

Silicon Carbide Power Schottky Diode

Features

- Industry's leading low leakage currents
- 175 °C maximum operating temperature
- Temperature independent switching behavior
- Superior surge current capability
- Positive temperature coefficient of V_F
- Extremely fast switching speeds
- Superior figure of merit Q_C/I_F

Advantages

- Low standby power losses
- Improved circuit efficiency (Lower overall cost)
- · Low switching losses
- · Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- Low reverse recovery current
- Low device capacitance
- Low reverse leakage current at operating temperature

GB02SLT12-252

V _{RRM}	=	1200 V
I _{F (Tc = 25°C)}	=	5 A
I _{F (Tc ≤ 150°C)}	=	2 A
Q _c	=	9 nC

Package

RoHS Compliant

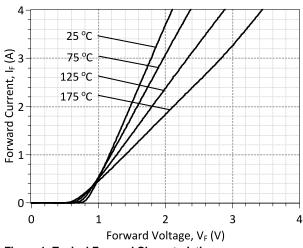
TO – 252

Applications

- Power Factor Correction (PFC)
- Switched-Mode Power Supply (SMPS)
- Solar Inverters
- Wind Turbine Inverters
- Motor Drives
- Induction Heating
- Uninterruptible Power Supply (UPS)
- High Voltage Multipliers

Maximum Ratings at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit	
Repetitive peak reverse voltage	V _{RRM}		1200	V	
Continuous forward current	l _F	T _C = 25 °C	5	А	
Continuous forward current	I _F	T _C ≤ 150 °C	2	А	
RMS forward current	I _{F(RMS)}	T _C ≤ 150 °C	3	А	
Surge non-repetitive forward current, Half Sine	I _{F,SM}	$T_{C} = 25 \text{ °C}, t_{P} = 10 \text{ ms}$	18	•	
Wave		$T_{\rm C}$ = 150 °C, $t_{\rm P}$ = 10 ms	15	A	
Non-repetitive peak forward current	I _{F,max}	$T_{C} = 25 \text{ °C}, t_{P} = 10 \ \mu s$	100	А	
l ² t value	∫i² dt	$T_{C} = 25 \text{ °C}, t_{P} = 10 \text{ ms}$	1.6	A ² s	
	ji dt	T _C = 150 °C, t _P = 10 ms	1.1		
Power dissipation	P _{tot}	T _C = 25 °C	65	W	
Operating and storage temperature	T _i , T _{stq}		-55 to 175	°C	


Electrical Characteristics at T_j = 175 °C, unless otherwise specified

Parameter	Cumphial	Conditions —		Values		L Incit	
Farameter	Symbol			min.	typ.	max.	Unit
Diode forward voltage	V _F	$I_F = 2 A, T_j = 2$	25 °C		1.5	1.8	V
Didde forward voltage		I _F = 2 A, T _i = 175 °C		2.6	3.0	v	
Reverse current	I _R	V _R = 1200 V, T _j	= 25 °C		5	50	
		V _R = 1200 V, T _j = 175 °C			10	100	μA
Total capacitive charge	Q _c	$I_{F} \leq I_{F,MAX}$ $dI_{F}/dt = 200 \text{ A}/\mu\text{s}$ $T_{j} = 175 \text{ °C}$	V _R = 400 V		9		nC
			V _R = 960 V		14		
Switching time	ts		V _R = 400 V		< 17		ns
			V _R = 960 V				
Total capacitance	С	V _R = 1 V, f = 1 MHz, T _j = 25 °C		131		pF	
		V _R = 400 V, f = 1 MHz, T _j = 25 °C		12			
		V _R = 1000 V, f = 1 MHz, T _i = 25 °C		8			

Thermal resistance, junction - case R_{thJC} 2.3 °C/W

GeneSiC SEMICONDUCTOR

GB02SLT12-252

Figure 1: Typical Forward Characteristics

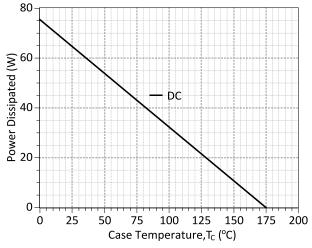
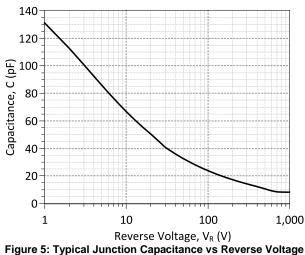



