
Adafruit Bluefruit LE Shield
Created by lady ada

Last updated on 2018-12-14 04:50:57 PM UTC

2
8
9

10
11
11
12
12
13
13
13
19
19
19
21
22
22
22
23
23
24

24
25
25
25
25
25
26

26
26
26

28
28
29
29
32
32
33
33
38
38
39

Guide Contents

Guide Contents
Overview
Why Use Adafruit's Module?
Technical Specifications
Pinouts
Power Pins
SPI Pins
Other Pins
Assembly
Stack Alert
Attaching Headers
Wiring
Default Pinout
Changing the Default Pinout
Software
Configuration!
Which board do you have?

Bluefruit Micro or Feather 32u4 Bluefruit
Feather M0 Bluefruit LE
Bluefruit LE SPI Friend
Bluefruit LE UART Friend or Flora BLE

Configure the Pins Used
Common settings:
Software UART
Hardware UART
Mode Pin
SPI Pins
Software SPI Pins

Select the Serial Bus
UART Based Boards (Bluefruit LE UART Friend & Flora BLE)
SPI Based Boards (Bluefruit LE SPI Friend)

ATCommand
Opening the Sketch
Configuration
Running the Sketch
BLEUart
Opening the Sketch
Configuration
Running the Sketch
HIDKeyboard
Opening the Sketch
Configuration

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 2 of 154

39
40
41
42
44
46
46
47
47
48
49
51
52
55
55
56
56

57
58
59
61
61
62
62
64
64
64

66
66
66
67
67
68
68
68
69
69
69
71
71
71
71

Running the Sketch
Bonding the HID Keyboard
Android
iOS
OS X
Controller
Opening the Sketch
Configuration
Running the Sketch
Using Bluefruit LE Connect in Controller Mode
Streaming Sensor Data
Control Pad Module
Color Picker Module
HeartRateMonitor
Opening the Sketch
Configuration

If Using Hardware or Software UART

Running the Sketch
nRF Toolbox HRM Example
CoreBluetooth HRM Example
UriBeacon
Opening the Sketch
Configuration
Running the Sketch
HALP!

When using the Bluefruit Micro or a Bluefruit LE with Flora/Due/Leonardo/Micro the examples dont run?
I can't seem to "Find" the Bluefruit LE!

AT Commands
Test Command Mode '=?'
Write Command Mode '=xxx'
Execute Mode
Read Command Mode '?'
Standard AT
AT
ATI
ATZ
ATE
+++
General Purpose
AT+FACTORYRESET
AT+DFU
AT+HELP

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 3 of 154

72
72
72
74
74
74
75
75
76
76
77
77
77
78
80
80
81
82
83
83
84
84
86
86
86
87
87
88
89
89
90

90
91
91
92
92
93
93
94

97
98
98

AT+NVMWRITE
AT+NVMREAD
AT+MODESWITCHEN
Hardware
AT+BAUDRATE
AT+HWADC
AT+HWGETDIETEMP
AT+HWGPIO
AT+HWGPIOMODE
AT+HWI2CSCAN
AT+HWVBAT
AT+HWRANDOM
AT+HWMODELED
AT+UARTFLOW
Beacon
AT+BLEBEACON
AT+BLEURIBEACON
Deprecated: AT+EDDYSTONEENABLE
AT+EDDYSTONEURL
AT+EDDYSTONECONFIGEN
AT+EDDYSTONESERVICEEN
AT+EDDYSTONEBROADCAST
BLE Generic
AT+BLEPOWERLEVEL
AT+BLEGETADDRTYPE
AT+BLEGETADDR
AT+BLEGETPEERADDR
AT+BLEGETRSSI
BLE Services
AT+BLEUARTTX

TX FIFO Buffer Handling

AT+BLEUARTTXF
AT+BLEUARTRX
AT+BLEUARTFIFO
AT+BLEKEYBOARDEN
AT+BLEKEYBOARD
AT+BLEKEYBOARDCODE

Modifier Values
HID Keyboard Codes

AT+BLEHIDEN
AT+BLEHIDMOUSEMOVE
AT+BLEHIDMOUSEBUTTON

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 4 of 154

99
100
101
101
102
102
102
103
104
104
104
105
105
106
106
107
107
108
110
110
110
110
111
114
115
116
117
117
117
118
118
121
121
121
123
123
124
124
124
125
125

AT+BLEHIDCONTROLKEY
AT+BLEHIDGAMEPADEN
AT+BLEHIDGAMEPAD
AT+BLEMIDIEN
AT+BLEMIDIRX
AT+BLEMIDITX
AT+BLEBATTEN
AT+BLEBATTVAL
BLE GAP
AT+GAPCONNECTABLE
AT+GAPGETCONN
AT+GAPDISCONNECT
AT+GAPDEVNAME
AT+GAPDELBONDS
AT+GAPINTERVALS
AT+GAPSTARTADV
AT+GAPSTOPADV
AT+GAPSETADVDATA
BLE GATT
GATT Limitations
AT+GATTCLEAR
AT+GATTADDSERVICE
AT+GATTADDCHAR
AT+GATTCHAR
AT+GATTLIST
AT+GATTCHARRAW
Debug
AT+DBGMEMRD
AT+DBGNVMRD
AT+DBGSTACKSIZE
AT+DBGSTACKDUMP
History
Version 0.7.7
Version 0.7.0
Version 0.6.7
Version 0.6.6
Version 0.6.5
Version 0.6.2
Version 0.5.0
Version 0.4.7
Version 0.3.0

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 5 of 154

126
126

127
127
127
127

128
128
128
129
129
131
131
132
132
132
132
132
132
133

133
133
133
134
134
134
135
136
136

137
137

138
138

139
139
139
139

140
140
141
141
142

142
143
143

145
145
145

GATT Service Details
UART Service

UART Service
Characteristics

TX (0x0002)
RX (0x0003)

Factory Reset
Factory Reset via DFU Pin
FactoryReset Sample Sketch
AT+FACTORYRESET
Factory Reset via FCTR Test Pad
DFU Updates
Adafruit Bluefruit LE Connect
SDEP (SPI Data Transport)
SDEP Overview
SPI Setup

SPI Hardware Requirements
IRQ Pin
SDEP Packet and SPI Error Identifier
Sample Transaction

SDEP (Simple Data Exchange Protocol)
Endianness
Message Type Indicator
SDEP Data Transactions
Message Types

Command Messages
Response Messages
Alert Messages

Standard Alert IDs

Error Messages
Standard Error IDs

Existing Commands
SDEP AT Wrapper Usage

Software Resources
Bluefruit LE Client Apps and Libraries

Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)
Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

Bluefruit LE Connect for OS X (https://adafru.it/o9F) (Swift)
Bluefruit LE Command Line Updater for OS X (https://adafru.it/pLF) (Swift)

Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)
ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)
Bluefruit LE Python Wrapper (https://adafru.it/fQF)

Debug Tools
AdaLink (https://adafru.it/fPq) (Python)
Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

BLE FAQ
Can I talk to Classic Bluetooth devices with a Bluefruit LE modules?
Can my Bluefruit LE module connect to other Bluefruit LE peripherals

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 6 of 154

145
145
145
146
146
146
146
146
146
147

147
148
149
149
149
149
150
150
150
150
152
152

153
153
153

I just got my Bluefruit board and when I run a sketch it hangs forever on the 'Connecting...' stage!
Why are none of my changes persisting when I reset with the sample sketches?
Do I need CTS and RTS on my UART based Bluefruit LE Module?
How can I update to the latest Bluefruit LE Firmware?
Which firmware version supports 'xxx'?
Does my Bluefruit LE device support ANCS?
My Bluefruit LE device is stuck in DFU mode ... what can I do?

Bluefruit LE Connect (Android)
Nordic nRF Toolbox
Adafruit_nRF51822_Flasher

How do I reflash my Bluefruit LE module over SWD?
Can I access BETA firmware releases?
Why can't I see my Bluefruit LE device after upgrading to Android 6.0?
What is the theoretical speed limit for BLE?
Can my Bluefruit board detect other Bluefruit boards or Central devices?
How can I determine the distance between my Bluefruit module and my phone in m/ft?
How far away from my phone can I have my Bluefruit LE module?
How many GATT services and characteristics can I create?
Is it possible to modify or disable the built in GATT services and characteristics (DIS, DFU, etc.)?
How can I use BlueZ and gatttool with Bluefruit modules?
Can I use the IRQ pin to wake my MCU up from sleep when BLE UART data is available?
Can I also update the sketch running on the device using Bluefruit LE Connect?

Downloads
Schematic
Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 7 of 154

Overview

Would you like to add powerful and easy-to-use Bluetooth Low Energy to your robot, art or other electronics project?
Heck yeah! With BLE now included in modern smart phones and tablets, its fun to add wireless connectivity. So what
you really need is the new Adafruit Bluefruit LE Shield for Arduino!

The Bluefruit LE Shield (http://adafru.it/2746) makes it easy to add Bluetooth Low Energy connectivity to your Arduino
or compatible. Solder in the included headers and plug right in. It connects to your Arduino or other microcontroller
using the hardware SPI interface (MISO, MOSI, SCK) plus a chip select line (default D8), interrupt line (default D7) and
reset (default D4). You can rearrange any and all the pins if you'd like, by cutting the jumpers underneath, and soldering
jumper wires to your desired pins.

If you want this in non-shield format, check out the SPI friend (https://adafru.it/fLp). If you like Serial communication
more than SPI, we also have a breakout can talk UART (https://adafru.it/fao)

This multi-function module can do quite a lot! For most people, they'll be very happy to use the standard Nordic UART
RX/TX profile. In this profile, the Bluefruit acts as a data pipe, that can 'transparently' transmit back and forth from your
iOS or Android device. You can use our iOS App (https://adafru.it/iCi) or Android App (https://adafru.it/f4G) to get started
sending data from your Arduino to your phone quickly and painlessly.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 8 of 154

https://www.adafruit.com/products/2746
https://www.adafruit.com/product/2633
https://www.adafruit.com/product/2479
file:///bluefruit-le-connect-for-ios
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=en

Why Use Adafruit's Module?

There are plenty of BLE modules out there, with varying quality on the HW design as well as the firmware.

One of the biggest advantages of the Adafruit Bluefruit LE family is that we wrote all of the firmware running on the
devices ourselves from scratch.

We control every line of code that runs on our modules ... and so we aren't at the mercy of any third party vendors who
may or may not be interested in keeping their code up to date or catering to our customer's needs.

Because we control everything about the product, we add features that are important to our customers, can solve any
issues that do come up without begging any 3rd parties, and we can even change Bluetooth SoCs entirely if the need
ever arises!

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 9 of 154

Technical Specifications

ARM Cortex M0 core running at 16MHz
256KB flash memory
32KB SRAM
Transport: SPI at 4MHz with HW IRQ (5 pins required)
5V-safe inputs (Arduino Uno friendly, etc.)
On-board 3.3V voltage regulation
Bootloader with support for safe OTA firmware updates
Easy AT command set to get up and running quickly

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 10 of 154

Pinouts

Power Pins

5V: This is the power supply for the module, supply with 3.3-5V power supply input. This will be regulated down
to 3.3V to run the chip
GND: The common/GND pin for power and logic

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 11 of 154

SPI Pins

SCK: This is the serial clock pin, by default connected to the Hardware SPI clock pin on the 2x3 ICSP header
MISO: This is the Master In Slave Out SPI pin (nRF51 -> Arduino communication) by default connected to the
Hardware SPI MISO pin on the 2x3 ICSP header
MOSI: This is the Master Out Slave In SPI pin (Arduino -> nRF51 communication) by default connected to the
Hardware SPI MOSI pin on the 2x3 ICSP header
CS: This is the Chip Select SPI pin, which is used to indicate that the SPI device is currently in use. By default
connected to digital #8
IRQ: This is the nRF51 -> Arduino 'interrupt' pin that lets the Arduino or MCU know when data is available on the
nRF51, indicating that a new SPI transaction should be initiated by the Arduino/MCU. By default connected to
digital #7
RST: Holding this pin low will put the Bluefruit module into reset. By default connected to digital #4

Other Pins

SWCLK: This is the SWD clock pin (SWCLK), 3v logic - for advanced hackers!
SWDIO: This is the SWD data pin (SWDIO), 3v logic - for advanced hackers!
F.RST: This is the factory reset pin. When all else fails and you did something to really weird out your module, tie
this pad to ground while powering up the module and it will factory reset. You should try the DFU reset method
first though (see that tutorial page).

DFU Button: pushing this button when you power the shield up will force the Bluefruit LE module to enter a
special firmware update mode to update the firmware over the air.
Once the device is powered up, this pin can also be used to perform a factory reset. Press the button for >5s until
the two LEDs start to blink, then release the pin (set it to 5V or logic high) and a factory reset will be performed.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 12 of 154

Assembly

Stack Alert

Wanna stack? This tutorial shows how to use the plain

header to connect to an Arduino. If you want to use

stacking headers (https://adafru.it/dsu), don't follow

these steps!

Attaching Headers

This step is for all Arduino and compatibles. Please note that we use the hardware SPI port (the 2x3 pins) for talking to
the Bluefruit LE module. If that port is not available you'll have to jumper the SCK/MOSI/MISO pins to other pins and use
'software SPI'!

If you want to stack a shield on top of the Bluefruit LE Shield, you'll want to pick up some stacking headers
and use those instead of the plain header shown here!

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 13 of 154

https://learn.adafruit.com/assets/28001
https://www.adafruit.com/product/85

Begin by breaking the 36-pin male header into four

pieces: one 10-pin, two 8-pin and one 6-pin. Stick the

header into the Arduino sockets with the long pins

down.

Also place the 2x3 female socket header into the ICSP

header on the right of the board

Place the shield on top so that all the little pins stick out

through the matching holes in the shield. It should match

up perfectly!

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 14 of 154

https://learn.adafruit.com/assets/28002
https://learn.adafruit.com/assets/28003
https://learn.adafruit.com/assets/28004

Solder in all the header on the top strips

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 15 of 154

https://learn.adafruit.com/assets/28005
https://learn.adafruit.com/assets/28006
https://learn.adafruit.com/assets/28007

Don't forget the 6-pin socket!

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 16 of 154

https://learn.adafruit.com/assets/28008
https://learn.adafruit.com/assets/28009

Now solder in the other strip of header

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 17 of 154

https://learn.adafruit.com/assets/28010
https://learn.adafruit.com/assets/28011
https://learn.adafruit.com/assets/28012

Check your solder points, all look good? You can

proceed to the next steps

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 18 of 154

https://learn.adafruit.com/assets/28013

Wiring

Default Pinout

To make things fast, we attached all the pins required to a default pin out. In order to follow along with the default
tutorial wiring, the Bluefruit LE SPI Friend should not be modified and will use the following pins:

Bluefruit LE SPI Pins

SCK

MISO

MOSI

CS

IRQ

RST

Arduino Pins

Hardware SPI SCK

Hardware SPI MISO

hardware SPI MOSI

8

7

4

We'll be using hardware SPI by default (https://adafru.it/iCE). Those pins are shared with other digital pins. For example,
it uses the UNO's hardware pins #13, #12 and #11.

If you have an Uno or compatible (Atmega328) with the 2x3 header missing, you can short the jumpers on the bottom
of the shield to hard-connect SCK/MISO/MOSI to 13/12/11.

If you don't want to use the 2x3 hardware SPI for some reason, you can always use software SPI, which is a tad slower
but can use any 3 pins. Just solder jumper wires from the SCK/MISO/MOSI breakouts to whatever pins you like.

Changing the Default Pinout

The examples sketches may use slightly different pins. If you wish to change the location of the CS, IRQ or RST pins,
open the BluefruitConfig.h file in the example folder of the example you are using, and change the pin to an
appropriate value (See the Software section of this tutorial for instructions on installing the library):

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 19 of 154

https://www.arduino.cc/en/Reference/SPI

If you want to use software (bitbang) SPI, you can change the SCK, MISO and MOSI pins using the following macros in
the same file:

The BluefruitConfig.h file can be found in a dedicated tab, as shown below:

For all the example code, we have at the top of the sketch a few different ways you can communicate with the Bluefruit
LE: hardware serial, software serial, hardware SPI and software SPI.

For the SPI Bluefruit, you cannot use serial. However, you can choose between hardware and software SPI.

If you want to use hardware SPI, uncomment this chunk of code (and comment out the other three options)

If you want to use software/bitbang SPI, uncomment the following definition. You can then use any 6 pins (or 5, if you
dont want to use RST)

#define BLUEFRUIT_SPI_CS 8
#define BLUEFRUIT_SPI_IRQ 7
#define BLUEFRUIT_SPI_RST 4

#define BLUEFRUIT_SPI_SCK 13
#define BLUEFRUIT_SPI_MISO 12
#define BLUEFRUIT_SPI_MOSI 11

/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
 BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
 BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 20 of 154

Software

In order to try out our demos, you'll need to download the Adafruit BLE library for the nRF51 based modules such as this
one (a.k.a. Adafruit_BluefruitLE_nRF51)

You can check out the code here at github, (https://adafru.it/f4V) but its likely easier to just download by clicking:

https://adafru.it/f4W

https://adafru.it/f4W

Rename the uncompressed folder Adafruit_BluefruitLE_nRF51 and check that the Adafruit_BluefruitLE_nRF51 folder
contains Adafruit_BLE.cpp and Adafruit_BLE.h (as well as a bunch of other files)

Place the Adafruit_BluefruitLE_nRF51 library folder your arduinosketchfolder/libraries/ folder.
You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

After restarting, check that you see the library folder with examples:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 21 of 154

https://github.com/adafruit/Adafruit_BluefruitLE_nRF51
https://github.com/adafruit/Adafruit_BluefruitLE_nRF51/archive/master.zip
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Configuration!

Which board do you have?

There's a few products under the Bluefruit name:

If you are using the Bluefruit LE Shield then you have an

SPI-connected NRF51822 module. You can use this with

Atmega328 (Arduino UNO or compatible), ATmega32u4

(Arduino Leonardo, compatible) or ATSAMD21 (Arduino

Zero, compatible) and possibly others.

Your pinouts are Hardware SPI, CS = 8, IRQ = 7, RST = 4

Bluefruit Micro or Feather 32u4 Bluefruit
If you have a Bluefruit Micro or Feather 32u4 Bluefruit LE

then you have an ATmega32u4 chip with Hardware SPI,

CS = 8, IRQ = 7, RST = 4

Before you start uploading any of the example sketches, you'll need to CONFIGURE the Bluefruit interface -
there's a lot of options so pay close attention!

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 22 of 154

https://learn.adafruit.com/assets/29590
https://learn.adafruit.com/assets/29592

Feather M0 Bluefruit LE
If you have a Feather M0 Bluefruit LE then you have an

ATSAMD21 chip with Hardware SPI, CS = 8, IRQ = 7,

RST = 4

Bluefruit LE SPI Friend
If you have a stand-alone module, you have a bit of

flexibility with wiring however we strongly recommend

Hardware SPI, CS = 8, IRQ = 7, RST = 4

You can use this with just about any microcontroller with

5 or 6 pins

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 23 of 154

https://learn.adafruit.com/assets/29698
https://learn.adafruit.com/assets/29594

Bluefruit LE UART Friend or Flora BLE
If you have a stand-alone UART module you have some

flexibility with wiring. However we suggest hardware

UART if possible. You will likely need to use the flow

control CTS pin if you are not using hardware UART.

There's also a MODE pin

You can use this with just about any microcontroller with

at least 3 pins, but best used with a Hardware

Serial/UART capable chip!

Configure the Pins Used

You'll want to check the Bluefruit Config to set up the pins you'll be using for UART or SPI

Each example sketch has a secondary tab with configuration details. You'll want to edit and save the sketch to your
own documents folder once set up.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 24 of 154

https://learn.adafruit.com/assets/29595
https://learn.adafruit.com/assets/29596

Common settings:

You can set up how much RAM to set aside for a communication buffer and whether you want to have full debug
output. Debug output is 'noisy' on the serial console but is handy since you can see all communication between the
micro and the BLE

Software UART

If you are using Software UART, you can set up which pins are going to be used for RX, TX, and CTS flow control. Some
microcontrollers are limited on which pins can be used! Check the SoftwareSerial library documentation for more
details

Hardware UART

If you have Hardware Serial, there's a 'name' for it, usually Serial1 - you can set that up here:

Mode Pin

For both hardware and software serial, you will likely want to define the MODE pin. There's a few sketches that dont
use it, instead depending on commands to set/unset the mode. Its best to use the MODE pin if you have a GPIO to
spare!

SPI Pins

For both Hardware and Software SPI, you'll want to set the CS (chip select) line, IRQ (interrupt request) line and if you
have a pin to spare, RST (Reset)

// --
// These settings are used in both SW UART, HW UART and SPI mode
// --
#define BUFSIZE 128 // Size of the read buffer for incoming data
#define VERBOSE_MODE true // If set to 'true' enables debug output

// SOFTWARE UART SETTINGS
#define BLUEFRUIT_SWUART_RXD_PIN 9 // Required for software serial!
#define BLUEFRUIT_SWUART_TXD_PIN 10 // Required for software serial!
#define BLUEFRUIT_UART_CTS_PIN 11 // Required for software serial!
#define BLUEFRUIT_UART_RTS_PIN -1 // Optional, set to -1 if unused

// HARDWARE UART SETTINGS
#ifdef Serial1 // this makes it not complain on compilation if there's no Serial1
 #define BLUEFRUIT_HWSERIAL_NAME Serial1
#endif

#define BLUEFRUIT_UART_MODE_PIN 12 // Set to -1 if unused

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 25 of 154

Software SPI Pins

If you don't have a hardware SPI port available, you can use any three pins...its a tad slower but very flexible

Select the Serial Bus

Once you've configured your pin setup in the BluefruitConfig.h file, you can now check and adapt the example sketch.

