

Automotive-grade dual N-channel 60 V, 22.5 mΩ typ., 7.8 A STripFET™ F3 Power MOSFET in a PowerFLAT™ 5x6 double island package

Datasheet - production data

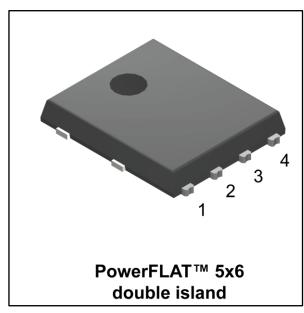
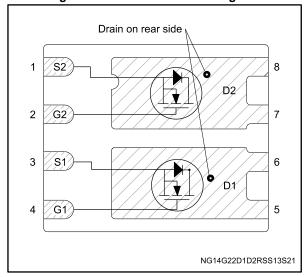



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STL8DN6LF3	60 V	30 mΩ	7.8 A

- AEC-Q101 qualified
- Logic level V_{GS(th)}
- 175 °C junction temperature
- 100 % avalanche rated
- Wettable flank package

Applications

• Switching applications

Description

This device is a dual N-channel Power MOSFET developed using STripFET™ F3 technology. It is designed to minimize on-resistance and gate charge to provide superior switching performance.

Table 1: Device summary

Order code	Marking	Package	Packing
STL8DN6LF3	8DN6LF3	PowerFLAT™ 5x6 double island	Tape and reel

May 2017 DocID022261 Rev 6 1/15

Contents STL8DN6LF3

Contents

1	Electric	al ratings	
		al characteristics	
		Electrical characteristics (curves)	
3	Test cir	cuits	8
4	Packag	e information	
	4.1	PowerFLAT™ 5x6 WF type R package information	
	4.2	PowerFLAT™ 5x6 WF packing information	12
5	Revisio	n history	14

STL8DN6LF3 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	±20	V
V _{DS}	Drain-source voltage	60	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	20	Α
ΙD	Drain current (continuous) at T _C = 100 °C	20	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	7.8	Α
ID(=)	Drain current (continuous) at T _{pcb} = 100 °C	5.5	Α
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	31.2	Α
Ртот	Total dissipation at T _C = 25 °C	65	W
P _{TOT} ⁽²⁾	Total dissipation at T _{pcb} = 25 °C	4.3	W
lav	Non-repetitive avalanche current	7.8	Α
E _{AS} ⁽⁴⁾	Single pulse avalanche energy 190		mJ
Tj	Operating junction temperature range		°C
T _{stg}	Storage temperature range	-55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.3	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	35	-C/VV

Notes:

 $^{^{(1)}}$ Current is limited by bonding, with R_{thJC} = 2.3 °C/W; the chip is able to carry 30 A at 25 °C.

 $^{^{(2)}\!}When$ mounted on an 1 inch² 2 Oz. Cu board, t < 10 s

⁽³⁾ Pulse width is limited by safe operating area.

 $^{^{(4)}}$ Starting T_J = 25 °C, I_D = I_{AS}, V_{DD} = 25 V

 $^{^{(1)}}$ When mounted on an 1 inch² 2 Oz. Cu board, t < 10 s

Electrical characteristics STL8DN6LF3

2 Electrical characteristics

4/15

(T_C= 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	60			٧
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 60 V			1	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1		2.5	V
D-ac	Static drain-source	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$		22.5	30	mΩ
R _{DS(on)}	on-resistance	$V_{GS} = 5 \text{ V}, I_{D} = 4 \text{ A}$		30	44	mΩ

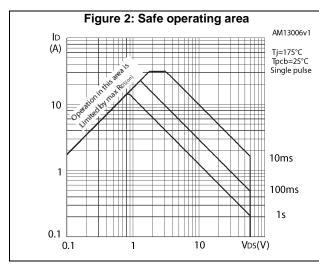
Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	668	ı	pF
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz,	-	144	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	14	1	pF
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, I_D = 7.8 \text{ A},$	-	13	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V (see Figure 14: "Test circuit	-	2.4	ı	nC
Q _{gd}	Gate-drain charge	for gate charge behavior")	-	3	-	nC
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	4	1	Ω

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 4 \text{ A},$	-	9	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit	-	7.7	-	ns
t _{d(off)}	Turn-off delay time	for resistive load switching	-	32.5	-	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	-	5	-	ns

Table 7: Source drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isp	Source-drain current		-		7.8	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		31.2	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 7.8 A	-		1.3	V
t _{rr}	Reverse recovery time	$I_{SD} = 7.8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	30		ns
Qrr	Reverse recovery charge	$V_{DD} = 48 \text{ V}, T_{J} = 150 \text{ °C}$ (see Figure 15: "Test circuit	-	35		nC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	2.35		Α

Notes:

⁽¹⁾Pulse width is limited by safe operating area.

