5V ECL 5-Bit Differential Register

Description

The MC10E/100E452 is a 5-bit differential register with differential data (inputs and outputs) and clock. The registers are triggered by a positive transition of the positive clock (CLK) input. A high on the Master Reset (MR) asynchronously resets all registers so that the Q outputs go LOW.

The differential input structures are clamped so that the inputs of unused registers can be left open without upsetting the bias network of the device. The clamping action will assert the \overline{D} and the $\overline{\text{CLK}}$ sides of the inputs. Because of the edge triggered flip-flop nature of the device simultaneously opening both the clock and data inputs will result in an output which reaches an unidentified but valid state. Note that the input clamps only operate when both inputs fall to 2.5 V below V_{CC}.

The fully differential design of the device makes it ideal for very high frequency applications where a registered data path is necessary.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 µF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The 100 Series contains temperature compensation.

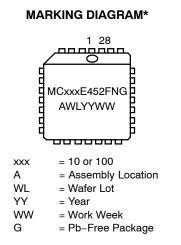
Features

- Differential D, CLK and Q; V_{BB} Reference Available
- 1100 MHz Min. Toggle Frequency
- Asynchronous Master Reset
- PECL Mode Operating Range: $V_{CC} = 4.2$ V to 5.7 V with $V_{EE} = 0 V$
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -4.2 \text{ V}$ to -5.7 V
- Internal Input 50 k Ω Pulldown Resistors, Output \overline{Q}_3 will Default to Low State When Inputs Are Left Open
- ESD Protection: Human Body Model; > 2 kV Machine Model: > 200 VCharged Device Model; > 2 kV
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level:

Pb = 1Pb-Free = 3

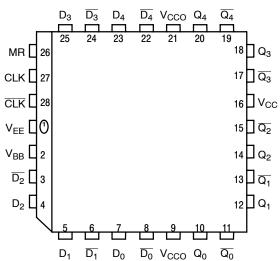
- For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL 94 V-0 @ 0.125 in,
 - Oxygen Index: 28 to 34
- Transistor Count = 315 devices
- Pb–Free Packages are Available*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



ON Semiconductor®

http://onsemi.com


PLCC-28 **FN SUFFIX CASE 776**

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

* All V_{CC} and V_{CCO} pins are tied together on the die. Warning: All V_{CC}, V_{CCO}, and V_{EE} pins must be externally

connected to Power Supply to guarantee proper operation.

Figure 1. Pinout: PLCC-28 (Top View)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D[0:4], D[0:4]	ECL Differential Data Inputs
MR	ECL Master Reset Input
CLK, CLK	ECL Differential Clock Input
Q[0:4],	ECL Differential Data Outputs
V _{BB}	Reference Voltage Output
V_{CC}, V_{CCO}	Positive Supply
V _{EE}	Negative Supply

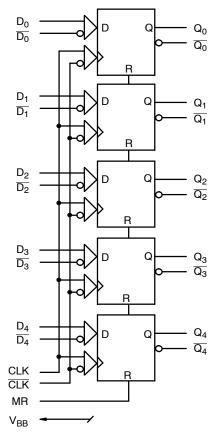


Figure 2. Logic Diagram

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	PLCC-28 PLCC-28	63.5 43.5	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

			−40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		74	89		74	89		74	89		74	89	mA
V _{OH}	Output HIGH Voltage (Note 2)				3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)				3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single-Ended)				3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage (Single- Ended)				3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
V_{BB}	Output Voltage Reference	3.57		3.7	3.62		3.74	3.65		3.75	3.69		3.81	V
V _{IHCMR}	Input HIGH Voltage Com- mon Mode Range (Differen- tial Configuration) (Note 3)				2.2		4.6	2.2		4.6	2.2		4.6	V
I _{IH}	Input HIGH Current			150			150			150			150	μA
I _{IL}	Input LOW Current				0.5	0.3		0.5	0.25		0.3	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary -0.46 V / +0.06 V. 2. Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V. 3. V_{IHCMR} min varies 1:1 with V_{EE}, max varies 1:1 with V_{CC}.

