

MCP6231

20 µA, 300 kHz Rail-to-Rail Op Amp

Features

• Gain Bandwidth Product: 300 kHz (typ.)

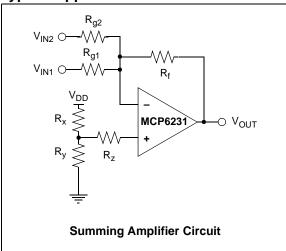
• Supply Current: $I_Q = 20 \mu A$ (typ.)

• Supply Voltage: 1.8V to 5.5V

· Rail-to-Rail Input/Output

Extended Temperature Range: -40°C to +125°C

· Available in 5-Pin SC-70 and SOT-23 packages

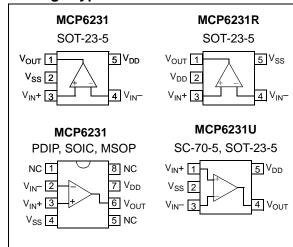

Applications

- Automotive
- · Portable Equipment
- · Transimpedance amplifiers
- Analog Filters
- · Notebooks and PDAs
- · Battery-Powered Systems

Available Tools

Spice Macro Models (at www.microchip.com)
FilterLab[®] Software (at www.microchip.com)

Typical Application



Description

The Microchip Technology Inc. MCP6231 operational amplifier (op amp) provides wide bandwidth for the quiescent current. The MCP6231 has a 300 kHz Gain Bandwidth Product (GBWP) and 65° (typ.) phase margin. This op amp operates from a single supply voltage as low as 1.8V, while drawing 20 μA (typ.) quiescent current. In addition, the MCP6231 supports rail-to-rail input and output swing, with a common mode input voltage range of V_{DD} + 300 mV to V_{SS} - 300 mV. This op amp is designed in one of Microchip's advanced CMOS processes.

The MCP6231 operates in the Extended temperature range of -40°C to +125°C. It has a power supply range of 1.8V to 5.5V.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} - V _{SS}
All Inputs and Outputs V_{SS} – 0.3V to V_{DD} + 0.3V
Difference Input Voltage V _{DD} - V _{SS}
Output Short Circuit Currentcontinuous
Current at Input Pins±2 mA
Current at Output and Supply Pins±30 mA
Storage Temperature65°C to +150°C
Maximum Junction Temperature (T _J)+150°C
ESD Protection On All Pins (HBM;MM)≥ 4 kV; 400V

[†] Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

Name	Function
V _{IN} +	Non-inverting Input
V _{IN} -	Inverting Input
V_{DD}	Positive Power Supply
V _{SS}	Negative Power Supply
V _{OUT}	Output

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = +1.8V$ to +5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $R_L = 100 \text{ k}\Omega$ to $V_{DD}/2$ and $V_{OUT} \approx V_{DD}/2$.

Parameters	Sym	Min	Тур	Max	Units	Conditions				
Input Offset										
Input Offset Voltage	Vos	-5.0	_	+5.0	mV	V _{CM} = V _{SS}				
Extended Temperature	Vos	-7.0	-	+7.0	mV	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C (Note)}$				
Input Offset Drift with Temperature	$\Delta V_{OS}/\Delta T_{A}$	ı	±3.0	_	μV/°C	T_A = -40°C to +125°C, V_{CM} = V_{SS}				
Power Supply Rejection	PSRR	_	83	_	dB	V _{CM} = V _{SS}				
Input Bias Current and Impedance										
Input Bias Current:	I _B		±1.0	_	pА					
At Temperature	I _B	_	20	_	pA	T _A = +85°C				
At Temperature	I _B		1100	_	pA	T _A = +125°C				
Input Offset Current	I _{OS}		±1.0	_	pА					
Common Mode Input Impedance	Z _{CM}		10 ¹³ 6	_	ΩpF					
Differential Input Impedance	Z _{DIFF}		10 ¹³ 3	_	ΩpF					
Common Mode										
Common Mode Input Range	V_{CMR}	$V_{SS} - 0.3$	l	V _{DD} + 0.3	V					
Common Mode Rejection Ratio	CMRR	61	75	_	dB	$V_{CM} = -0.3V$ to 5.3V, $V_{DD} = 5V$				
Open-Loop Gain										
DC Open-Loop Gain (large signal)	A _{OL}	90	110	_	dB	$V_{OUT} = 0.3V$ to $V_{DD} - 0.3V$, $V_{CM} = V_{SS}$				
Output										
Maximum Output Voltage Swing	V_{OL}, V_{OH}	V _{SS} + 35		V _{DD} – 35	mV	$R_L = 10 \text{ k}\Omega$				
Output Short-Circuit Current	I _{SC}		±6	_	mA	V _{DD} = 1.8V				
	I _{SC}	_	±23	_	mA	V _{DD} = 5.5V				
Power Supply										
Supply Voltage	V_{DD}	1.8		5.5	V					
Quiescent Current per Amplifier	ΙQ	10	20	30	μΑ	$I_{O} = 0, V_{CM} = V_{DD} - 0.5V$				