The Adafruit_BluefruitLE_nRF51 library supports four different serial bus options, depending on the HW you are using:
SPI both hardware and software type, and UART both hardware and software type.

UART Based Boards (Bluefruit LE UART Friend & Flora BLE)

This is for Bluefruit LE UART Friend & Flora BLE boards. You can use either software serial or hardware serial. Hardware
serial is higher quality, and less risky with respect to losing data. However, you may not have hardware serial available!
Software serial does work just fine with flow-control and we do have that available at the cost of a single GPIO pin.

For software serial (Arduino Uno, Adafruit Metro) you should uncomment the software serial contructor below, and
make sure the other three options (hardware serial & SPI) are commented out.

For boards that require hardware serial (Adafruit Flora, etc.), uncomment the hardware serial constructor, and make
sure the other three options are commented out

SPI Based Boards (Bluefruit LE SPI Friend)

For SPI based boards, you should uncomment the hardware SPI constructor below, making sure the other constructors
are commented out:

// SHARED SPI SETTINGS
#define BLUEFRUIT_SPI_CS 8
#define BLUEFRUIT_SPI_IRQ 7
#define BLUEFRUIT_SPI_RST 4 // Optional but recommended, set to -1 if unused

// SOFTWARE SPI SETTINGS
#define BLUEFRUIT_SPI_SCK 13
#define BLUEFRUIT_SPI_MISO 12
#define BLUEFRUIT_SPI_MOSI 11

Refer to the table above to determine whether you have SPI or UART controlled Bluefruits!

// Create the bluefruit object, either software serial...uncomment these lines
SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN, BLUEFRUIT_SWUART_RXD_PIN);

Adafruit_BluefruitLE_UART ble(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
 BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);

/* ...or hardware serial, which does not need the RTS/CTS pins. Uncomment this line */
Adafruit_BluefruitLE_UART ble(BLUEFRUIT_HWSERIAL_NAME, BLUEFRUIT_UART_MODE_PIN);

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 26 of 154

If for some reason you can't use HW SPI, you can switch to software mode to bit-bang the SPI transfers via the following
constructor:

/* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

/* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then user selected CS/IRQ/RST */
Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
 BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
 BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 27 of 154

ATCommand

The ATCommand example allows you to execute AT commands from your sketch, and see the results in the Serial
Monitor. This can be useful for debugging, or just testing different commands out to see how they work in the real
world. It's a good one to start with!

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select atcommand:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 28 of 154

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode if you do
not configure & connect a MODE pin
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

To send an AT command to the Bluefruit LE module, enter the command in the textbox at the top of the Serial Monitor
and click the Send button:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 29 of 154

The response to the AT command will be displayed in the main part of the Serial Monitor. The response from 'ATI' is
shown below:

You can do pretty much anything at this prompt, with the AT command set. Try AT+HELP to get a list of all commands,
and try out ones like AT+HWGETDIETEMP (get temperature at the nRF51822 die) and AT+HWRANDOM (generate a
random number)

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 30 of 154

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 31 of 154

BLEUart

The BLEUart example sketch allows you to send and receive text data between the Arduino and a connected
Bluetooth Low Energy Central device on the other end (such as you mobile phone using the Adafruit Bluefruit LE
Connect application for Android (https://adafru.it/f4G) or iOS (https://adafru.it/f4H) in UART mode).

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select bleuart_cmdmode:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 32 of 154

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode if you do
not configure & connect a MODE pin
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 33 of 154

Once you see the request, use the App to connect to the Bluefruit LE module in UART mode so you get the text box on
your phone

Any text that you type in the box at the top of the Serial Monitor will be sent to the connected phone, and any data
sent from the phone will be displayed in the serial monitor:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 34 of 154

You can see the incoming string here in the Adafruit Bluefruit LE Connect app below (iOS in this case):

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 35 of 154

The response text ('Why hello, Arduino!') can be seen below:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 36 of 154

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 37 of 154

HIDKeyboard

The HIDKeyboard example shows you how you can use the built-in HID keyboard AT commands to send keyboard
data to any BLE-enabled Android or iOS phone, or other device that supports BLE HID peripherals.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select hidkeyboard:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 38 of 154

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode!
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 39 of 154

To send keyboard data, type anything into the textbox at the top of the Serial Monitor and click the Send button.

Bonding the HID Keyboard

Before you can use the HID keyboard, you will need to 'bond' it to your phone or PC. The bonding process establishes
a permanent connection between the two devices, meaning that as soon as your phone or PC sees the Bluefruit LE
module again it will automatically connect.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 40 of 154

The exact procedures for bonding the keyboard will varying from one platform to another.

Android

To bond the keyboard on a Bluetooth Low Energy enabled Android device, go to the Settings application and click
the Bluetooth icon.

Inside the Bluetooth setting panel you should see the Bluefruit LE module advertising itself as Bluefruit Keyboard
under the 'Available devices' list:

Tapping the device will start the bonding process, which should end with the Bluefruit Keyboard device being moved
to a new 'Paired devices' list with 'Connected' written underneath the device name:

When you no longer need a bond, or wish to bond the Bluefruit LE module to another device, be sure to
delete the bonding information on the phone or PC, otherwise you may not be able to connect on a new
device!

These screenshots are based on Android 5.0 running on a Nexus 7 2013. The exact appearance may vary
depending on your device and OS version.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 41 of 154

To delete the bonding information, click the gear icon to the right of the device name and the click the Forget button:

iOS

To bond the keyboard on an iOS device, go to the Settings application on your phone, and click the Bluetooth menu
item.

The keyboard should appear under the OTHER DEVICES list:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 42 of 154

Once the bonding process is complete the device will be moved to the MY DEVICES category, and you can start to
use the Bluefruit LE module as a keyboard:

To unbond the device, click the 'info' icon and then select the Forget this Device option in the menu:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 43 of 154

OS X

To bond the keyboard on an OS X device, go to the Bluetooth Preferences window and click the Pair button beside
the Bluefruit Keyboard device generated by this example sketch:

To unbond the device once it has been paired, click the small 'x' icon beside Bluefruit Keyboard:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 44 of 154

... and then click the Remove button when the confirmation dialogue box pops up:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 45 of 154

Controller

The Controller sketch allows you to turn your BLE-enabled iOS or Android device in a hand-held controller or an
external data source, taking advantage of the wealth of sensors on your phone or tablet.

You can take accelerometer or quaternion data from your phone, and push it out to your Arduino via BLE, or get the
latest GPS co-ordinates for your device without having to purchase (or power!) any external HW.

Opening the Sketch

To open the Controller sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE and
select controller:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 46 of 154

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial will also be easier to use if you wire up the MODE pin, you can use any pin but our tutorial has pin 12
by default. You can change this to any pin. If you do not set the MODE pin then make sure you have the mode
switch in CMD mode
If you are using a Flora or otherwise don't want to wire up the Mode pin, set the BLUEFRUIT_UART_MODE_PIN
to -1 in the configuration tab so that the sketch will use the +++ method to switch between Command and Data
mode!
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 47 of 154

Using Bluefruit LE Connect in Controller Mode

Once the sketch is running you can open Adafruit's Bluefruit LE Connect application (available for
Android (https://adafru.it/f4G) or iOS (https://adafru.it/f4H)) and use the Controller application to interact with the sketch.
 (If you're new to Bluefruit LE Connect, have a look at our dedicated Bluefruit LE Connect learning
guide (https://adafru.it/iCm).)

On the welcome screen, select the Adafruit Bluefruit LE device from the list of BLE devices in range:

Then from the activity list select Controller:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 48 of 154

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
file:///bluefruit-le-connect-for-ios/settings

This will bring up a list of data points you can send from your phone or tablet to your Bluefruit LE module, by enabling
or disabling the appropriate sensor(s).

Streaming Sensor Data

You can take Quaternion (absolute orientation), Accelerometer, Gyroscope, Magnetometer or GPS Location data from
your phone and send it directly to your Arduino from the Controller activity.

By enabling the Accelerometer field, for example, you should see accelerometer data update in the app:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 49 of 154

The data is parsed in the example sketch and output to the Serial Monitor as follows:

Accel 0.20 -0.51 -0.76
Accel 0.22 -0.50 -0.83
Accel 0.25 -0.51 -0.83
Accel 0.21 -0.47 -0.76
Accel 0.27 -0.48 -0.82

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 50 of 154

Note that even though we only print 2 decimal points, the values are received from the App as a full 4-byte floating
point.

Control Pad Module

You can also use the Control Pad Module to capture button presses and releases by selecting the appropriate menu
item:

This will bring up the Control Pad panel, shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 51 of 154

Button presses and releases will all be logged to the Serial Monitor with the ID of the button used:

Color Picker Module

You can also send RGB color data via the Color Picker module, which presents the following color selection dialogue:

Button 8 pressed
Button 8 released
Button 3 pressed
Button 3 released

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 52 of 154

This will give you Hexadecimal color data in the following format:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 53 of 154

You can combine the color picker and controller sample sketches to make color-configurable animations triggered by
buttons in the mobile app-- very handy for wearables! Download this combined sample code (configured for Feather
but easy to adapt to FLORA, BLE Micro, etc.) to get started:

https://adafru.it/kzF

https://adafru.it/kzF

RGB #A42FFF

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 54 of 154

https://learn.adafruit.com/system/assets/assets/000/029/260/original/feather_bluefruit_neopixel_animation_controller.zip?1450791688

HeartRateMonitor

The HeartRateMonitor example allows you to define a new GATT Service and associated GATT Characteristics, and
update the characteristic values using standard AT commands.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select heartratemonitor:

This will open up a new instance of the example in the IDE, as shown below:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 55 of 154

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If Using Hardware or Software UART

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode if you do not
configure & connect a MODE pin

This demo uses some long data transfer strings, so we recommend defining and connecting both CTS and RTS to pins,
even if you are using hardware serial.

If you are using a Flora or just dont want to connect CTS or RTS, set the pin #define's to -1 and Don't forget to also
connect the CTS pin on the Bluefruit to ground! (The Flora has this already done)

If you are using RTS and CTS, you can remove this line below, which will slow down the data transmission

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 56 of 154

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

// this line is particularly required for Flora, but is a good idea
 // anyways for the super long lines ahead!
 ble.setInterCharWriteDelay(5); // 5 ms

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 57 of 154

If you open up an application on your mobile device or laptop that support the standard Heart Rate Monitor
Service (https://adafru.it/f4I), you should be able to see the heart rate being updated in sync with the changes seen in
the Serial Monitor:

nRF Toolbox HRM Example

The image below is a screenshot from the free nRF Toolbox (https://adafru.it/e9M) application from Nordic on Android
(also available on iOS (https://adafru.it/f4J)), showing the incoming Heart Rate Monitor data:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 58 of 154

https://developer.bluetooth.org/TechnologyOverview/Pages/HRS.aspx
https://play.google.com/store/apps/details?id=no.nordicsemi.android.nrftoolbox&hl=en
https://itunes.apple.com/app/nrf-toolbox/id820906058?mt=8

CoreBluetooth HRM Example

The image below is from a freely available CoreBluetooth sample application (https://adafru.it/f4K) from Apple showing
how to work with Bluetooth Low Energy services and characteristics:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 59 of 154

https://developer.apple.com/library/mac/samplecode/HeartRateMonitor/Introduction/Intro.html

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 60 of 154

UriBeacon

The UriBeacon example shows you how to use the built-in UriBeacon AT commands to configure the Bluefruit LE
module as a UriBeacon advertiser, following Google's Physical Web UriBeacon (https://adafru.it/edk) specification.

Opening the Sketch

To open the ATCommand sketch, click on the File > Examples > Adafruit_BluefruitLE_nRF51 folder in the Arduino IDE
and select uribeacon:

This will open up a new instance of the example in the IDE, as shown below. You can edit the URL that the beacon will
point to, from the default http://www.adafruit.com or just upload as is to test

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 61 of 154

https://github.com/google/uribeacon

Configuration

Check the Configuration! page earlier to set up the sketch for Software/Hardware UART or Software/Hardware SPI.
The default is hardware SPI

If using software or hardware Serial UART:

This tutorial does not need to use the MODE pin, make sure you have the mode switch in CMD mode if you do
not configure & connect a MODE pin
Don't forget to also connect the CTS pin on the Bluefruit to ground if you are not using it! (The Flora has this
already done)

Running the Sketch

Once you upload the sketch to your board (via the arrow-shaped upload icon), and the upload process has finished,
open up the Serial Monitor via Tools > Serial Monitor, and make sure that the baud rate in the lower right-hand corner
is set to 115200:

At this point you can open the Physical Web Application for Android (https://adafru.it/edi) or for
iOS (https://adafru.it/edj), and you should see a link advertising Adafruit's website:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 62 of 154

https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 63 of 154

HALP!

When using the Bluefruit Micro or a Bluefruit LE with Flora/Due/Leonardo/Micro the examples dont run?

We add a special line to setup() to make it so the Arduino will halt until it sees you've connected over the Serial
console. This makes debugging great but makes it so you cannot run the program disconnected from a computer.

Solution? Once you are done debugging, remove these two lines from setup()

I can't seem to "Find" the Bluefruit LE!

Getting something like this?

For UART/Serial Bluefruits:

Check you have the MODE switch in CMD and the MODE pin not wired to anything if it isnt used!
If you are trying to control the MODE from your micro, make sure you set the MODE pin in the sketch
Make sure you have RXI and TXO wired right! They are often swapped by accident
Make sure CTS is tied to GND if you are using hardware serial and not using CTS
Check the MODE red LED, is it blinking? If its blinking continuously, you might be in DFU mode, power cycle the
module!
If you are using Hardware Serial/Software Serial make sure you know which one and have that set up

If using SPI Bluefruit:

Make sure you have all 5 (or 6) wires connected properly.
If using hardware SPI, you need to make sure you're connected to the hardware SPI port, which differs
depending on the main chipset.

If using Bluefruit Micro:

 while (!Serial);
 delay(500);

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 64 of 154

Make sure you change the RESET pin to #4 in any Config file. Also be sure you are using hardware SPI to
connect!

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 65 of 154

AT Commands

The Bluefruit LE modules use a Hayes AT-style command set (https://adafru.it/ebJ)to configure the device.

The advantage of an AT style command set is that it's easy to use in machine to machine communication, while still
being somewhat user friendly for humans.

Test Command Mode '=?'

'Test' mode is used to check whether or not the specified command exists on the system or not.

Certain firmware versions or configurations may or may not include a specific command, and you can determine if the
command is present by taking the command name and appending '=?' to it, as shown below

If the command is present, the device will reply with 'OK'. If the command is not present, the device will reply
with 'ERROR'.

Write Command Mode '=xxx'

'Write' mode is used to assign specific value(s) to the command, such as changing the radio's transmit power level
using the command we used above.

To write a value to the command, simple append an '=' sign to the command followed by any paramater(s) you wish to
write (other than a lone '?' character which will be interpretted as tet mode):

If the write was successful, you will generally get an 'OK' response on a new line, as shown below:

If there was a problem with the command (such as an invalid parameter) you will get an 'ERROR' response on a new
line, as shown below:

Note: This particular error was generated because '3' is not a valid value for the AT+BLEPOWERLEVEL command.
 Entering '-4', '0' or '4' would succeed since these are all valid values for this command.

AT+BLESTARTADV=?

AT+BLESTARTADV=?
OK\r\n
AT+MISSINGCMD=?
ERROR\r\n

AT+BLEPOWERLEVEL=-8

AT+BLEPOWERLEVEL=-8
OK\r\n

AT+BLEPOWERLEVEL=3
ERROR\r\n

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 66 of 154

http://en.wikipedia.org/wiki/Hayes_command_set

Execute Mode

'Execute' mode will cause the specific command to 'run', if possible, and will be used when the command name is
entered with no additional parameters.

You might use execute mode to perform a factory reset, for example, by executing the AT+FACTORYRESET command
as follows:

NOTE: Many commands that are means to be read will perform the same action whether they are sent to the command
parser in 'execute' or 'read' mode. For example, the following commands will produce identical results:

If the command doesn't support execute mode, the response will normally be 'ERROR' on a new line.

Read Command Mode '?'

'Read' mode is used to read the current value of a command.

Not every command supports read mode, but you generally use this to retrieve information like the current transmit
power level for the radio by appending a '?' to the command, as shown below:

If the command doesn't support read mode or if there was a problem with the request, you will normally get
an 'ERROR' response.

If the command read was successful, you will normally get the read results followed by 'OK' on a new line, as shown
below:

Note: For simple commands, 'Read' mode and 'Execute' mode behave identically.

AT+FACTORYRESET

AT+FACTORYRESET
OK\r\n

AT+BLEGETPOWERLEVEL
-4\r\n
OK\r\n
AT+BLEGETPOWERLEVEL?
-4\r\n
OK\r\n

AT+BLEPOWERLEVEL?

AT+BLEPOWERLEVEL?
-4\r\n
OK\r\n

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 67 of 154

Standard AT

The following standard Hayes/AT commands are available on Bluefruit LE modules:

AT

Acts as a ping to check if we are in command mode. If we are in command mode, we should receive the 'OK' response.

Codebase Revision: 0.3.0

Parameters: None

Output: None

ATI

Displays basic information about the Bluefruit module.

Codebase Revision: 0.3.0

Parameters: None

Output: Displays the following values:

Board Name
Microcontroller/Radio SoC Name
Unique Serial Number
Core Bluefruit Codebase Revision
Project Firmware Revision
Firmware Build Date
Softdevice, Softdevice Version, Bootloader Version (0.5.0+)

Updates:

Version 0.4.7+ of the firmware adds the chip revision after the chip name if it can be detected (ex. 'nRF51822
QFAAG00').
Version 0.5.0+ of the firmware adds a new 7th record containing the softdevice, softdevice version and
bootloader version (ex. 'S110 7.1.0, 0.0').

AT
OK

ATI
BLEFRIEND
nRF51822 QFAAG00
FB462DF92A2C8656
0.5.0
0.5.0
Feb 24 2015
S110 7.1.0, 0.0
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 68 of 154

ATZ

Performs a system reset.

Codebase Revision: 0.3.0

Parameters: None

Output: None

ATE

Enables or disables echo of input characters with the AT parser

Codebase Revision: 0.3.0

Parameters: '1' = enable echo, '0' = disable echo

Output: None

+++

Dynamically switches between DATA and COMMAND mode without changing the physical CMD/UART select switch.

When you are in COMMAND mode, entering '+++\n' or '+++\r\n' will cause the module to switch to DATA mode, and
anything typed into the console will go direct to the BLUE UART service.

To switch from DATA mode back to COMMAND mode, simply enter '+++\n' or '+++\r\n' again (be sure to include the
new line character!), and a new 'OK' response will be displayed letting you know that you are back in COMMAND
mode (see the two 'OK' entries in the sample code below).

Codebase Revision: 0.4.7

Parameters: None

Output: None

ATZ
OK

Disable echo support
ATE=0
OK
#Enable echo support
ATE=1
OK

Note that +++ can also be used on the mobile device to send and receive AT command on iOS or Android,
though this should always be used with care.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 69 of 154

See the AT+MODESWITCHEN command to control the availability of the +++ command

ATI
BLEFRIEND
nRF51822 QFAAG00
B122AAC33F3D2296
0.4.6
0.4.6
Dec 22 2014
OK
+++
OK
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 70 of 154

General Purpose

The following general purpose commands are available on all Bluefruit LE modules:

AT+FACTORYRESET

Clears any user config data from non-volatile memory and performs a factory reset before resetting the Bluefruit
module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+DFU

Forces the module into DFU mode, allowing over the air firmware updates using a dedicated DFU app on iOS or
Android.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+HELP

Displays a comma-separated list of all AT parser commands available on the system.

Codebase Version: 0.3.0

Parameters: None

Output: A comma-separated list of all AT parser commands available on the system.

AT+FACTORYRESET
OK

As of version 0.5.0+ of the firmware, you can perform a factory reset by holding the DFU button down for 10s
until the blue CONNECTED LED lights up, and then releasing the button.

The AT parser will no longer responsd after the AT+DFU command is entered, since normal program
execution effectively halts and a full system reset is performed to start the bootloader code

AT+DFU
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 71 of 154

AT+NVMWRITE

Writes data to the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

offset: The numeric offset for the first byte from the starting position in the user NVM
datatype: Which can be one of STRING (1), BYTEARRAY (2) or INTEGER (3)
data: The data to write to NVM memory (the exact payload format will change based on the specified datatype).

Output: Nothing

AT+NVMREAD

Reads data from the 256 byte user non-volatile memory (NVM) region.

Codebase Version: 0.7.0

Parameters:

offset: The numeric offset for the first byte from the starting position in the user NVM
size: The number of bytes to read
datatype: The type used for the data being read, which is required to properly parse the data and display it as a
response. The value can be one of STRING (1), BYTEARRAY (2) or INTEGER (3)

Output: The data read back, formatted based on the datatype argument.

AT+MODESWITCHEN

Enables or disables mode switches via the '+++' command on the BLE peripheral of BLE UART side of the connection.

