Triple low-ohmic single-pole double-throw analog switch

. Rev. 1 — 18 April 2013

Product data sheet

1. General description

The NX3L4053-Q100 is a triple low-ohmic single-pole double-throw analog switch, suitable for use as an analog or digital multiplexer/demultiplexer. Each switch has a digital select input (nS), two independent inputs/outputs (nY0 and nY1) and a common input/output (nZ). All three switches share an enable input (\overline{E}). A digital enable pin \overline{E} is common to all switches. When \overline{E} is HIGH, the switches are turned off.

Schmitt trigger action at the digital inputs makes the circuit tolerant to slower input rise and fall times. Low threshold digital inputs allow this device to be driven by 1.8 V logic levels in 3.3 V applications without significant increase in supply current I_{CC}. This makes it possible for the NX3L4053-Q100 to switch 4.3 V signals with a 1.8 V digital controller, eliminating the need for logic level translation. The NX3L4053-Q100 allows signals with amplitude up to V_{CC} to be transmitted from nZ to nY0 or nY1; or from nY0 or nY1 to nZ. Its low ON resistance (0.5 Ω) and flatness (0.13 Ω) ensures minimal attenuation and distortion of transmitted signals.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 1.4 V to 4.3 V
- Very low ON resistance (peak):
 - 1.8 Ω (typical) at V_{CC} = 1.4 V
 - 1.0 Ω (typical) at V_{CC} = 1.65 V
 - 0.6 Ω (typical) at V_{CC} = 2.3 V
 - 0.6 Ω (typical) at V_{CC} = 2.7 V
 0.5 Ω (typical) at V_{CC} = 4.3 V
- Break-before-make switching
- High noise immunity
- ESD protection:
 - MIL-STD-883, method 3015 Class 3A exceeds 4000 V
 - HBM JESD22-A114F Class 3A exceeds 4000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
 - CDM AEC-Q100-011 revision B exceeds 1000 V
 - IEC61000-4-2 contact discharge exceeds 6000 V for switch ports
- CMOS low-power consumption
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level A

Triple low-ohmic single-pole double-throw analog switch

- 1.8 V control logic at $V_{CC} = 3.6$ V
- Control input accepts voltages above supply voltage
- Very low supply current, even when input is below V_{CC}
- High current handling capability (350 mA continuous current under 3.3 V supply)

3. Applications

- Cell phone
- PDA
- Portable media player
- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

4. Ordering information

Table 1.	Ordering in	formation
----------	--------------------	-----------

	Package	Package							
	Temperature range	Name	Description	Version					
NX3L4053HR-Q100	–40 °C to +125 °C	HXQFN16	plastic thermal enhanced extremely thin quad flat package; no leads; 16 terminals; body $3 \times 3 \times 0.5$ mm	SOT1039-2					
NX3L4053PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1					

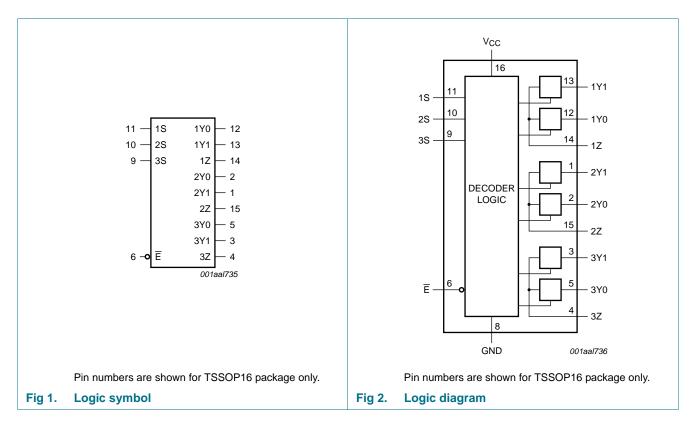
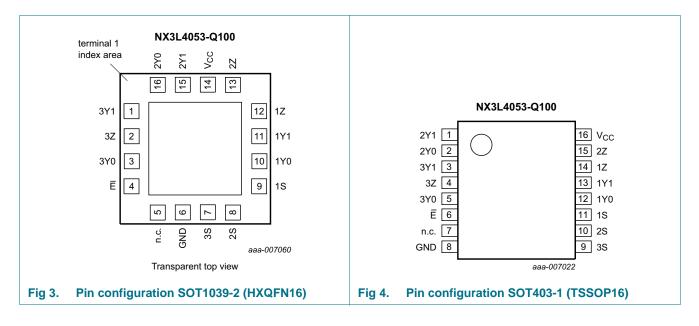

5. Marking

Table 2.Marking codes


Type number	Marking code
NX3L4053HR-Q100	M43
NX3L4053PW-Q100	X3L4053

Triple low-ohmic single-pole double-throw analog switch

6. Functional diagram

7. Pinning information

7.1 Pinning

. .

