2N3713 2N3715 2N3714 2N3716

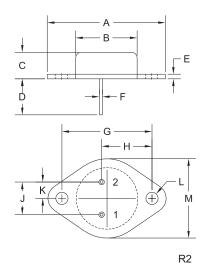
SILICON NPN TRANSISTORS

www.centralsemi.com

DESCRIPTION:

The CENTRAL SEMICONDUCTOR 2N3713, 2N3714, 2N3715, and 2N3716 are silicon NPN power transistors manufactured by the epitaxial-base process, mounted in a hermetically sealed metal package designed for medium speed switching and amplifier applications.

MARKING: FULL PART NUMBER


MAXIMUM R	ATINGS: (T _C =25°C)	SYMBOL	2N3713 2N3715	2N3714 2N3716	UNITS				
Collector-Base Voltage		V _{CBO}	80	100	V				
Collector-Emitter Voltage		VCEO	60	80	V				
Emitter-Base	Voltage	V_{EBO}	7.	0	V				
Continuous C	Collector Current	l _C	10)	Α				
Continuous E	Base Current	I_{B}	4.	0	Α				
Power Dissip	ation	P_{D}	15	0	W				
Operating and Storage Junction Temperature		T _J , T _{stg}	-65 to +200		°C				
Thermal Res	istance	Θ JC	1.17		°C/W				
ELECTRICAL CHARACTERISTICS: (T _C =25°C unless otherwise noted)									
SYMBOL I _{CEV}	TEST CONDITIONS V _{CE} =Rated V _{CBO} , V _{BE} =1.5V	MIN	ΤΫ́Ρ	MAX 1.0	UNITS mA				
ICEV	V _{CE} =Rated V _{CEO} , V _{BE} =1.5V, T _C =	150°C		10	mA				
I _{EBO}	V _{EB} =7.0V			5.0	mA				
BV_{CEO}	I _C =200mA (2N3713, 2N3715)	60			V				
BVCEO	I _C =200mA (2N3714, 2N3716)	80			V				
VCE(SAT)	I _C =5.0A, I _B =0.5A (2N3713, 2N3714)			1.0	V				
V _{CE} (SAT)	I _C =5.0A, I _B =0.5A (2N3715, 2N3716)			8.0	V				
V _{BE} (SAT)	I _C =5.0A, I _B =0.5A (2N3713, 2N3714)			2.0	V				
V _{BE} (SAT)	I _C =5.0A, I _B =0.5A (2N3715, 2N3716)			1.5	V				
V _{BE(ON)}	V_{CE} =2.0V, I_{C} =3.0A			1.5	V				
h _{FE}	V _{CE} =2.0V, I _C =1.0A (2N3713, 2N371	14) 40		120					
h _{FE}	V _{CE} =2.0V, I _C =1.0A (2N3715, 2N371			150					
h _{FE}	V _{CE} =2.0V, I _C =3.0A (2N3713, 2N371	14) 15							
h _{FE}	V _{CE} =2.0V, I _C =3.0A (2N3715, 2N371	16) 30							
fT	V_{CE} =10V, I_{C} =0.5A, f=1.0MHz	4.0			MHz				
t_r	I_{C} =5.0A, I_{B1} = I_{B2} =0.5A		0.4		μs				
t_S	I_C =5.0A, I_{B1} = I_{B2} =0.5A		0.3		μs				
t_f	I_C =5.0A, I_{B1} = I_{B2} =0.5A		0.4		μs				
					R2 (18-June 2013)				

2N3713 2N3715 2N3714 2N3716

SILICON **NPN TRANSISTORS**

TO-3 CASE - MECHANICAL OUTLINE

DIMENSIONS								
	INCHES		MILLIMETERS					
SYMBOL	MIN	MAX	MIN	MAX				
Α	1.516	1.573	38.50	39.96				
B (DIA)	0.748	0.875	19.00	22.23				
С	0.250	0.450	6.35	11.43				
D	0.433	0.516	11.00	13.10				
Е	0.054	0.065	1.38	1.65				
F	0.035	0.045	0.90	1.15				
G	1,177	1,197	29.90	30.40				
Н	0.650	0.681	16.50	17.30				
J	0.420	0.440	10.67	11.18				
K	0.205	0.225	5.21	5.72				
L (DIA)	0.151	0.172	3.84	4.36				
М	0.984	1.050	25.00	26.67				

TO-3 (REV: R2)

LEAD CODE:

- 1) Base

2) Emitter Case) Collector

MARKING:

FULL PART NUMBER

OUTSTANDING SUPPORT AND SUPERIOR SERVICES

PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- · Inventory bonding
- · Consolidated shipping options

- · Custom bar coding for shipments
- · Custom product packing

DESIGNER SUPPORT/SERVICES

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free guick ship samples (2nd day air)
- Online technical data and parametric search
- SPICE models
- · Custom electrical curves
- · Environmental regulation compliance
- · Customer specific screening
- · Up-screening capabilities

- Special wafer diffusions
- PbSn plating options
- Package details
- Application notes
- · Application and design sample kits
- Custom product and package development

REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- 2. If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

CONTACT US

Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA

Main Tel: (631) 435-1110 Main Fax: (631) 435-1824

Support Team Fax: (631) 435-3388

www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

Worldwide Distributors:

www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: www.centralsemi.com/terms

www.centralsemi.com (001)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Central Semiconductor:

2N3714 2N3713 LEADFREE 2N3713 2N3715 2N3716