Codebase Version: 0.7.1

The sample code below may not match future firmware releases and is provided for illustration purposes only

AT+HELP
AT+FACTORYRESET,AT+DFU,ATZ,ATI,ATE,AT+DBGMEMRD,AT+DBGNVMRD,AT+HWLEDPOLARITY,AT+HWLED,AT+HWGETDIETEMP,AT+HWMODEPINPOLARITY,AT+HWMODEPIN,AT+HWGPIOMODE,AT+HWGPIO,AT+HWI2CSCAN,AT+HWADC,AT+HWVBAT,AT+HWPWM,AT+HWPWRDN,AT+BLEPOWERLEVEL,AT+BLEGETADDRTYPE,AT+BLEGETADDR,AT+BLEBEACON,AT+BLEGETRSSI,AT+GAPGETCONN,AT+GAPDISCONNECT,AT+GAPDEVNAME,AT+GAPDELBONDS,AT+GAPINTERVALS,AT+GAPSTARTADV,AT+GAPSTOPADV,AT+GAPAUTOADV,AT+GAPSETADVDATA,AT+BLEUARTTX,AT+BLEUARTRX,AT+GATTADDSERVICE,AT+GATTADDCHAR,AT+GATTCHAR,AT+GATTLIST,AT+GATTCLEAR,AT+HELP
OK

Write 32768 as an integer starting at byte 16 in user NVM
AT+NVMWRITE=16,INTEGER,32768
OK

Read an integer back from position 16 in user NVM
AT+NVMREAD=16, 4, INTEGER
32768
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 72 of 154

Parameters:

location: This can be a string, either 'local' or 'ble' indicating which side should have the '+++' command enabled
or disabled, 'local' being the Bluefruit peripheral and 'ble' being the phone or tablet.
state: '0' to disable '+++' mode switches, '1' to enable them.

Output: None

By default, '+++' is enabled locally, and disabled in BLE

Disable reomte '+++' mode switches
AT+MODESWITCHEN=ble,0
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 73 of 154

Hardware

The following commands allow you to interact with the low level HW on the Bluefruit LE module, such as reading or
toggling the GPIO pins, performing an ADC conversion ,etc.:

AT+BAUDRATE

Changes the baud rate used by the HW UART peripheral on the nRF51822. Note that we do not recommend using
higher baudrates than 9600 because the nRF51 UART can drop characters!

Codebase Revision: 0.7.0

Parameters: Baud rate, which must be one of the following values:

1200
2400
4800
9600
14400
19200
28800
38400
57600
76800
115200
230400
250000
460800
921600
1000000

Output: The current baud rate

AT+HWADC

Performs an ADC conversion on the specified ADC pin

Codebase Revision: 0.3.0

Parameters: The ADC channel (0..7)

Output: The results of the ADC conversion

Set the baud rate to 115200
AT+BAUDRATE=115200
OK

Check the current baud rate
AT+BAUDRATE
115200
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 74 of 154

AT+HWGETDIETEMP

Gets the temperature in degree celcius of the BLE module's die. This can be used for debug purposes (higher die
temperature generally means higher current consumption), but does not corresponds to ambient temperature and can
nto be used as a replacement for a normal temperature sensor.

Codebase Revision: 0.3.0

Parameters: None

Output: The die temperature in degrees celcius

AT+HWGPIO

Gets or sets the value of the specified GPIO pin (depending on the pin's mode).

Codebase Revision: 0.3.0

Parameters: The parameters for this command change depending on the pin mode.

OUTPUT MODE: The following comma-separated parameters can be used when updating a pin that is set as an
output:

Pin numbers
Pin state, where:

0 = clear the pin (logic low/GND)
1 = set the pin (logic high/VCC)

INPUT MODE: To read the current state of an input pin or a pin that has been configured as an output, enter the pin
number as a single parameter.

Output: The pin state if you are reading an input or checking the state of an input pin (meaning only 1 parameter is
supplied, the pin number), where:

0 means the pin is logic low/GND
1 means the pin is logic high/VCC

AT+HWADC=0
178
OK

AT+HWGETDIETEMP
32.25
OK

Trying to set the value of a pin that has not been configured as an output will produce an 'ERROR' response.

Some pins are reserved for specific functions on Bluefruit modules and can not be used as GPIO. If you try to
make use of a reserved pin number an 'ERROR' response will be generated.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 75 of 154

AT+HWGPIOMODE

This will set the mode for the specified GPIO pin (input, output, etc.).

Codebase Revision: 0.3.0

Parameters: This command one or two values (comma-separated in the case of two parameters being used):

The pin number
The new GPIO mode, where:

0 = Input
1 = Output
2 = Input with pullup enabled
3 = Input with pulldown enabled

Output: If a single parameters is passed (the GPIO pin number) the current pin mode will be returned.

AT+HWI2CSCAN

Set pin 14 HIGH
AT+HWGPIO=14,1
OK

Set pin 14 LOW
AT+HWGPIO=14,0
OK

Read the current state of pin 14
AT+HWGPIO=14
0
OK

Try to update a pin that is not set as an output
AT+HWGPIOMODE=14,0
OK
AT+HWGPIO=14,1
ERROR

Some pins are reserved for specific functions on Bluefruit modules and can not be used as GPIO. If you try to
make use of a reserved pin number an 'ERROR' response will be generated.

Configure pin 14 as an output
AT+HWGPIOMODE=14,0
OK

Get the current mode for pin 14
AT+HWPGIOMODE=14
0
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 76 of 154

Scans the I2C bus to try to detect any connected I2C devices, and returns the address of devices that were found
during the scan process.

Codebase Revision: 0.3.0

Parameters: None

Output: A comma-separated list of any I2C address that were found while scanning the valid address range on the I2C
bus, or nothing is no devices were found.

AT+HWVBAT

Returns the main power supply voltage level in millivolts

Codebase Revision: 0.3.0

Parameters: None

Output: The VBAT level in millivolts

AT+HWRANDOM

Generates a random 32-bit number using the HW random number generator on the nRF51822 (based on white noise).

Codebase Revision: 0.4.7

Parameters: None

Output: A random 32-bit hexadecimal value (ex. '0x12345678')

AT+HWMODELED

Allows you to override the default behaviour of the MODE led (which indicates the operating mode by default).

I2C scan with two devices detected
AT+HWI2CSCAN
0x23,0x35
OK

I2C scan with no devices detected
AT+HWI2CSCAN
OK

AT+HWVBAT
3248
OK

AT+HWRANDOM
0x769ED823
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 77 of 154

Codebase Revision: 0.6.6

Parameters: LED operating mode, which can be one of the following values:

disable or DISABLE or 0 - Disable the MODE LED entirely to save power
mode or MODE or 1 - Default behaviour, indicates the current operating mode
hwuart or HWUART or 2 - Toggles the LED on any activity on the HW UART bus (TX or RX)
bleuart or BLEUART or 3 - Toggles the LED on any activity on the BLE UART Service (TX or RX characteristic)
spi or SPI or 4 - Toggles the LED on any SPI activity
manual or MANUAL or 5 - Manually sets the state of the MODE LED via a second comma-separated parameter,
which can be on, off, or toggle.

Output: If run with no parameters, returns an upper-case string representing the current MODE LED operating mode
from the fields above

AT+UARTFLOW

Enables or disable hardware flow control (CTS + RTS) on the UART peripheral block of the nRF51822.

Codebase Revision: 0.7.0

Parameters: HW flow control state, which can be one of:

on
off
0
1

Output: If run with no parameters, returns a number representing whether flow control is enabled (1) or disabled (0).

Get the curent MODE LED setting
AT+HWMODELED
MODE
OK

Change the MODE LED to indicate BLE UART activity
AT+HWMODELED=BLEUART
OK

Manually toggle the MODE LED
AT+HWMODELED=MANUAL,TOGGLE
OK

Check the current flow control state
AT+UARTFLOW
1
OK

Disable HW flow control
AT+UARTFLOW=off
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 78 of 154

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 79 of 154

Beacon

Adafruit's Bluefruit LE modules currently support the following 'Beacon' technologies:

Beacon (Apple) via AT+BLEBEACON
UriBeacon (Google) via AT+BLEURIBEACON (deprecated)
Eddystone (Google) via AT+EDDYSTONE*

Modules can be configured to act as 'Beacons' using the following commands:

AT+BLEBEACON

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters are required to enable beacon mode:

Bluetooth Manufacturer ID (uint16_t)
128-bit UUID
Major Value (uint16_t)
Minor Value (uint16_t)
RSSI @ 1m (int8_t)

Output: None

Entering Nordic Beacon emulation using the sample code above, you can see the simulated beacon in Nordic's
'Beacon Config' tool below:

Enable Apple iBeacon emulation
Manufacturer ID = 0x004C
AT+BLEBEACON=0x004C,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-F0,0x0000,0x0000,-59
OK
Reset to change the advertising data
ATZ
OK

Enable Nordic Beacon emulation
Manufacturer ID = 0x0059
AT+BLEBEACON=0x0059,01-12-23-34-45-56-67-78-89-9A-AB-BC-CD-DE-EF-F0,0x0000,0x0000,-59
OK
Reset to change the advertising data
ATZ
OK

AT+BLEBEACON will cause the beacon data to be stored in non-volatile config memory on the Bluefruit LE
module, and these values will be persisted across system resets and power cycles. To remove or clear the
beacon data you need to enter the 'AT+FACTORYRESET' command in command mode.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 80 of 154

AT+BLEURIBEACON

Converts the specified URI into a UriBeacon (https://adafru.it/edk) advertising packet, and configures the module to
advertise as a UriBeacon (part of Google's Physical Web (https://adafru.it/ehZ) project).

To view the UriBeacon URIs you can use one of the following mobile applications:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 81 of 154

https://github.com/google/uribeacon
http://google.github.io/physical-web/

Android 4.3+: Physical Web (https://adafru.it/edi) on the Google Play Store
iOS: Physical Web (https://adafru.it/edj) in Apple's App Store

Codebase Revision: 0.4.7

Parameters: The URI to encode (ex. http://www.adafruit.com/blog (https://adafru.it/ei0))

Output: None of a valid URI was entered (length is acceptable, etc.).

If the supplied URI is too long you will get the following output:

Deprecated: AT+EDDYSTONEENABLE

This command will enable Eddystone (https://adafru.it/fSA) support on the Bluefruit LE module. Eddystone support must
be enabled before the other related commands can be used.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: The current state of Eddystone support if no parameters are provided (1 = enabled, 0 = disabled)

AT+BLEURIBEACON=http://www.adafruit.com/blog
OK

Reset to change the advertising data
ATZ
OK

AT+BLEURIBEACON=http://www.adafruit.com/this/uri/is/too/long
URL is too long
ERROR

If the URI that you are trying to encode is too long, try using a shortening service like bit.ly, and encode the
shortened URI.

UriBeacon should be considered deprecated as a standard, and EddyStone should be used for any future
development. No further development will happen in the Bluefruit LE firmware around UriBeacon.

This command was removed in firmware 0.7.0 to avoid confusion. Use AT+EDDYSTONESERVICEEN in 0.7.0
and higher.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 82 of 154

https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8
http://www.adafruit.com/blog
https://github.com/google/eddystone

AT+EDDYSTONEURL

This command will set the URL for the Eddystone-URL (https://adafru.it/fSB) protocol.

Codebase Revision: 0.6.6

Parameters:

The URL to encode (mandatory)
An optional second parameter indicates whether to continue advertising the Eddystone URL even when the
peripheral is connected to a central device
Firmware 0.6.7 added an optional third parameter for the RSSI at 0 meters value. This should be measured by the
end user by checking the RSSI value on the receiving device at 1m and then adding 41 to that value (to
compensate for the signal strength loss over 1m), so an RSSI of -62 at 1m would mean that you should enter -21 as
the RSSI at 0m. Default value is -18dBm.

Output: Firmware <= 0.6.6: none. With firmware >= 0.6.7 running this command with no parameters will return the
current URL.

AT+EDDYSTONECONFIGEN

This command causes the Bluefruit LE module to enable the Eddystone URL config service for the specified number of
seconds.

This command should be used in combination with the Physical Web application from Google, available for
Android (https://adafru.it/edi) or iOS (https://adafru.it/edj). Run this command then select the 'Edit URL' option from the
app to change the destination URL over the air.

Codebase Revision: 0.6.6

Parameters: The number of seconds to advertised the config service UUID

Output: None

Enable Eddystone support
AT+EDDYSTONEENABLE=1
OK

Check the current Eddystone status on the module
AT+EDDYSTONEENABLE
1
OK

Set the Eddystone URL to adafruit
AT+EDDYSTONEURL=http://www.adafruit.com
OK

Set the Eddystone URL to adafruit and advertise it even when connected
AT+EDDYSTONEURL=http://www.adafruit.com,1
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 83 of 154

https://github.com/google/eddystone/tree/master/eddystone-url
https://play.google.com/store/apps/details?id=physical_web.org.physicalweb
https://itunes.apple.com/us/app/physical-web/id927653608?mt=8

AT+EDDYSTONESERVICEEN

Adds or removes the Eddystone service from the GATT table (requires a reset to take effect).

Codebase Revision: 0.7.0

Parameters: Whether or not the Eddystone service should be enabled or not, using on of the following values:

on
off
1
0

Output: If the command is executed with no parameters it will disable a numeric value indicating whether the service is
enabled (1) or disabled (0).

AT+EDDYSTONEBROADCAST

This command can be used to start of stop advertising the Eddystone payload using the URL stored in non-volatile
memory (NVM).

Codebase Revision: 0.7.0

Parameters: Whether or not the payload should be broadcast, using one of the following values:

on
off
1
0

Output: If executed with no parameters, the current broadcast state will be displayed as a numeric value.

Start advertising the Eddystone config service for 5 minutes (300s)
AT+EDDYSTONECONFIGEN=300
OK

You must perform a system reset for this command to take effect.

Enable Eddystone service
AT+EddyStonServiceEn=on
OK

AT+EddyStonServiceEn=1
OK

Disable Eddystone service
AT+EddyStonServiceEn=off
OK

AT+EddyStonServiceEn=0
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 84 of 154

Enable broadcasting current setting of EddyStone (stored previously on nvm)
AT+EddyStoneBroadcast=on
OK

AT+EddyStoneBroadcast=1
OK

Disable broadcasting current setting of EddyStone (still stored on nvm)
AT+EddyStoneBroadcast=off
OK

AT+EddyStoneBroadcast=0
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 85 of 154

BLE Generic

The following general purpose BLE commands are available on Bluefruit LE modules:

AT+BLEPOWERLEVEL

Gets or sets the current transmit power level for the module's radio (higher transmit power equals better range, lower
transmit power equals better battery life).

Codebase Revision: 0.3.0

Parameters: The TX power level (in dBm), which can be one of the following values (from lowest to higher transmit
power):

-40
-20
-16
-12
-8
-4
0
4

Output: The current transmit power level (in dBm)

AT+BLEGETADDRTYPE

Gets the address type (for the 48-bit BLE device address).

Normally this will be '1' (random), which means that the module uses a 48-bit address that was randomly generated
during the manufacturing process and written to the die by the manufacturer.

The updated power level will take affect as soon as the command is entered. If the device isn't connected to
another device, advertising will stop momentarily and then restart once the new power level has taken affect.

Get the current TX power level (in dBm)
AT+BLEPOWERLEVEL
0
OK

Set the TX power level to 4dBm (maximum value)
AT+BLEPOWERLEVEL=4
OK

Set the TX power level to -12dBm (better battery life)
AT+BLEPOWERLEVEL=-12
OK

Set the TX power level to an invalid value
AT+BLEPOWERLEVEL=-3
ERROR

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 86 of 154

Random does not mean that the device address is randomly generated every time, only that a one-time random
number is used.

Codebase Revision: 0.3.0

Parameters: None

Output: The address type, which can be one of the following values:

0 = public
1 = random

AT+BLEGETADDR

Gets the 48-bit BLE device address.

Codebase Revision: 0.3.0

Parameters: None

Output: The 48-bit BLE device address in the following format: 'AA:BB:CC:DD:EE:FF'

AT+BLEGETPEERADDR

Gets the 48-bit address of the peer (central) device we are connected to.

Codebase Revision: 0.6.5

Parameters: None

Output: The 48-bit address of the connected central device in hex format. The command will return ERROR if we are
not connected to a central device.

AT+BLEGETADDRTYPE
1
OK

AT+BLEGETADDR
E4:C6:C7:31:95:11
OK

Please note that the address returned by the central device is almost always a random value that will change
over time, and this value should generally not be trusted. This command is provided for certain edge cases,
but is not useful in most day to day scenarios.

AT+BLEGETPEERADDR
48:B2:26:E6:C1:1D
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 87 of 154

AT+BLEGETRSSI

Gets the RSSI value (Received Signal Strength Indicator), which can be used to estimate the reliability of data
transmission between two devices (the lower the number the better).

Codebase Revision: 0.3.0

Parameters: None

Output: The RSSI level (in dBm) if we are connected to a device, otherwise '0'

Connected to an external device
AT+BLEGETRSSI
-46
OK

Not connected to an external device
AT+BLEGETRSSI
0
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 88 of 154

BLE Services

The following commands allow you to interact with various GATT services present on Bluefruit LE modules when
running in Command Mode.

AT+BLEUARTTX

This command will transmit the specified text message out via the UART Service (https://adafru.it/iCn) while you are
running in Command Mode.

Codebase Revision: 0.3.0

Parameters: The message payload to transmit. The payload can be up to 240 characters (since AT command strings
are limited to a maximum of 256 bytes total).

Output: This command will produce an ERROR message if you are not connected to a central device, or if the internal
TX FIFO on the Bluefruit LE module is full.

As of firmware release 0.6.2 and higher, AT+BLEUARTTX can accept a limited set of escape code sequences:

\r = carriage return
\n = new line
\t = tab
\b = backspace
\\ = backward slash

As of firmware release 0.6.7 and higher, AT+BLEUARTTX can accept the following escape code sequence since
AT+BLEUARTTX=? has a specific meaning to the AT parser:

\? = transmits a single question mark

As of firmware release 0.7.6 and higher, AT+BLEUARTTX can accept the following escape code sequence:

\+ = transmit a single '+' character without having to worry about `+++` mode switch combinations

ESCAPE SEQUENCE NOTE: If you are trying to send escape sequences in code via something like
'ble.print("...");' please note that you will need to send a double back-slash for the escape code to arrive as-
intended in the AT command. For example: ble.println("AT+BLEUARTTX=Some Test\\r\\n");

You must be connected to another device for this command to execute

Send a string when connected to another device
AT+BLEUARTTX=THIS IS A TEST
OK

Send a string when not connected
AT+BLEUARTTX=THIS IS A TEST
ERROR

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 89 of 154

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

TX FIFO Buffer Handling

Starting with firmware version 0.6.7, when the TX FIFO buffer is full a 200ms blocking delay will be used to see if any
free space becomes available in the FIFO before returning ERROR. The exact process is detailed in the flow chart
below:

You can use the AT+BLEUARTFIFO=TX (https://adafru.it/id3) command to check the size of the TX FIFO before sending
data to ensure that you have enough free space available in the buffer.

The TX FIFO has the following size, depending on the firmware version used:

Firmware <=0.6.6: 160 characters wide
Firmware >=0.6.7: 1024 characters wide

AT+BLEUARTTXF

This is a convenience function the serves the same purpose as AT+BLEUARTTX, but data is immediately sent in a

Note: The TX FIFO full check will happen for each GATT transaction (of up to 20 bytes of data each), so large
data transfers may have multiple 200ms wait states.

It IS possible with large data transfers that part of the payload can be transmitted, and the command can still
produce an ERROR if the FIFO doesn't empty in time in the middle of the payload transfer (since data is
transmitted in maximum 20 byte chunks). If you need to ensure reliable data transfer, you should always
check the TX FIFO size before sending data, which you can do using the AT+BLEUARTFIFO command. If not
enough space is available for the entire payload, add a SW delay until enough space is available. Any single
AT+BLEUARTTX command can fit into the FIFO, but multiple large instances of this command may cause the
FIFO to fill up mid transfer.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 90 of 154

single BLE packet ('F' for force packet). This command will accept a maximum of 20 characters, which is the limit of
what can be send in a single packet.

Codebase Revision: 0.7.6

Parameters: See AT+BLEUARTTX

Output: See AT+BLEUARTTX

AT+BLEUARTRX

This command will dump the UART service (https://adafru.it/iCn)'s RX buffer to the display if any data has been received
from from the UART service while running in Command Mode. The data will be removed from the buffer once it is
displayed using this command.

Any characters left in the buffer when switching back to Data Mode will cause the buffered characters to be displayed
as soon as the mode switch is complete (within the limits of available buffer space, which is 1024 bytes on current black
32KB SRAM devices, or 160 bytes for the blue first generation BLEFriend board based on 16KB SRAM parts).

Codebase Revision: 0.3.0

Parameters: None

Output: The RX buffer's content if any data is available, otherwise nothing.

AT+BLEUARTFIFO

This command will return the free space available in the BLE UART TX and RX FIFOs. If you are transmitting large
chunks of data, you may want to check if you have enough free space in the TX FIFO before sending, keeping in mind
that individual GATT packets can contain up to 20 user bytes each.

Codebase Revision: 0.6.7

Parameters: Running this command with no parameters will return two comma-separated values indicating the free
space in the TX buffer, following by the RX buffer. To request a specific buffer, you can execute the command with
either a "TX" or "RX" value (For example: "AT+BLEUARTFIFO=TX").

