = 0 \\ & V_{GS} = -30 \ V, \ V_{DS} = 0 \\ & V_{DS} = V_{GS}, \ I_D = 250 \\ & V_{DS} = 10 \ V, \ I_D = 5.5 \ A \\ & V_{DS} = 40 \ V, \ I_D = 5.5 \ A \\ & V_{DS} = 25 \ V, \ V_{GS} = 0 \\ \end{split}$	$\mu A, T_{J} = 25^{\circ}C$ $\mu A, T_{J} = 150^{\circ}C$ $\mu ced to 25^{\circ}C$ V V μA A $(Note 4)$	600 3.0 3.0	 650 0.6 700 0.32 9.7	 1 100 -100 5.0 0.38 	V V/°C V/°C V μΑ μΑ nA nA
BV _{DSS} Drain-S ΔBV _{DSS} Breakd ficient ΔBV _{DS} Drain-S Voltage Drain-S Voltage Voltage DSS Zero Gi IDSS Zero Gi IGSSF Gate-B GSSR Gate-B On Characteri VGS(th) VGS(th) Gate TI RDS(on) Static ID On-Res On-Res ØFS Forward Dynamic Char Char Ciss Input C Coss Output Crss Revers Coss eff. Effectiv Switching Char Char td(on) Turn-O tr Turn-O	ource Breakdown Voltag own Voltage Temperatur ource Avalanche Breakd ate Voltage Drain Curren ody Leakage Current, Fo ody Leakage Current, Ro stics meshold Voltage Drain-Source sistance d Transconductance acteristics apacitance Capacitance	re Coef- down nt	$V_{GS} = 0 \text{ V}, I_D = 250 \mu$ $I_D = 250 \mu\text{A}, \text{Referent}$ $V_{GS} = 0 \text{ V}, I_D = 11 \text{ A}$ $V_{DS} = 600 \text{ V}, V_{GS} = 0$ $V_{DS} = 480 \text{ V}, T_C = 12$ $V_{GS} = 30 \text{ V}, V_{DS} = 0$ $V_{GS} = -30 \text{ V}, V_{DS} = 0$ $V_{DS} = V_{GS}, I_D = 250$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \mu$ $V_{DS} = 40 \text{ V}, I_D = 5.5 \mu$ $V_{DS} = 25 \text{ V}, V_{GS} = 0$	A, $T_J = 150^{\circ}C$ acced to $25^{\circ}C$ V V V V V V V A A A (Note 4)	 3.0 	650 0.6 700 0.32 9.7	 1 100 -100 5.0 0.38 	V V/°C V μΑ ηΑ ηΑ ηΑ ν Ω S
ΔBV _{DSS} Breakd ficient ΔBV _{DS} Drain-S Voltage BV _{DS} Drain-S Voltage DSS Zero G IgssF Gate-B GSSR Gate-B On Characteri On-Res VGS(th) Gate TI RDS(on) Static I On-Res ØFS Forward Oppamic Char Ciss Ciss Input C Coss Output Coss Output Coss eff. Effectiv Switching Char Char Id(on) Turn-O	own Voltage Temperatur ource Avalanche Breako ate Voltage Drain Curren ody Leakage Current, Fo ody Leakage Current, Ro stics meshold Voltage Drain-Source sistance d Transconductance apacitance Capacitance	re Coef- down nt	$V_{GS} = 0 \text{ V}, I_D = 250 \mu$ $I_D = 250 \mu\text{A}, \text{Referent}$ $V_{GS} = 0 \text{ V}, I_D = 11 \text{ A}$ $V_{DS} = 600 \text{ V}, V_{GS} = 0$ $V_{DS} = 480 \text{ V}, T_C = 12$ $V_{GS} = 30 \text{ V}, V_{DS} = 0$ $V_{GS} = -30 \text{ V}, V_{DS} = 0$ $V_{DS} = V_{GS}, I_D = 250$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \mu$ $V_{DS} = 40 \text{ V}, I_D = 5.5 \mu$ $V_{DS} = 25 \text{ V}, V_{GS} = 0$	A, $T_J = 150^{\circ}C$ acced to $25^{\circ}C$ V V V V V V V A A A (Note 4)	 3.0 	650 0.6 700 0.32 9.7	 1 100 -100 5.0 0.38 	V V/°C Ψ μ Α η Α η Α Ν Ω S