Figure 3: Power Derating Curve

Characteristics

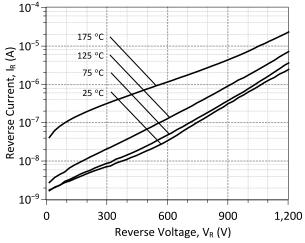
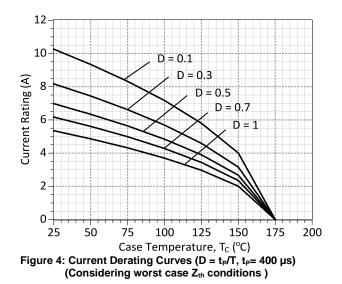
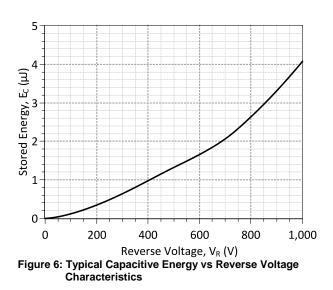
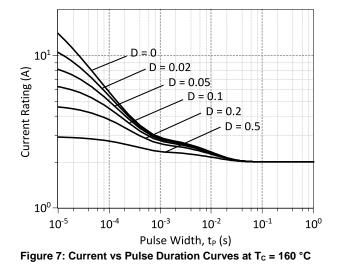
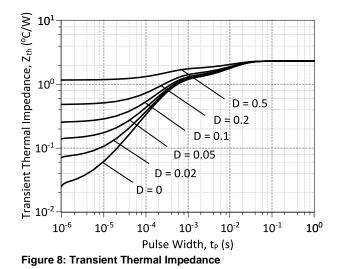
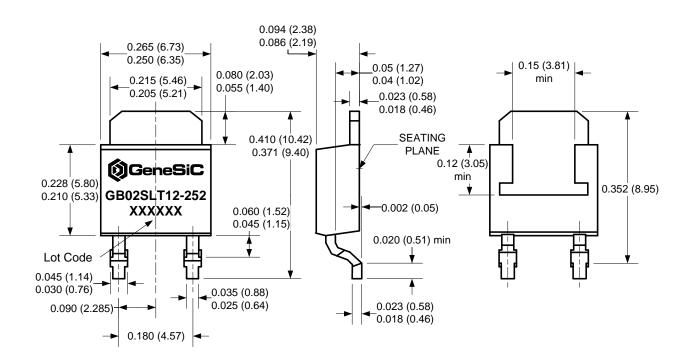





Figure 2: Typical Reverse Characteristics



GB02SLT12-252


Genes

Package Dimensions:

PACKAGE OUTLINE

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.

2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

GB02SLT12-252

Revision History					
Date	Revision	Comments	Supersedes		
2014/08/26	4	Updated Electrical Characteristics			
2013/06/12	3	Updated Electrical Characteristics			
2012/12/18	2	Second generation update			
2012/05/22	1	Second generation release			
2010/12/13	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

This is a secure document. Please copy this code from the SPICE model PDF file on our website (http://www.genesicsemi.com/images/products_sic/rectifiers/GB02SLT12-252_SPICE.pdf) into LTSPICE (version 4) software for simulation of the GB02SLT12-252.

```
MODEL OF GeneSiC Semiconductor Inc.
*
*
     $Revision: 1.0
                                  $
*
     $Date: 04-SEP-2013
                                  $
*
*
     GeneSiC Semiconductor Inc.
*
     43670 Trade Center Place Ste. 155
     Dulles, VA 20166
*
*
*
     COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
*
     ALL RIGHTS RESERVED
*
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
 Models accurate up to 2 times rated drain current.
*
*
 Start of GB02SLT12-252 SPICE Model
.SUBCKT GB02SLT12 ANODE KATHODE
D1 ANODE KATHODE GB02SLT12
D2 ANODE KATHODE GB02SLT12 PIN
.MODEL GB02SLT12 D
+ IS
           2.05E-15
                                       0.282
                            RS
+ TRS1
          0.0054
                                       3E-05
                            TRS2
+ N
          1
                            IKF
                                       251
+ EG
           1.2
                            XTI
                                       -1.8
                                       0.4508
+ CJO
          1.61E-10
                            VJ
+ M
          1.586
                            FC
                                       0.5
+ TT
           1.00E-10
                            ΒV
                                       1200
          1.00E-03
                                       1200
+ IBV
                            VPK
+ IAVE
           2
                            TYPE
                                       SiC Schottky
+ MFG
          GeneSiC Semi
.MODEL GB02SLT12 PIN D
           1.54E-25
                                       0.39
+ IS
                            RS
+ TRS1
           -0.003
                            Ν
                                       3.941
+ EG
           3.23
                            IKF
                                       19
+ XTI
           0
                                       0.5
                            FC
+ TT
           0
                            ΒV
                                       1200
+ IBV
           1.00E-03
                            VPK
                                       1200
+ IAVE
           10
                            TYPE
                                       SiC PiN
.ENDS
* End of GB02SLT12-252 SPICE Model
```

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

GeneSiC Semiconductor: GB02SLT12-263