Triple low-ohmic single-pole double-throw analog switch

7.2 Pin description

Symbol	Pin		Description
	SOT1039-2	SOT403-1	
Ē	4	6	enable input (active LOW)
n.c.	5	7	not connected
GND	6	8	ground (0 V)
1S, 2S, 3S	9, 8, 7	11, 10 ,9	select input
1Y0, 2Y0, 3Y0	10, 16, 3	12, 2, 5	independent input or output
1Y1, 2Y1, 3Y1	11, 15, 1	13, 1, 3	independent input or output
1Z , 2Z, 3Z	12, 13, 2	14, 15, 4	independent output or input
V _{CC}	14	16	supply voltage

8. Functional description

Table 4.	Function table		
Inputs			Channel on
E		nS	
L		L	nY0 to nZ
L		Н	nY1 to nZ
Н		Х	switches off

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

9. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage	nS and E	<u>[1]</u> –0.5	+4.6	V
V _{SW}	switch voltage		2 -0.5	V _{CC} + 0.5	V
I _{IK}	input clamping current	$V_{I} < -0.5 V$	-50	-	mA
I _{SK}	switch clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	-	±50	mA
I _{SW}	switch current	V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; source or sink current	-	±350	mA
		V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V; pulsed at 1 ms duration, < 10 % duty cycle; peak current	-	±500	mA
T _{stg}	storage temperature		-65	+150	°C

NX3L4053_Q100 Product data sheet

Triple low-ohmic single-pole double-throw analog switch

Table 5. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$			
		HXQFN16	<u>[3]</u>	250	mW
		TSSOP16	<u>[4]</u> _	500	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed but may not exceed 4.6 V.

[3] For HXQFN16 package: above 135 °C the value of P_{tot} derates linearly with 16.9 mW/K.

[4] For TSSOP16 package: above 60 °C the value of Ptot derates linearly with 5.5 mW/K.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.4	4.3	V
VI	input voltage	nS and \overline{E}	0	4.3	V
V _{SW}	switch voltage		<u>[1]</u> 0	V _{CC}	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	nS and \overline{E} ; V _{CC} = 1.4 V to 4.3 V	-	200	ns/V

[1] To avoid sinking GND current from terminal nZ when switch current flows in terminal nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no GND current flows from terminal nYn. In this case, there is no limit for the voltage drop across the switch.

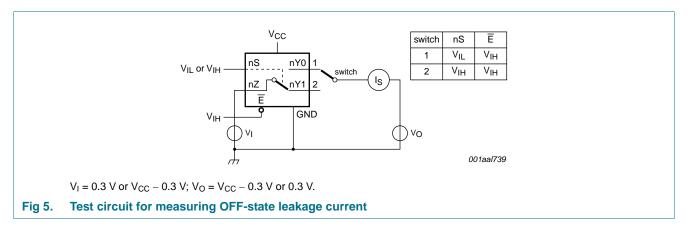
11. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground 0 V).

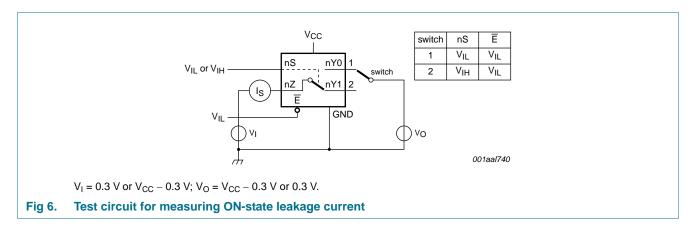
Symbol	Parameter	Conditions	Ta	_{mb} = 25	°C	T _{amb} =	–40 °C to	+125 °C	Unit
			Min	Тур	Мах	Min	Max (85 °C)	Max (125 °C)	
V _{IH}	HIGH-level input voltage	$V_{CC} = 1.4 \text{ V}$ to 1.6 V	0.9	-	-	0.9	-	-	V
		V_{CC} = 1.65 V to 1.95 V	0.9	-	-	0.9	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.1	-	-	1.1	-	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	1.3	-	-	1.3	-	-	V
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	1.4	-	-	1.4	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	-	-	0.3	-	0.3	0.3	V
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	-	-	0.4	-	0.4	0.3	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.4	-	0.4	0.4	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.5	-	0.5	0.5	V
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	-	0.6	-	0.6	0.6	V
Iı	input leakage current	nS and \overline{E} ; V _I = GND to 4.3 V; V _{CC} = 1.4 V to 4.3 V	-	-	-	-	±0.5	±1	μΑ

NX3L4053-Q100


Triple low-ohmic single-pole double-throw analog switch

Static characteristics ... continued Table 7.

At recommended operating conditions; voltages are referenced to GND (ground 0 V).


Symbol	Parameter	Conditions	T,	amb = 25	°C	T _{amb} =	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max (85 °C)	Max (125 °C)	_
$I_{S(OFF)}$	OFF-state leakage	nY0 and nY1 port; see <u>Figure 5</u>							
	current	V_{CC} = 1.4 V to 3.6 V	-	-	±5	-	±50	±500	nA
		V_{CC} = 3.6 V to 4.3 V	-	-	±10	-	±50	±500	nA
I _{S(ON)}	ON-state leakage current	nZ port; V _{CC} = 1.4 V to 3.6 V; see <u>Figure 6</u>							
		V_{CC} = 1.4 V to 3.6 V	-	-	±5	-	±50	±500	nA
		V_{CC} = 3.6 V to 4.3 V	-	-	±10	-	±50	±500	nA
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $V_{SW} = GND$ or V_{CC}							
		V _{CC} = 3.6 V	-	-	100	-	500	5000	nA
		$V_{CC} = 4.3 V$	-	-	150	-	800	6000	nA
ΔI_{CC}	additional	V_{SW} = GND or V_{CC}							
	supply current	$V_{I} = 2.6 \text{ V}; V_{CC} = 4.3 \text{ V}$	-	2.0	4.0	-	7	7	μΑ
		$V_{I} = 2.6 \text{ V}; V_{CC} = 3.6 \text{ V}$	-	0.35	0.7	-	1	1	μA
		$V_{I} = 1.8 \text{ V}; V_{CC} = 4.3 \text{ V}$	-	7.0	10.0	-	15	15	μA
		$V_{I} = 1.8 \text{ V}; V_{CC} = 3.6 \text{ V}$	-	2.5	4.0	-	5	5	μA
		$V_{I} = 1.8 \text{ V}; V_{CC} = 2.5 \text{ V}$	-	50	200	-	300	500	nA
Cı	input capacitance	nS and \overline{E}	-	1.0	-	-	-	-	pF
$C_{S(OFF)}$	OFF-state capacitance		-	35	-	-	-	-	pF
C _{S(ON)}	ON-state capacitance		-	130	-	-	-	-	pF

