MOSFET – Power, Single, P-Channel, ESD, μCool, UDFN, 1.6x1.6x0.55 mm -20 V, -5.0 A

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6x1.6x0.55 mm for Board Space Saving
- Lowest RDS(on) in 1.6x1.6 Package
- ESD Protected
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

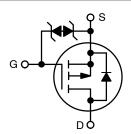
Applications

- High Side Load Switch
- PA Switch and Battery Switch
- Optimized for Power Management Applications for Portable Products, such as Cell Phones, PMP, DSC, GPS, and others

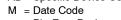
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Units
			-		
Drain-to-Source Voltage			V _{DSS}	-20	V
Gate-to-Source Voltage			V _{GS}	±8.0	V
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	Ι _D	-4.0	А
Current (Note 1)		$T_A = 85^{\circ}C$		-2.9	
	t ≤ 5 s	$T_A = 25^{\circ}C$		-5.0	
Power Dissipa- tion (Note 1)	Steady State	T _A = 25°C	PD	1.5	W
	t ≤ 5 s	T _A = 25°C		2.3	
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	-2.6	А
Current (Note 2)	State	T _A = 85°C		-1.9	
Power Dissipation (Note 2) $T_A = 25^{\circ}C$		PD	0.6	W	
Pulsed Drain Current tp = 10 μs			I _{DM}	-17	А
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)			۱ _S	-0.84	А
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C
,					

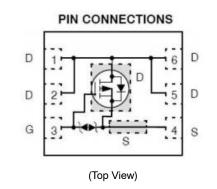
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

ON Semiconductor®


http://onsemi.com

MOSFET				
V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX		
-20 V	62 mΩ @ –4.5 V			
	95 mΩ @ −2.5 V	-5.0 A		
	140 mΩ @ −1.8 V	0.077		
	230 mΩ @ –1.5 V			


P-Channel MOSFET

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

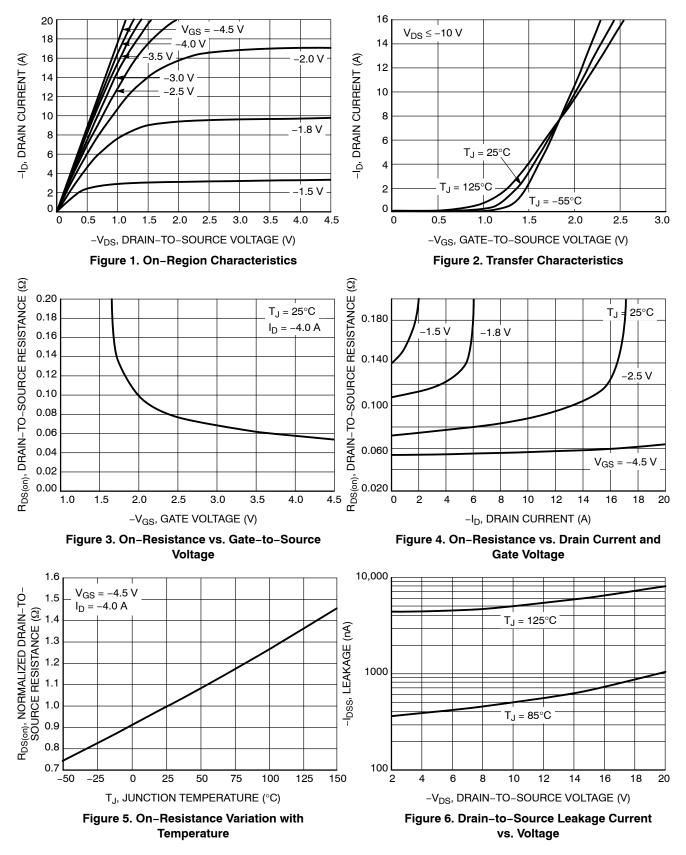
Parameter	Symbol	Max	Units
Junction-to-Ambient – Steady State (Note 3)	R_{\thetaJA}	84	°C/W
Junction-to-Ambient – t \leq 5 s (Note 3)	$R_{\theta JA}$	55	
Junction-to-Ambient – Steady State min Pad (Note 4)	R_{\thetaJA}	200	