Output: The free space remaining in the TX and RX FIFO buffer if no parameter is present, otherwise the free space
remaining in the specified FIFO buffer.

You can also use the AT+BLEUARTFIFO=RX command to check if any incoming data is available or not.

Command results when data is available
AT+BLEUARTRX
Sent from Android
OK

Command results when no data is available
AT+BLEUARTRX
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 91 of 154

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

AT+BLEKEYBOARDEN

This command will enable GATT over HID (GoH) keyboard support, which allows you to emulate a keyboard on
supported iOS and Android devices. By default HID keyboard support is disabled, so you need to set
BLEKEYBOARDEN to 1 and then perform a system reset before the keyboard will be enumerated and appear in the
Bluetooth preferences on your phone, where if can be bonded as a BLE keyboard.

Codebase Revision: 0.5.0

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

AT+BLEKEYBOARD

Sends text data over the BLE keyboard interface (if it has previously been enabled via AT+BLEKEYBOARDEN).

Any valid alpha-numeric character can be sent, and the following escape sequences are also supported:

AT+BLEUARTFIFO
1024,1024
OK

AT+BLEUARTFIFO=TX
1024
OK

AT+BLEUARTFIFO=RX
1024
OK

As of firmware version 0.6.6 this command is now an alias for AT+BLEHIDEN

You must perform a system reset (ATZ) before the changes take effect!

Before you can use your HID over GATT keyboard, you will need to bond your mobile device with the
Bluefruit LE module in the Bluetooth preferences panel.

Enable BLE keyboard support then reset
AT+BLEKEYBOARDEN=1
OK
ATZ
OK

Disable BLE keyboard support then reset
AT+BLEKEYBOARDEN=0
OK
ATZ
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 92 of 154

\r - Carriage Return
\n - Line Feed
\b - Backspace
\t - Tab
\\ - Backslash

As of version 0.6.7 you can also use the following escape code when sending a single character
('AT+BLEKEYBOARD=?' has another meaning for the AT parser):

\? - Question mark

Codebase Revision: 0.5.0

Parameters: The text string (optionally including escape characters) to transmit

Output: None

AT+BLEKEYBOARDCODE

Sends a raw hex sequence of USB HID keycodes to the BLE keyboard interface including key modifiers and up to six
alpha-numeric characters.

This command accepts the following string-encoded byte array payload, matching the way HID over GATT sends
keyboard data:

Byte 0: Modifier
Byte 1: Reserved (should always be 00)
Bytes 2..7: Hexadecimal value(s) corresponding to the HID keys (if no character is used you can enter '00' or
leave trailing characters empty)

After a keycode sequence is sent with the AT+BLEKEYBOARDCODE command, you must send a second
AT+BLEKEYBOARDCODE command with at least two 00 characters to indicate the keys were released!

Modifier Values

The modifier byte can have one or more of the following bits set:

Bit 0 (0x01): Left Control
Bit 1 (0x02): Left Shift
Bit 2 (0x04): Left Alt
Bit 3 (0x08): Left Window
Bit 4 (0x10): Right Control
Bit 5 (0x20): Right Shift
Bit 6 (0x40): Right Alt

Send a URI with a new line ending to execute in Chrome, etc.
AT+BLEKEYBOARD=http://www.adafruit.com\r\n
OK

Send a single question mark (special use case, 0.6.7+)
AT+BLEKEYBOARD=\?
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 93 of 154

Bit 7 (0x80): Right Window

Codebase Revision: 0.5.0

Parameters: A set of hexadecimal values separated by a hyphen ('-'). Note that these are HID scan code values, not
standard ASCII values!

Output: None

HID Keyboard Codes

A list of hexademical-format HID keyboard codes can be found here (https://adafru.it/cQV) (see section 7), and are
listed below for convenience sake:

HID key code values don't correspond to ASCII key codes! For example, 'a' has an HID keycode value of '04',
and there is no keycode for an upper case 'A' since you use the modifier to set upper case values. For details,
google 'usb hid keyboard scan codes', and see the example below.

0x00 Reserved (no event indicated)
0x01 Keyboard ErrorRollOver
0x02 Keyboard POSTFail
0x03 Keyboard ErrorUndefined
0x04 Keyboard a and A
0x05 Keyboard b and B
0x06 Keyboard c and C
0x07 Keyboard d and D
0x08 Keyboard e and E
0x09 Keyboard f and F
0x0A Keyboard g and G
0x0B Keyboard h and H
0x0C Keyboard i and I
0x0D Keyboard j and J
0x0E Keyboard k and K
0x0F Keyboard l and L
0x10 Keyboard m and M
0x11 Keyboard n and N
0x12 Keyboard o and O
0x13 Keyboard p and P
0x14 Keyboard q and Q
0x15 Keyboard r and R
0x16 Keyboard s and S
0x17 Keyboard t and T
0x18 Keyboard u and U
0x19 Keyboard v and V
0x1A Keyboard w and W
0x1B Keyboard x and X
0x1C Keyboard y and Y
0x1D Keyboard z and Z
0x1E Keyboard 1 and !
0x1F Keyboard 2 and @
0x20 Keyboard 3 and #
0x21 Keyboard 4 and $
0x22 Keyboard 5 and %
0x23 Keyboard 6 and ^
0x24 Keyboard 7 and &

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 94 of 154

http://www.freebsddiary.org/APC/usb_hid_usages.php

0x25 Keyboard 8 and *
0x26 Keyboard 9 and (
0x27 Keyboard 0 and)
0x28 Keyboard Return (ENTER)
0x29 Keyboard ESCAPE
0x2A Keyboard DELETE (Backspace)
0x2B Keyboard Tab
0x2C Keyboard Spacebar
0x2D Keyboard - and (underscore)
0x2E Keyboard = and +
0x2F Keyboard [and {
0x30 Keyboard] and }
0x31 Keyboard \ and |
0x32 Keyboard Non-US # and ~
0x33 Keyboard ; and :
0x34 Keyboard ' and "
0x35 Keyboard Grave Accent and Tilde
0x36 Keyboard, and <
0x37 Keyboard . and >
0x38 Keyboard / and ?
0x39 Keyboard Caps Lock
0x3A Keyboard F1
0x3B Keyboard F2
0x3C Keyboard F3
0x3D Keyboard F4
0x3E Keyboard F5
0x3F Keyboard F6
0x40 Keyboard F7
0x41 Keyboard F8
0x42 Keyboard F9
0x43 Keyboard F10
0x44 Keyboard F11
0x45 Keyboard F12
0x46 Keyboard PrintScreen
0x47 Keyboard Scroll Lock
0x48 Keyboard Pause
0x49 Keyboard Insert
0x4A Keyboard Home
0x4B Keyboard PageUp
0x4C Keyboard Delete Forward
0x4D Keyboard End
0x4E Keyboard PageDown
0x4F Keyboard RightArrow
0x50 Keyboard LeftArrow
0x51 Keyboard DownArrow
0x52 Keyboard UpArrow
0x53 Keypad Num Lock and Clear
0x54 Keypad /
0x55 Keypad *
0x56 Keypad -
0x57 Keypad +
0x58 Keypad ENTER
0x59 Keypad 1 and End
0x5A Keypad 2 and Down Arrow
0x5B Keypad 3 and PageDn
0x5C Keypad 4 and Left Arrow
0x5D Keypad 5
0x5E Keypad 6 and Right Arrow
0x5F Keypad 7 and Home
0x60 Keypad 8 and Up Arrow

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 95 of 154

0x60 Keypad 8 and Up Arrow
0x61 Keypad 9 and PageUp
0x62 Keypad 0 and Insert
0x63 Keypad . and Delete
0x64 Keyboard Non-US \ and |
0x65 Keyboard Application
0x66 Keyboard Power
0x67 Keypad =
0x68 Keyboard F13
0x69 Keyboard F14
0x6A Keyboard F15
0x6B Keyboard F16
0x6C Keyboard F17
0x6D Keyboard F18
0x6E Keyboard F19
0x6F Keyboard F20
0x70 Keyboard F21
0x71 Keyboard F22
0x72 Keyboard F23
0x73 Keyboard F24
0x74 Keyboard Execute
0x75 Keyboard Help
0x76 Keyboard Menu
0x77 Keyboard Select
0x78 Keyboard Stop
0x79 Keyboard Again
0x7A Keyboard Undo
0x7B Keyboard Cut
0x7C Keyboard Copy
0x7D Keyboard Paste
0x7E Keyboard Find
0x7F Keyboard Mute
0x80 Keyboard Volume Up
0x81 Keyboard Volume Down
0x82 Keyboard Locking Caps Lock
0x83 Keyboard Locking Num Lock
0x84 Keyboard Locking Scroll Lock
0x85 Keypad Comma
0x86 Keypad Equal Sign
0x87 Keyboard International1
0x88 Keyboard International2
0x89 Keyboard International3
0x8A Keyboard International4
0x8B Keyboard International5
0x8C Keyboard International6
0x8D Keyboard International7
0x8E Keyboard International8
0x8F Keyboard International9
0x90 Keyboard LANG1
0x91 Keyboard LANG2
0x92 Keyboard LANG3
0x93 Keyboard LANG4
0x94 Keyboard LANG5
0x95 Keyboard LANG6
0x96 Keyboard LANG7
0x97 Keyboard LANG8
0x98 Keyboard LANG9
0x99 Keyboard Alternate Erase
0x9A Keyboard SysReq/Attention
0x9B Keyboard Cancel
0x9C Keyboard Clear

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 96 of 154

The following example shows how you can use this command:

AT+BLEHIDEN

This command will enable GATT over HID (GoH) support, which allows you to emulate a keyboard, mouse or media
controll on supported iOS, Android, OSX and Windows 10 devices. By default HID support is disabled, so you need to
set BLEHIDEN to 1 and then perform a system reset before the HID devices will be enumerated and appear in on your
central device.

Codebase Revision: 0.6.6

Parameters: 1 or 0 (1 = enable, 0 = disable)

Output: None

0x9C Keyboard Clear
0x9D Keyboard Prior
0x9E Keyboard Return
0x9F Keyboard Separator
0xA0 Keyboard Out
0xA1 Keyboard Oper
0xA2 Keyboard Clear/Again
0xA3 Keyboard CrSel/Props
0xA4 Keyboard ExSel
0xE0 Keyboard LeftControl
0xE1 Keyboard LeftShift
0xE2 Keyboard LeftAlt
0xE3 Keyboard Left GUI
0xE4 Keyboard RightControl
0xE5 Keyboard RightShift
0xE6 Keyboard RightAlt
0xE7 Keyboard Right GUI

send 'abc' with left shift key (0x02) --> 'ABC'
AT+BLEKEYBOARDCODE=02-00-04-05-06-00-00
OK
Indicate that the keys were released (mandatory!)
AT+BLEKEYBOARDCODE=00-00
OK

You normally need to 'bond' the Bluefruit LE peripheral to use the HID commands, and the exact bonding
process will change from one operating system to another.

If you have previously bonded to a device and need to clear the bond, you can run the AT+FACTORYRESET
command which will erase all stored bond data on the Bluefruit LE module.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 97 of 154

AT+BLEHIDMOUSEMOVE

Moves the HID mouse or scroll wheen position the specified number of ticks.

All parameters are signed 8-bit values (-128 to +127). Positive values move to the right or down, and origin is the top
left corner.

Codebase Revision: 0.6.6

Parameters: X Ticks (+/-), Y Ticks (+/-), Scroll Wheel (+/-), Pan Wheel (+/-)

Output: None

AT+BLEHIDMOUSEBUTTON

Manipulates the HID mouse buttons via the specific string(s).

Codebase Revision: 0.6.6

Parameters: Button Mask String [L][R][M][B][F], Action [PRESS][CLICK][DOUBLECLICK][HOLD]

L = Left Button
R = Right Button
M = Middle Button
B = Back Button
F = Forward Button
If the second parameter (Action) is "HOLD", an optional third parameter can be passed specifying how long the
button should be held in milliseconds.

Output: None

Enable GATT over HID support on the Bluefruit LE module
AT+BLEHIDEN=1
OK

Reset so that the changes take effect
ATZ
OK

Move the mouse 100 ticks right and 100 ticks down
AT+BLEHIDMOUSEMOVE=100,100
OK

Scroll down 20 pixels or lines (depending on context)
AT+BLEHIDMOUSEMOVE=,,20,
OK

Pan (horizontal scroll) to the right (exact behaviour depends on OS)
AT+BLEHIDMOUSEMOVE=0,0,0,100

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 98 of 154

AT+BLEHIDCONTROLKEY

Sends HID media control commands for the bonded device (adjust volume, screen brightness, song selection, etc.).

Codebase Revision: 0.6.6

Parameters: The HID control key to send, followed by an optional delay in ms to hold the button

The control key string can be one of the following values:

System Controls (works on most systems)

BRIGHTNESS+
BRIGHTNESS-

Media Controls (works on most systems)

PLAYPAUSE
MEDIANEXT
MEDIAPREVIOUS
MEDIASTOP

Sound Controls (works on most systems)

VOLUME
MUTE
BASS
TREBLE
BASS_BOOST
VOLUME+
VOLUME-
BASS+
BASS-
TREBLE+
TREBLE-

Application Launchers (Windows 10 only so far)

EMAILREADER
CALCULATOR

Double click the left mouse button
AT+BLEHIDMOUSEBUTTON=L,doubleclick
OK

Press the left mouse button down, move the mouse, then release L
This is required to perform 'drag' then stop type operations
AT+BLEHIDMOUSEBUTTON=L
OK
AT+BLEHIDMOUSEMOVE=-100,50
OK
AT+BLEHIDMOUSEBUTTON=0
OK

Hold the backward mouse button for 200 milliseconds (OS dependent)
AT+BLEHIDMOUSEBUTTON=B,hold,200
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 99 of 154

FILEBROWSER

Browser/File Explorer Controls (Firefox on Windows/Android only)

SEARCH
HOME
BACK
FORWARD
STOP
REFRESH
BOOKMARKS

You can also send a raw 16-bit hexadecimal value in the '0xABCD' format. A full list of 16-bit 'HID Consumer Control
Key Codes' can be found here (https://adafru.it/cQV)(see section 12).

Output: Normally none.

AT+BLEHIDGAMEPADEN

Enables HID gamepad support in the HID service. By default the gamepad is disabled as of version 0.7.6 of the
firmware since it causes problems on iOS and OS X and should only be used on Android and Windows based devices.

Codebase Revision: 0.7.6

Parameters: Whether the gamepad service should be enabled via one of the following values:

on
off
1
0

Output: If executed with no parameters, a numeric value will be returned indicating whether the battery service is
enabled (1) or disabled (0).

If you are not bonded and connected to a central device, this command will return ERROR. Make sure you
are connected and HID support is enabled before running these commands.

Toggle the sound on the bonded central device
AT+BLEHIDCONTROLKEY=MUTE
OK

Hold the VOLUME+ key for 500ms
AT+BLEHIDCONTROLKEY=VOLUME+,500
OK

Send a raw 16-bit Consumer Key Code (0x006F = Brightness+)
AT+BLEHIDCONTROLKEY=0x006F
OK

This command requires a system reset to take effect.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 100 of 154

http://www.freebsddiary.org/APC/usb_hid_usages.php

AT+BLEHIDGAMEPAD

Sends a specific HID gamepad payload out over BLE

Codebase Revision: 0.7.0

Parameters: The following comma-separated parameters are available:

x: LEFT, RIGHT: If X=-1 then 'LEFT' is pressed, if X=1 then 'RIGHT' is pressed, if X=0 then neither left nor right are
pressed
y: UP, DOWN: If Y=-1 then 'UP' is pressed, if Y=1 then 'DOWN' is pressed, if Y=0 then neither up nor down are
pressed
buttons: 0x00-0xFF, which is a bit mask for 8 button 0-7

Output: Nothing

AT+BLEMIDIEN

Enables or disables the BLE MIDI service.

Codebase Revision: 0.7.0

Parameters: State, which can be one of:

on
off
0
1

Output: If executed with no parameters, it will return the current state of the MIDI service as an integer indicating if it is
enabled (1) or disabled (0).

HID gamepad is disabled by default as of version 0.7.6, and must first be enabled via
AT+BLEHIDGAMEPADEN=1 before it can be used.

Note: You need to send both 'press' and 'release' events for each button, otherwise the system will think that
the button is still pressed until a release state is received.

Press 'RIGHT' and 'Button0' at the same time
AT+BLEHIDGAMEPAD=1,0,0x01

Press 'UP' and 'Button1' + 'Button0' at the same time
AT+BLEHIDGAMEPAD=0,-1,0x03

Note: This command will require a reset to take effect.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 101 of 154

AT+BLEMIDIRX

Reads an incoming MIDI character array from the buffer.

Codebase Revision: 0.7.0

Parameters: None

Output: The midi event in byte array format

AT+BLEMIDITX

Sends a MIDI event to host.

Codebase Revision: 0.7.0

Parameters: The MIDI event in hex array format, which can be either:

A series of full MIDI events (up to 4 events)
Exactly 1 full MIDI event + several running events without status (up to 7)

Output: None

AT+BLEBATTEN

Enables the Battery Service following the definition from the Bluetooth SIG.

Codebase Revision: 0.7.0

Check the current state of the MIDI service
AT+BLEMIDIEN
1
OK

Enable the MIDI Service
AT+BLEMIDIEN=1
OK

AT+BLEMIDIRX
90-3C-7F
OK

Send 1 event (middle C with max velocity)
AT+BLEMIDITX=90-3C-7F
OK

Send 2 events
AT+BLEMIDITX=90-3C-7F-A0-3C-7F
OK

Send 1 full event + running event
AT+BLEMIDITX=90-3C-7F-3C-7F
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 102 of 154

Parameters: Whether the battery service should be enabled, via on of the following values:

on
off
1
0

Output: If executed with no parameters, a numeric value will be returned indicating whether the battery service is
enabled (1) or disabled (0).

AT+BLEBATTVAL

Sets the current battery level in percentage (0..100) for the Battery Service (if enabled).

Codebase Revision: 0.7.0

Parameters: The percentage for the battery in the range of 0..100.

Output: If executed with no parameters, the current battery level stored in the characteristic.

This command requires a system reset to take effect.

Enable the Battery Service
AT+BLEBATTEN=1
OK

Set the battery level to 72%
AT+BLEBATTVAL=72
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 103 of 154

BLE GAP

GAP (https://adafru.it/iCo), which stands for the Generic Access Profile, governs advertising and connections with
Bluetooth Low Energy devices.

The following commands can be used to configure the GAP settings on the BLE module.

You can use these commands to modify the advertising data (for ex. the device name that appears during the
advertising process), to retrieve information about the connection that has been established between two devices, or
the disconnect if you no longer wish to maintain a connection.

AT+GAPCONNECTABLE

This command can be used to prevent the device from being 'connectable'.

Codebase Revision: 0.7.0

Parameters: Whether or not the device should advertise itself as connectable, using one of the following values:

yes
no
1
0

Output: The 'connectable' state of the device if no parameter is provided

AT+GAPGETCONN

Diplays the current connection status (if we are connected to another BLE device or not).

Codebase Revision: 0.3.0

Parameters: None

Output: 1 if we are connected, otherwise 0

Make the device non-connectable (advertising only)
AT+GAPCONNECTABLE=0
OK

Check the current connectability status
AT+GAPCONNECTABLE
1
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 104 of 154

file:///introduction-to-bluetooth-low-energy/gap

AT+GAPDISCONNECT

Disconnects to the external device if we are currently connected.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPDEVNAME

Gets or sets the device name, which is included in the advertising payload for the Bluefruit LE module

Codebase Revision: 0.3.0

Parameters:

None to read the current device name
The new device name if you want to change the value

Output: The device name if the command is executed in read mode

Connected
AT+GAPGETCONN
1
OK

Not connected
AT+GAPGETCONN
0
OK

AT+GAPDISCONNECT
OK

Updating the device name will persist the new value to non-volatile memory, and the updated name will be
used when the device is reset. To reset the device to factory settings and clean the config data from memory
run the AT+FACTORYRESET command.

Read the current device name
AT+GAPDEVNAME
UART
OK

Update the device name to 'BLEFriend'
AT+GAPDEVNAME=BLEFriend
OK
Reset to take effect
ATZ
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 105 of 154

AT+GAPDELBONDS

Deletes and bonding information stored on the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPINTERVALS

Gets or sets the various advertising and connection intervals for the Bluefruit LE module.

Be extremely careful with this command since it can be easy to cause problems changing the intervals, and depending
on the values selected some mobile devices may no longer recognize the module or refuse to connect to it.

Codebase Revision: 0.3.0

Parameters: If updating the GAP intervals, the following comma-separated values can be entered:

Minimum connection interval (in milliseconds)
Maximum connection interval (in milliseconds)
Fast Advertising interval (in milliseconds)
Fast Advertising timeout (in seconds)
>= 0.7.0: Low power advertising interval (in milliseconds), default = 417.5 ms

Please note the following min and max limitations for the GAP parameters:

Absolute minimum connection interval: 10ms
Absolute maximum connection interval: 4000ms
Absolute minimum fast advertising interval: 20ms
Absolute maximum fast advertisting interval: 10240ms
Absolute minimum low power advertising interval: 20ms
Absolute maximum low power advertising interval: 10240ms

Output: If reading the current GAP interval settings, the following comma-separated information will be displayed:

AT+GAPDELBONDS
OK

To save power, the Bluefruit modules automatically drop to a lower advertising rate after 'fast advertising
timeout' seconds. The default value is 30 seconds ('Fast Advertising Timeout'). The low power advertising
interval is hard-coded to approximately 0.6s in firmware < 0.7.0. Support to control the low power interval was
added in the 0.7.0 firmware release via an optional fifth parameter.