11.1 Test circuits

NX3L4053_Q100

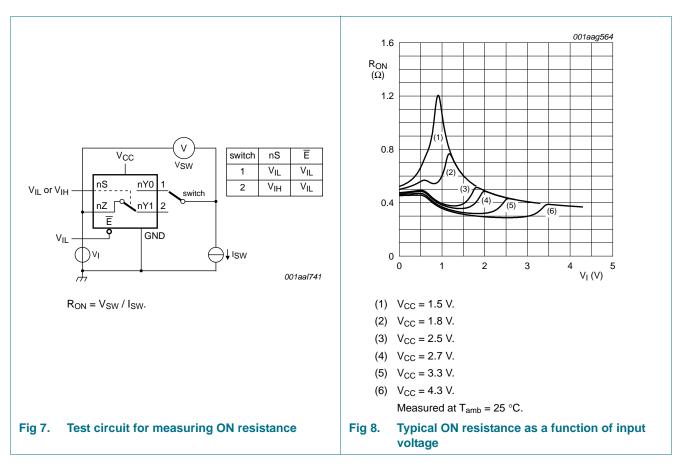
Triple low-ohmic single-pole double-throw analog switch

11.2 ON resistance

Table 8. ON resistance^[1]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see Figure 8 to Figure 14.

Symbol	Parameter	Conditions	T _{amb} =	-40 °C to	o +85 °C	$T_{amb} = -40 \circ$	C to +125 °C	Unit
			Min	Typ ^[2]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	$V_I = GND$ to V_{CC} ; $I_{SW} = 100$ mA; see <u>Figure 7</u>						
		$V_{CC} = 1.4 V$	-	1.8	3.8	-	4.2	Ω
		V _{CC} = 1.65 V	-	1.0	1.7	-	1.8	Ω
		$V_{CC} = 2.3 V$	-	0.6	0.9	-	1.0	Ω
		$V_{CC} = 2.7 V$	-	0.6	0.80	-	1.0	Ω
		$V_{CC} = 4.3 V$	-	0.5	0.80	-	1.0	Ω
ΔR_{ON}	ON resistance mismatch between	$V_I = GND \text{ to } V_{CC};$ $I_{SW} = 100 \text{ mA}$	<u>3]</u>					
		V_{CC} = 1.4 V; V_{SW} = 0.4 V	-	0.23	0.38	-	0.38	Ω
	channels	V_{CC} = 1.65 V; V_{SW} = 0.5 V	-	0.23	0.28	-	0.38	Ω
		V_{CC} = 2.3 V; V_{SW} = 0.7 V	-	0.12	0.15	-	0.18	Ω
		$V_{CC} = 2.7 \text{ V}; V_{SW} = 0.8 \text{ V}$	-	0.12	0.15	-	0.18	Ω
		V_{CC} = 4.3 V; V_{SW} = 0.8 V	-	0.12	0.15	-	0.18	Ω
R _{ON(flat)}	ON resistance (flatness)	$V_{I} = GND \text{ to } V_{CC};$ $I_{SW} = 100 \text{ mA}$	<u>[4]</u>					
		$V_{CC} = 1.4 V$	-	1.0	3.3	-	3.6	Ω
		V _{CC} = 1.65 V	-	0.5	1.2	-	1.3	Ω
		$V_{CC} = 2.3 V$	-	0.15	0.3	-	0.35	Ω
		$V_{CC} = 2.7 V$	-	0.13	0.3	-	0.35	Ω
		$V_{CC} = 4.3 V$	-	0.2	0.4	-	0.45	Ω