ΔBV _{DSS} Breakd ficient ΔBV _{DS} Drain-S Voltage BV _{DS} Zero Gi IDSS Zero Gi IGSSF Gate-B IGSSR Gate-B IGSSR Gate-B IGSSR Gate-TI VGS(th) Gate TI RDS(on) Static D On-Res On-Res 9FS Forward Dynamic Char Char Coss Output Crss Revers Coss Output Coss eff. Effectiv Switching Char Turn-O td(on) Turn-O	own Voltage Temperatur ource Avalanche Breako ate Voltage Drain Curren ody Leakage Current, Fo ody Leakage Current, Ro stics meshold Voltage Drain-Source sistance d Transconductance apacitance Capacitance	re Coef- down nt	$I_{D} = 250 \ \mu\text{A}, \text{Referen}$ $V_{GS} = 0 \ V, I_{D} = 11 \ \text{A}$ $V_{DS} = 600 \ V, V_{GS} = 0$ $V_{DS} = 480 \ V, T_{C} = 12$ $V_{GS} = 30 \ V, V_{DS} = 0$ $V_{GS} = -30 \ V, V_{DS} = 0$ $V_{DS} = V_{GS}, I_{D} = 250$ $V_{DS} = 10 \ V, I_{D} = 5.5$ $V_{DS} = 40 \ V, I_{D} = 5.5$	aced to 25°C 0 V 25°C V 0 V μΑ Α (Note 4)	 3.0 	0.6 700 0.32 9.7	 1 10 100 -100 5.0 0.38 	V/°C V μA μA nA NA ν Ω S
ΔTJ ficient BVDS Drain-S VOItage Voltage IDSS Zero Ga IGSSF Gate-B IGSSR Gate-B IGSS On-Res IGSS Output Coss Output Coss Output Coss eff. Effectiv Switching Cha Turn-O td(on) Turn-O	ate Voltage Drain Current ody Leakage Current, Fo ody Leakage Current, Fo ody Leakage Current, Ro stics meshold Voltage Drain-Source sistance d Transconductance apacitance Capacitance	down nt	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 11 \text{ A}$ $V_{DS} = 600 \text{ V}, \text{ V}_{GS} = 0$ $V_{DS} = 480 \text{ V}, \text{ T}_{C} = 12$ $V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0$ $V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0$ $V_{DS} = V_{GS}, \text{ I}_{D} = 250$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ V}$ $V_{DS} = 40 \text{ V}, \text{ I}_{D} = 5.5 \text{ V}$ $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0$	0 V 25°C V 0 V μΑ Α (Note 4)	 3.0 	700 0.32 9.7	 1 100 -100 5.0 0.38 	V μA nA nA V Ω S
SV DS Voltage DSS Zero Gi GSSF Gate-B GSSR Gate-B On Characteri VGS(th) VGS(th) Gate TI RDS(on) Static ID On-Res On-Res DFS Forward Dynamic Char Ciss Input C Coss Output Crss Revers Coss Output Coss eff. Effectiv Switching Char Ga(on) Turn-O ir Turn-O	ate Voltage Drain Curren ody Leakage Current, Fo ody Leakage Current, Ro stics meshold Voltage Drain-Source sistance d Transconductance racteristics apacitance Capacitance	nt prward	$V_{DS} = 600 \text{ V}, V_{GS} = 0$ $V_{DS} = 480 \text{ V}, T_{C} = 12$ $V_{GS} = 30 \text{ V}, V_{DS} = 0$ $V_{GS} = -30 \text{ V}, V_{DS} = 0$ $V_{DS} = V_{GS}, I_{D} = 250$ $V_{GS} = 10 \text{ V}, I_{D} = 5.5$ $V_{DS} = 40 \text{ V}, I_{D} = 5.5 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0$	25°C V V ν ν Α Α (Note 4)	 3.0 	 0.32 9.7	1 100 -100 5.0 0.38 	μΑ μΑ nA nA V Ω S
GSSF Gate-B GSSR Gate-B GSSR Gate-B On Characteri Gate-B VGS(th) Gate TI RDS(on) Static D On-Res On-Res ØFS Forward Dynamic Char Char Ciss Input C Coss Output Crss Revers Coss Output Coss eff. Effectiv Switching Char Gate Ga(on) Turn-O Gr Turn-O	ody Leakage Current, Fo ody Leakage Current, Ro stics mreshold Voltage Drain-Source sistance d Transconductance acteristics apacitance Capacitance	orward	$V_{DS} = 480 \text{ V}, \text{T}_{C} = 12$ $V_{GS} = 30 \text{ V}, \text{V}_{DS} = 0$ $V_{GS} = -30 \text{ V}, \text{V}_{DS} = 0$ $V_{DS} = V_{GS}, \text{I}_{D} = 250$ $V_{GS} = 10 \text{V}, \text{I}_{D} = 5.5 \text{V}$ $V_{DS} = 40 \text{V}, \text{I}_{D} = 5.5 \text{V}$ $V_{DS} = 25 \text{V}, \text{V}_{GS} = 0$	25°C V V ν ν Α Α (Note 4)	 3.0 	 0.32 9.7	10 100 -100 5.0 0.38 	μA nA nA V Ω S