If you only wish to update one interval value, leave the other comma-separated values empty (ex. ',,110,' will
only update the third value, advertising interval).

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 106 of 154

Minimum connection interval (in milliseconds)
Maximum connection interval (in milliseconds)
Advertising interval (in milliseconds)
Advertising timeout (in milliseconds)

AT+GAPSTARTADV

Causes the Bluefruit LE module to start transmitting advertising packets if this isn't already the case (assuming we
aren't already connected to an external device).

Codebase Revision: 0.3.0

Parameters: None

Output: None

AT+GAPSTOPADV

Stops advertising packets from being transmitted by the Bluefruit LE module.

Codebase Revision: 0.3.0

Parameters: None

Updating the GAP intervals will persist the new values to non-volatile memory, and the updated values will be
used when the device is reset. To reset the device to factory settings and clean the config data from memory
run the AT+FACTORYRESET command.

Read the current GAP intervals
AT+GAPINTERVALS
20,100,100,30

Update all values
AT+GAPINTERVALS=20,200,200,30
OK

Update only the advertising interval
AT+GAPINTERVALS=,,150,
OK

Command results when advertising data is not being sent
AT+GAPSTARTADV
OK

Command results when we are already advertising
AT+GAPSTARTADV
ERROR

Command results when we are connected to another device
AT+GAPSTARTADV
ERROR

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 107 of 154

Output: None

AT+GAPSETADVDATA

Sets the raw advertising data payload to the specified byte array (overriding the normal advertising data), following the
guidelines in the Bluetooth 4.0 or 4.1 Core Specification (https://adafru.it/ddd).

In particular, Core Specification Supplement (CSS) v4 contains the details on common advertising data fields like
'Flags' (Part A, Section 1.3) and the various Service UUID lists (Part A, Section 1.1). A list of all possible GAP Data Types
is available on the Bluetooth SIG's Generic Access Profile (https://adafru.it/cYs) page.

The Advertising Data payload consists of Generic Access Profile (https://adafru.it/cYs) data that is inserted into the
advertising packet in the following format: [U8:LEN] [U8:Data Type Value] [n:Value]

For example, to insert the 'Flags' Data Type (Data Type Value 0x01), and set the value to 0x06/0b00000110 (BR/EDR
Not Supported and LE General Discoverable Mode) we would use the following byte array:

0x02 indicates the number of bytes in the entry
0x01 is the 'Data Type Value (https://adafru.it/cYs)' and indicates that this is a 'Flag'
0x06 (0b00000110) is the Flag value, and asserts the following fields (see Core Specification 4.0, Volume 3, Part
C, 18.1):

LE General Discoverable Mode (i.e. anyone can discover this device)
BR/EDR Not Supported (i.e. this is a Bluetooth Low Energy only device)

If we also want to include two 16-bit service UUIDs in the advertising data (so that listening devices know that we
support these services) we could append the following data to the byte array:

0x05 indicates that the number of bytes in the entry (5)

AT+GAPSTOPADV
OK

WARNING: This command requires a degree of knowledge about the low level details of the Bluetooth 4.0 or
4.1 Core Specification, and should only be used by expert users. Misuse of this command can easily cause
your device to be undetectable by central devices in radio range.

WARNING: This command will override the normal advertising payload and may prevent some services from
acting as expected.

To restore the advertising data to the normal default values use the AT+FACTORYRESET command.

02-01-06

05-02-0D-18-0A-18

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 108 of 154

https://www.bluetooth.org/en-us/specification/adopted-specifications
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile

0x05 indicates that the number of bytes in the entry (5)
0x02 is the 'Data Type Value (https://adafru.it/cYs)' and indicates that this is an 'Incomplete List of 16-bit Service
Class UUIDs'
0x0D 0x18 is the first 16-bit UUID (which translates to 0x180D, corresponding to the Heart Rate
Service (https://adafru.it/ddB)).
0x0A 0x18 is another 16-bit UUID (which translates to 0x180A, corresponding to the Device Information
Service (https://adafru.it/ecj)).

Codebase Revision: 0.3.0

Parameters: The raw byte array that should be inserted into the advertising data section of the advertising packet,
being careful to stay within the space limits defined by the Bluetooth Core Specification.

Response: None

The results of this command can be seen in the screenshot below, taken from a sniffer analyzing the advertising
packets in Wireshark. The advertising data payload is higlighted in blue in the raw byte array at the bottom of the
image, and the packet analysis is in the upper section:

Including the service UUIDs is important since some mobile applications will only work with devices that
advertise a specific service UUID in the advertising packet. This is true for most apps from Nordic
Semiconductors, for example.

Advertise as Discoverable and BLE only with 16-bit UUIDs 0x180D and 0x180A
AT+GAPSETADVDATA=02-01-06-05-02-0d-18-0a-18
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 109 of 154

https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.heart_rate.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml

BLE GATT

GATT (https://adafru.it/iCp), which standards for the Generic ATTribute Profile, governs data organization and data
exchanges between connected devices. One device (the peripheral) acts as a GATT Server, which stores data in
Attribute records, and the second device in the connection (the central) acts as a GATT Client, requesting data from
the server whenever necessary.

The following commands can be used to create custom GATT services and characteristics on the BLEFriend, which are
used to store and exchange data.

Please note that any characteristics that you define here will automatically be saved to non-volatile FLASH config
memory on the device and re-initialised the next time the device starts.

GATT Limitations

The commands below have the following limitations due to SRAM and resource availability, which should be kept in
mind when creating or working with customer GATT services and characteristics.

These values apply to firmware 0.7.0 and higher:

Maximum number of services: 10
Maximum number of characteristics: 30
Maximum buffer size for each characteristic: 32 bytes
Maximum number of CCCDs: 16

If you want to clear any previous config value, enter the 'AT+FACTORYRESET' command before working on a new
peripheral configuration.

AT+GATTCLEAR

Clears any custom GATT services and characteristics that have been defined on the device.

Codebase Revision: 0.3.0

Parameters: None

Response: None

AT+GATTADDSERVICE

Adds a new custom service definition to the device.

Codebase Revision: 0.3.0

Parameters: This command accepts a set of comma-separated key-value pairs that are used to define the service

You need to perform a system reset via 'ATZ' before most of the commands below will take effect!

AT+GATTCLEAR
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 110 of 154

file:///introduction-to-bluetooth-low-energy/gatt

properties. The following key-value pairs can be used:

UUID: The 16-bit UUID to use for this service. 16-bit values should be in hexadecimal format (0x1234).
UUID128: The 128-bit UUID to use for this service. 128-bit values should be in the following format: 00-11-22-33-
44-55-66-77-88-99-AA-BB-CC-DD-EE-FF

Response: The index value of the service in the custom GATT service lookup table. (It's important to keep track of
these index values to work with the service later.)

AT+GATTADDCHAR

Adds a custom characteristic to the last service that was added to the peripheral (via AT+GATTADDSERVICE).

Note: Key values are not case-sensitive

Only one UUID type can be entered for the service (either UUID or UUID128)

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

AT+GATTADDCHAR must be run AFTER AT+GATTADDSERVICE, and will add the new characteristic to the
last service definition that was added.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 111 of 154

Codebase Revision: 0.3.0

Parameters: This command accepts a set of comma-separated key-value pairs that are used to define the
characteristic properties. The following key-value pais can be used:

UUID: The 16-bit UUID to use for the characteristic (which will be insert in the 3rd and 4th bytes of the parent
services 128-bit UUID). This value should be entered in hexadecimal format (ex. 'UUID=0x1234'). This value must
be unique, and should not conflict with bytes 3+4 of the parent service's 128-bit UUID.
PROPERTIES: The 8-bit characteristic properties field, as defined by the Bluetooth SIG. The following values can
be used:

0x02 - Read
0x04 - Write Without Response
0x08 - Write
0x10 - Notify
0x20 - Indicate

MIN_LEN: The minimum size of the values for this characteristic (in bytes, min = 1, max = 20, default = 1)
MAX_LEN: The maximum size of the values for the characteristic (in bytes, min = 1, max = 20, default = 1)
VALUE: The initial value to assign to this characteristic (within the limits of 'MIN_LEN' and 'MAX_LEN'). Value can
be an integer ("-100", "27"), a hexadecimal value ("0xABCD"), a byte array ("aa-bb-cc-dd") or a string ("GATT!").
>=0.7.0 - DATATYPE: This argument indicates the data type stored in the characteristic, and is used to help
parse data properly. It can be one of the following values:

AUTO (0, default)
STRING (1)
BYTEARRAY (2)
INTEGER (3)

>=0.7.0 - DESCRIPTION: Adds the specified string as the characteristic description entry
>=0.7.0 - PRESENTATION: Adds the specified value as the characteristic presentation format entry

Response: The index value of the characteristic in the custom GATT characteristic lookup table. (It's important to keep
track of these characteristic index values to work with the characteristic later.)

As of version 0.6.6 of the Bluefruit LE firmware you can now use custom 128-bit UUIDs with this command.
See the example at the bottom of this command description.

Note: Key values are not case-sensitive

Make sure that the 16-bit UUID is unique and does not conflict with bytes 3+4 of the 128-bit service UUID

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 112 of 154

Version 0.6.6 of the Bluefruit LE firmware added the ability to use a new 'UUID128' flag to add custom 128-bit UUIDs
that aren't related to the parent service UUID (which is used when passing the 16-bit 'UUID' flag).

To specify a 128-bit UUID for your customer characteristic, enter a value resembling the following syntax:

Version 0.7.0 of the Bluefruit LE firmware added the new DESCRIPTION and PRESENTATION keywoards,
corresponding the the GATT Characteristic User Description (https://adafru.it/oIA) and the GATT Characteristic
Presentation Format (https://adafru.it/oIB) Descriptors.

The DESCRIPTION field is a string that contains a short text description of the characteristic. Some apps may not
display this data, but it should be visible using something like the Master Control Panel application from Nordic on iOS
and Android.

The PRESENTATION field contains a 7-byte payload that encapsulates the characteristic presentation format data. It
requires a specific set of bytes and values to work properly. See the following link for details on how to format the
payload: https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?
u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml (https://adafru.it/oIB)

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
1
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

Add a custom characteristic to the above service using a
custom 128-bit UUID
AT+GATTADDCHAR=UUID128=00-11-22-33-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
1
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 113 of 154

https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_user_description.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml
https://developer.bluetooth.org/gatt/descriptors/Pages/DescriptorViewer.aspx?u=org.bluetooth.descriptor.gatt.characteristic_presentation_format.xml

The following example shows how you might use both of these new fields:

For the Characteristic Presentation Format we have:

Format = IEEE-11073 32-bit FLOAT (Decimal 23, Hex 0x17)
Exponent = 0/None
Unit = Thermodynamic temperature: Degrees Fahrenheit (0x27AC) - Bluetooth LE Unit List (https://adafru.it/oID)
Namespace = Bluetooth SIG Assigned Number (0x01)
Description = None (0x0000)

The results from Nordic's Master Control Panel app can be seen below:

AT+GATTCHAR

Gets or sets the value of the specified custom GATT characteristic (based on the index ID returned when the
characteristic was added to the system via AT+GATTADDCHAR).

Codebase Revision: 0.3.0

Parameters: This function takes one or two comma-separated functions (one parameter = read, two parameters =
write).

The first parameter is the characteristic index value, as returned from the AT+GATTADDCHAR function. This
parameter is always required, and if no second parameter is entered the current value of this characteristic will
be returned.
The second (optional) parameter is the new value to assign to this characteristic (within the MIN_SIZE and
MAX_SIZE limits defined when creating it).

Response: If the command is used in read mode (only the characteristic index is provided as a value), the response will
display the current value of the characteristics. If the command is used in write mode (two comma-separated values
are provided), the characteristics will be updated to use the provided value.

AT+GATTADDCHAR=UUID=0x2A37, PROPERTIES=0x10, MIN_LEN=2, MAX_LEN=3, VALUE=00-40,
 DESCRIPTION=HRM Measurement, PRESENTATION=17-00-AC-27-01-00-00

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 114 of 154

https://www.bluetooth.com/specifications/assigned-numbers/units

AT+GATTLIST

Lists all custom GATT services and characteristics that have been defined on the device.

Codebase Revision: 0.3.0

Parameters: None

Response: A list of all custom services and characteristics defined on the device.

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Read the battery measurement characteristic (index ID = 1)
AT+GATTCHAR=1
0x64
OK

Update the battery measurement characteristic to 32 (hex 0x20)
AT+GATTCHAR=1,32
OK

Verify the previous write attempt
AT+GATTCHAR=1
0x20
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 115 of 154

AT+GATTCHARRAW

This read only command reads binary (instead of ASCII) data from a characteristic. It is non-printable but has less
overhead and is easier when writing libraries in Arduino.

Codebase Revision: 0.7.0

Parameters: The numeric ID of the characteristic to display the data for

Output: Binary data corresponding to the specified characteristic.

Clear any previous custom services/characteristics
AT+GATTCLEAR
OK

Add a battery service (UUID = 0x180F) to the peripheral
AT+GATTADDSERVICE=UUID=0x180F
1
OK

Add a battery measurement characteristic (UUID = 0x2A19), notify enabled
AT+GATTADDCHAR=UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,VALUE=100
1
OK

Add a custom service to the peripheral
AT+GATTADDSERVICE=UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
2
OK

Add a custom characteristic to the above service (making sure that there
is no conflict between the 16-bit UUID and bytes 3+4 of the 128-bit service UUID)
AT+GATTADDCHAR=UUID=0x0002,PROPERTIES=0x02,MIN_LEN=1,VALUE=100
2
OK

Get a list of all custom GATT services and characteristics on the device
AT+GATTLIST
ID=01,UUID=0x180F
 ID=01,UUID=0x2A19,PROPERTIES=0x10,MIN_LEN=1,MAX_LEN=1,VALUE=0x64
ID=02,UUID=0x11, UUID128=00-11-00-11-44-55-66-77-88-99-AA-BB-CC-DD-EE-FF
 ID=02,UUID=0x02,PROPERTIES=0x02,MIN_LEN=1,MAX_LEN=1,VALUE=0x64
OK

Note: This is a specialized command and no NEWLINE is present at the end of the command!

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 116 of 154

Debug

The following debug commands are available on Bluefruit LE modules:

AT+DBGMEMRD

Displays the raw memory contents at the specified address.

Codebase Revision: 0.3.0

Parameters: The following comma-separated parameters can be used with this command:

The starting address to read memory from (in hexadecimal form, with or without the leading '0x')
The word size (can be 1, 2, 4 or 8)
The number of words to read

Output: The raw memory contents in hexadecimal format using the specified length and word size (see examples
below for details)

AT+DBGNVMRD

Displays the raw contents of the config data section of non-volatile memory

Codebase Revision: 0.3.0

Properties: None

Output: The raw config data from non-volatile memory

Use these commands with care since they can easily lead to a HardFault error on the ARM core, which will
cause the device to stop responding.

Read 12 1-byte values starting at 0x10000009
AT+DBGMEMRD=0x10000009,1,12
FF FF FF FF FF FF FF 00 04 00 00 00
OK

Try to read 2 4-byte values starting at 0x10000000
AT+DBGMEMRD=0x10000000,4,2
55AA55AA 55AA55AA
OK

Try to read 2 4-byte values starting at 0x10000009
This will fail because the Cortex M0 can't perform misaligned
reads, and any non 8-bit values must start on an even address
AT+DBGMEMRD=0x10000009,4,2
MISALIGNED ACCESS
ERROR

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 117 of 154

AT+DBGSTACKSIZE

Returns the current stack size, to help detect stack overflow or detect stack memory usage when optimising memory
usage on the system.

Codebase Revision: 0.4.7

Parameters: None

Output: The current size of stack memory in bytes

AT+DBGSTACKDUMP

Dumps the current stack contents. Unused sections of stack memory are filled with '0xCAFEFOOD' to help determine
where stack usage stops.

This command is purely for debug and development purposes.

Codebase Revision: 0.4.7

Parameters: None

Output: The memory contents of the entire stack region

AT+DBGNVMRD
FE CA 38 05 00 03 00 00 01 12 01 00 55 41 52 54 00 14 00 64 00 64 00 1E 00 01 00 BA FF 00 00
OK

AT+DBGSTACKSIZE
1032
OK

AT+DBGSTACKDUMP
0x20003800: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003810: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003820: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003830: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003840: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003850: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003860: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003870: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003880: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003890: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038A0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038B0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038C0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038D0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038E0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200038F0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003900: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003910: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003920: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003930: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003940: CAFEF00D CAFEF00D CAFEF00D CAFEF00D

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 118 of 154

0x20003940: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003950: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003960: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003970: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003980: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003990: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039A0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039B0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039C0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039D0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039E0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x200039F0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A00: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A10: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A20: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A30: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A40: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A50: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A70: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A80: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003A90: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AA0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AB0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AC0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AD0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AE0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003AF0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B00: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B10: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B20: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B30: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B40: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B50: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B60: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B70: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B80: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003B90: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BA0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BB0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BC0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BD0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BE0: CAFEF00D CAFEF00D CAFEF00D CAFEF00D
0x20003BF0: CAFEF00D CAFEF00D 00000000 CAFEF00D
0x20003C00: 00000004 20001D04 CAFEF00D FFFFEF68
0x20003C10: CAFEF00D 00001098 CAFEF00D CAFEF00D
0x20003C20: CAFEF00D CAFEF00D 00001006 200018D8
0x20003C30: 00000001 200018D8 20001C50 00000004
0x20003C40: 20001BB0 000134A5 0000100D 20001D28
0x20003C50: 00000006 00000006 20001C38 20001D44
0x20003C60: 20001C6C 20001D44 00000006 00000005
0x20003C70: 20001D38 00000005 20001D38 00000000
0x20003C80: 00000001 00012083 200018C8 000013D3
0x20003C90: 00550000 00000001 80E80000 4FC40000
0x20003CA0: 000080E8 00000009 60900000 000080E8
0x20003CB0: 60140000 20002764 0009608F 000080E8
0x20003CC0: 80000000 000080E8 00000000 00129F5F
0x20003CD0: 00000000 0001E4D9 80E80000 200018C8
0x20003CE0: 200018D4 00000000 80E80000 000000FF
0x20003CF0: 0000011C 0001BCE1 0000203A 0001BC1D

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 119 of 154

0x20003D00: 00000000 0001BC1D 80E80000 0001BCE1
0x20003D10: 0000011C 0001BDA9 80E80000 0001BDA9
0x20003D20: 0000011C FFFFFFF9 008B8000 0001BC1D
0x20003D30: 00000048 00000010 0000A000 00000009
0x20003D40: 0001E326 00000001 80E80000 51538000
0x20003D50: 000080E8 0001E9CF 00000000 00000009
0x20003D60: 61C78000 000080E8 00000048 00000504
0x20003D70: 0000A1FC 0002125C 00000000 000080E8
0x20003D80: 00000000 0012A236 00000000 0001E4D9
0x20003D90: 000080E8 00000009 00004998 000080E8
0x20003DA0: 622C8000 0012A29B 00000042 0001E479
0x20003DB0: 40011000 000185EF 00006E10 00000000
0x20003DC0: 00000000 00000004 0000000C 00000000
0x20003DD0: 62780000 00018579 2000311B 0001ACDF
0x20003DE0: 00000000 20003054 20002050 00000001
0x20003DF0: 20003DF8 0002085D 00000001 200030D4
0x20003E00: 00000200 0001F663 00000001 200030D4
0x20003E10: 00000001 2000311B 0001F631 00020A6D
0x20003E20: 00000001 00000000 0000000C 200030D4
0x20003E30: 2000311B 00000042 200030D4 00020AD7
0x20003E40: 20002050 200030D4 20002050 00020833
0x20003E50: 20002050 20003F1B 20002050 0001FF89
0x20003E60: 20002050 0001FFA3 00000005 20003ED8
0x20003E70: 20002050 0001FF8B 00000010 00020491
0x20003E80: 00000001 0012A54E 00000020 00022409
0x20003E90: 00000000 20002050 200030D4 0001FF8B
0x20003EA0: 00021263 00000005 0000000C 20003F74
0x20003EB0: 20003ED8 20002050 200030D4 00020187
0x20003EC0: 20003ED4 20003054 00000000 20003F75
0x20003ED0: 00000008 20003F64 00000084 FFFFFFFF
0x20003EE0: FFFFFFFF 00000008 00000001 00000008
0x20003EF0: 20302058 2000311B 0001F631 00020A6D
0x20003F00: 20002050 00000000 0000000C 200030D4
0x20003F10: 32002050 32303032 00323330 000258D7
0x20003F20: 20002050 200030D4 20002050 00020833
0x20003F30: 00000000 20002050 00000020 000001CE
0x20003F40: 20003F40 200030D4 00000004 0001ED83
0x20003F50: 200030D4 20003F60 000001D6 000001D7
0x20003F60: 000001D8 00016559 0000000C 00000000
0x20003F70: 6C383025 00000058 200030D4 FFFFFFFF
0x20003F80: 1FFF4000 00000028 00000028 000217F8
0x20003F90: 200020C7 000166C5 000166AD 00017ED9
0x20003FA0: FFFFFFFF 200020B8 2000306C 200030D4
0x20003FB0: 200020B4 000180AD 1FFF4000 200020B0
0x20003FC0: 200020B0 200020B0 1FFF4000 0001A63D
0x20003FD0: CAFEF00D CAFEF00D 200020B4 00000002
0x20003FE0: FFFFFFFF FFFFFFFF 1FFF4000 00000000
0x20003FF0: 00000000 00000000 00000000 00016113
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 120 of 154

History

This page tracks additions or changes to the AT command set based on the firmware version number (which you can
obtain via the 'ATI' command):

Version 0.7.7

The following AT commands and features were added in the 0.7.7 release:

Added AT+BLEUARTTXF (F for force) to immediately send the specified data out in an BLE UART packet (max 20
bytes), bypassing any FIFO delays and avoiding packets potentially being transmitted in two transactions.
Adjusted BLE UART service to use min connection interval as the tx interval
Added AT+DFUIRQ to enable using the DFU Pin for IRQ purposes when there is a supported event on the
nRF51822
Enabled the internal pullup resistor on the CS pin for Bluefruit SPI boards
Added AT+MODESWITCHEN to enable/disable +++ mode switching from the local (serial or SPI) or BLE UART
side. By default local = enabled, ble = disabled, meaning commands can only be executed via the local interface
by default.
Implemented a '\+' escape code to immediately send '+' chars without trigger the +++ delay waiting for further
similar input
Added AT+BLEHIDGAMEPADEN to separately enable HID Gamepad, since iOS/OSX has a conflict with gamepad
devices causing HID keyboard to not work properly.