Note: The SC70 package is only tested at 25°C.

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8 to 5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 100 kΩ to $V_{DD}/2$ and C_L = 60 pF.

Parameters	Sym	Min	Тур	Max	Units	Conditions
AC Response						
Gain Bandwidth Product	GBWP	_	300	_	kHz	
Phase Margin	PM	_	65	_	0	G = +1
Slew Rate	SR	_	0.10	_	V/µs	
Noise						
Input Noise Voltage	E _{ni}	_	6.0	_	µVр-р	f = 0.1 Hz to 10 Hz
Input Noise Voltage Density	e _{ni}	_	52	_	nV/√Hz	f = 1 kHz
Input Noise Current Density	i _{ni}	_	0.6	_	fA/√Hz	f = 1 kHz

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, $V_{DD} = +1.8V$ to $+5.5V$ and $V_{SS} = GND$.						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Extended Temperature Range	T _A	-40	_	+125	°C	
Operating Temperature Range	T _A	-40	_	+125	°C	Note
Storage Temperature Range	T _A	-65	_	+150	°C	
Thermal Package Resistances						
Thermal Resistance, 5L-SC70	θ_{JA}	_	331	_	°C/W	
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	256	_	°C/W	
Thermal Resistance, 8L-PDIP	θ_{JA}	_	85	_	°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W	
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	_	°C/W	

Note: The internal Junction Temperature (T_J) must not exceed the Absolute Maximum specification of +150°C.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 100 k Ω to $V_{DD}/2$ and C_L = 60 pF.

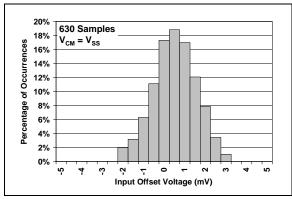
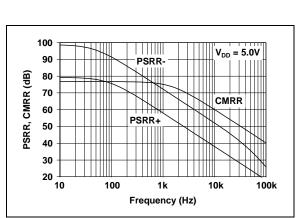



FIGURE 2-1: Input Offset Voltage.

FIGURE 2-2: PSRR, CMRR vs. Frequency.

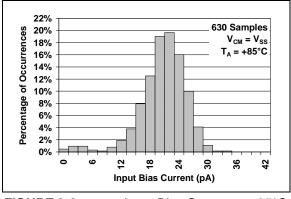


FIGURE 2-3: Input Bias Current at +85°C.

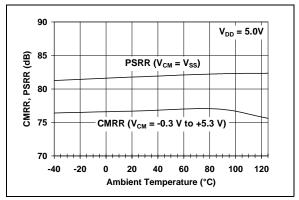
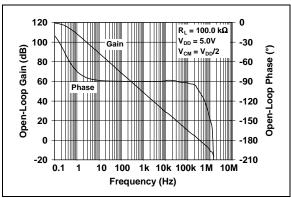



FIGURE 2-4: CMRR, PSRR vs. Ambient Temperature.

FIGURE 2-5: Open-Loop Gain, Phase vs. Frequency.