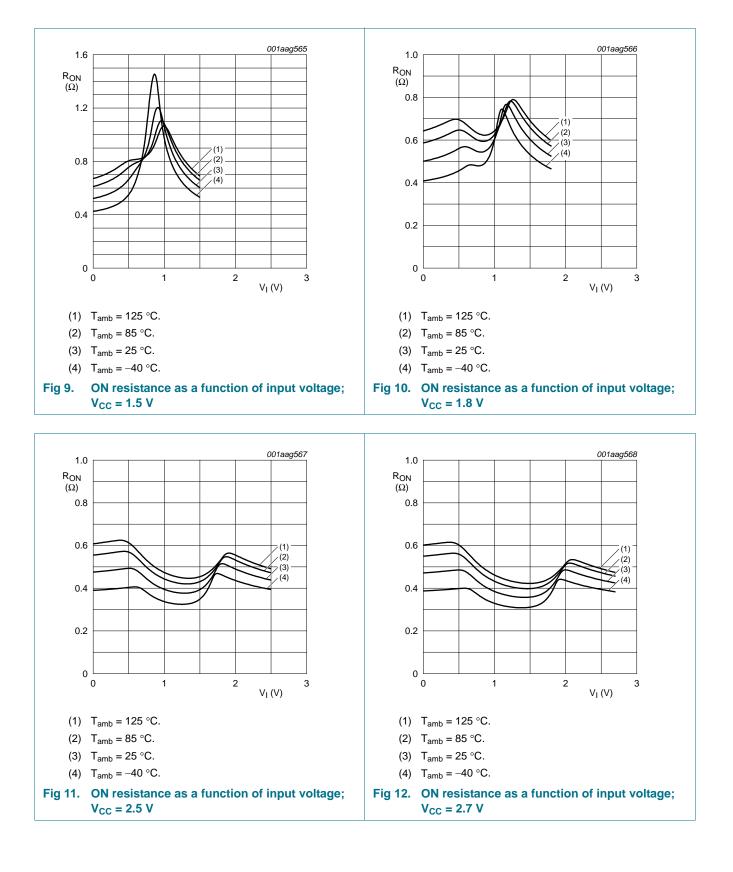

[1] For NX3L4053PW-Q100 (TSSOP16 package), all ON resistance values are up to 0.05 Ω higher.

[2] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

[3] Measured at identical V_{CC} , temperature and input voltage.

[4] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

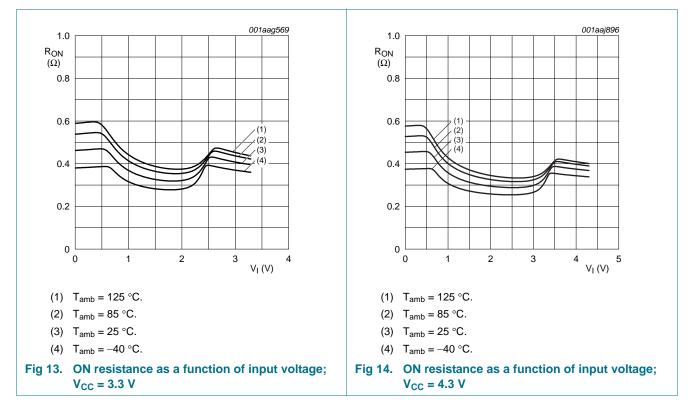
Triple low-ohmic single-pole double-throw analog switch



11.3 ON resistance test circuit and graphs

NX3L4053_Q100
Product data sheet

NX3L4053-Q100


Triple low-ohmic single-pole double-throw analog switch

NX3L4053_Q100 Product data sheet

NX3L4053-Q100

Triple low-ohmic single-pole double-throw analog switch

12. Dynamic characteristics

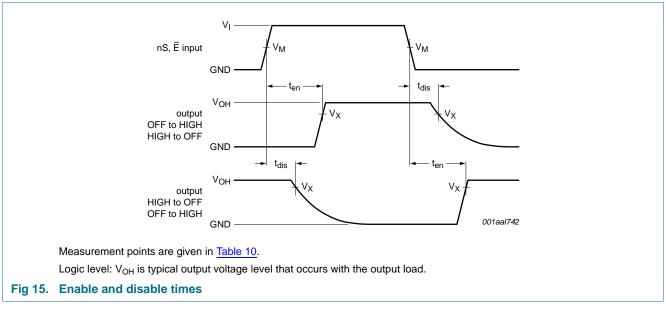
Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 17.

Symbol	Parameter	Conditions	Ta	_{mb} = 25	°C	T _{amb} =	–40 °C to	+125 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)	
t _{en}	enable time	Ē, nS to nZ or nYn; see <u>Figure 15</u>							
		V_{CC} = 1.4 V to 1.6 V	-	49	90	-	120	120	ns
		V_{CC} = 1.65 V to 1.95 V	-	35	70	-	80	90	ns
		V_{CC} = 2.3 V to 2.7 V	-	23	45	-	50	55	ns
		V_{CC} = 2.7 V to 3.6 V	-	21	40	-	45	50	ns
		V_{CC} = 3.6 V to 4.3 V	-	21	40	-	45	50	ns
t _{dis}	disable time	Ē, nS to nZ or nYn; see <u>Figure 15</u>							
		V_{CC} = 1.4 V to 1.6 V	-	32	70	-	80	90	ns
		V_{CC} = 1.65 V to 1.95 V	-	17	55	-	60	65	ns
		V_{CC} = 2.3 V to 2.7 V	-	11	25	-	30	35	ns
		V_{CC} = 2.7 V to 3.6 V	-	8	20	-	25	30	ns
		V_{CC} = 3.6 V to 4.3 V	-	8	20	-	25	30	ns

