Hex D-type flip-flop with reset; positive-edge trigger

Rev. 1 — 17 April 2013

Product data sheet

1. General description

The 74HC174-Q100; 74HCT174-Q100 are hex positive edge-triggered D-type flip-flops with individual data inputs (Dn) and outputs (Qn). The common clock (CP) and master reset (MR) inputs load and reset all flip-flops simultaneously. The D-input that meets the set-up and hold time requirements on the LOW-to-HIGH clock transition is stored in the flip-flop and appears at the Q output. A LOW on MR causes the flip-flops and outputs to be reset LOW. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC} .

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Input levels:
 - For 74HC174-Q100: CMOS level
 - For 74HCT174-Q100: TTL level
- Six edge-triggered D-type flip-flops
- Asynchronous master reset
- Complies with JEDEC standard no. 7A
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options

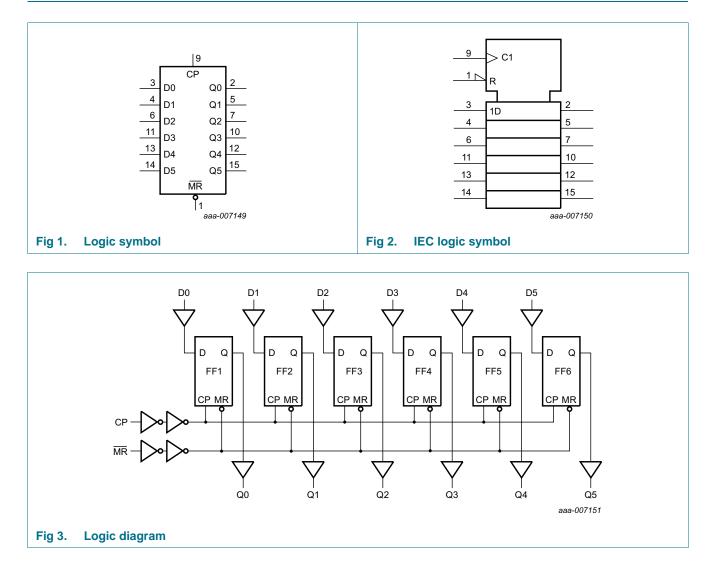
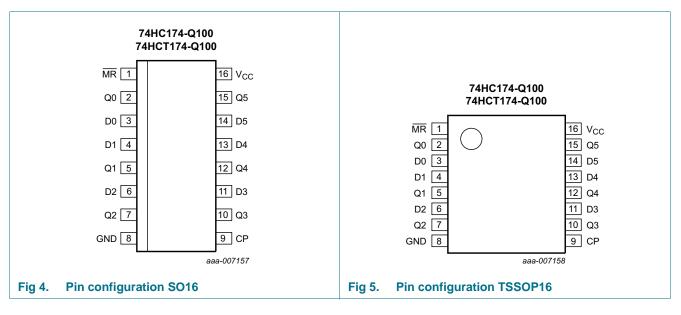

3. Ordering information

Table 1. Ordering	Table 1. Ordering information										
Type number Package											
	Temperature range	Name	Description	Version							
74HC174D-Q100	–40 °C to +125 °C	SO16	1	SOT109-1							
74HCT174D-Q100			3.9 mm								
74HC174PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads;	SOT403-1							
74HCT174PW-Q100			body width 4.4 mm								

nexperia

Hex D-type flip-flop with reset; positive-edge trigger


4. Functional diagram

Hex D-type flip-flop with reset; positive-edge trigger

5. Pinning information

5.1 Pinning

5.2 Pin description

Pin description	
Pin	Description
1	asynchronous master reset input (active LOW)
2, 5, 7, 10, 12, 15	flip-flop output
3, 4, 6, 11, 13, 14	data input
8	ground (0 V)
9	clock input (LOW-to-HIGH edge-triggered)
16	positive supply voltage
	Pin 1 2, 5, 7, 10, 12, 15 3, 4, 6, 11, 13, 14 8 9

Hex D-type flip-flop with reset; positive-edge trigger

6. Functional description

Table 3.Function table^[1]

Operating modes	Inputs	Outputs		
	MR	СР	Dn	Qn
reset (clear)	L	Х	Х	L
load "1"	Н	↑	h	Н
load "0"	Н	↑	I	L

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition;

X = don't care;

 \uparrow = LOW-to-HIGH clock transition.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±20	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C$	[2] _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SO16 package: above 70 °C the value of P_{tot} derates linearly with 8 mW/K.

For TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

Hex D-type flip-flop with reset; positive-edge trigger

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter		74HC174-Q100			74HCT174-Q100			Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C	to +85 °C	-40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC17	4-Q100						1			
V _{IH}	HIGH-level	$V_{CC} = 2.0 V$	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 4.5 V$	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	$V_{CC} = 2.0 V$	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 4.5 V$	-	2.1	1.35	-	1.35	-	1.35	V
	$V_{CC} = 6.0 V$	-	2.8	1.8	-	1.8	-	1.8	V	
V _{ОН}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	I_{O} = -20 μ A; V_{CC} = 2.0 V	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -20 \ \mu\text{A}; \ V_{CC} = 4.5 \ \text{V}$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -20 \ \mu A; \ V_{CC} = 6.0 \ V$	5.9	6.0	-	5.9	-	5.9	-	V
		I_{O} = -4.0 mA; V_{CC} = 4.5 V	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = 20 \ \mu A; V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \ \mu\text{A}; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 5.2 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_I = V_{CC} \text{ or GND};$ $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1	-	±1	μA
СС	supply current		-	-	8.0	-	80	-	160	μA

Hex D-type flip-flop with reset; positive-edge trigger

Table 6. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT1	74-Q100									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}$	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	V _{OL} LOW-level	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	I_O = 20 $\mu A; V_{CC}$ = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 5.2 mA; V_{CC} = 5.5 V	-	0.15	0.26	-	0.33	-	0.4	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	-	±1	-	±1	μA
I _{CC}	supply current		-	-	8.0	-	80	-	160	μA
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 V$; other inputs at V_{CC} or GND; $V_{CC} = 4.5 V$ to 5.5 V								
		Dn input	-	25	90	-	112.5	-	122.5	μΑ
		CP input	-	130	468	-	585	-	637	μΑ
		MR input	-	125	450	-	562.5	-	612.5	μΑ
CI	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; for test circuit, see Figure 8

Symbol Parameter		Conditions		25 °C		–40 °C to +85 °C		–40 °C to +125 °C		Unit
				Тур	Max	Min	Max	Min	Max	
74HC1	74-Q100									
t _{pd} propagation		CP to Qn; see Figure 6	1							
	delay	$V_{CC} = 2.0 V$	-	55	165	-	205	-	250	ns
		$V_{CC} = 4.5 V$	-	20	33	-	41	-	50	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	17	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$	-	16	28	-	35	-	43	ns

Hex D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions		25 °C	;	-40 °C 1	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
t _{PHL}	HIGH to LOW	MR to Qn; see Figure 7								
	propagation	V _{CC} = 2.0 V	-	44	150	-	190	-	225	ns
	delay	V _{CC} = 4.5 V	-	16	30	-	38	-	45	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	13	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	13	26	-	33	-	38	ns
t	transition time	Qn output; see Figure 6	l							
		$V_{CC} = 2.0 V$	-	19	75	-	95	-	110	ns
		$V_{CC} = 4.5 V$	-	7	15	-	19	-	22	ns
		$V_{CC} = 6.0 V$	-	6	13	-	16	-	19	ns
t _W	pulse width	CP input HIGH or LOW; see Figure 6								
		V _{CC} = 2.0 V	80	17	-	100	-	120	-	ns
		$V_{CC} = 4.5 V$	16	6	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	14	5	-	17	-	20	-	ns
		MR input LOW; see Figure 7								
		$V_{CC} = 2.0 V$	80	12	-	100	-	120	-	ns
		$V_{CC} = 4.5 V$	16	4	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	14	3	-	17	-	20	-	ns
rec	recovery time	MR to CP; see Figure 7								
		$V_{CC} = 2.0 V$	+5	-11	-	+5	-	+5	-	ns
		$V_{CC} = 4.5 V$	+5	-4	-	+5	-	+5	-	ns
		$V_{CC} = 6.0 V$	+5	-3	-	+5	-	+5	-	ns
su	set-up time	Dn to CP; see Figure 6								
		$V_{CC} = 2.0 V$	60	6	-	75	-	90	-	ns
		$V_{CC} = 4.5 V$	12	2	-	15	-	18	-	ns
		$V_{CC} = 6.0 V$	10	2	-	13	-	15	-	ns
ĥ	hold time	Dn to CP; see Figure 6								
		$V_{CC} = 2.0 V$	+3	-6	-	+3	-	+3	-	ns
		$V_{CC} = 4.5 V$	+3	-2	-	+3	-	+3	-	ns
		$V_{CC} = 6.0 V$	+3	-2	-	+3	-	+3	-	ns
: max	maximum	CP input; see Figure 6								
	frequency	$V_{CC} = 2.0 V$	6	30	-	5	-	4	-	MH
		$V_{CC} = 4.5 V$	30	90	-	24	-	20	-	MH
		$V_{CC} = 6.0 V$	35	107	-	28	-	24	-	MH
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	99	-	-	-	-	-	МH
C _{PD}	power dissipation	per package; $V_{I} = GND$ to V_{CC}	l -	17	-	-	-	-	-	pF