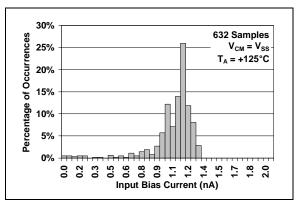
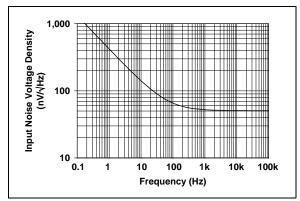
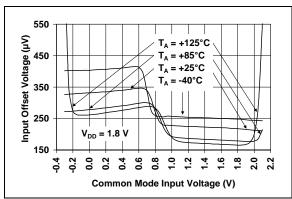




FIGURE 2-6: Input Bias Current at +125°C.

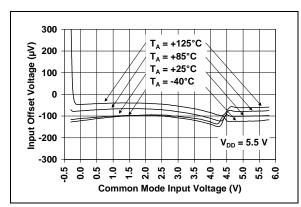

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 100 k Ω to $V_{DD}/2$ and C_L = 60 pF.

FIGURE 2-7: Input Noise Voltage Density vs. Frequency.

FIGURE 2-8: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 1.8V$.

FIGURE 2-9: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

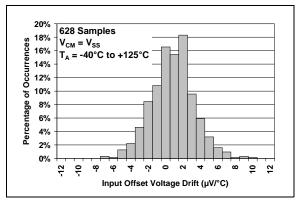


FIGURE 2-10: Input Offset Voltage Drift.

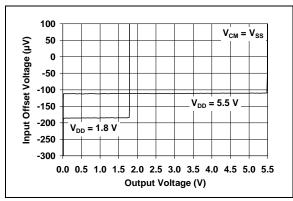
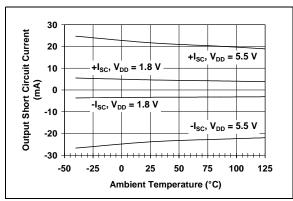



FIGURE 2-11: Input Offset Voltage vs. Output Voltage.

FIGURE 2-12: Output Short-Circuit Current vs. Ambient Temperature.

Note: Unless otherwise indicated, T_A = +25°C, V_{DD} = +1.8V to +5.5V, V_{SS} = GND, V_{CM} = $V_{DD}/2$, $V_{OUT} \approx V_{DD}/2$, R_L = 100 k Ω to $V_{DD}/2$ and C_L = 60 pF.

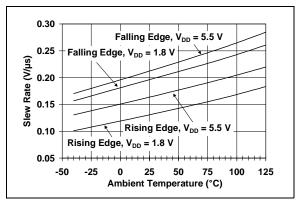
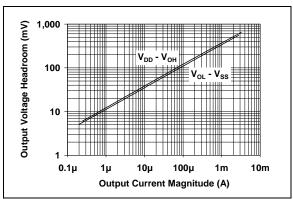
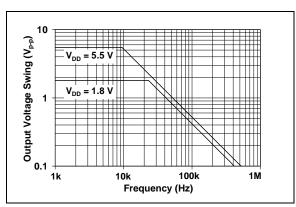
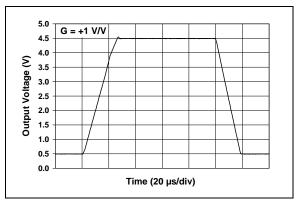




FIGURE 2-13: Slew Rate vs. Ambient Temperature.


FIGURE 2-14: Output Voltage Headroom vs. Output Current Magnitude.

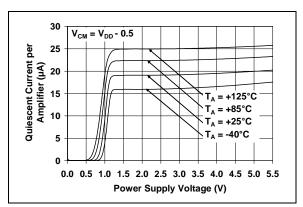
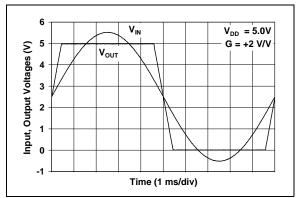

FIGURE 2-15: Output Voltage Swing vs. Frequency.

FIGURE 2-16: Small Signal Non-Inverting Pulse Response.