The following bugs were fixed in release 0.7.7:

Fixed a factory reset issue when a long delay occurs in app_error_handler()
Fixed an issue where strings were being truncated at 64 chars in UART
Fixed HID keyboard support not working with iOS 9 & 10

Version 0.7.0

The following AT commands were added in the 0.7.0 release:

AT+BAUDRATE
Change the HW UART baudrate
AT+UARTFLOW
Enable or disable HW UART flow control
AT+BLEMIDIEN=on/off/0/1
Enable/disable MIDI service, requires a reset to take affect
AT+BLEMIDITX
Send a MIDI event
AT+BLEMIDIRX
Receive an available MIDI event
AT+GATTCHARRAW
Added this read only command to read binary (instead of ASCII) data from a characteristic. It is non-printable but
less overhead and easier for writing library in Arduino
AT+NVMWRITE=offset,datatype,data
Writes data to 256 byte user NVM. Datatype must be STRING (1), BYTEARRAY (2), or INTEGER (3)
AT+NVMREAD=offset,size,datatype
Reads data back from 256 bytes user NVM
AT+NVMREADRAW=offset,size binary data

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 121 of 154

Binary data (instead of ASCII) is returned, ending with "OK\r\n". It is non-printable but less overhead and easier to
use in some situations.
AT+BLEHIDGAMEPAD=x,y,buttons

X is LEFT, RIGHT: X=-1 LEFT is pressed, X=1 RIGHT is pressed, X=0 no pressed
Y is UP, DOWN: Y=-1 i UP, Y=1 is DOWN, Y=0 no pressed
Button [0x00-0xFF] is a bit mask for 8 button 0-7

AT+GAPCONNECTABLE=on/off/1/0
Allow/disallow connection to the device
AT+EDDYSTONESERVICEEN
Add/remove EddyStone service to GATT table (requires reset)
AT+EDDYSTONEBROADCAST=on/off/0/1
Start/stop broadcasting url using settings from NVM
AT+BLEBATTEN=on/off/1/0
Enable battery service. Reset required due to the service change.
AT+BLEBATTVAL=percent
Updates the Battery level, percent is 0 to 100

The following commands were changed in the 0.7.0 release:

AT+GATTADDCHAR

Added a DATATYPE option to indicate the data type for the GATT characteristic's payload. Valid option are:
AUTO (0, default), STRING (1), BYTEARRAY (2), INTEGER (3)
Added characteristic user description option via the DESCRIPTION flag
Added characteristic presentation format support via the PRESENTATION flag

AT+GAPINTERVALS
Added a new 'adv_lowpower_interval' parameter, default value is 417.5 ms. Current arguments are
now: min_conn, max_conn, adv_interval, adv_timeout, adv_lowpower_interval

Key bug fixes and changes in this release:

Significant BTLE UART speed and reliability improvements
Added callback support (work in progress) for:

BLE UART RX
GATT Characteristic(s) RX
MIDI RX
Connect/Disconnect

Increased MAX_LEN for each characteristic from 20 to 32 bytes
Changed the default GAP parameters:

Advertising interval = 20ms
Min connection interval = 20 ms
Max connection interval = 40 ms

Increased the maximum number of CCCDs saved to flash from 8 to 16
Eddystone config service disabled by default
Removed AT+EDDYSTONEENABLE to avoid confusion
Changed advertising timeout for Eddystone to 'unlimited'
Fixed Write-No-Response characteristic property, which wasn't being handled properly
Fixed timing constraints to meet Apple design guidelines
Fixed systick to ms calculation

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 122 of 154

Fixed all tests with google eddystone validator except for writing tx_power = 1 dB (not valid on nrf51)
Fixed a bug where writing from the central does not update the value on the characteristic correctly
Fixed an issue with HID examples, where when paired with Central, a disconnect then reconnect could not send
HID reports anymore

Version 0.6.7

The following AT commands were added in the 0.6.7 release:

AT+BLEUARTFIFO
Returns the number of free bytes available in the TX and RX FIFOs for the Bluetooth UART Service.

The following commands were changed in the 0.6.7 release:

AT+BLEUARTTX
If the TX FIFO is full, the command will wait up to 200ms to see if the FIFO size decreases before exiting and
returning an ERROR response due to the FIFO being full.
AT+BLEURIBEACON
This command will go back to using the old (deprecated) UriBeacon UUID (0xFED8), and only the
AT+EDDYSTONEURL command will use the newer Eddystone UUID (0xFEAA).
AT+BLEKEYBOARD and AT+BLEUARTTX
These commands now accept '\?' as an escape code since 'AT+BLEKEYBOARD=?' has another meaning for the
AT parser. To send a single question mark the following command should be used: 'AT+BLEKEYBOARD=\?'
or 'AT+BLEUARTTX=\?'
AT+EDDYSTONEURL
This command now accepts an optional third parameter for RSSI at 0m value (default is -18dBm).
Running this command with no parameters ('AT+EDDYSTONEURL\r\n') will now return the current URL.

Key bug fixes in this release:

The FIFO handling for the Bluetooth UART Service was improved for speed and stability, and the TX and RF
FIFOs were increased to 1024 bytes each.
An issue where a timer overflow was causing factory resets every 4 hours or so has been resolved.
Fixed a problem with the GATT server where 'value_len' was being incorrectly parsed for integer values in
characteristics where 'max_len' >4

Version 0.6.6

The following AT commands were added in the 0.6.6 release:

AT+EDDYSTONEURL
Update the URL for the beacon and switch to beacon mode
AT+EDDYSTONEENABLE
Enable/disable beacon mode using the configured url
AT+EDDYSTONECONFIGEN
Enable advertising for the the Eddystone configuration service for the specified number of seconds
AT+HWMODELED
Allows the user to override the default MODE LED behaviour with one of the following options: DISABLE, MODE,
HWUART, BLEUART, SPI, MANUAL
AT+BLECONTROLKEY
Allows HID media control values to be sent to a bonded central device (volume, screen brightness, etc.)
AT+BLEHIDEN

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 123 of 154

Enables or disables BLE HID support in the Bluefruit LE firmware (mouse, keyboard and media control)
AT+BLEMOUSEMOVE
To move the HID mouse
AT+BLEMOUSEBUTTON
To set the state of the HID mouse buttons

The following commands were changed in the 0.6.6 release:

AT+BLEKEYBOARDEN - Now an alias for AT+BLEHIDEN
AT+GATTADDCHAR - Added a new UUID128 field to allow custom UUIDs

Key bug fixes in this release:

Fixed issues with long beacon URLs
Fixed big endian issue in at+blebeacon for major & minor number

Known issues with this release:

Windows 10 seems to support a limited number of characteristics for the DIS service. We had to disable the Serial
Number characteristic to enable HID support with windows 10.

Version 0.6.5

The following AT commands were added in the 0.6.5 release:

AT+BLEGETPEERADDR (https://adafru.it/iCq)

The following commands were changed in the 0.6.5 release:

Increased the UART buffer size (on the nRF51) from 128 to 256 bytes
+++ now responds with the current operating mode
Fixed a bug with AT+GATTCHAR values sometimes not being saved to NVM
Fixed a bug with AT+GATTCHAR max_len value not being taken into account after a reset (min_len was always
used when repopulating the value)

Version 0.6.2

This is the first release targetting 32KB SRAM parts (QFAC). 16KB SRAM parts can't be used with this firmware due to
memory management issues, and should use the earlier 0.5.0 firmware.

The following AT commands were changed in the 0.6.2 release:

AT+BLEUARTTX (https://adafru.it/iCr)
Basic escape codes were added for new lines, tabs and backspace
AT+BLEKEYBOARD (https://adafru.it/iCr)
Also works with OS X now, and may function with other operating systems that support BLE HID keyboards

Version 0.5.0

The following AT commands were added in the 0.5.0 release:

AT+BLEKEYBOARDEN (https://adafru.it/iCr)
AT+BLEKEYBOARD (https://adafru.it/iCr)

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 124 of 154

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-generic#at-plus-blegetpeeraddr
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-bleuartrx
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboard
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboarden
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboard

AT+BLEKEYBOARDCODE (https://adafru.it/iCr)

The following AT commands were changed in the 0.5.0 release:

ATI (https://adafru.it/iCs)
The SoftDevice, SoftDevice version and bootloader version were added as a new (7th) record. For Ex: "S110 7.1.0,
0.0" indicates version 7.1.0 of the S110 softdevice is used with the 0.0 bootloader (future boards will use a newer
0.1 bootloader).

Other notes concerning 0.5.0:

Starting with version 0.5.0, you can execute the AT+FACTORYRESET command at any point (and without a terminal
emulator) by holding the DFU button down for 10 seconds until the blue CONNECTED LED starts flashing, then
releasing it.

Version 0.4.7

The following AT commands were added in the 0.4.7 release:

+++ (https://adafru.it/iCs)
AT+HWRANDOM (https://adafru.it/iCt)
AT+BLEURIBEACON (https://adafru.it/iCu)
AT+DBGSTACKSIZE (https://adafru.it/iCv)
AT+DBGSTACKDUMP (https://adafru.it/iCv)

The following commands were changed in the 0.4.7 release:

ATI
 (https://adafru.it/iCs)The chip revision was added after the chip name. Whereas ATI would previously report
'nRF51822', it will now add the specific HW revision if it can be detected (ex 'nRF51822 QFAAG00')

Version 0.3.0

First public release

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 125 of 154

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/ble-services#at-plus-blekeyboardcode
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#plus-plus-plus
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/hardware#at-plus-hwrandom
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/beacon#at-plus-bleuribeacon
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/debug#at-plus-dbgstacksize
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/debug#at-plus-dbgstackdump
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/standard-at#ati

GATT Service Details

Data in Bluetooth Low Energy is organized around units called 'GATT Services (https://adafru.it/iCp)' and 'GATT
Characteristics'. To expose data to another device, you must instantiate at least one service on your device.

Adafruit's Bluefruit LE Pro modules support some 'standard' services, described below (more may be added in the
future).

UART Service

The UART Service is the standard means of sending and receiving data between connected devices, and simulates a
familiar two-line UART interface (one line to transmit data, another to receive it).

The service is described in detail on the dedicated UART Service (https://adafru.it/iCn) page.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 126 of 154

file:///introduction-to-bluetooth-low-energy/gatt#services-and-characteristics
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/uart-service

UART Service

Base UUID: 6E400001-B5A3-F393- ​E0A9- ​E50E24DCCA9E

This service simulates a basic UART connection over two lines, TXD and RXD.

It is based on a proprietary UART service specification by Nordic Semiconductors. Data sent to and from this service
can be viewed using the nRFUART apps from Nordic Semiconductors for Android and iOS.

Characteristics

Nordic’s UART Service includes the following characteristics:

R = Read; W = Write; N = Notify; I = Indicate

TX (0x0002)

This characteristic is used to send data back to the sensor node, and can be written to by the connected Central
device (the mobile phone, tablet, etc.).

RX (0x0003)

This characteristic is used to send data out to the connected Central device. Notify can be enabled by the connected
device so that an alert is raised every time the TX channel is updated.

This service is available on every Bluefruit LE module and is automatically started during the power-up
sequence.

Name

TX

RX

Mandatory

Yes

Yes

UUID

0x0002

0x0003

Type

U8[20]

U8[20]

R

X

W

X

N

X

I

Characteristic names are assigned from the point of view of the Central device

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 127 of 154

Factory Reset

There are several methods that you can use to perform a factory reset on your Bluefruit LE module if something gets
misconfigured, or to delete persistent changes like UriBeacon or advertising payload changes, etc.

These methods are the same for both UART and SPI versions of Bluefruit LE

Factory Reset via DFU Pin

If you hold the DFU pin low (set the pin to GND) for >5 seconds, the red and blue LEDs next to the module will start
blinking and the device will perform a factory reset as soon as you release the DFU pin (disconnecting it from GND).

If you have a DFU button instead of a pin, just hold the button down.

FactoryReset Sample Sketch

There is a FactoryReset sample sketch in the Adafruit Bluefruit LE library, which can be access in the File > Examples >
Adafruit_BluefruitLE_nRF51 folder (See the Software section of this tutorial (https://adafru.it/iCj) for instructions on
installing the library):

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 128 of 154

file:///introducing-the-adafruit-bluefruit-spi-breakout/software

Upload this sketch and open the Serial Monitor and it should perform a factory reset for you:

AT+FACTORYRESET

You can also perform a factory reset by sending the AT+FACTORYRESET command to your Bluefruit LE module in your
favorite terminal emulator or using the ATCommand (https://adafru.it/iCk) example sketch.

This command will also cause the device to reset.

Factory Reset via FCTR Test Pad

On the bottom of the Bluefruit LE Friend board or shields there is a test pad or pin that exposes the Factory Reset pin
on the modules (marked FCR or F.RST). Setting this pad low when the device is powered up will cause a factory reset
at startup.

AT+FACTORYRESET
OK

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 129 of 154

file:///introducing-the-adafruit-bluefruit-le-uart-friend/atcommand

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 130 of 154

DFU Updates

We're constantly working on the Bluefruit LE firmware to add new features, and keep up to date with what customers
need and want.

To make sure you stay up to date with those changes, we've included an easy to use over the air updater on all of our
nRF51 based Bluefruit LE modules.

Adafruit Bluefruit LE Connect

Updating your Bluefruit LE device to the latest firmware is as easy as installing Adafruit's Bluefruit LE Connect
application (https://adafru.it/f4G) (Android) from the Google Play Store or Bluefruit LE Connect for
iOS (https://adafru.it/f4H) from the Apple App Store.

Any time a firmware update is available, the application will propose to download the latest binaries and take care of all
the details of transferring them to your Bluefruit device, ans shown in the video below:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 131 of 154

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8

SDEP (SPI Data Transport)

In order to facilitate switching between UART and SPI based Bluefruit LE modules, the Bluefruit LE SPI Friend and
Shield uses the same AT command set at the UART modules (ATI , AT+HELP , etc.).

These text-based AT commands are encoded as binary messages using a simple binary protocol we've named SDEP
(Simple Data Exhange Protocol).

SDEP Overview

SDEP was designed as a bus neutral protocol to handle binary commands and responses -- including error responses -
- in a standard, easy to extend manner. 'Bus neutral' means that we can use SDEP regardless of the transport
mechanism (USB HID, SPI, I2C, Wireless data over the air, etc.).

All SDEP messages have a four byte header, and in the case of the Bluefruit LE modules up to a 16 byte payloads.
Larger messages are broken up into several 4+16 bytes message chunks which are rebuilt at either end of the
transport bus. The 20 byte limit (4 byte header + 16 byte payload) was chosen to take into account the maximum
packet size in Bluetooth Low Energy 4.0 (20 bytes per packet).

SPI Setup

While SDEP is bus neutral, in the case of the Bluefruit LE SPI Friend or Shield, an SPI transport is used with the
following constraints and assumptions, largely to take into account the HW limitations of the nRF51822 system on chip:

SPI Hardware Requirements

The SPI clock should run <=4MHz
A 100us delay should be added between the moment that the CS line is asserted, and before any data is
transmitted on the SPI bus
The CS line must remain asserted for the entire packet, rather than toggling CS every byte
The CS line can however be deasserted and then reasserted between individual SDEP packets (of up to 20 bytes
each).
The SPI commands must be setup to transmit MSB (most significant bit (https://adafru.it/pBP)) first (not LSB first)

IRQ Pin

The IRQ line is asserted by the Bluefruit LE SPI Friend/Shield as long as an entire SDEP packet is available in the buffer
on the nRF51822, at which point you should read the packet, keeping the CS line asserted for the entire transaction (as
detailed above).

The IRQ line will remain asserted as long as one or more packets are available, so the line may stay high after reading
a packet, meaning that more packets are still available in the FIFO on the SPI slave side.

SDEP Packet and SPI Error Identifier

Once CS has been asserted and the mandatory 100us delay has passed, a single byte should be read from the SPI bus
which will indicate the type of payload available on the nRF51822 (see Message Type Indicator below for more
information on SDEP message types). Keep CS asserted after this byte has been read in case you need to continue
reading the rest of the frame.

Most of the time, you never need to deal with SDEP directly, but we've documented the protocol here in case
you need understand the Bluefruit LE SPI interface in depth!

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 132 of 154

https://en.wikipedia.org/wiki/Most_significant_bit

If a standard SDEP message type indicator (0x10, 0x20, 0x40 or 0x80) is encountered, keep reading as normal. There
are two other indicators that should be taken into account, though, which indicate a problem on the nRF51822 SPI
slave side:

0xFE: Slave device not ready (wait a bit and try again)
0xFF: Slave device read overflow indicator (you've read more data than is available)

This means there are six possible response bytes reading the message type indicator (the first byte read after an SDEP
command is sent): 0x10, 0x20, 0x40, 0x80, which indicate a valid message type, or 0xFE, 0xFF which indicate an error
condition.

Sample Transaction

The following image shows a sample SDEP response that is spread over two packets (since the response is > 20 bytes
in size). Notice that the IRQ line stays asserted between the packets since more than one packet was available in the
FIFO on the Bluefruit LE SPI side:

SDEP (Simple Data Exchange Protocol)

The Simple Data Exchange Protocol (SDEP) can be used to send and receive binary messages between two
connected devices using any binary serial bus (USB HID, USB Bulk, SPI, I2C, Wireless, etc.), exchanging data using one
of four distinct message types (Command, Response, Alert and Error messages).

The protocol is designed to be flexible and extensible, with the only requirement being that individual messages are
20 bytes or smaller, and that the first byte of every message is a one byte (U8) identifier that indicates the message
type, which defines the format for the remainder of the payload.

Endianness

All values larger than 8-bits are encoded in little endian format. Any deviation from this rule should be clearly
documented.

Message Type Indicator

The first byte of every message is an 8-bit identifier called the Message Type Indicator. This value indicates the type of
message being sent, and allows us to determine the format for the remainder of the message.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 133 of 154

SDEP Data Transactions

Either connected device can initiate SDEP transactions, though certain transport protocols imposes restrictions on who
can initiate a transfer. The master device, for example, always initiates transactions with Bluetooth Low Energy or USB,
meaning that slave devices can only reply to incoming commands.

Every device that receives a Command Message must reply with a Response Message, Error Message or Alert
message.

Message Types

Command Messages

Command messages (Message Type = 0x10) have the following structure:

Command ID (bytes 1-2) and Payload Length (byte 3) are mandatory in any command message. The message payload
is optional, and will be ignored if Payload Length is set to 0 bytes. When a message payload is present, it’s length can
be anywhere from 1..16 bytes, to stay within the 20-byte maximum message length.

A long command (>16 bytes payload) must be divided into multiple packets. To facilitate this, the More data field (bit 7
of byte 3) is used to indicate whether additional packets are available for the same command. The SDEP receiver must
continue to reads packets until it finds a packet with More data == 0, then assemble all sub-packets into one command
if necessary.

The contents of the payload are user defined, and can change from one command to another.

A sample command message would be:

Message Type

Command

Response

Alert

Error

ID (U8)

0x10

0x20

0x40

0x80

Name

Message Type

Command ID

Payload Length

Payload

Type

U8

U16

U8

...

Meaning

Always '0x10'

Unique Command Identifier

[7] More data

[6-5] Reserved

[4-0] Payload length (0..16)

Optional command payload (parameters, etc.)

10 34 12 01 FF

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 134 of 154

The first byte is the Message Type (0x10), which identifies this as a command message.
The second and third bytes are 0x1234 (34 12 in little-endian notation), which is the unique command ID. This
value will be compared against the command lookup table and redirected to an appropriate command handler
function if a matching entry was found.
The fourth byte indicates that we have a message payload of 1 byte
The fifth byte is the 1 byte payload: 0xFF

Response Messages

Response messages (Message Type = 0x20) are generated in response to an incoming command, and have the
following structure:

By including the Command ID that this response message is related to, the recipient can more easily correlate
responses and commands. This is useful in situations where multiple commands are sent, and some commands may
take a longer period of time to execute than subsequent commands with a different command ID.

Response messages can only be generate in response to a command message, so the Command ID field should
always be present.