Table 7. Dynamic characteristics ... continued

ified, for toot airquit 0 V: $C_{i} = 50 \text{ pE unle}$ ~

74HC_HCT174_Q100 **Product data sheet**

7 of 16

Hex D-type flip-flop with reset; positive-edge trigger

Symbol	Parameter	Conditions		25 °C		-40 °C 1	to +85 °C	-40 °C te	o +125 °C	Unit
			Min	Тур	Мах	Min	Max	Min	Max	-
74HCT17	74-Q100									
t _{pd}	propagation	CP to Qn; see Figure 6	1]							
	delay	$V_{CC} = 4.5 V$	-	21	35	-	44	-	53	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	18	-	-	-	-	-	ns
t _{PHL}	HIGH to LOW	MR to Qn; see Figure 7								
	propagation delay	$V_{CC} = 4.5 V$	-	20	35	-	44	-	53	ns
	uelay	$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	17	-	-	-	-	-	ns
t _t	transition time	Qn output; see Figure 6	2]							
		$V_{CC} = 4.5 V$	-	7	15	-	19	-	22	ns
t _W	pulse width	CP input; see Figure 6								
		$V_{CC} = 4.5 V$	16	7	-	20	-	24	-	ns
		MR input LOW; see <u>Figure 7</u>								
		$V_{CC} = 4.5 V$	20	7	-	25	-	30	-	ns
t _{rec}	recovery time	MR to CP; see Figure 7								
		$V_{CC} = 4.5 V$	12	-3	-	15	-	18	-	ns
t _{su}	set-up time	Dn to CP; see Figure 6								
		$V_{CC} = 4.5 V$	16	4	-	20	-	24	-	ns
t _h	hold time	Dn to CP; see Figure 6								
		$V_{CC} = 4.5 V$	5	-3	-	5	-	5	-	ns
f _{max}	maximum	CP input; see Figure 6								
	frequency	$V_{CC} = 4.5 V$	30	63	-	24	-	20	-	MHz
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	69	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	per package; [V _I = GND to V _{CC} – 1.5 V	<u>3]</u> _	17	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued

GND (ground = 0 V); C_L = 50 pF unless otherwise specified; for test circuit, see Figure 8

[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

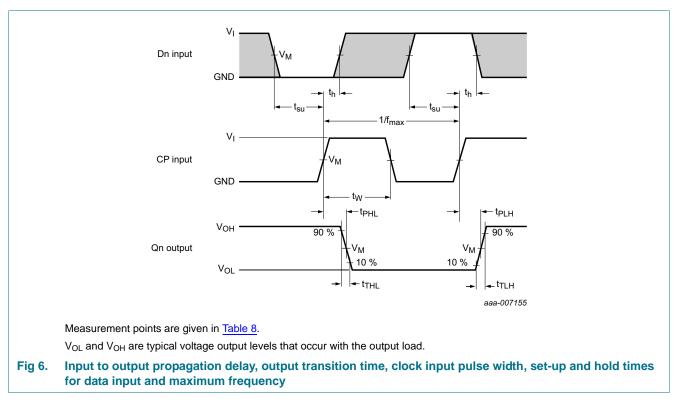
 $\label{eq:ttilde} [2] \quad t_t \text{ is the same as } t_{THL} \text{ and } t_{TLH}.$