Triple low-ohmic single-pole double-throw analog switch

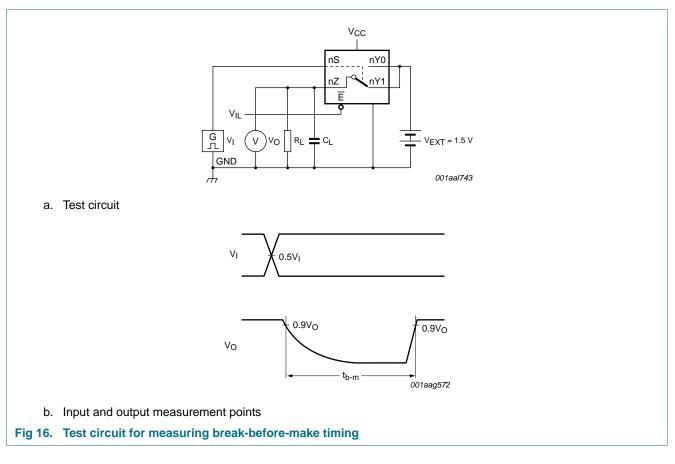
T_{amb} = -40 °C to +125 °C Symbol Parameter Conditions T_{amb} = 25 °C Unit Min Typ^[1] Max Min Max Max (85 °C) (125 °C) [2] break-before-make see Figure 16 t_{b-m} time $V_{CC} = 1.4 \text{ V}$ to 1.6 V 9 -19 --_ ns $V_{CC} = 1.65 \text{ V}$ to 1.95 V 17 7 -ns -- V_{CC} = 2.3 V to 2.7 V _ 13 4 ns -_ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ 10 3 ---_ ns V_{CC} = 3.6 V to 4.3 V 9 2 --ns -


Table 9. Dynamic characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 17.

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.5 V, 1.8 V, 2.5 V, 3.3 V and 4.3 V respectively.

[2] Break-before-make guaranteed by design.


12.1 Waveform and test circuits

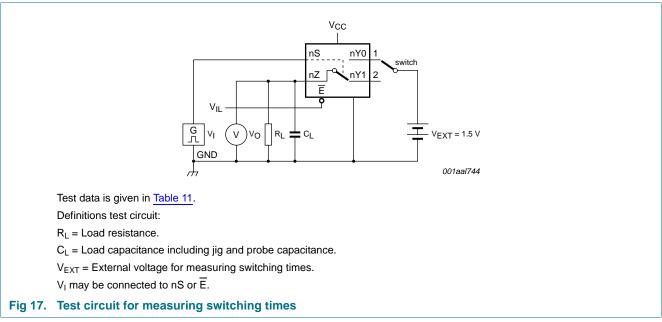


Table 10.Measurement points

Supply voltage	Input	Output
V _{cc}	V _M	V _X
1.4 V to 4.3 V	0.5V _{CC}	0.9V _{OH}

Triple low-ohmic single-pole double-throw analog switch

NX3L4053_Q100

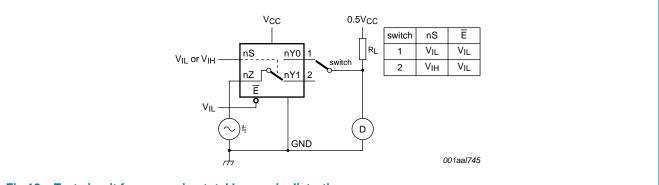
Triple low-ohmic single-pole double-throw analog switch

Table 11.Test data

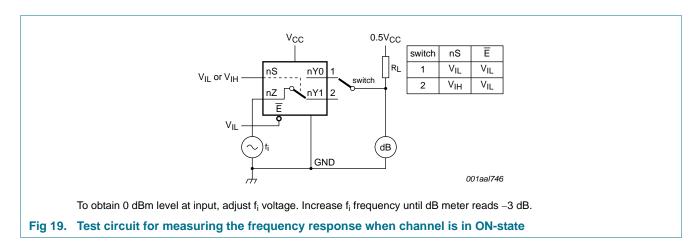
Supply voltage	Input		Load	
V _{cc}	VI	t _r , t _f	CL	R _L
1.4 V to 4.3 V	V _{CC}	\leq 2.5 ns	35 pF	50 Ω

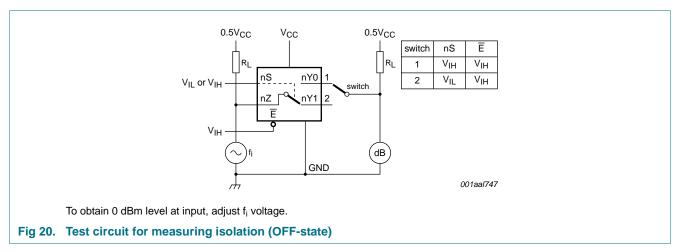
12.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics

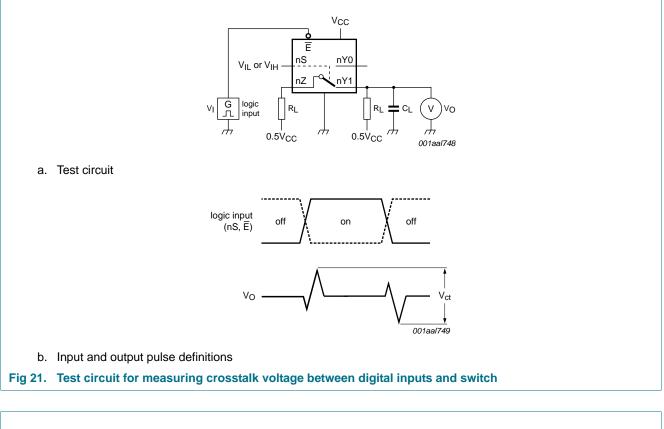

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $V_I = GND$ or V_{CC} (unless otherwise specified); $t_r = t_f \le 2.5$ ns; $T_{amb} = 25$ °C.