FIGURE 2-17: Large Signal Non-Inverting Pulse Response.


FIGURE 2-18: Quiescent Current vs. Power Supply Voltage.

3.0 APPLICATION INFORMATION

The MCP6231 op amp is manufactured using Microchip's state-of-the-art CMOS process and is specifically designed for low-cost, low-power and general-purpose applications. The low supply voltage, low quiescent current and wide bandwidth makes the MCP6231 ideal for battery-powered applications.

3.1 Rail-to-Rail Input

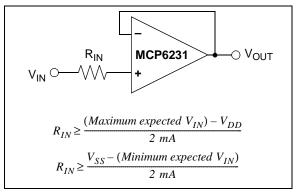
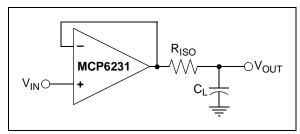

The MCP6231 op amp is designed to prevent phase reversal when the input pins exceed the supply voltages. Figure 3-1 shows the input voltage exceeding the supply voltage without any phase reversal.

FIGURE 3-1: The MCP6231 Shows No Phase Reversal.

The input stage of the MCP6231 op amp uses two differential input stages in parallel. One operates at low common mode input voltage (V_{CM}) and the other at high V_{CM}. With this topology, the device operates with V_{CM} up to 300 mV above V_{DD} and 300 mV below V_{SS}. The Input Offset Voltage is measured at V_{CM} = V_{SS} – 300 mV and V_{DD} + 300 mV to ensure proper operation.

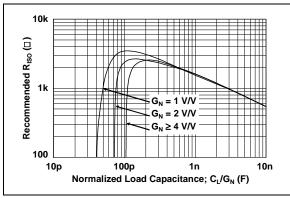
Input voltages that exceed the input voltage range $(V_{SS}-0.3V \text{ to } V_{DD}+0.3V \text{ at } 25^{\circ}\text{C})$ can cause excessive current to flow into or out of the input pins. Current beyond ±2 mA can cause reliability problems. Applications that exceed this rating must be externally limited with a resistor, as shown in Figure 3-2.

FIGURE 3-2: Input Current-Limiting Resistor (R_{IN}) .


3.2 Rail-to-Rail Output

The output voltage range of the MCP6231 op amp is $V_{DD}-35$ mV (min.) and $V_{SS}+35$ mV (max.) when $R_L=10$ k Ω is connected to $V_{DD}/2$ and $V_{DD}=5.5$ V. Refer to Figure 2-14 for more information.

3.3 Capacitive Loads


Driving large capacitive loads can cause stability problems for voltage feedback op amps. As the load capacitance increases, the feedback loop's phase margin decreases and the closed-loop bandwidth is reduced. This produces gain peaking in the frequency response, with overshoot and ringing in the step response. A unity-gain buffer (G=+1) is the most sensitive to capacitive loads, but all gains show the same general behavior.

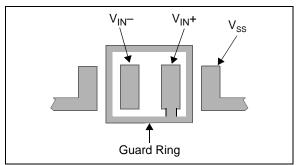
When driving large capacitive loads with these op amps (e.g., $> 100 \, \text{pF}$ when G = +1), a small series resistor at the output (R_{ISO} in Figure 3-3) improves the feedback loop's phase margin (stability) by making the output load resistive at higher frequencies. It does not, however, improve the bandwidth.

FIGURE 3-3: Output resistor, R_{ISO} stabilizes large capacitive loads.

Figure 3-4 gives recommended R_{ISO} values for different capacitive loads and gains. The x-axis is the normalized load capacitance (C_L/G_N), where G_N is the circuit's noise gain. For non-inverting gains, G_N and the gain are equal. For inverting gains, G_N is 1 + |Gain| (e.g., -1 V/V gives G_N = +2 V/V).

FIGURE 3-4: Recommended R_{ISO} Values for Capactive Loads.

After selecting $R_{\rm ISO}$ for your circuit, double-check the resulting frequency response peaking and step response overshoot. Evaluation on the bench and simulations with the MCP6231 SPICE macro model are very helpful. Modify $R_{\rm ISO}$'s value until the response is reasonable.