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

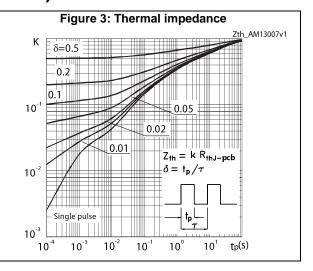


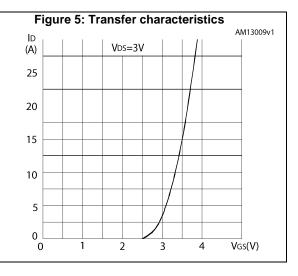
Figure 4: Output characteristics

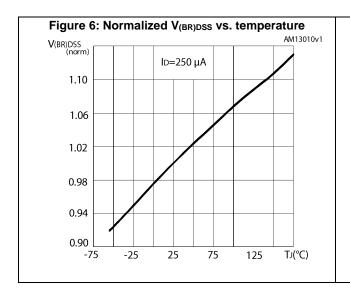
AM13008v1

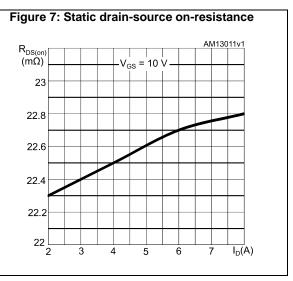
VGS=10V

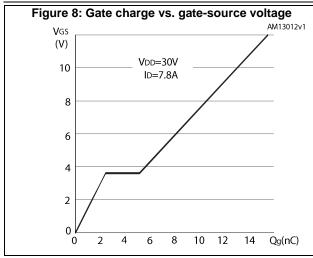
25

20


15


10


5


0

1 2 3 4 VDS(V)

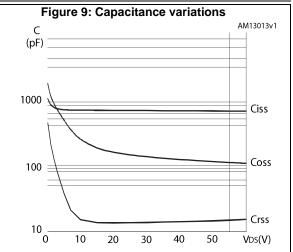


Figure 10: Normalized gate threshold voltage vs. temperature

VGS(th) ID=250µA

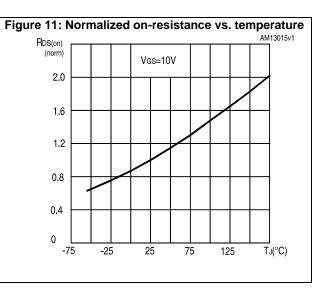
1.2

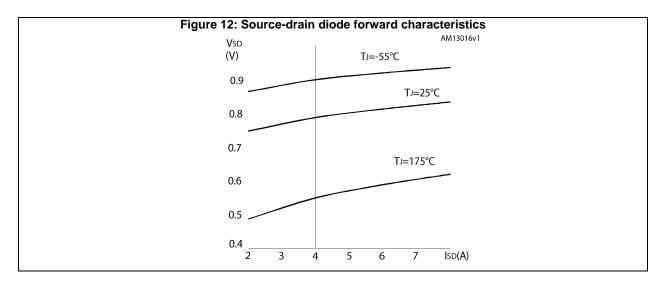
1.0

0.8

0.6

0.4


25


75

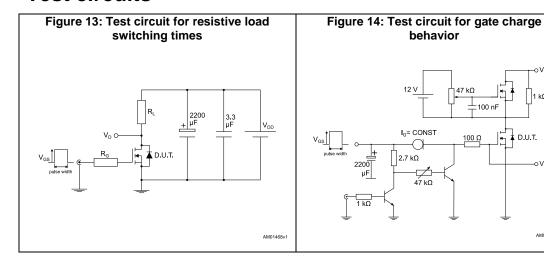
125

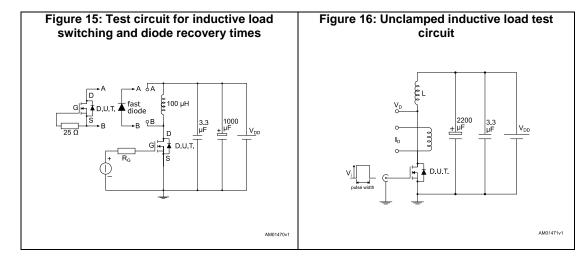
-75

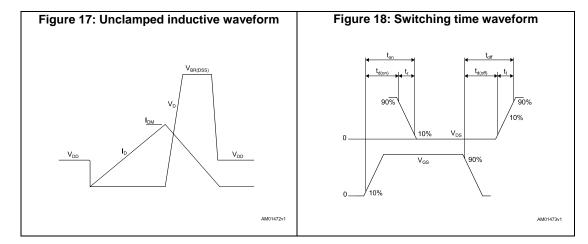
-25

TJ(°C)

Test circuits STL8DN6LF3


behavior


47 kΩ


1 kΩ

⊥ 100 nF

3 **Test circuits**

STL8DN6LF3 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x6 WF type R package information

