Quad 3-State Noninverting Buffers

High-Performance Silicon-Gate CMOS

The MC74HC125A and MC74HC126A are identical in pinout to the LS125 and LS126. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC125A and HC126A noninverting buffers are designed to be used with 3-state memory address drivers, clock drivers, and other bus-oriented systems. The devices have four separate output enables that are active-low (HC125A) or active-high (HC126A).

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the JEDEC Standard No. 7 A Requirements
- Chip Complexity: 72 FETs or 18 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

LOGIC DIAGRAM

HC125A

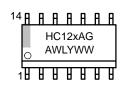
Active-High Output Enables A1 2 3 Y1 OE1 1 A2 5 6 Y2 OE2 4 A3 9 8 Y3 OE3 10 A4 12 11 Y4 OE4 13

HC126A

PIN 14 = V_{CC} PIN 7 = GND

ON Semiconductor®

http://onsemi.com



SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

OE1	1●	14	v _{cc}
A1 [2	13	OE4
Y1 [3	12	A4
OE2	4	11	Y4
A2 [5	10	ОЕЗ
Y2 [6	9	ВАЗ
GND [7	8	Y3

MARKING DIAGRAMS

SOIC-14 NB

TSSOP-14

x = 5, 6

A = Assembly Location

L, WL = Wafer Lot Y, YY = Year

W, WW = Work Week
G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

	HC125A				HC1	26A
Inp	outs	Output		Inputs		Output
Α	OE	Y		Α	OE	Υ
Н	L	Н		Н	Н	Н
L	L	L		L	Н	L
Χ	Н	Z		Χ	L	Z

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

13

OE4

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to $V_{CC} + 0.5$	V
I _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±75	mA
P _D	Power Dissipation in Still Air SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: –7 mW/°C from 65° to 125°C TSSOP Package: –6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	V _{CC}	V
T _A	Operating Temperature, All Package Types		- 55	+125	°C
t _r , t _f	(Figure 1) V _{CC}	c = 2.0 V c = 4.5 V c = 6.0 V	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guaranteed Limit		mit	
			V _{CC}	-55 to			
Symbol	Parameter	Test Conditions	v	25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$V_{out} = V_{CC} - 0.1 \text{ V}$	2.0	1.5	1.5	1.5	V
		$ I_{out} \le 20 \mu\text{A}$	3.0	2.1	2.1	2.1	
			4.5	3.15	3.15	3.15	
			6.0	4.2	4.2	4.2	
V_{IL}	Maximum Low-Level Input Voltage	V _{out} = 0.1 V	2.0	0.5	0.5	0.5	V
		$ I_{out} \leq 20 \mu\text{A}$	3.0	0.9	0.9	0.9	
			4.5	1.35	1.35	1.35	
			6.0	1.8	1.8	1.8	
V _{OH}	Minimum High-Level Output	$V_{in} = V_{IH}$	2.0	1.9	1.9	1.9	V
	Voltage	$ I_{out} \leq 20 \mu A$	4.5	4.4	4.4	4.4	
			6.0	5.9	5.9	5.9	
		$V_{in} = V_{IH}$ $ I_{out} \le 3.6 \text{ mA}$	3.0	2.48	2.34	2.2	
		$ I_{out} \le 6.0 \text{ mA}$	4.5	3.98	3.84	3.7	
		$ I_{out} \le 7.8 \text{ mA}$	6.0	5.48	5.34	5.2	
V _{OL}	Maximum Low-Level Output	$V_{in} = V_{IL}$	2.0	0.1	0.1	0.1	V
	Voltage	$ I_{out} \leq 20 \mu\text{A}$	4.5	0.1	0.1	0.1	
			6.0	0.1	0.1	0.1	
		$V_{in} = V_{IL}$ $ I_{out} \le 3.6 \text{ mA}$	3.0	0.26	0.33	0.4	
		$ I_{out} \le 6.0 \text{ mA}$	4.5	0.26	0.33	0.4	
		$ I_{out} \le 7.8 \text{ mA}$	6.0	0.26	0.33	0.4	
I _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
loz	Maximum Three–State Leakage	Output in High-Impedance State	6.0	±0.5	±5.0	±10	μΑ
	Current	$V_{in} = V_{IL}$ or V_{IH}					
		$V_{out} = V_{CC}$ or GND					
I _{CC}	Maximum Quiescent Supply Current	V _{in} = V _{CC} or GND	6.0	4.0	40	160	μΑ
	(per Package)	$I_{out} = 0 \mu A$					

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	V _{CC}	–55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{PLH} ,	Maximum Propagation Delay, Input A to Output Y	2.0	90	115	135	ns
t_{PHL}	(Figures 1 and 3)	3.0	36	45	60	
		4.5	18	23	27	
		6.0	15	20	23	
t _{PLZ} ,	Maximum Propagation Delay, Output Enable to Y	2.0	120	150	180	ns
t_{PHZ}	(Figures 2 and 4)	3.0	45	60	80	
		4.5	24	30	36	
		6.0	20	26	31	
t _{PZL} ,	Maximum Propagation Delay, Output Enable to Y	2.0	90	115	135	ns
t_{PZH}	(Figures 2 and 4)	3.0	36	45	60	
		4.5	18	23	27	
		6.0	15	20	23	
t _{TLH} ,	Maximum Output Transition Time, Any Output	2.0	60	75	90	ns
t_{THL}	(Figures 1 and 3)	3.0	22	28	34	
		4.5	12	15	18	
		6.0	10	13	15	
C _{in}	Maximum Input Capacitance	_	10	10	10	pF
C _{out}	Maximum 3-State Output Capacitance (Output in High-Impedance State)	-	15	15	15	pF
			Typical @ 25°C, V _{CC} = 5.0 V			
C_{PD}	Power Dissipation Capacitance (Per Buffer)*			30		pF