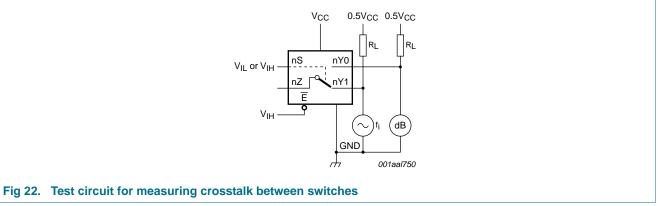
Symbol	Parameter	Conditions	Mir	Тур	Max	Unit
THD	total harmonic distortion	$f_i = 20$ Hz to 20 kHz; $R_L = 32 \Omega$; see Figure 18	<u>[1]</u>			
		V _{CC} = 1.4 V; V _I = 1 V (p-p)	-	0.15	-	%
		V _{CC} = 1.65 V; V _I = 1.2 V (p-p)	-	0.10	-	%
		V _{CC} = 2.3 V; V _I = 1.5 V (p-p)	-	0.02	-	%
		$V_{CC} = 2.7 \text{ V}; \text{ V}_{I} = 2 \text{ V} (p-p)$	-	0.02	-	%
		$V_{CC} = 4.3 \text{ V}; \text{ V}_{I} = 2 \text{ V} (p-p)$	-	0.02	-	%
f _(-3dB)	-3 dB frequency	$R_L = 50 \Omega$; see Figure 19	<u>[1]</u>			
	response	$V_{CC} = 1.4 \text{ V to } 4.3 \text{ V}$	-	60	-	MHz
α_{iso}	isolation (OFF-state)	$f_i = 100 \text{ kHz}; \text{ R}_L = 50 \Omega; \text{ see } \frac{\text{Figure 20}}{100 \text{ kHz}}$	<u>[1]</u>			
		$V_{CC} = 1.4 \text{ V to } 4.3 \text{ V}$	-	-90	-	dB
V _{ct}	crosstalk voltage	between digital inputs and switch; $f_i = 1 \text{ MHz}$; $C_L = 50 \text{ pF}$; $R_L = 50 \Omega$; see Figure 21				
		$V_{CC} = 1.4 \text{ V to } 3.6 \text{ V}$	-	0.2	-	V
		$V_{CC} = 3.6 \text{ V to } 4.3 \text{ V}$	-	0.3	-	V
Xtalk	crosstalk	between switches; $f_i = 100 \text{ kHz}$; $R_L = 50 \Omega$; see Figure 22	<u>[1]</u>			
		$V_{CC} = 1.4 \text{ V to } 4.3 \text{ V}$	-	-90	-	dB
Q _{inj}	charge injection	$f_i = 1 \text{ MHz}; C_L = 0.1 \text{ nF}; R_L = 1 \text{ M}\Omega; V_{gen} = 0 \text{ V}; R_{gen} = 0 \Omega; \text{ see } \frac{\text{Figure } 23}{2}$				
		V _{CC} = 1.5 V	-	3	-	рС
		V _{CC} = 1.8 V	-	4	-	рС
		$V_{CC} = 2.5 V$	-	6	-	рС
		$V_{CC} = 3.3 V$	-	9	-	рС
		$V_{CC} = 4.3 V$	-	15	-	рС

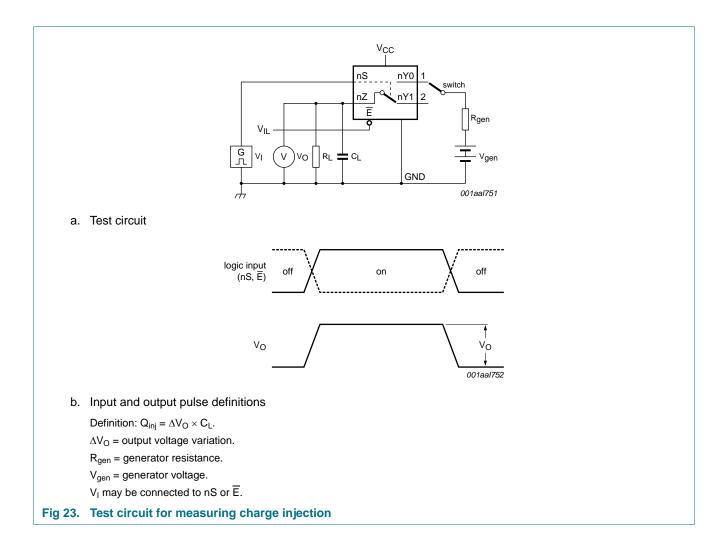

[1] f_i is biased at 0.5V_{CC}.