A long response (>16 bytes payload) must be divided into multiple packets. Similar to long commands, the More data
field (bit 7 of byte 3) is used to indicate whether additional packets are available for the same response. On responses
that span more than one packet, the More data bit on the final packet will be set to 0 to indicate that this is the last
packet in the sequence. The SDEP receiver must re-assemble all sub-packets in into one payload when necessary.

If more precise command/response correlation is required a custom protocol should be developed, where a unique
message identifier is included in the payload of each command/response, but this is beyond the scope of this high-
level protocol definition.

A sample response message would be:

0: Message Type (U8)

1+2: Command ID (U16)

3: Payload Len (U8)

4: Payload (...)

0x10

0x34 0x12

0x01

0xFF

Name

Message Type

Command ID

Payload Length

Payload

Type

U8

U16

U8

Meaning

Always '0x20'

Command ID this message is a response to

[7] More data

[6-5] Reserved

[4-0] Payload length (0..16)

Optional response payload (parameters, etc.)

20 34 12 01 FF

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 135 of 154

The first byte is the Message Type (0x20), which identifies this as a response message.
The second and third bytes are 0x1234, which is the unique command ID that this response is related to.
The fourth byte indicates that we have a message payload of 1 byte.
The fifth byte is the 1 byte payload: 0xFF

Alert Messages

Alert messages (Message Type = 0x40) are sent whenever an alert condition is present on the system (low battery,
etc.), and have the following structure:

A sample alert message would be:

The first byte is the Message Type (0x40), which identifies this as an alert message.
The second and third bytes are 0xABCD, which is the unique alert ID.
The fourth byte indicates that we have a message payload of 4 bytes.
The last four bytes are the actual payload: 0x10000742 in this case, assuming we were transmitting a 32-bit
value in little-endian format.

Standard Alert IDs

Alert IDs in the range of 0x0000 to 0x00FF are reserved for standard SDEP alerts, and may not be used by custom
alerts.

0: Message Type (U8)

1+2: Command ID (U16)

3: Payload Len (U8)

4: Payload

0x20

0x34 0x12

0x01

0xFF

Name

Message Type

Alert ID

Payload Length

Payload

Type

U8

U16

U8

...

Meaning

Always '0x40'

Unique ID for the Alert Condition

Payload Length (0..16)

Optional response payload

40 CD AB 04 42 07 00 10

0: Message Type (U8)

1+2: Alert ID (U16)

3: Payload Length

4+5+6+7: Payload

0x40

0xCD 0xAB

0x04

0x42 0x07 0x00 0x10

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 136 of 154

The following alerts have been defined as a standard part of the protocol:

Error Messages

Error messages (Message Type = 0x80) are returned whenever an error condition is present on the system, and have
the following structure:

Whenever an error condition is present and the system needs to be alerted (such as a failed request, an attempt to
access a non-existing resource, etc.) the system can return a specific error message with an appropriate Error ID.

A sample error message would be:

Standard Error IDs

Error IDs in the range of 0x0000 to 0x00FF are reserved for standard SDEP errors, and may not be used by custom
errors.

The following errors have been defined as a standard part of the protocol:

ID

0x0000

0x0001

0x0002

0x0003

Alert

Reserved

System Reset

Battery Low

Battery Critical

Description

Reserved for future use

The system is about to reset

The battery level is low

The battery level is critically low

Name

Message Type

Error ID

Reserved

Type

U8

U16

U8

Meaning

Always '0x80'

Unique ID for the error condition

Reserved for future use

80 01 00 00

0: Message ID (U8)

1+2: Error ID (U16)

3: Reserved (U8)

0x80

0x01 0x00

0x00

ID

0x0000

0x0001

0x0003

Error

Reserved

Invalid CMD ID

Invalid Payload

Description

Reserved for future use

CMD ID wasn't found in the lookup table

The message payload was invalid

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 137 of 154

Existing Commands

At present, there are only four SDEP commands implemented in the Bluefruit SPIFRIEND32 firmware:

SDEP_CMDTYPE_INITIALIZE = 0xBEEF
SDEP_CMDTYPE_AT_WRAPPER = 0x0A00
SDEP_CMDTYPE_BLE_UARTTX = 0x0A01
SDEP_CMDTYPE_BLE_UARTRX = 0x0A02

SDEP_CMDTYPE_INITIALIZE can be used to reset the SDEP system when a HW RST line isn't available.

The two SDEP_CMDTYPE_UART* commands send data over the BLE UART service.

SDEP_CMDTYPE_AT_WRAPPER is the command you will use most of the time, which is a wrapper that sends AT
commands over the binary SDEP transport. This isn't terribly efficient, and a binary mechanism would have taken less
bytes per command, but it allows the reuse of all of the earlier AT parser commands without having to implement one
wrapper for every command which would significantly increase the overall code size.

SDEP AT Wrapper Usage

To use the SDEP AT Wrapp you simply send the correct header, along with the AT command you which to send to the
parser. For example:

Message Type: 0x10 (Command)
Command ID: 0x0A00
Command Payload Length: 3 bytes
Command Payload: 'a' + 't' + 'i'

This will cause the ATI command to be executed, which will return basic system information.

10-00-0A-03-‘a’-‘t’-‘I’

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 138 of 154

Software Resources

To help you get your Bluefruit LE module talking to other Central devices, we've put together a number of open source
tools for most of the major platforms supporting Bluetooth Low Energy.

Bluefruit LE Client Apps and Libraries

Adafruit has put together the following mobile or desktop apps and libraries to make it as easy as possible to get your
Bluefruit LE module talking to your mobile device or laptop, with full source available where possible:

Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)

Bluetooth Low Energy support was added to Android starting with Android 4.3 (though it was only really stable starting
with 4.4), and we've already released Bluefruit LE Connect to the Play Store (https://adafru.it/f4G).

The full source code (https://adafru.it/fY9) for Bluefruit LE Connect for Android is also available on Github to help you
get started with your own Android apps. You'll need a recent version of Android Studio (https://adafru.it/fYa) to use this
project.

Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

Apple was very early to adopt Bluetooth Low Energy, and we also have an iOS version of the Bluefruit LE
Connect (https://adafru.it/f4H) app available in Apple's app store.

The full swift source code for Bluefruit LE Connect for iOS is also available on Github. You'll need XCode and access to
Apple's developper program to use this project:

Version 1.x source code: https://github.com/adafruit/Bluefruit_LE_Connect (https://adafru.it/ddv)
Version 2.x source code: https://github.com/adafruit/Bluefruit_LE_Connect_v2 (https://adafru.it/o9E)

Version 2.x of the app is a complete rewrite that includes iOS, OS X GUI and OS X command-line tools in a
single codebase.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 139 of 154

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://github.com/adafruit/Bluefruit_LE_Connect_Android
https://developer.android.com/sdk/index.html
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Bluefruit_LE_Connect
https://github.com/adafruit/Bluefruit_LE_Connect_v2

Bluefruit LE Connect for OS X (https://adafru.it/o9F) (Swift)

This OS X desktop application is based on the same V2.x codebase as the iOS app, and gives you access to BLE
UART, basic Pin I/O and OTA DFU firmware updates from the convenience of your laptop or mac.

This is a great choice for logging sensor data locally and exporting it as a CSV, JSON or XML file for parsing in another
application, and uses the native hardware on your computer so no BLE dongle is required on any recent mac.

The full source is also available on Github (https://adafru.it/o9E).

Bluefruit LE Command Line Updater for OS X (https://adafru.it/pLF) (Swift)

This experimental command line tool is unsupported and provided purely as a proof of concept, but can be used to
allow firmware updates for Bluefruit devices from the command line.

This utility performs automatic firmware updates similar to the way that the GUI application does, by checking the
firmware version on your Bluefruit device (via the Device Information Service), and comparing this against the firmware
versions available online, downloading files in the background if appropriate.

Simply install the pre-compiled tool via the DMG file (https://adafru.it/pLF) and place it somewhere in the system path,
or run the file locally via './bluefruit' to see the help menu:

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 140 of 154

https://itunes.apple.com/us/app/adafruit-bluefruit-le-connect/id1082414600?mt=12
https://github.com/adafruit/Bluefruit_LE_Connect_v2
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3
https://github.com/adafruit/Bluefruit_LE_Connect_v2/releases/tag/OSXcommandline_0.3

Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)

This native OS X application is a basic proof of concept app that allows you to connect to your Bluefruit LE module
using most recent macbooks or iMacs. You can get basic information about the modules and use the UART service to
send and receive data.

The full source for the application is available in the github repo at Adafruit_BluefruitLE_OSX (https://adafru.it/mCo).

ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)

ABLE (https://adafru.it/ijB) (Adafruit Bluefruit LE Desktop) is a cross-platform desktop application based on Sandeep
Misty's noble library (https://adafru.it/ijC) and the Electron (https://adafru.it/ijD) project from Github (used by Atom).

It runs on OS X, Windows 7+ and select flavours of Linux (Ubuntu tested locally). Windows 7 support is particularly
interesting since Windows 7 has no native support for Bluetooth Low Energy but the noble library talks directly to

$./bluefruit
bluefruit v0.3
Usage:
 bluefruit <command> [options...]

Commands:
 Scan peripherals: scan
 Automatic update: update [--enable-beta] [--uuid <uuid>]
 Custom firmware: dfu --hex <filename> [--init <filename>] [--uuid <uuid>]
 Show this screen: --help
 Show version: --version

Options:
 --uuid <uuid> If present the peripheral with that uuid is used. If not present a list of peripherals is displayed
 --enable-beta If not present only stable versions are used

Short syntax:
 -u = --uuid, -b = --enable-beta, -h = --hex, -i = --init, -v = --version, -? = --help

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 141 of 154

https://itunes.apple.com/us/app/bluefruit-buddy/id1042412646?mt=12
https://github.com/adafruit/Adafruit_BluefruitLE_OSX
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/sandeepmistry/noble
https://github.com/atom/electron

supported Bluetooth 4.0 USB dongles (http://adafru.it/1327) to emulate BLE on the system (though at this stage it's still
in early BETA and drops the connection and takes more care to work with).

This app allows you to collect sensor data or perform many of the same functionality offered by the mobile Bluefruit LE
Connect apps, but on the desktop.

The app is still in BETA, but full source (https://adafru.it/ijE) is available in addition to the easy to use pre-compiled
binaries (https://adafru.it/ijB).

Bluefruit LE Python Wrapper (https://adafru.it/fQF)

As a proof of concept, we've played around a bit with getting Python working with the native Bluetooth APIs on OS X
and the latest version of Bluez on certain Linux targets.

There are currently example sketches showing how to retreive BLE UART data as well as some basic details from the
Device Information Service (DIS).

This isn't an actively support project and was more of an experiment, but if you have a recent Macbook or a Raspberry
Pi and know Python, you might want to look at Adafruit_Python_BluefruitLE (https://adafru.it/fQF) in our github account.

Debug Tools

If your sense of adventure gets the better of you, and your Bluefruit LE module goes off into the weeds, the following
tools might be useful to get it back from unknown lands.

These debug tools are provided purely as a convenience for advanced users for device recovery purposes,
and are not recommended unless you're OK with potentially bricking your board. Use them at your own risk.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 142 of 154

https://www.adafruit.com/products/1327
https://github.com/adafruit/adafruit-bluefruit-le-desktop
https://github.com/adafruit/adafruit-bluefruit-le-desktop/releases
https://github.com/adafruit/Adafruit_Python_BluefruitLE
https://github.com/adafruit/Adafruit_Python_BluefruitLE

AdaLink (https://adafru.it/fPq) (Python)

This command line tool is a python-based wrapper for programming ARM MCUs using either a Segger J-
Link (https://adafru.it/fYU) or an STLink/V2 (https://adafru.it/ijF). You can use it to reflash your Bluefruit LE module using
the latest firmware from the Bluefruit LE firmware repo (https://adafru.it/edX).

Details on how to use the tool are available in the readme.md file on the main
Adafruit_Adalink (https://adafru.it/fPq) repo on Github.

Completely reprogramming a Bluefruit LE module with AdaLink would require four files, and would look something like
this (using a JLink):

You can also use the AdaLink tool to get some basic information about your module, such as which SoftDevice is
currently programmed or the IC revision (16KB SRAM or 32KB SRAM) via the --info command:

Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

Adafruit's nRF51822 Flasher is an internal Python tool we use in production to flash boards as they go through the test
procedures and off the assembly line, or just testing against different firmware releases when debugging.

It relies on AdaLink or OpenOCD beneath the surface (see above), but you can use this command line tool to flash your
nRF51822 with a specific SoftDevice, Bootloader and Bluefruit firmware combination.

It currently supports using either a Segger J-Link or STLink/V2 via AdaLink, or GPIO on a Raspberry
Pi (https://adafru.it/fVL) if you don't have access to a traditional ARM SWD debugger. (A pre-built version of OpenOCD
for the RPi is included in the repo since building it from scratch takes a long time on the original RPi.)

We don't provide active support for this tool since it's purely an internal project, but made it public just in case it might
help an adventurous customer debrick a board on their own.

adalink nrf51822 --programmer jlink --wipe
 --program-hex "Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex"
 --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32_signature.hex"

$ adalink nrf51822 -p jlink --info
Hardware ID : QFACA10 (32KB)
Segger ID : nRF51822_xxAC
SD Version : S110 8.0.0
Device Addr : **:**:**:**:**:**
Device ID : ****************

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 143 of 154

https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/search?q=J-Link
https://www.adafruit.com/product/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_Adalink
https://github.com/adafruit/Adafruit_nRF51822_Flasher
https://github.com/adafruit/Adafruit_nRF51822_Flasher#rpi-gpio-requirements

$ python flash.py --jtag=jlink --board=blefriend32 --softdevice=8.0.0 --bootloader=2 --firmware=0.6.7
jtag : jlink
softdevice : 8.0.0
bootloader : 2
board : blefriend32
firmware : 0.6.7
Writing Softdevice + DFU bootloader + Application to flash memory
adalink -v nrf51822 --programmer jlink --wipe --program-hex "Adafruit_BluefruitLE_Firmware/softdevice/s110_nrf51_8.0.0_softdevice.hex" --program-hex "Adafruit_BluefruitLE_Firmware/bootloader/bootloader_0002.hex" --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex" --program-hex "Adafruit_BluefruitLE_Firmware/0.6.7/blefriend32/blefriend32_s110_xxac_0_6_7_150917_blefriend32_signature.hex"
...

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 144 of 154

BLE FAQ

Can I talk to Classic Bluetooth devices with a Bluefruit LE modules?

No. Bluetooth Low Energy and 'Classic' Bluetooth are both part of the same Bluetooth Core Specification -- defined
and maintained by the Bluetooth SIG -- but they are completely different protocols operating with different physical
constraints and requirements. The two protocols can't talk to each other directly.

Can my Bluefruit LE module connect to other Bluefruit LE peripherals

No, the Bluefruit LE firmware from Adafruit is currently peripheral only, and doesn't run in Central mode, which would
cause the module to behave similar to your mobile phone or BLE enabled laptop.

If you required Central support, you should look at the newer nRF52832 based products like the Adafruit Feather
nRF52 Bluefruit LE, which contains a SoftDevice which is capable of running in either Central or Peripheral mode.
The nRF518322 based products (such as the one used in this learning guide) are not capable of running in Central
mode because it isn't supported by the SoftDevice they use, and it isn't possible to update the SoftDevice safely
without special hardware.

I just got my Bluefruit board and when I run a sketch it hangs forever on the 'Connecting...' stage!

There are several possible explanations here, but the first thing to try is to:

1. Disconnect and close the Bluefruit LE Connect app if it's open
2. Disable BLE on your mobile device
3. Restart your Bluefruit sketch and HW
4. Turn BLE back on again (on the mobile device)
5. Open the Bluefruit LE Connect mobile app again and try to connect again

If problems persist, try performing a Factory Reset of your device (see the appropriate learning guide for details on
how to do this since it varies from one board to another).

Why are none of my changes persisting when I reset with the sample sketches?

In order to ensure that the Bluefruit LE modules are in a known state for the Adafruit demo sketches, most of them
perform a factory reset at the start of the sketch.

This is useful to ensure that the sketch functions properly, but has the side effect of erasing any custom user data in
NVM and setting everything back to factory defaults every time your board comes out of reset and the sketch runs.

To disable factory reset, open the demo sketch and find the FACTORYRESET_ENABLE flag and set this to '0', which
will prevent the factory reset from happening at startup.

If you don't see the 'FACTORYRESET_ENABLE' flag in your .ino sketch file, you probably have an older version of
the sketches and may need to update to the latest version via the Arduino library manager.

Do I need CTS and RTS on my UART based Bluefruit LE Module?

Using CTS and RTS isn't strictly necessary when using HW serial, but they should both be used with SW serial, or
any time that a lot of data is being transmitted.

The reason behind the need for CTS and RTS is that the UART block on the nRF51822 isn't very robust, and early
versions of the chip had an extremely small FIFO meaning that the UART peripheral was quickly overwhelmed.

Using CTS and RTS significantly improves the reliability of the UART connection since these two pins tell the device

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 145 of 154

https://www.adafruit.com/product/3406

on the other end when they need to wait while the existing buffered data is processed.

To enable CTS and RTS support, go into the BluefruitConfig.h file in your sketch folder and simply assign an
appropriate pin to the macros dedicated to those functions (they may be set to -1 if they aren't currently being used).

Enabling both of these pins should solve any data reliability issues you are having with large commands, or when
transmitting a number of commands in a row.

How can I update to the latest Bluefruit LE Firmware?

The easiest way to keep your Bluefruit LE modules up to date is with our Bluefruit LE Connect app for Android or
Bluefruit LE Connect for iOS. Both of these apps include a firmware update feature that allows you to automatically
download the latest firmware and flash your Bluefruit LE device in as safe and painless a manner as possible. You
can also roll back to older versions of the Bluefruit LE firmware using these apps if you need to do some testing on a
previous version.

Which firmware version supports 'xxx'?

We regularly release Bluefruit LE firmware images with bug fixes and new features. Each AT command in this
learning guide lists the minimum firmware version required to use that command, but for a higher level overview of
the changes from one firmware version to the next, consult the firmware history page.

Does my Bluefruit LE device support ANCS?

ANCS is on the roadmap for us (most likely in the 0.7.x release family), but we don't currently support it since there
are some unusual edge cases when implementing it as a service.

My Bluefruit LE device is stuck in DFU mode ... what can I do?

If your device is stuck in DFU mode for some reason and the firmware was corrupted, you have several options.

First, try a factory reset by holding down the DFU button for about 10 seconds until the CONN LED starts flashing,
then release the DFU button to perform a factory reset.

If this doesn't work, you may need to reflash your firmware starting from DFU mode, which can be done in one of the
following ways:

Bluefruit LE Connect (Android)

Place the module in DFU mode (constant LED blinky)
Open Bluefruit LE Connect
Connect to the 'DfuTarg' device
Once connected, you will see a screen with some basic device information. Click the '...' in the top-right corner
and select Firmware Updates
Click the Use Custom Firmware button
Select the appropriate .hex and .init files (copied from the Bluefruit LE Firmware repo) ... for the BLEFRIEND32
firmware version 0.6.7, this would be:

Hex File: blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex
Init File: blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat

Click Start Update

Unfortunately, the iOS app doesn't yet support custom firmware updates from DFU mode yet, but we will get this
into the next release.

Nordic nRF Toolbox

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 146 of 154

https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect
https://itunes.apple.com/app/adafruit-bluefruit-le-connect/id830125974?mt=8
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/history
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware

You can also use Nordic's nRF Toolbox application to update the firmware using the OTA bootloader.

On Android:

Open nRF Toolbox (using the latest version)
Click the DFU icon
Click the Select File button
Select Application from the radio button list, then click OK
Find the appropriate .hex file (ex. 'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex')
When asked about the 'Init packet', indicate Yes, and select the appropriate *_init.dat file (for example:
'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat').
Click the Select Device button at the bottom of the main screen and find the DfuTarg device, clicking on it
Click the Upload button, which should now be enabled on the home screen
This will begin the DFU update process which should cause the firmware to be updated or restored on your
Bluefruit LE module

On iOS:

Create a .zip file containing the .hex file and init.dat file that you will use for the firmware update. For example:
Rename 'blefriend32_s110_xxac_0_6_7_150917_blefriend32.hex' to application.hex
Rename 'blefriend32_s110_xxac_0_6_7_150917_blefriend32_init.dat' to application.dat

Upload the .zip file containing the application.hex and application.dat files to your iPhone using uTunes,
as described here
Open the nRF Toolbox app (using the latest version)
Click the DFU icon
Click the Select File text label
Switch to User Files to see the .zip file you uploaded above
Select the .zip file (ex. blefriend32_065.zip)
On the main screen select Select File Type
Select application
On the main screen select SELECT DEVICE
Select DfuTarg
Click the Upload button which should now be enabled
This will begin the DFU process and your Bluefruit LE module will reset when the update is complete
If you get the normal 2 or 3 pulse blinky pattern, the update worked!

Adafruit_nRF51822_Flasher

As a last resort, if you have access to a Raspberry Pi, a Segger J-Link or a STLink/V2, you can also try manually
reflashing the entire device, as described in the FAQ above, with further details on the Software Resources page.

How do I reflash my Bluefruit LE module over SWD?