3.4 Supply Bypass

With this op amp, the power supply pin (V_{DD} for single-supply) should have a local bypass capacitor (i.e., 0.01 μF to 0.1 μF) within 2 mm for good high-frequency performance. It also needs a bulk capacitor (i.e., 1 μF or larger) within 100 mm to provide large, slow currents. This bulk capacitor can be shared with other parts.

3.5 PCB Surface Leakage

In applications where low input bias current is critical, PCB (printed circuit board) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA, if current-to-flow. This is greater than the MCP6231 family's bias current at 25°C (1 pA, typ).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 3-5.

FIGURE 3-5: Example Guard Ring Layout for Inverting Gain.

- 1. Non-inverting Gain and Unity-Gain Buffer:
 - Connect the non-inverting pin (V_{IN}+) to the input with a wire that does not touch the PCB surface.
 - Connect the guard ring to the inverting input pin (V_{IN}-). This biases the guard ring to the common mode input voltage.
- Inverting and transimpedance gain amplifiers (convert current to voltage, such as photo detectors):
 - a. Connect the guard ring to the non-inverting input pin (V_{IN}+). This biases the guard ring to the same reference voltage as the op amp (e.g., V_{DD}/2 or ground).
 - Connect the inverting pin (V_{IN}-) to the input with a wire that does not touch the PCB surface.

4.0 APPLICATION CIRCUITS

4.1 Matching the impedance at the inputs

To minimize the effect of input bias current in an amplifier circuit (this is important for very high source-impedance applications, such as pH meters and transimpedance amplifiers), the impedance at both inverting and non-inverting inputs need to be matched. This is done by choosing the circuit resistor values so that the total resistance at each input is the same. Figure 4-1 shows a summing amplifier circuit.

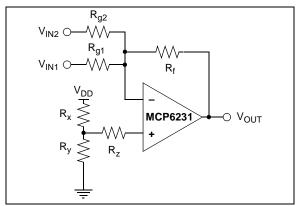


FIGURE 4-1: Summing Amplifier Circuit.

To match the inputs, set all voltage sources to ground and calculate the total resistance at the input nodes. In this summing amplifier circuit, the resistance at the inverting input is calculated by setting $V_{\text{IN1}},\,V_{\text{IN2}}$ and V_{OUT} to ground. In this case, $R_{g1},\,R_{g2}$ and R_{f} are in parallel. The total resistance at the inverting input is:

$$R_{VIN-} = \frac{1}{\left(\frac{1}{R_{gI}} + \frac{1}{R_{g2}} + \frac{1}{R_f}\right)}$$

Where:

R_{VIN}⁻ = total resistance at the inverting input

At the non-inverting input, V_{DD} is the only voltage source. When V_{DD} is set to ground, both R_x and R_y are in parallel. The total resistance at the non-inverting input is:

$$R_{VIN+} = \frac{I}{\left(\frac{I}{R_x} + \frac{I}{R_y}\right)} + R_z$$

Where:

R_{VIN+} = total resistance at the inverting input

To minimize output offset voltage and increase circuit accuracy, the resistor values need to meet the conditions:

$$R_{VIN+} = R_{VIN-}$$

4.2 Compensating for the parasitic capacitance

In analog circuit design, the PCB or the development board parasitic capacitance can compromise the circuit behavior.

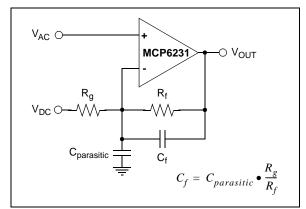


FIGURE 4-2: Effect of Parasitic Capacitance at the Input.

For instance, Figure 4-2 shows a typical scenario. If the input of an amplifier sees parasitic capacitance of several picofarad, the frequency response of the circuit (Figure 4-3) shows that the gain-setting resistors can introduce a zero with the board parasitic capacitance. This parasitic introduces gain peaking and can cause circuit instability.