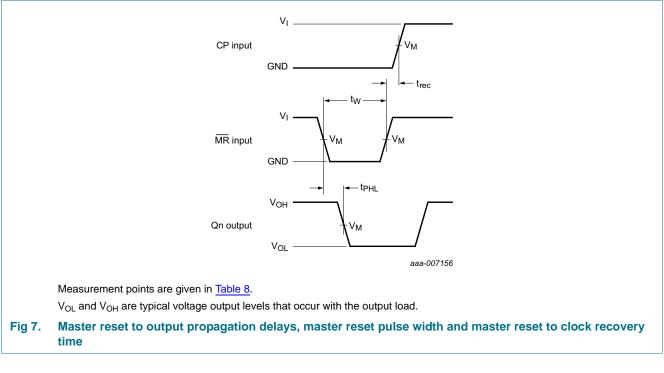
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

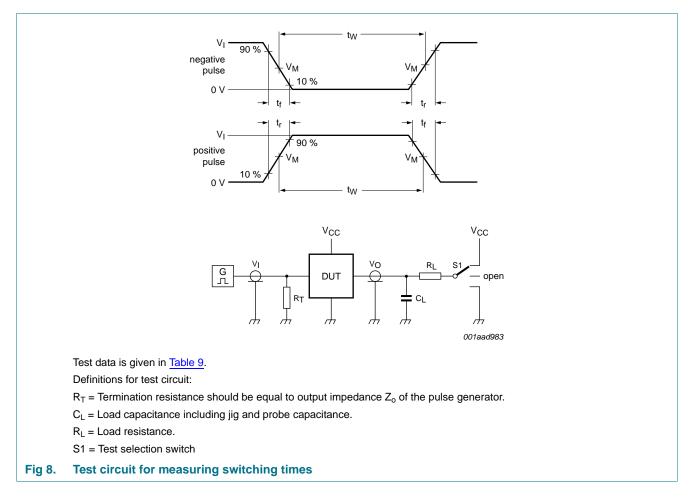

 $\Sigma (C_L \times V_{CC}^2 \times f_o)$ = sum of outputs;


 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V.

Hex D-type flip-flop with reset; positive-edge trigger

11. Waveforms


74HC_HCT174_Q100
Product data sheet

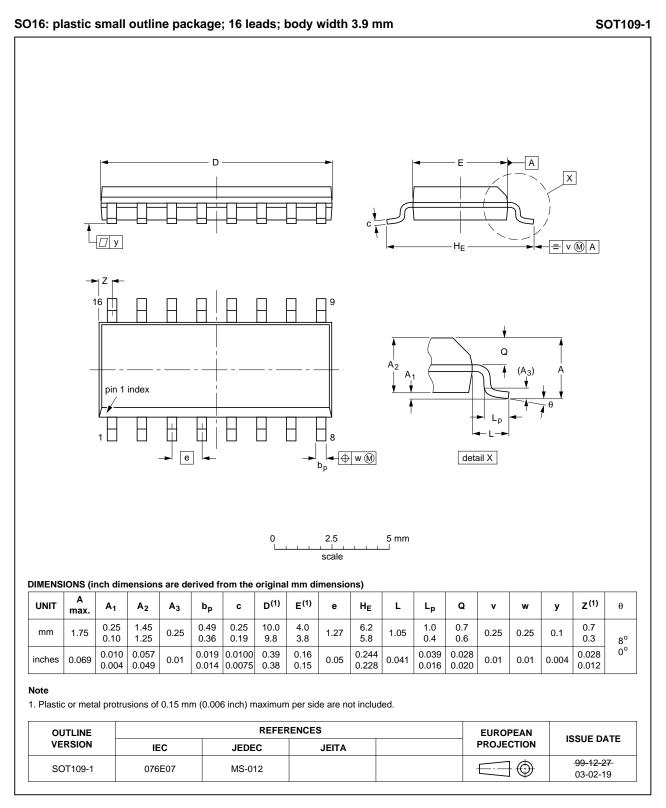
Nexperia

74HC174-Q100; 74HCT174-Q100

Hex D-type flip-flop with reset; positive-edge trigger

Table 8. Measurement points									
Туре	Input	Output							
	VI	V _M	V _M						
74HC174-Q100	V _{CC}	0.5V _{CC}	0.5V _{CC}						
74HCT174-Q100	3 V	1.3 V	1.3 V						