Figure 19: PowerFLAT™ 5x6 WF type R package outline BOTTOM VIEW 5 E3 E3 Detail A Scale 3:1 62 0.08 L(x4) b(x8) D5(x4) D4 SIDE VIEW A Detail A ŏ 8231817 R WF Rev 15

57/

Table 8: PowerFLAT™ 5x6 WF type R mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
С	5.80	6.00	6.10
D	5.00	5.20	5.40
D2	4.15		4.45
D3	4.05	4.20	4.35
D4	4.80	5.00	5.10
D5	0.25	0.4	0.55
D6	0.15	0.3	0.45
е		1.27	
Е	6.20	6.40	6.60
E2	3.50		3.70
E3	2.35		2.55
E4	0.40		0.60
E5	0.08		0.28
E6	0.20	0.325	0.45
E7	0.85	1.00	1.15
E9	4.00	4.20	4.40
E10	3.55	3.70	3.85
K	1.275		1.575
L	0.725	0.825	0.925
L1	0.175	0.275	0.375
θ	0°		12°

STL8DN6LF3 Package information

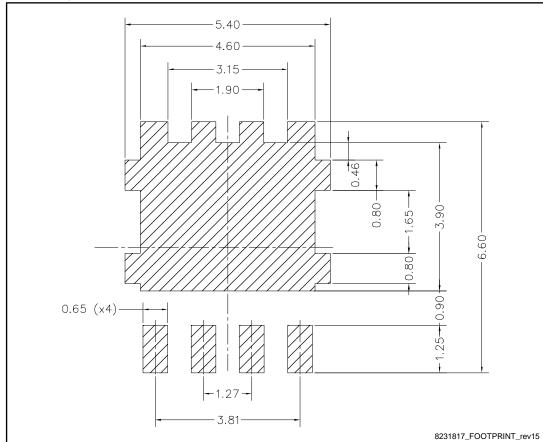


Figure 20: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

Package information STL8DN6LF3

4.2 PowerFLAT™ 5x6 WF packing information

Figure 21: PowerFLAT™ 5x6 WF tape (dimensions are in mm)

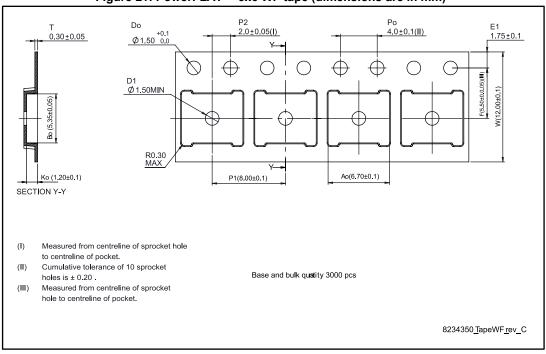
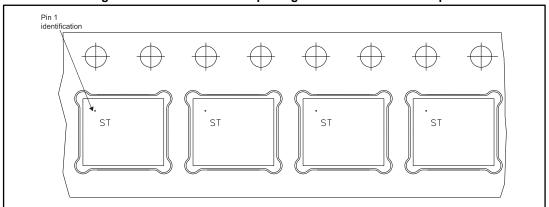



Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

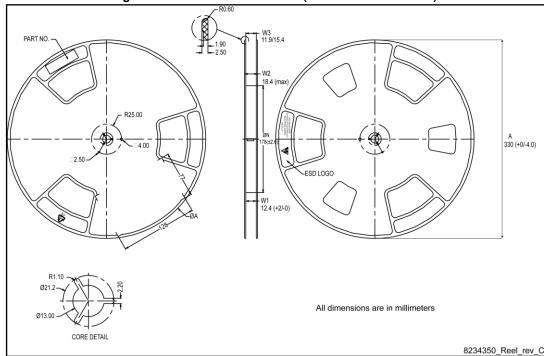


Figure 23: PowerFLAT™ 5x6 reel (dimensions are in mm)

Revision history STL8DN6LF3

Revision history 5

Table 9: Document revision history

Date	Revision	Changes	
11-Oct-2011	1	First release.	
19-Jun-2012	2	Added Section 2.1: Electrical characteristics (curves). Updated Section 4: Package mechanical data and title on the cover page.	
26-Jun-2012	3	Document status promoted from preliminary to production data.	
24-Oct-2013	4	 Updated title and features in cover page Modified: VGS(th) value in Table 4 Updated: Section 4: Package mechanical data and Section 5: Packaging mechanical data Minor text changes 	
20-Feb-2014	5	 Added: Features in cover page Added: note 1 in Table 1 Added: Table 20 and Table 9 Added: Figure 23 Minor text changes 	
11-May-2017	6	Updated title and description on cover page. Updated Figure 6: "Normalized V _{(BR)DSS} vs. temperature" and Figure 11: "Normalized on-resistance vs. temperature". Updated Section 4: "Package information" Minor text changes	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STL8DN6LF3