One solution is to use smaller resistor values to push the zero to a higher frequency. Another solution is to compensate gain-peaking by introducing a pole at the point at which the zero occurs. This can be done by adding C_f in parallel with the feedback resistor (R_f) . C_f needs to be selected so that the ratio $C_{parasitic}$: C_f is equal to the ratio of R_f : R_g . Figure 4-3 shows how C_f enhances the frequency response of the circuit.

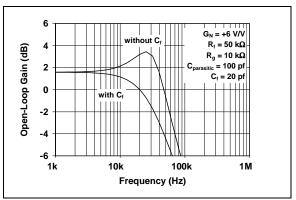


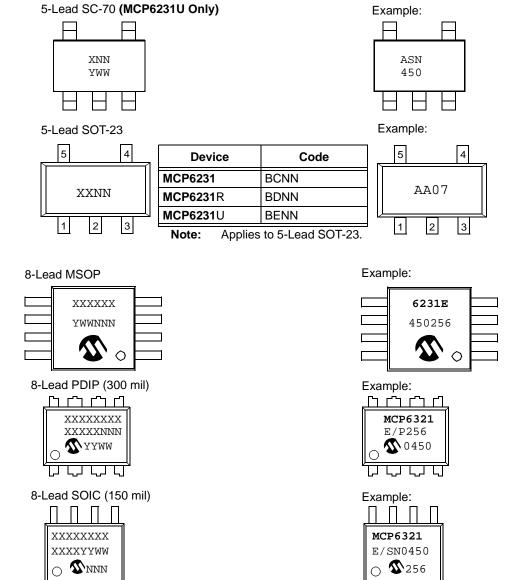
FIGURE 4-3: Circuit Frequency Response.

5.0 DESIGN TOOLS

Microchip provides the basic design tools needed for the MCP6231 family of op amps.

5.1 SPICE Macro Model

The latest Spice macro model for the MCP6231 op amp is available on our web site at www.microchip.com. This model is intended to be an initial design tool that works well in the op amp's linear region of operation at room temperature. See the model file for information on its capabilities.

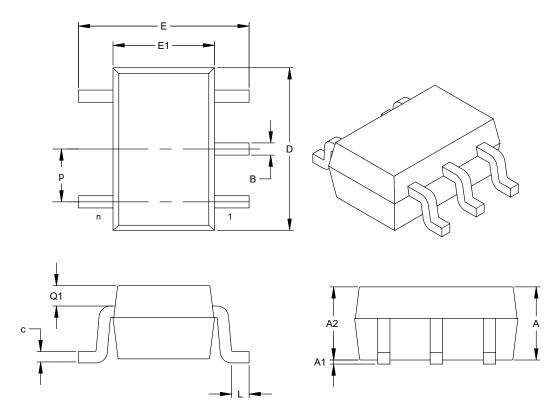

Bench testing is a very important part of any design and cannot be replaced with simulations. Also, simulation results using this macro model need to be validated by comparing them to the data sheet specifications and characteristic curves.

5.2 FilterLab[®] Software

The FilterLab software is an innovative tool that simplifies analog active-filter (using op amps) design. Available free of charge from our web site at www.microchip.com, the FilterLab software active-filter design tool provides full schematic diagrams of the filter circuit with component values. It also outputs the filter circuit in SPICE format, which can be used with the macro model to simulate actual filter performance.

6.0 PACKAGING INFORMATION

6.1 Package Marking Information



Legend: XX...X Customer specific information*
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code

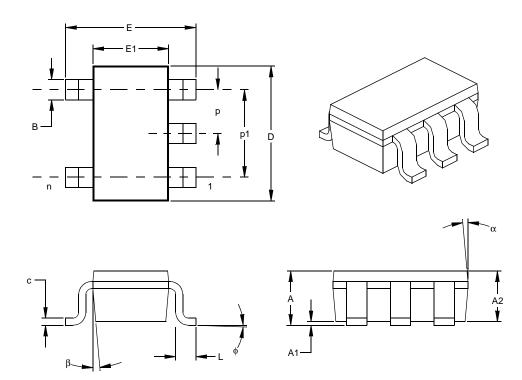
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

^{*} Standard marking consists of Microchip part number, year code, week code, traceability code (facility code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.