Triple low-ohmic single-pole double-throw analog switch

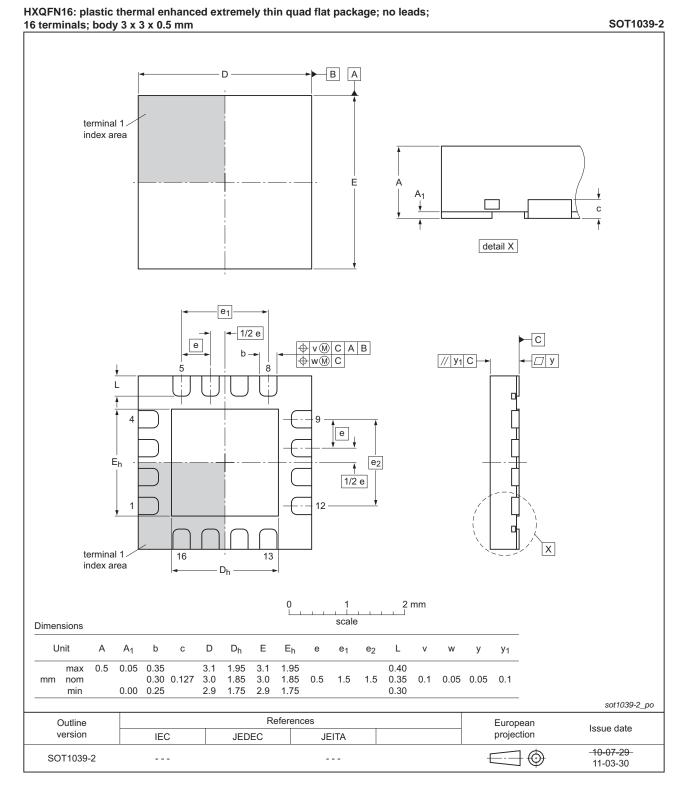
12.3 Test circuits




Fig 18. Test circuit for measuring total harmonic distortion



Triple low-ohmic single-pole double-throw analog switch


Triple low-ohmic single-pole double-throw analog switch

NX3L4053-Q100

Triple low-ohmic single-pole double-throw analog switch

13. Package outline

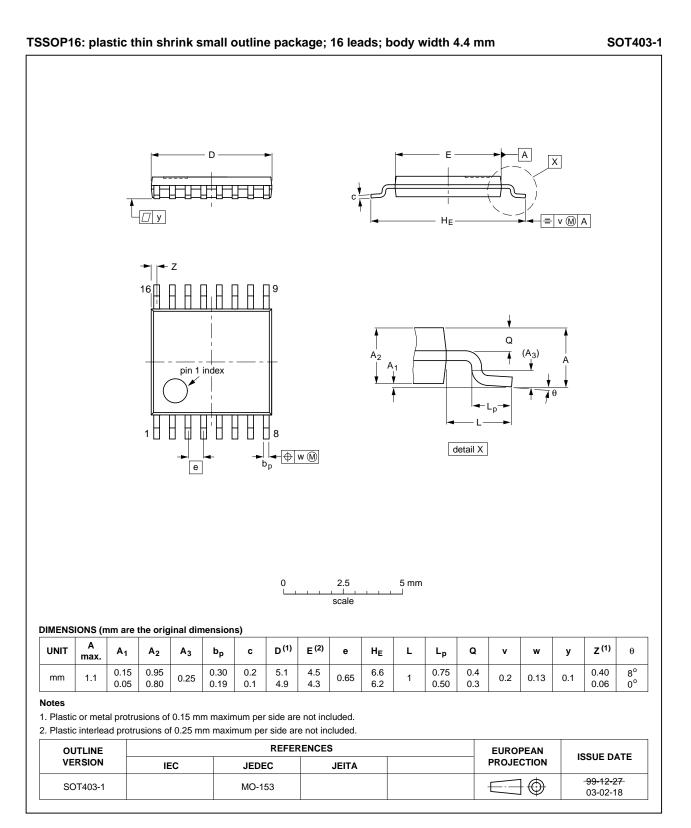


Fig 24. Package outline SOT1039-2 (HXQFN16)

All information provided in this document is subject to legal disclaimers.

NX3L4053_Q100

Triple low-ohmic single-pole double-throw analog switch

Fig 25. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

NX3L4053_Q100

Triple low-ohmic single-pole double-throw analog switch

14. Abbreviations

Table 13. Abbreviations				
Acronym	Description			
CDM	Charged Device Model			
CMOS	Complementary Metal-Oxide Semiconductor			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MIL	Military			
MM	Machine Model			
PDA	Personal Digital Assistant			

15. Revision history

Table 14. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
NX3L4053_Q100 v.1	20130418	Product data sheet	-	-	