GSSF Gate-B GSSR Gate-B GSSR Gate-B On Characteri VGS(th) Gate TI RDS(on) Static E On-Res ØFS Forward Dynamic Char Ciss Input C Coss Output Crss Revers Coss eff. Effectiv Switching Char Gonomic Turn-O r Turn-O	ody Leakage Current, Fo ody Leakage Current, Ro stics mreshold Voltage Drain-Source sistance d Transconductance acteristics apacitance Capacitance	orward	$V_{GS} = 30 V, V_{DS} = 0$ $V_{GS} = -30 V, V_{DS} = 0$ $V_{DS} = V_{GS}, I_D = 250$ $V_{GS} = 10 V, I_D = 5.5$ $V_{DS} = 40 V, I_D = 5.5 A$ $V_{DS} = 25 V, V_{GS} = 0$	V V V A A (Note 4)	 3.0 	 0.32 9.7	100 -100 5.0 0.38 	nA nA V Ω S
GSSR Gate-B On Characteri V _{GS} (th) Gate TI R _{DS} (on) Static E On-Res ØFS Forward Dynamic Char Ciss Input C Coss Output Crss Revers Coss Output Coss eff. Effectiv Switching Char Ed(on) Turn-O tr Turn-O	ody Leakage Current, Ro stics meshold Voltage Drain-Source sistance d Transconductance cacteristics apacitance Capacitance		$V_{GS} = -30 \text{ V}, V_{DS} = 0$ $V_{DS} = V_{GS}, I_D = 250$ $V_{GS} = 10 \text{ V}, I_D = 5.5$ $V_{DS} = 40 \text{ V}, I_D = 5.5 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0$	μA A A (Note 4)	 3.0 	 0.32 9.7	-100 5.0 0.38 	nA V Ω S
On Characteri V _{GS(th)} Gate TI R _{DS(on)} Static II On-Res ØFS Forward Dynamic Char Ciss Input C Coss Output Crss Revers Coss Output Coss eff. Effectiv Switching Char Char td(on) Turn-O tr Turn-O	stics mreshold Voltage Drain-Source sistance d Transconductance acteristics apacitance Capacitance	everse	$V_{DS} = V_{GS}, I_D = 250$ $V_{GS} = 10 V, I_D = 5.5$ $V_{DS} = 40 V, I_D = 5.5$	μA A A (Note 4)	3.0	 0.32 9.7	5.0 0.38 	V Ω S
V _{GS(th)} Gate TI R _{DS(on)} Static II On-Res ØFS Forward Dynamic Char Ciss Input C Coss Output Crss Revers Coss Output Coss Output Coss Output Coss eff. Effectiv Switching Char Gon Turn-O r Turn-O	nreshold Voltage Drain-Source sistance d Transconductance racteristics apacitance Capacitance		$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ V}_{DS} = 40 \text{ V}, I_D = 5.5 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0$	A (Note 4)		9.7	0.38 	Ω S
V _{GS(th)} Gate TI R _{DS(on)} Static II On-Res ØFS Forward Dynamic Char Ciss Input C Coss Output Crss Revers Coss Output Coss Output Coss Output Coss eff. Effectiv Switching Char Gon Turn-O r Turn-O	nreshold Voltage Drain-Source sistance d Transconductance racteristics apacitance Capacitance		$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ V}_{DS} = 40 \text{ V}, I_D = 5.5 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0$	A (Note 4)		9.7	0.38 	Ω S