5-Lead Plastic Package (SC-70)

	Units	INCHES			MILLIMETERS*		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		5		5		
Pitch	р		.026 (BSC)			0.65 (BSC)	
Overall Height	Α	.031		.043	0.80		1.10
Molded Package Thickness	A2	.031		.039	0.80		1.00
Standoff	A1	.000		.004	0.00		0.10
Overall Width	E	.071		.094	1.80		2.40
Molded Package Width	E1	.045		.053	1.15		1.35
Overall Length	D	.071		.087	1.80		2.20
Foot Length	L	.004		.012	0.10		0.30
Top of Molded Pkg to Lead Shoulder	Q1	.004		.016	0.10		0.40
Lead Thickness	С	.004		.007	0.10		0.18
Lead Width	В	.006		.012	0.15		0.30

^{*}Controlling Parameter


Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.

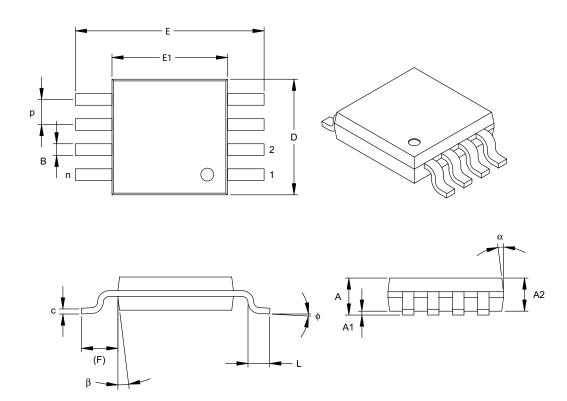
JEITA (EIAJ) Standard: SC-70

Drawing No. C04-061

5-Lead Plastic Small Outline Transistor (OT) (SOT23)

	Units	INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		5			5	
Pitch	р		.038			0.95	
Outside lead pitch (basic)	p1		.075			1.90	
Overall Height	Α	.035	.046	.057	0.90	1.18	1.45
Molded Package Thickness	A2	.035	.043	.051	0.90	1.10	1.30
Standoff §	A1	.000	.003	.006	0.00	0.08	0.15
Overall Width	Е	.102	.110	.118	2.60	2.80	3.00
Molded Package Width	E1	.059	.064	.069	1.50	1.63	1.75
Overall Length	D	.110	.116	.122	2.80	2.95	3.10
Foot Length	L	.014	.018	.022	0.35	0.45	0.55
Foot Angle	ф	0	5	10	0	5	10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.014	.017	.020	0.35	0.43	0.50
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.


JEDEC Equivalent: MO-178

Drawing No. C04-091

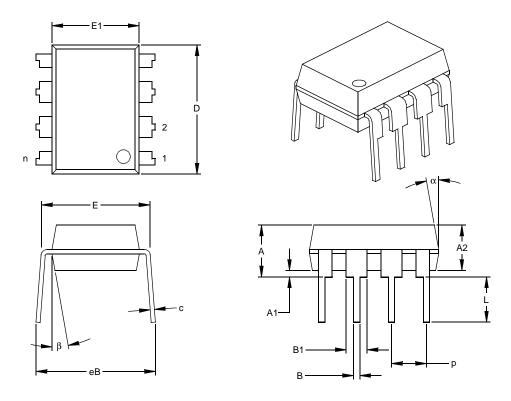
© 2004 Microchip Technology Inc.