^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

SWITCHING WAVEFORMS

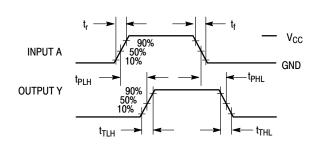


Figure 1.

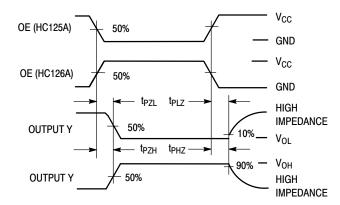
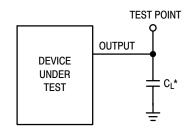
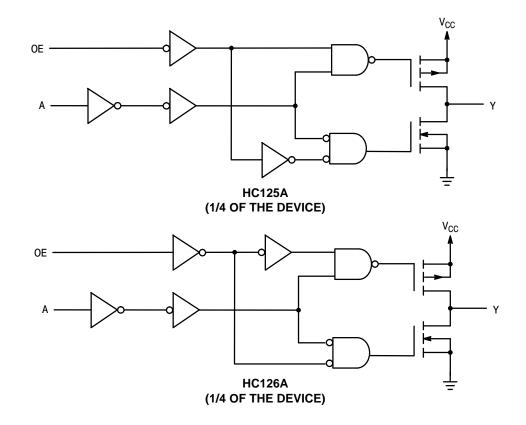



Figure 2.

*Includes all probe and jig capacitance


DEVICE UNDER TEST C_L^* TEST POINT

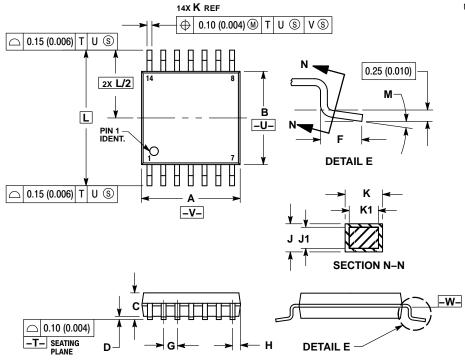
OUTPUT $1 \text{ k}\Omega$ OUTPUT $1 \text{ k}\Omega$ C_L^* CONNECT TO V_{CC} WHEN TESTING t_{PLZ} AND t_{PZL} . CONNECT TO GND WHEN TESTING t_{PHZ} and t_{PZH} .

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 4. Test Circuit

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74HC125ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HC125ADR2G	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
MC74HC125ADTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74HC125ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
MC74HC126ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HC126ADR2G	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
MC74HC126ADTR2G	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
NLV74HC125ADG*	SOIC-14 NB (Pb-Free)	55 Units / Rail
NLV74HC125ADR2G*	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
NLV74HC125ADTG*	TSSOP-14 (Pb-Free)	55 Units / Rail
NLV74HC125ADTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape & Reel
NLV74HC126ADR2G*	SOIC-14 NB (Pb-Free)	2500 / Tape & Reel
NLV74HC126ADTR2G*	TSSOP-14 (Pb-Free)	2500 / Tape & Reel

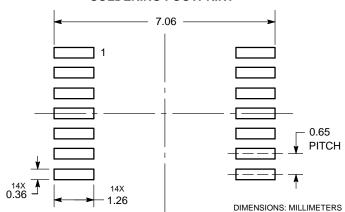
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

PACKAGE DIMENSIONS

TSSOP-14 CASE 948G **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

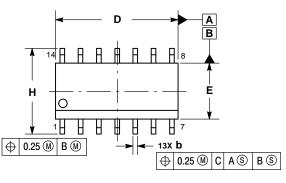

 - EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

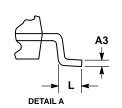
 - REFERENCE ONLY.

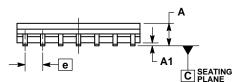
 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

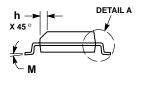
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0°	8°	0°	8 °	

SOLDERING FOOTPRINT*

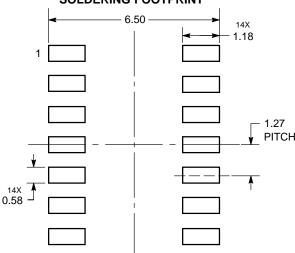



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


PACKAGE DIMENSIONS


SOIC-14 NB

CASE 751A-03 ISSUE K


NOTES:

- OT LO:

 1. DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION 6 DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7°

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC74HC125ADG MC74HC125ADR2G MC74HC125ADTG MC74HC125ADTR2G MC74HC126ADR2G MC74HC126ADR2G MC74HC126ADR2G