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NX3L4053-Q100

Triple low-ohmic single-pole double-throw analog switch

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NX3L4053-Q100

Triple low-ohmic single-pole double-throw analog switch

18. Contents

2Features and benefits3Applications4Ordering information5Marking6Functional diagram7Pinning information7.1Pinning7.2Pin description8Functional description9Limiting values10Recommended operating conditions11Static characteristics11.1Test circuits11.2ON resistance11.3ON resistance test circuit and graphs12Dynamic characteristics13Package outline14Abbreviations15Revision history16Legal information16.3Disclaimers17Contact information18Contents	1
4Ordering information5Marking6Functional diagram7Pinning information7.1Pinning7.2Pin description8Functional description9Limiting values10Recommended operating conditions11Static characteristics11.1Test circuits11.2ON resistance11.3ON resistance test circuit and graphs12Dynamic characteristics13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.3Disclaimers17Contact information	1
5Marking.6Functional diagram7Pinning information7.1Pinning7.2Pin description8Functional description9Limiting values.10Recommended operating conditions.11Static characteristics.11.1Test circuits.11.2ON resistance11.3ON resistance test circuit and graphs.12Dynamic characteristics13.1Test circuits.14Abbreviations.15Revision history.16Legal information.16.1Data sheet status16.3Disclaimers.17Contact information.	2
6Functional diagram7Pinning information7.1Pinning7.2Pin description8Functional description9Limiting values10Recommended operating conditions11Static characteristics11.1Test circuits11.2ON resistance11.3ON resistance test circuit and graphs12Dynamic characteristics12.1Waveform and test circuits13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.3Disclaimers17Contact information	2
7Pinning information.7.1Pinning7.2Pin description8Functional description9Limiting values.10Recommended operating conditions.11Static characteristics.11.1Test circuits11.2ON resistance11.3ON resistance test circuit and graphs.12Dynamic characteristics13.1Package outline14Abbreviations.15Revision history.16Legal information.16.1Data sheet status16.2Definitions.16.3Disclaimers.17Contact information.	2
7.1Pinning7.2Pin description8Functional description9Limiting values.10Recommended operating conditions.11Static characteristics.11.1Test circuits.11.2ON resistance.11.3ON resistance test circuit and graphs.12Dynamic characteristics12.1Waveform and test circuits12.2Additional dynamic characteristics13Package outline14Abbreviations.15Revision history.16.1Data sheet status16.2Definitions.16.4Trademarks.17Contact information.	3
 7.2 Pin description	3
 Functional description Limiting values. Recommended operating conditions. Static characteristics. Test circuits. Test circuits. ON resistance. ON resistance test circuit and graphs. Dynamic characteristics. Waveform and test circuits. Additional dynamic characteristics. Test circuits. Test circuits. Package outline. Abbreviations. Legal information. Data sheet status Disclaimers. Trademarks. Contact information. 	3
9Limiting values.10Recommended operating conditions.11Static characteristics.11.1Test circuits.11.2ON resistance.11.3ON resistance test circuit and graphs.12Dynamic characteristics.12.1Waveform and test circuits.12.2Additional dynamic characteristics.13Package outline.14Abbreviations.15Revision history.16.1Data sheet status16.3Disclaimers.16.4Trademarks.17Contact information.	4
10Recommended operating conditions.11Static characteristics.11.1Test circuits.11.2ON resistance.11.3ON resistance test circuit and graphs.12Dynamic characteristics.12.1Waveform and test circuits.12.2Additional dynamic characteristics.13Package outline.14Abbreviations.15Revision history.16Legal information.16.3Disclaimers.16.4Trademarks.17Contact information.	4
11Static characteristics11.1Test circuits11.2ON resistance11.3ON resistance test circuit and graphs12Dynamic characteristics12.1Waveform and test circuits12.2Additional dynamic characteristics12.3Test circuits13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.3Disclaimers16.4Trademarks17Contact information	4
11.1Test circuits.11.2ON resistance.11.3ON resistance test circuit and graphs.12Dynamic characteristics.12.1Waveform and test circuits.12.2Additional dynamic characteristics.12.3Test circuits.13Package outline.14Abbreviations.15Revision history.16Legal information.16.1Data sheet status16.2Definitions.16.3Disclaimers.16.4Trademarks.17Contact information.	5
11.2ON resistance11.3ON resistance test circuit and graphs.12Dynamic characteristics12.1Waveform and test circuits12.2Additional dynamic characteristics12.3Test circuits13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.2Definitions16.3Disclaimers16.4Trademarks	5
11.3ON resistance test circuit and graphs.12Dynamic characteristics12.1Waveform and test circuits12.2Additional dynamic characteristics12.3Test circuits13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.3Disclaimers16.4Trademarks17Contact information	6
12Dynamic characteristics12.1Waveform and test circuits12.2Additional dynamic characteristics12.3Test circuits13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.2Definitions16.3Disclaimers16.4Trademarks	
12.1Waveform and test circuits12.2Additional dynamic characteristics12.3Test circuits13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.2Definitions16.3Disclaimers16.4Trademarks17Contact information	8
12.2Additional dynamic characteristics12.3Test circuits13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.2Definitions16.3Disclaimers16.4Trademarks17Contact information	10
12.3Test circuits13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.2Definitions16.3Disclaimers16.4Trademarks17Contact information	
13Package outline14Abbreviations15Revision history16Legal information16.1Data sheet status16.2Definitions16.3Disclaimers16.4Trademarks17Contact information	
14Abbreviations.15Revision history.16Legal information.16.1Data sheet status16.2Definitions.16.3Disclaimers.16.4Trademarks.17Contact information.	14
15Revision history.16Legal information.16.1Data sheet status16.2Definitions.16.3Disclaimers.16.4Trademarks.17Contact information.	17
16Legal information.16.1Data sheet status16.2Definitions.16.3Disclaimers16.4Trademarks.17Contact information.	19
 16.1 Data sheet status	19
 16.2 Definitions. 16.3 Disclaimers. 16.4 Trademarks. 17 Contact information. 	20
 16.3 Disclaimers 16.4 Trademarks 17 Contact information 	20
16.4Trademarks.17Contact information.	
17 Contact information	
	21
18 Contents	21
	22

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 April 2013 Document identifier: NX3L4053_Q100

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: NX3L4053HR-Q100X NX3L4053PW-Q100J