NB3N3011DTEVB Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Board Description

The NB3N3011 Evaluation Board provides a flexible and convenient platform to quickly evaluate, characterize and verify the performance and operation of the NB3N3011 Clock Generator. This user's manual provides detailed information on board contents, layout and its use. It should be used in conjunction with a device datasheet: NB3N3011. (www.onsemi.com)

A single TSSOP-8 (wide) device can be mounted on the board.

Board Features

- Accommodates the Electrical Characterization of the NB3N3011
- Supports Use of a 25 MHz and 26.5625 MHz Through-hole or Surface Mount Crystal
- Incorporates on Board Power Supply Filter
- Convenient and Compact Board Layout
- 3.3 V Single or Split-power Supply Operation
- LVPECL Differential Output Signals are Accessed via SMA Connectors

Board Layout

The evaluation board is constructed with FR4 material and is designed to minimize noise, and crosstalk and achieve high bandwidth. SMA connectors are provided for output signal access.

Layer Stack

- L1 Signal and SMAGND
- L2 SMA Ground
- L3 V_{CC} (Positive Power Supply) and V_{EE} (Device Negative Power Supply)
- L4 Signal

Figure 1. Evaluation Board

LAB SETUP PROCEDURE

Power Supply Connections and Output Termination

The NB3N3011 has a positive supply pin, V_{CC} , and a negative supply pin, V_{EE} . SMAGND (V_{TT}) is the termination supply for the LVPECL outputs, only.

Power supply banana plug connectors for V_{CC}, V_{EE} and SMAGND are provided in the corners of the board. The LVPECL Q and \overline{Q} outputs have standard, open emitter outputs and must be externally DC loaded and terminated. Thevenin equivalent load and termination resistors pads are provided at the Q/ \overline{Q} output's SMA connectors, but are not installed. A "split" or dual power supply technique can be used to take advantage of terminating the LVPECL outputs into 50 Ω of an oscilloscope or a frequency counter. Since V_{TT} = V_{CC} – 2.0 V, offsetting V_{CC} to +2.0 V yields V_{TT} = 0 V or Ground. The V_{TT} terminal connects to the isolated SMAGND connector ground plane, and is not to be confused with the device ground pin or V_{EE}.

Table 1. "SPLIT" POWER SUPPLY CONFIGURATION	
---	--

Device Pin	Power Supply	"Spilt" Power Supply	
V _{CC}	RED	V _{CC} = +2.0 V	
SMAGND	BLACK	$V_{TT} = V_{CC} - 2.0 V = 0 V$	
V _{EE}	BLACK	V _{EE} = -1.3 V	

Figure 3. "Split" Power Supply Connections

LAB SETUP AND MEASUREMENT PROCEDURE

Equipment Used

- Tektronix TDS8000 Oscilloscope or Frequency Counter
- Agilent #6624A DC Power Supply
- Digital Voltmeter

• Matched high-speed cables with SMA connectors In order to get started and demonstrate the NB3N3011, perform the following test set-up sequence:

To monitor the Q and \overline{Q} outputs on an oscilloscope or frequency counter (with internal 50 Ω termination impedance), the power supply needs to be DC offset:

- 1. Connect a "split" power supply to the evaluation board. (see Figure 2) Connect V_{CC} banana jack to +2.0 V Connect SMAGND banana jack to ground = 0 V Connect V_{EE} banana jack to -1.3 V for 3.3 V operation
- 2. Ensure the oscilloscope is triggered properly and has 50 Ω internal termination to ground. The board does not provide 50 Ω source termination resistors. Two oscilloscope trigger methods are1) from Q (using a "T" connector) or 2) directly from \overline{Q} .
- 3. Connect the LVPECL Q and \overline{Q} outputs to the oscilloscope with good quality matched cables. The outputs are terminated with 50 Ω to V_{TT} = SMAGND (V_{CC} - 2.0 V) = 0 V = Ground internal to the oscilloscope.

NB3N3011 Evaluation Board Pin Descriptions and Features by Pin

The NB3N3011 Evaluation Board was designed to accommodate the test and evaluation of the NB3N3011 LVPECL Clock Generator. Detailed board features by device pin are described below:

Crystal (XTAL_IN and XTAL_OUT)

A through-hole or surface mount parallel resonant crystal can be used.

Disregard the metal traces and connectors from X_{IN} and X_{OUT} . They are open and NOT connected to the crystal package pins and have no impedance affect on the crystal.

Q and \overline{Q}

The Q and \overline{Q} LVPECL outputs have equal length 50 Ω board traces with SMA connectors. Matched cables can connect to an oscilloscope or frequency counter.

V_{CC} and V_{CCA}

The V_{CC} pin is connected directly to the V_{CC} power plane. By-pass capacitors are installed.

The V_{CCA} pin has the power supply filter components installed per the datasheet.

Table 2. NB3N3011 BILL OF MATERIALS

Component	Component Description		Designator
Connector	Johnson Comp Inc SMA #142-0711-821	2	Q, <u>Q</u>
Capacitor, P/S Bypass	22 μF	2	C5, C9
Capacitor, P/S Bypass; VCCA Filter	0.01 μF	4	C7, C12
Capacitor, P/S Bypass	0.1 μF	2	C8, C8
Capacitor, VCCA Filter	10 μF	1	C10
Capacitor, Cyrstal Load	33 μF	1	C14
Capacitor, Cyrstal Load	22 μF	1	C13
Crystal	25 MHz, Ecliptek #ECX6106–25.00M – Surface Mount #ECX6150–25.000M – Through-hole 26.5625 MHz, Ecliptek #ECX6110–26.5625M – Surface Mount #ECX6151–26.5625M – Through-hole	1	Y1
Jumper Header		0	
Jumper		0	
Resistor, VCCA Filter	10 Ω	1	R1
Banana Jack	Deltron #EF681 150-039 Red	1	VCC
Banana Jack	Deltron #EF681 150-040 Black	2	VEE, SMAGND
Stand-offs		4	
NB3N3011	TSSOP-8 (Wide) device mounted on board	1	
TSSOP-8 (Wide) Socket	M&M Specialties #50-000-00659 (Optional) (480)-858-0393	Optional	

http://onsemi.com 5

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product cand its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use patent SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

EVBUM2062/D