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

	Units		INCHES		MILLIMETERS*		
Dimension Lim	nits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.026 BSC			0.65 BSC	
Overall Height	Α	-	-	.043	-	-	1.10
Molded Package Thickness	A2	.030	.033	.037	0.75	0.85	0.95
Standoff	A1	.000	-	.006	0.00	-	0.15
Overall Width	E		.193 TYP.		4.90 BSC		
Molded Package Width	E1		.118 BSC		3.00 BSC		
Overall Length	D	.118 BSC			3.00 BSC		
Foot Length	L	.016	.024	.031	0.40	0.60	0.80
Footprint (Reference)	F		.037 REF		0.95 REF		
Foot Angle	ф	0°	-	8°	0°	-	8°
Lead Thickness	С	.003	.006	.009	0.08	-	0.23
Lead Width	В	.009	.012	.016	0.22	-	0.40
Mold Draft Angle Top	α	5°	ı	15°	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°	5°	-	15°

^{*}Controlling Parameter

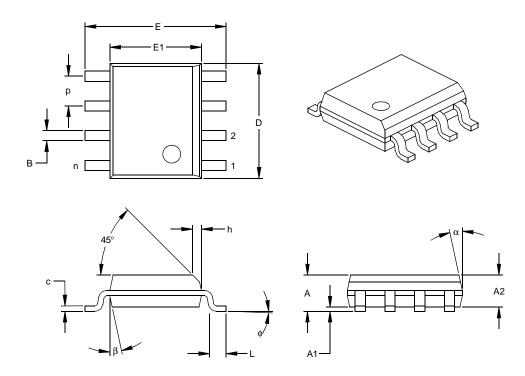

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-187

Drawing No. C04-111

8-Lead Plastic Dual In-line (P) - 300 mil (PDIP)


	Units	Units INCHES*			MILLIMETERS		
Dimensi	ion Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	§ eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-001
Drawing No. C04-018

^{*} Controlling Parameter § Significant Characteristic

8-Lead Plastic Small Outline (SN) - Narrow, 150 mil (SOIC)

	Units	INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	Е	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	ф	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057

^{*} Controlling Parameter § Significant Characteristic

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

1-E/SN: Extended Temp., 8LD SOIC pkg. 1-E/MS: Extended Temp
1-E/MS: Extended Temp
8LD MSOP pkg.
1-E/P: Extended Temp., 8LD PDIP pkg.
1RT-E/OT: Tape and Reel, Extended Temp., 5LD SOT-23 pkg
1UT-E/OT: Tape and Reel, Extended Temp., 5LD SOT-23 pkg.
1UT-E/LT: Tape and Reel, Extended Temp., 5LD SC-70 pkg.
1T-E/OT: Tape and Reel, Extended Temp., 5LD SOT-23 pkg.
11

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

MCP6231

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002 ===

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: 480-792-7627 Web Address: www.microchip.com

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334

Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road Kokomo, IN 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

San Jose

1300 Terra Bella Avenue Mountain View, CA 94043 Tel: 650-215-1444 Fax: 650-961-0286

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Unit 706B Wan Tai Bei Hai Bldg. No. 6 Chaoyangmen Bei Str. Beijing, 100027, China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District

Shenzhen 518033. China Tel: 86-755-82901380 Fax: 86-755-8295-1393 China - Shunde

Room 401, Hongjian Building, No. 2 Fengxiangnan Road, Ronggui Town, Shunde District, Foshan City, Guangdong 528303, China Tel: 86-757-28395507 Fax: 86-757-28395571

China - Qingdao

Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China

Tel: 86-532-5027355 Fax: 86-532-5027205

India

Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-22290061 Fax: 91-80-22290062

Japan

Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea

168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore 200 Middle Road #07-02 Prime Centre Singapore, 188980

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan

Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Austria

Durisolstrasse 2 A-4600 Wels Austria

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark

Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45-4420-9895 Fax: 45-4420-9910

France

Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - Ier Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy

Via Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611

Fax: 39-0331-466781 Netherlands

Waegenburghtplein 4 NL-5152 JR, Drunen, Netherlands Tel: 31-416-690399

Fax: 31-416-690340 **United Kingdom**

505 Eskdale Road Winnersh Triangle Wokingham

Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/28/04

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

<u>MCP6231UT-E/OT</u> <u>MCP6231RT-E/OT</u> <u>MCP6231-E/MS</u> <u>MCP6231-E/SN</u> <u>MCP6231-E/P</u> <u>MCP6231T-E/OT</u> MCP6231T-E/SN MCP6231T-E/MS