Table 9. Test data


Туре	Input		Load	S1 position	
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}
74HC174-Q100	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open
74HCT174-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open

Nexperia

74HC174-Q100; 74HCT174-Q100

Hex D-type flip-flop with reset; positive-edge trigger

12. Package outline

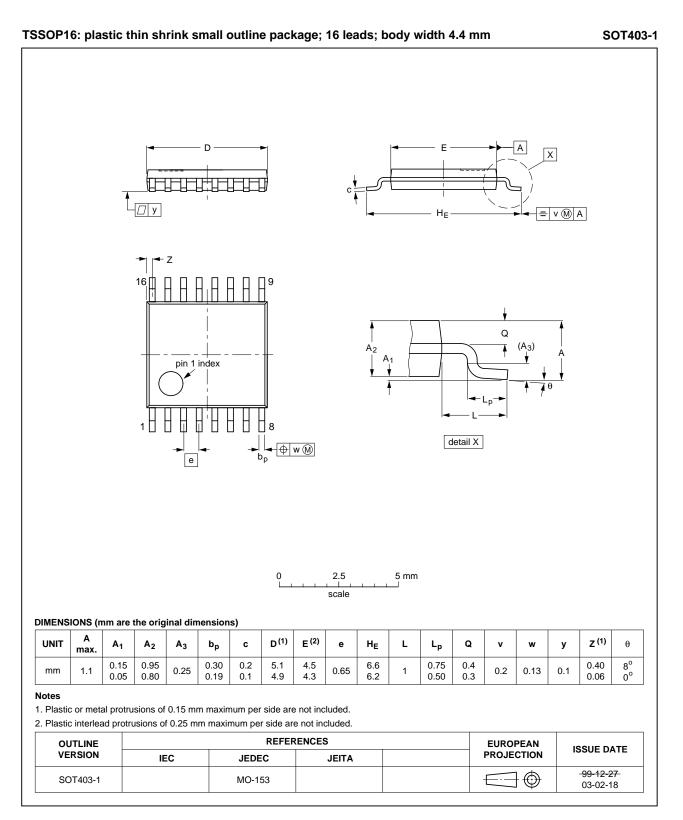


Fig 9. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

74HC HCT174 Q100

Hex D-type flip-flop with reset; positive-edge trigger

Fig 10. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

74HC HCT174 Q100

Hex D-type flip-flop with reset; positive-edge trigger

13. Abbreviations

AcronymDescriptionCMOSComplementary Metal-Oxide SemiconductorDUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMILMilitaryMMMachine ModelTTLTransistor-Transistor Logic	Table 10. Abbreviations				
DUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMILMilitaryMMMachine Model	Acronym	Description			
ESD ElectroStatic Discharge HBM Human Body Model MIL Military MM Machine Model	CMOS	Complementary Metal-Oxide Semiconductor			
HBM Human Body Model MIL Military MM Machine Model	DUT	Device Under Test			
MIL Military MM Machine Model	ESD	ElectroStatic Discharge			
MM Machine Model	HBM	Human Body Model			
	MIL	Military			
TTL Transistor-Transistor Logic	MM	Machine Model			
	TTL	Transistor-Transistor Logic			

14. Revision history

Table 11. Revision histo	able 11. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes		
74HC_HCT174_Q100 v.1	20130417	Product data sheet	-	-		

Hex D-type flip-flop with reset; positive-edge trigger

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been gualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

Hex D-type flip-flop with reset; positive-edge trigger

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Nexperia

74HC174-Q100; 74HCT174-Q100

Hex D-type flip-flop with reset; positive-edge trigger

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning 3
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 6
11	Waveforms
12	Package outline 11
13	Abbreviations 13
14	Revision history 13
15	Legal information
15.1	Data sheet status 14
15.2	Definitions 14
15.3	Disclaimers 14
15.4	Trademarks 15
16	Contact information 15
17	Contents 16

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

74HCT174D-Q100J 74HC174PW-Q100J 74HC174D-Q100J 74HCT174PW-Q100J