RDS(on) Static I On-Res ØFS Forward Opnamic Char Ciss Input C Coss Output Crss Revers Coss Output Coss Output Coss Output Coss Output Coss Output Coss eff. Effectiv Switching Char Ed(on) Turn-O ir Turn-O	sistance d Transconductance acteristics apacitance Capacitance		$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 5.5 \text{ J}$ $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0$	A (Note 4)		9.7		S
Dynamic Char Ciss Input C Coss Output Crss Revers Coss Output Coss Output Coss Output Coss Output Coss Output Coss Output Switching Char Effectiv Ed(on) Turn-O tr Turn-O	a cteristics apacitance Capacitance		V _{DS} = 25 V, V _{GS} = 0					
Ciss Input C Coss Output Crss Revers Coss Output Coss Output Coss Output Coss Output Coss Output Switching Chaster Chaster Ed(on) Turn-O Fr Turn-O	apacitance Capacitance			V,		44.40	1400	-
Ciss Input C Coss Output Crss Revers Coss Output Coss Output Coss Output Coss Output Coss Output Switching Chaster Chaster Ed(on) Turn-O Fr Turn-O	apacitance Capacitance			V,		44.40	1400	-
Coss Output Crss Revers Coss Output Coss Effectiv Switching Charter Turn-O Grant Turn-O	Capacitance			V,		1148	1/10/1	pF
Crss Revers Coss Output Coss eff. Effectiv Switching Charter Turn-O G(on) Turn-O	•					671	870	pF
C _{oss} Output C _{oss} eff. Effectiv Switching Cha c _{d(on)} Turn-O r Turn-O	a mansiari anacitance		f = 1.0 MHz			63	82	pF
Switching Cha d(on) Turn-O r Turn-O	Capacitance		V _{DS} = 480 V, V _{GS} = 0 f = 1.0 MHz) V,		35		pF
Switching Cha d(on) Turn-O r Turn-O	e Output Capacitance		$V_{DS} = 0V \text{ to } 480 \text{ V}, \text{ V}$	′ _{GS} = 0 V		95		pF
d(on) Turn-O r Turn-O								
r Turn-O					1			1
	n Delay Time		V _{DD} = 300 V, I _D = 11	А,		34	80	ns
allern-()			R _G = 25 Ω			98	205	ns
	ff Delay Time			(Note 4, 5)		119	250	ns
-	ff Fall Time					56	120	ns
5	ate Charge		$V_{DS} = 480 \text{ V}, \text{ I}_{D} = 11$	А,		40	52	nC
3-	ource Charge		V _{GS} = 10 V	(Note 4 5)		7.2		nC
Q _{gd} Gate-D	rain Charge			(Note 4, 5)		21		nC
	Diode Characteris			ngs	1			
	um Continuous Drain-So						11	A
0	Im Pulsed Drain-Source						33	A
	ource Diode Forward Vo	oltage	V _{GS} = 0 V, I _S = 11 A				1.4	V
	e Recovery Time		V _{GS} = 0 V, I _S = 11 A,			390		ns
Q _{rr} Revers	e Recovery Charge		dI _F / dt = 100 A/µs	(Note 4)		5.7		μC


4. Pulse Test . Pulse width \leq 300µs, Duty cycle \leq 2% 5. Essentially independent of operating temperature FCP11N60 / FCPF11N60 — N-Channel SuperFET[®] MOSFET


©2008 Fairchild Semiconductor Corporation FCP11N60/FCPF11N60 Rev. C0



©2008 Fairchild Semiconductor Corporation FCP11N60/FCPF11N60 Rev. C0


without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003

FCP11N60 / FCPF11N60 — N-Channel SuperFET[®] MOSFET

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-003

FCP11N60 / FCPF11N60 — N-Channel SuperFET[®] MOSFET

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: FCP11N60