Reflashing Bluefruit LE modules over SWD (ex. switching to the sniffer firmware and back) is at your own risk and
can lead to a bricked device, and we can't offer any support for this operation! You're on your own here, and
there are unfortunately 1,000,000 things that can go wrong, which is why we offer two separate Bluefruit LE Friend
boards -- the sniffer and the normal Bluefruit LE Friend board with the non-sniffer firmware, which provides a
bootloader with fail safe features that prevents you from ever bricking boards via OTA updates.

AdaLink (SWD/JTAG Debugger Wrapper)

Transitioning between the two board types (sniffer and Bluefruit LE module) is unfortunately not a risk-free
operation, and requires external hardware, software and know-how to get right, which is why it isn't covered by our
support team.

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 147 of 154

file:///introducing-adafruit-ble-bluetooth-low-energy-friend/dfu-on-ios#adding-custom-firmware
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/faq#faq-7
file:///introducing-adafruit-ble-bluetooth-low-energy-friend/software-resources#adafruit-nrf51822-flasher-python

That said ... if you're determined to go down that lonely road, and you have a Segger J-Link (which is what we use
internally for production and development), or have already erased your Bluefruit LE device, you should have a look
at AdaLink, which is the tool we use internally to flash the four files required to restore a Bluefruit LE module. (Note:
recent version of AdaLink also support the cheaper STLink/V2, though the J-Link is generally more robust if you are
going to purchase a debugger for long term use.)

The mandatory Intel Hex files are available in the Bluefruit LE Firmware repo. You will need to flash:

An appropriate bootloader image
An appropriate SoftDevice image
The Bluefruit LE firmware image
The matching signature file containing a CRC check so that the bootloader accepts the firmware image above
(located in the same folder as the firmware image)

The appropriate files are generally listed in the version control .xml file in the firmware repository.

If you are trying to flash the sniffer firmware (at your own risk!), you only need to flash a single .hex file, which you
can find here. The sniffer doesn't require a SoftDevice image, and doesn't use the fail-safe bootloader -- which is
why changing is a one way and risky operation if you don't have a supported SWD debugger.

Adafruit_nF51822_Flasher

We also have an internal python tool available that sits one level higher than AdaLink (referenced above), and
makes it easier to flash specific versions of the official firmware to a Bluefruit LE module. For details, see the
Adafruit_nRF51822_Flasher repo.

Can I access BETA firmware releases?

The latest versions of the Bluefruit LE Connect applications for iOS and Android allow you to optionally update your
Bluefruit LE modules with pre-release or BETA firmware.

This functionality is primarilly provided as a debug and testing mechanism for support issues in the forum, and
should only be used when trying to identify and resolve specific issues with your modules!

Enabling BETA Releases on iOS

Make sure you have at least version 1.7.1 of Bluefruit LE Connect
Go to the Settings page
Scroll to the bottom of the Settings page until you find Bluefruit LE
Click on the Bluefruit LE icon and enable the Show beta releases switch
You should be able to see any BETA releases available in the firmware repo now when you use Bluefruit LE
Connect

Enabling BETA Releases on Android

Make sure you have the latest version of Bluefruit LE Connect
Open the Bluefruit LE Connect application
Click the "..." icon in the top-right corner of the app's home screen
Select Settings
Scroll down to the Software Updates section and enable Show beta releases
You should be able to see any BETA releases available in the firmware repo now when you use Bluefruit LE
Connect

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 148 of 154

https://www.adafruit.com/search?q=J-Link
https://github.com/adafruit/Adafruit_Adalink
https://www.adafruit.com/products/2548
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware/blob/master/releases.xml
https://github.com/adafruit/Adafruit_BluefruitLE_Firmware/tree/master/sniffer/1.0.1
https://github.com/adafruit/Adafruit_nRF51822_Flasher

Why can't I see my Bluefruit LE device after upgrading to Android 6.0?

In Android 6.0 there were some important security changes that affect Bluetooth Low Energy devices. If location
services are unavailable (meaning the GPS is turned off) you won't be able to see Bluetooth Low Energy devices
advertising either. See this issue for details.

Be sure to enable location services on your Android 6.0 device when using Bluefruit LE Connect or other Bluetooth
Low Energy applications with your Bluefruit LE modules.

What is the theoretical speed limit for BLE?

This depends on a variety of factors, and is determined by the capabilities of the central device (the mobile phone,
etc.) as much as the peripheral.

Taking the HW limits on the nR51822 into account (max 6 packets per connection interval, and a minimum
connection interval of 7.5ms) you end up with the following theoretical limits on various mobile operating systems:

iPhone 5/6 + IOS 8.0/8.1
6 packets * 20 bytes * 1/0.030 s = 4 kB/s = 32 kbps
iPhone 5/6 + IOS 8.2/8.3
3 packets * 20 bytes * 1/0.030 s = 2 kB/s = 16 kbps
iPhone 5/6 + IOS 8.x with nRF8001
1 packet * 20 bytes * 1/0.030 s = 0.67 kB/s = 5.3 kbps
Nexus 4
4 packets * 20 bytes * 1/0.0075 s = 10.6 kB/s = 84 kbps
Nordic Master Emulator Firmware (MEFW) with nRF51822 0.9.0
1 packet * 20 bytes * 1/0.0075 = 2.67 kB/s = 21.33 kbps
Nordic Master Emulator Firmware (MEFW) with nRF51822 0.11.0
6 packets * 20 bytes * 1/0.0075 = 16 kB/s = 128 kbps

There are also some limits imposed by the Bluefruit LE firmware, but we are actively working to significantly improve
the throughput in the upcoming 0.7.0 release, which will be available Q2 2016. The above figures are useful as a
theoretical maximum to decide if BLE is appropriate for you project or not.

UPDATE: For more specific details on the limitations of various Android versions and phones, see this helpful post
from Nordic Semiconductors.

Can my Bluefruit board detect other Bluefruit boards or Central devices?

No. All of our Bluefruit LE modules currently operate in peripheral mode, which means they can only advertise their
own existence via the advertising payload. The central device (usually your phone or laptop) is responsible for
listening for these advertising packets, starting the connection process, and inititating any transactions between the
devices. There is no way for a Bluefruit module to detect other Bluefruit modules or central devices in range, they
can only send their own advertising data out and wait for a connection request to come in.

How can I determine the distance between my Bluefruit module and my phone in m/ft?

The short answer is: you can't.

RF devices normally measure signal strength using RSSI, which stands for Received Signal Strength Indicator, which
is measured in dBm. The closer the devices are the strong the RSSI value generally is (-90dBm is much weaker
than -60dBm, for example), but there is no reliable relationship between RSSI values in dBm and distance in the real
world. If there is a wall between devices, RSSI will fall. If there is a lot of interference on the same 2.4GHz band,
RSSI will fall. Depending on the device, if you simply change the antenna orientation, RSSI will fall. You can read the
RSSI value between two connected devices with the AT+BLEGETRSSI command, but there are no meaningful and

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 149 of 154

http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://code.google.com/p/android/issues/detail?id=190372&q=GPS&colspec=ID Type Status Owner Summary Stars
https://devzone.nordicsemi.com/blogs/1046/what-to-keep-in-mind-when-developing-your-ble-andr/

repeatable conclusions that can be drawn from this value about distance other than perhaps 'farther' or 'closer' in a
very loose sense of the terms.

How far away from my phone can I have my Bluefruit LE module?

This depends on a number of factors beyond the module itself such as antenna orientation, the antenna design on
the phone, transmit power on the sending node, competing traffic in the same 2.4GHz bandwidth, obstacles
between end points, etc.

It could be as low as a couple meters up to about 10 meters line of sight, but generally Bluetooth Low Energy is
designed for very short range and will work best in the 5-6 meter or less range for reliable communication,
assuming normal Bluefruit firmware settings.

How many GATT services and characteristics can I create?

For firmware 0.7.0 and higher, the following limitations are present:

Maximum number of services: 10
Maximum number of characteristics: 30
Maximum buffer size for each characteristic: 32 bytes
Maximum number of CCCDs: 16

Is it possible to modify or disable the built in GATT services and characteristics (DIS, DFU, etc.)?

No, unfortunately you can't. We rely on the Device Information Service (DIS) contents to know which firmware and
bootloader version you are running, and wouldn't be able to provide firmware updates without being able to trust
this information, which i why it's both mandatory and read only.

Similarly, the DFU service is mandatory to maintain over the air updates and disabling it would create more problems
that it's presence would cause.

How can I use BlueZ and gatttool with Bluefruit modules?

BlueZ has a bit of a learning curve associated with it, but you can find some notes below on one option to send and
receive data using the BLE UART Service built into all of our Bluefruit LE modules and boards.

These commands may change with different versions of BlueZ. Version 5.21 was used below.

Initialise the USB dongle
$ sudo hciconfig hci0 up

Scan for the UART BLE device
$ sudo hcitool lescan
 D6:4E:06:4F:72:86 UART

Start gatttool, pointing to the UART device found above
$ sudo gatttool -b D6:4E:06:4F:72:86 -I -t random --sec-level=high

 [D6:4E:06:4F:72:86][LE]> connect
 Attempting to connect to D6:4E:06:4F:72:86
 Connection successful

Scan for primary GATT Services
 [D6:4E:06:4F:72:86][LE]> primary
 attr handle: 0x0001, end grp handle: 0x0007 uuid: 00001800-0000-1000-8000-00805f9b34fb
 attr handle: 0x0008, end grp handle: 0x0008 uuid: 00001801-0000-1000-8000-00805f9b34fb
 attr handle: 0x0009, end grp handle: 0x000e uuid: 6e400001-b5a3-f393-e0a9-e50e24dcca9e
 attr handle: 0x000f, end grp handle: 0xffff uuid: 0000180a-0000-1000-8000-00805f9b34fb

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 150 of 154

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.service.device_information.xml

 attr handle: 0x000f, end grp handle: 0xffff uuid: 0000180a-0000-1000-8000-00805f9b34fb

Get the handles for the entries in the UART service (handle 0x0009)
 [D6:4E:06:4F:72:86][LE]> char-desc
 handle: 0x0001, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0002, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
 handle: 0x0004, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
 handle: 0x0006, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0007, uuid: 00002a04-0000-1000-8000-00805f9b34fb
 handle: 0x0008, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0009, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x000a, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000b, uuid: 6e400002-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000c, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x000d, uuid: 6e400003-b5a3-f393-e0a9-e50e24dcca9e
 handle: 0x000e, uuid: 00002902-0000-1000-8000-00805f9b34fb
 handle: 0x000f, uuid: 00002800-0000-1000-8000-00805f9b34fb
 handle: 0x0010, uuid: 00002803-0000-1000-8000-00805f9b34fb
 handle: 0x0011, uuid: 00002a27-0000-1000-8000-00805f9b34fb

6e400002 (handle 0x000b) = TX characteristic
6e400003 (handle 0x000d) = RX characteristic

Optional (but maybe helpful) ... scan for CCCD entries
 [D6:4E:06:4F:72:86][LE]> char-read-uuid 2902
 handle: 0x000e value: 00 00

Enable notifications on the RX characteristic (CCCD handle = 0x000e)
0100 = get notifications
0200 = get indications
0300 = get notifications + indications
0000 = disable notifications + indications
 [D6:4E:06:4F:72:86][LE]> char-write-req 0x000e 0100
 Characteristic value was written successfully

Just to make sure it was updated
 [D6:4E:06:4F:72:86][LE]> char-read-hnd 0x000e
 Characteristic value/descriptor: 01 00

Writing "test" in the Serial Monitor of the Arduino sketch should
cause this output not that notifications are enabled:
 Notification handle = 0x000d value: 74 65 73 74

Write something to the TX characteristic (handle = 0x000b)
This should cause E F G H to appear in the Serial Monitor
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 45
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 46
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 47
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000b 48

To send multiple bytes
 [D6:4E:06:4F:72:86][LE]> char-write-cmd 0x000B 707172737475

If you are running the callbackEcho sketch and notifications
are enabled you should get this response after the above cmd:
 Notification handle = 0x000d value: 70 71 72 73 74 75

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 151 of 154

Can I use the IRQ pin to wake my MCU up from sleep when BLE UART data is available?

No, on SPI-based boards the IRQ pin is used to indicate that an SDEP response is available to an SDEP command.
For example, when you sent the `AT+BLEUARTRX` command as an SDEP message, the Bluefruit firmware running
on the nRF51822 will parse the message, prepare an SDEP response, and trigger the IRQ pin to tell the MCU that
the response is ready. This is completely independant from the BLE UART service, which doesn't have interrupt
capability at present.

Can I also update the sketch running on the device using Bluefruit LE Connect?

No, only the core firmware can be updated over the air. Sketches need to be loaded using the Arduino IDE and
serial bootloader.

If you just want to enable constant listening, enter the following command from the CLI:
$ sudo gatttool -b D6:4E:06:4F:72:86 -t random --char-write-req -a 0x000e -n 0100 --listen

This should give us the following output as data is written on the Uno,
though we can't send anything back:
 Characteristic value was written successfully
 Notification handle = 0x000d value: 74 65 73 74
 Notification handle = 0x000d value: 6d 6f 72 65 20 74 65 73 74

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 152 of 154

Downloads

MDBT Datasheet (https://adafru.it/oYE)
Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)
EagleCAD PCB files in GitHub (https://adafru.it/rxc)

Schematic

Click to embiggen

Fabrication Print

Dims in inches

© Adafruit Industries https://learn.adafruit.com/adafruit-bluefruit-le-shield Page 153 of 154

https://cdn-shop.adafruit.com/product-files/2267/MDBT40-P256R.pdf
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-Bluefruit-LE-Shield-PCB

© Adafruit Industries Last Updated: 2018-12-14 04:50:57 PM UTC Page 154 of 154

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Adafruit:

 2746

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=2746

	Guide Contents
	Overview
	Why Use Adafruit's Module?
	Technical Specifications
	Pinouts
	Power Pins
	SPI Pins
	Other Pins
	Assembly
	Stack Alert
	Attaching Headers
	Wiring
	Default Pinout
	Changing the Default Pinout
	Software
	Configuration!
	Which board do you have?
	Bluefruit Micro or Feather 32u4 Bluefruit
	Feather M0 Bluefruit LE
	Bluefruit LE SPI Friend
	Bluefruit LE UART Friend or Flora BLE

	Configure the Pins Used
	Common settings:
	Software UART
	Hardware UART
	Mode Pin
	SPI Pins
	Software SPI Pins

	Select the Serial Bus
	UART Based Boards (Bluefruit LE UART Friend & Flora BLE)
	SPI Based Boards (Bluefruit LE SPI Friend)

	ATCommand
	Opening the Sketch
	Configuration
	Running the Sketch
	BLEUart
	Opening the Sketch
	Configuration
	Running the Sketch
	HIDKeyboard
	Opening the Sketch
	Configuration
	Running the Sketch
	Bonding the HID Keyboard
	Android
	iOS
	OS X
	Controller
	Opening the Sketch
	Configuration
	Running the Sketch
	Using Bluefruit LE Connect in Controller Mode
	Streaming Sensor Data
	Control Pad Module
	Color Picker Module
	HeartRateMonitor
	Opening the Sketch
	Configuration
	If Using Hardware or Software UART

	Running the Sketch
	nRF Toolbox HRM Example
	CoreBluetooth HRM Example
	UriBeacon
	Opening the Sketch
	Configuration
	Running the Sketch
	HALP!
	When using the Bluefruit Micro or a Bluefruit LE with Flora/Due/Leonardo/Micro the examples dont run?
	I can't seem to "Find" the Bluefruit LE!

	AT Commands
	Test Command Mode '=?'
	Write Command Mode '=xxx'
	Execute Mode
	Read Command Mode '?'
	Standard AT
	AT
	ATI
	ATZ
	ATE
	+++
	General Purpose
	AT+FACTORYRESET
	AT+DFU
	AT+HELP
	AT+NVMWRITE
	AT+NVMREAD
	AT+MODESWITCHEN
	Hardware
	AT+BAUDRATE
	AT+HWADC
	AT+HWGETDIETEMP
	AT+HWGPIO
	AT+HWGPIOMODE
	AT+HWI2CSCAN
	AT+HWVBAT
	AT+HWRANDOM
	AT+HWMODELED
	AT+UARTFLOW
	Beacon
	AT+BLEBEACON
	AT+BLEURIBEACON
	Deprecated: AT+EDDYSTONEENABLE
	AT+EDDYSTONEURL
	AT+EDDYSTONECONFIGEN
	AT+EDDYSTONESERVICEEN
	AT+EDDYSTONEBROADCAST
	BLE Generic
	AT+BLEPOWERLEVEL
	AT+BLEGETADDRTYPE
	AT+BLEGETADDR
	AT+BLEGETPEERADDR
	AT+BLEGETRSSI
	BLE Services
	AT+BLEUARTTX
	TX FIFO Buffer Handling

	AT+BLEUARTTXF
	AT+BLEUARTRX
	AT+BLEUARTFIFO
	AT+BLEKEYBOARDEN
	AT+BLEKEYBOARD
	AT+BLEKEYBOARDCODE
	Modifier Values
	HID Keyboard Codes

	AT+BLEHIDEN
	AT+BLEHIDMOUSEMOVE
	AT+BLEHIDMOUSEBUTTON
	AT+BLEHIDCONTROLKEY
	AT+BLEHIDGAMEPADEN
	AT+BLEHIDGAMEPAD
	AT+BLEMIDIEN
	AT+BLEMIDIRX
	AT+BLEMIDITX
	AT+BLEBATTEN
	AT+BLEBATTVAL
	BLE GAP
	AT+GAPCONNECTABLE
	AT+GAPGETCONN
	AT+GAPDISCONNECT
	AT+GAPDEVNAME
	AT+GAPDELBONDS
	AT+GAPINTERVALS
	AT+GAPSTARTADV
	AT+GAPSTOPADV
	AT+GAPSETADVDATA
	BLE GATT
	GATT Limitations
	AT+GATTCLEAR
	AT+GATTADDSERVICE
	AT+GATTADDCHAR
	AT+GATTCHAR
	AT+GATTLIST
	AT+GATTCHARRAW
	Debug
	AT+DBGMEMRD
	AT+DBGNVMRD
	AT+DBGSTACKSIZE
	AT+DBGSTACKDUMP
	History
	Version 0.7.7
	Version 0.7.0
	Version 0.6.7
	Version 0.6.6
	Version 0.6.5
	Version 0.6.2
	Version 0.5.0
	Version 0.4.7
	Version 0.3.0
	GATT Service Details
	UART Service

	UART Service
	Characteristics
	TX (0x0002)
	RX (0x0003)

	Factory Reset
	Factory Reset via DFU Pin
	FactoryReset Sample Sketch
	AT+FACTORYRESET
	Factory Reset via FCTR Test Pad
	DFU Updates
	Adafruit Bluefruit LE Connect
	SDEP (SPI Data Transport)
	SDEP Overview
	SPI Setup
	SPI Hardware Requirements
	IRQ Pin
	SDEP Packet and SPI Error Identifier
	Sample Transaction

	SDEP (Simple Data Exchange Protocol)
	Endianness
	Message Type Indicator
	SDEP Data Transactions
	Message Types
	Command Messages
	Response Messages
	Alert Messages
	Standard Alert IDs

	Error Messages
	Standard Error IDs

	Existing Commands
	SDEP AT Wrapper Usage

	Software Resources
	Bluefruit LE Client Apps and Libraries
	Bluefruit LE Connect (https://adafru.it/f4G) (Android/Java)
	Bluefruit LE Connect (https://adafru.it/f4H) (iOS/Swift)

	Bluefruit LE Connect for OS X (https://adafru.it/o9F) (Swift)
	Bluefruit LE Command Line Updater for OS X (https://adafru.it/pLF) (Swift)
	Deprecated: Bluefruit Buddy (https://adafru.it/mCn) (OS X)
	ABLE (https://adafru.it/ijB) (Cross Platform/Node+Electron)
	Bluefruit LE Python Wrapper (https://adafru.it/fQF)

	Debug Tools
	AdaLink (https://adafru.it/fPq) (Python)
	Adafruit nRF51822 Flasher (https://adafru.it/fVL) (Python)

	BLE FAQ
	Can I talk to Classic Bluetooth devices with a Bluefruit LE modules?
	Can my Bluefruit LE module connect to other Bluefruit LE peripherals
	I just got my Bluefruit board and when I run a sketch it hangs forever on the 'Connecting...' stage!
	Why are none of my changes persisting when I reset with the sample sketches?
	Do I need CTS and RTS on my UART based Bluefruit LE Module?
	How can I update to the latest Bluefruit LE Firmware?
	Which firmware version supports 'xxx'?
	Does my Bluefruit LE device support ANCS?
	My Bluefruit LE device is stuck in DFU mode ... what can I do?
	Bluefruit LE Connect (Android)
	Nordic nRF Toolbox
	Adafruit_nRF51822_Flasher

	How do I reflash my Bluefruit LE module over SWD?
	Can I access BETA firmware releases?
	Why can't I see my Bluefruit LE device after upgrading to Android 6.0?
	What is the theoretical speed limit for BLE?
	Can my Bluefruit board detect other Bluefruit boards or Central devices?
	How can I determine the distance between my Bluefruit module and my phone in m/ft?
	How far away from my phone can I have my Bluefruit LE module?
	How many GATT services and characteristics can I create?
	Is it possible to modify or disable the built in GATT services and characteristics (DIS, DFU, etc.)?
	How can I use BlueZ and gatttool with Bluefruit modules?
	Can I use the IRQ pin to wake my MCU up from sleep when BLE UART data is available?
	Can I also update the sketch running on the device using Bluefruit LE Connect?

	Downloads
	Schematic
	Fabrication Print