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

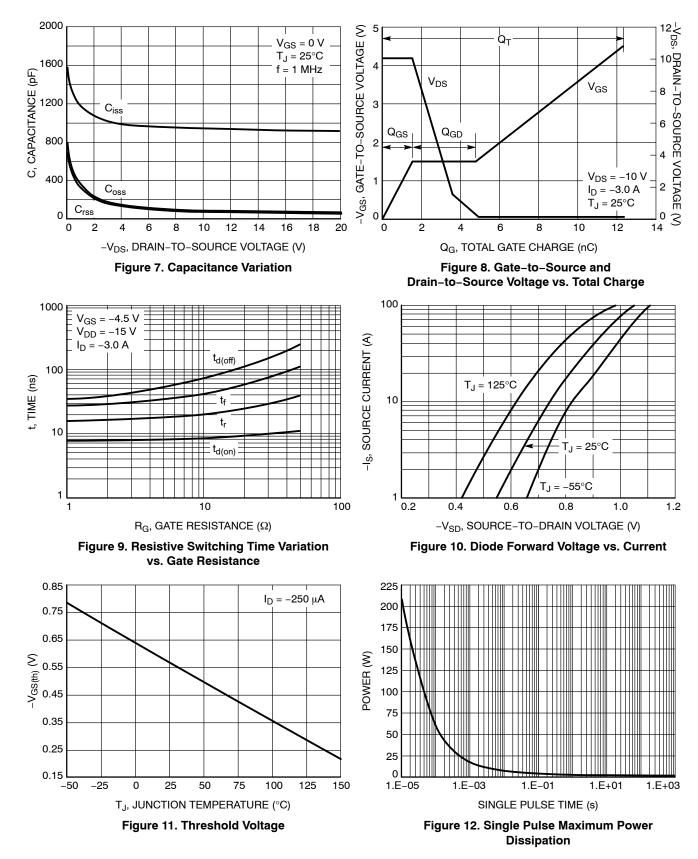
Parameter	Symbol	Test Condition		Min	Тур	Max	Units
OFF CHARACTERISTICS		•		•	•	-	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = -250 μA		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = -250 \ \mu\text{A}, \text{ ref to } 25^{\circ}\text{C}$			-8.0		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$, $T_J = 25^{\circ}C$				-1.0	μA
		$V_{\rm DS} = -20$ V	$T_J = 85^{\circ}C$			-10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8.0 V$				±10	μA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS},$	I _D = -250 μA	-0.4		-1.0	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J				3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V	V, I _D = -4.0 A		54	62	mΩ
		V _{GS} = -2.5 V	V, I _D = -2.0 A		74	95	
		V _{GS} = -1.8 ^v	V, I _D = -1.2 A		104	140	
		V _{GS} = -1.5 V	V, I _D = -0.5 A		137	230	
Forward Transconductance	9 _{FS}	V _{DS} = -10 \	/, I _D = -3.0 A		10		S
CHARGES, CAPACITANCES & GATE	RESISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -10 V			950		pF
Output Capacitance	C _{OSS}				90		
Reverse Transfer Capacitance	C _{RSS}				85		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -4.5 V, V _{DS} = -10 V; I _D = -3.0 A			12.3		nC
Threshold Gate Charge	Q _{G(TH)}				0.9		
Gate-to-Source Charge	Q _{GS}				1.6		1
Gate-to-Drain Charge	Q _{GD}				3.3		
SWITCHING CHARACTERISTICS, VG	S = 4.5 V (Note 6)					•	
Turn-On Delay Time	t _{d(ON)}				7.9		ns
Rise Time	t _r	V _{CS} = -4.5 V.	Vpp = -10 V.		15.7		
Turn-Off Delay Time	t _{d(OFF)}				34.8		
Fall Time	t _f				28.5		
DRAIN-SOURCE DIODE CHARACTER	ISTICS	-		-	-		-
Forward Diode Voltage	VSD	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.74	1.2	V
		VGS - 0 V,	T _J = 125°C		0.62		
Reverse Recovery Time	t _{RR}		1		11.8		ns
Charge Time	t _a	V _{GS} = 0 V, dis/dt = 100 A/µs, I _S = −1.0 A			8.5	1	
Discharge Time	t _b				3.3		

3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces). 4. Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu. 5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

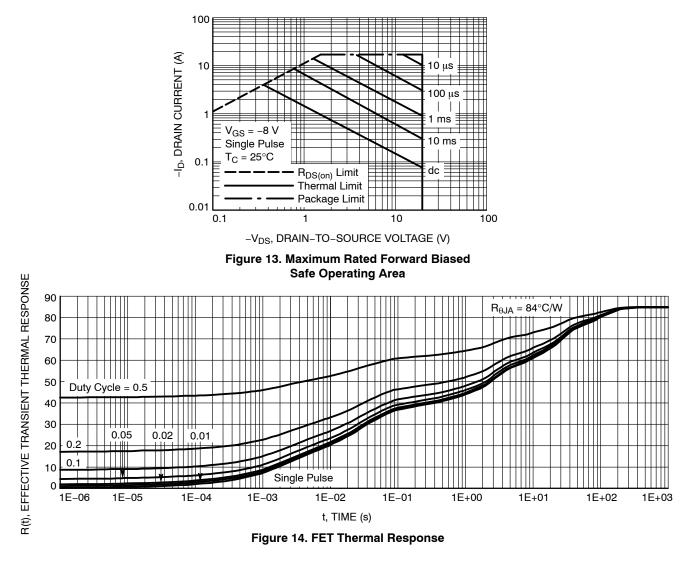
 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$


Reverse Recovery Charge

6. Switching characteristics are independent of operating junction temperatures.

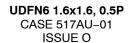

6.0

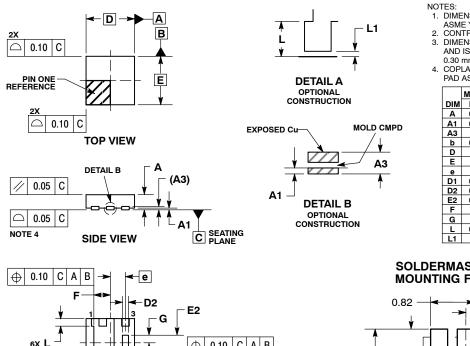
nC


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS




DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NTLUS3A90PZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUS3A90PZTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

0.10 C

CAB

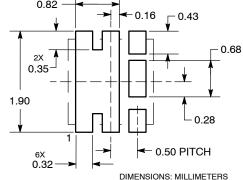
0.05 C NOTE 3

Α В

 \oplus

0.10

6X b


¢

BOTTOM VIEW

- 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
- 0.30 mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
A3	0.13 REF			
b	0.20	0.30		
D	1.60 BSC			
Е	1.60 BSC 0.50 BSC			
е				
D1	0.62	0.72		
D2	0.15	0.25		
E2	0.57	0.67		
F	0.55 BSC			
G	0.25 BSC			
L	0.20	0.30		
L1		0.15		

SOLDERMASK DEFINED **MOUNTING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice ON Semiconductor and to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights nor the rights of others. SCILC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

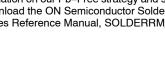
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

DETAIL A

D1

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com


N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

For additional information, please contact your local Sales Representative