			-40°C			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{EE}	Power Supply Current		74	89		74	89		74	89		74	89	mA
V _{OH}	Output HIGH Voltage (Note 5)				-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 5)				-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single-Ended)				-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage (Single-Ended)				-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
V_{BB}	Output Voltage Reference	-1.43		-1.3	-1.38		-1.27	-1.35		-1.25	-1.31		-1.19	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 6)				-2.8		-0.4	-2.8		-0.4	-2.8		-0.4	V
I _{IH}	Input HIGH Current			150			150			150			150	μA
IIL	Input LOW Current				0.5	0.3		0.5	0.065		0.3	0.2		μA

Table 4. 10E SERIES NECL DC CHARACTERISTICS V_{CCY} = 0.0 V; V_{FF} = -5.0 V (Note 4)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V. 5. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

6. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC.

Table 5. 100E SERIES PECL DC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}; V_{EE} = 0.0 \text{ V}$ (Note 7)

			4000			0°C			0500			0500		Γ
			–40°C			0.0			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		74	89		74	89		74	89		85	102	mA
V _{OH}	Output HIGH Voltage (Note 8)				3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 8)				3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)				3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)				3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
V_{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	3.62		3.74	V
V _{IHCMR}	Input HIGH Voltage Com- mon Mode Range (Differ- ential Configuration) (Note 9)				2.2		4.6	2.2		4.6	2.2		4.6	V
I _{IH}	Input HIGH Current			150			150			150			150	μA
IIL	Input LOW Current				0.5	0.3		0.5	0.25		0.5	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

7. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

8. Outputs are terminated through a 50 Ω resistor to \overline{V}_{CC} – 2.0 V.

9. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

	Characteristic		-40°C			0°C			25°C		85°C			
Symbol		Min	Тур	Max	Unit									
I _{EE}	Power Supply Current		74	89		74	89		74	89		85	102	mA
V _{OH}	Output HIGH Voltage (Note 11)				-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 11)				-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)				-1165	-1025	-880	-1165	-1025	-880	-1165	-1025	-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)				-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1645	-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 12)				-2.8		-0.4	-2.8		-0.4	-2.8		-0.4	V
I _{IH}	Input HIGH Current			150			150			150			150	μΑ
IIL	Input LOW Current				0.5	0.3		0.5	0.25		0.5	0.2		μA

Table 6. 100E SERIES NECL DC CHARACTERISTICS V_{CCx} = 0.0 V; V_{FF} = -5.0 V (Note 10)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V. 11. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

12. V_{IHCMR} min varies 1:1 with V_{EE} , max varies 1:1 with V_{CC} .

Table 7. AC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V or V_{CCx} = 0.0 V; V_{EE} = -5.0 V (Note 13)

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{MAX}	Maximum Toggle Frequency	1.1			1.1			1.1			GHz
t _{PLH} t _{PHL}	Propagation Delay to Output CLK (Diff) CLK (SE) MR	425 375 375	600 600 625	850 900 900	475 425 425	600 600 625	800 850 900	475 425 425	600 600 625	800 850 900	ps
t _S	Setup Time D	175	-50		150	-50		150	-50		ps
t _H	Hold Time D	225	50		200	50		200	50		ps
t _{RR}	Reset Recovery Time	750	450		700	450		700	450		
t _{PW}	Minimum Pulse Width CLK MR	400 400			400 400			400 400			ps
t _{skew}	Within-Device Skew (Note 14)		50						50		ps
t _{JITTER}	Random Clock Jitter (RMS)		< 1.0			< 1.0			< 1.0		ps
V _{PP}	Input Voltage Swing (Differential Configuration)	150		1000	150		1000	150		1000	mV
t _r /t _f	Rise/Fall Times 20–80%	250	475	725				275	475	675	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

13.10 Series: V_{EE} can vary -0.46 V / +0.06 V.

100 Series: VEE can vary -0.46 V / +0.8 V.

14. Within-device skew is defined as identical transitions on similar paths through a device.

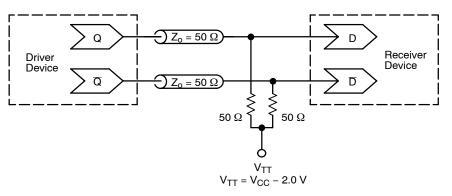


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10E452FN	PLCC-28	37 Units / Rail
MC10E452FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10E452FNR2	PLCC-28	500 / Tape & Reel
MC10E452FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel
MC100E452FN	PLCC-28	37 Units / Rail
MC100E452FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC100E452FNR2	PLCC-28	500 / Tape & Reel
MC100E452FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH

BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

7

DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037

(0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

0.50

10°

2 °

1.02

2 °

K1 0.040

10 °

G1 0.410 0.430 10.42 10.92

z

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC100E452FN MC100E452FNR2 MC10E452FN MC10E452FNG MC10E452FNR2