Switch-mode Soft Recovery Power Rectifiers # Plastic TO-220 Package These state-of-the-art devices are designed for use as free wheeling diodes in variable speed motor control applications and switching power supplies. # **Features** - Soft Recovery with Guaranteed Low Reverse Recovery Charge (Q_{RR}) and Peak Reverse Recovery Current (I_{RRM}) - 150°C Operating Junction Temperature - Epoxy meets UL 94 V-0 @ 0.125 in - Low Forward Voltage - Low Leakage Current - These are Pb-Free Devices # **Mechanical Characteristics:** - Case: Epoxy, Molded - Weight: 1.9 Grams (Approximately) - Finish: All External Surfaces Corrosion Resistant and Terminal Leads Readily Solderable - Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds # **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|--|-------------|----------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | V _{RRM}
V _{RWM}
V _R | 600 | V | | Average Rectified Forward Current (Rated V _R , T _C = 125°C) | I _O | 8.0 | Α | | Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 125°C) | I _{FRM} | 16 | Α | | Non-Repetitive Peak Surge Current
(Surge Applied at Rated Load Conditions
Halfwave, Single Phase, 60 Hz) | I _{FSM} | 100 | Α | | Storage/Operating Case Temperature | T _{stg} , T _C | -65 to +150 | °C | | Operating Junction Temperature | T_J | -65 to +150 | °C | # THERMAL CHARACTERISTICS | Parameter | Symbol | Value | Unit | |---|-------------------------------|-------------|------| | MSR860G
Thermal Resistance, Junction-to-Case
Thermal Resistance, Junction-to-Ambient | $R_{ heta JC} \ R_{ heta JA}$ | 1.6
72.8 | °C/W | | MSRF860G
Thermal Resistance, Junction-to-Case
Thermal Resistance, Junction-to-Ambient | $R_{ heta JC} \ R_{ heta JA}$ | 4.75
75 | °C/W | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. # ON Semiconductor® http://onsemi.com # SOFT RECOVERY POWER RECTIFIER 8.0 AMPERES, 600 VOLTS TO-220AC CASE 221B STYLE 1 TO-220 FULLPAK CASE 221AG STYLE 1 # MARKING DIAGRAMS A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package KA = Diode Polarity # **ORDERING INFORMATION** | Device | Package | Shipping | |----------|-----------------------|-----------------| | MSR860G | TO-220AC
(Pb-Free) | 50 Units / Rail | | MSRF860G | TO-220FP
(Pb-Free) | 50 Units / Rail | # **ELECTRICAL CHARACTERISTICS** | Characteristic | Symbol | Va | lue | Unit | |---|------------------------------------|-----------------------|------------------------|------| | Maximum Instantaneous Forward Voltage (I _F = 8.0 A) (Note 1) | V _F | T _J = 25°C | T _J = 150°C | V | | Maximum
Typical | | 1.7
1.4 | 1.3
1.1 | | | Maximum Instantaneous Reverse Current (V _R = 600 V) | I _R | T _J = 25°C | T _J = 150°C | μΑ | | Maximum
Typical | | 10
2.0 | 1000
80 | | | Maximum Reverse Recovery Time (Note 2) | t _{rr} | T _J = 25°C | T _J = 125°C | ns | | (V _R = 400 V, I _F = 8.0 A, di/dt = 200 A/μs) Maximum
Typical | | 120
95 | 190
125 | | | Typical Recovery Softness Factor ($V_R = 400 \text{ V}$, $I_F = 8.0 \text{ A}$, di/dt = 200 A/ μ s) | s = t _b /t _a | 2.5 | 3.0 | | | Maximum Peak Reverse Recovery Current ($V_R = 400 \text{ V}$, $I_F = 8.0 \text{ A}$, di/dt = 200 A/ μ s) | I _{RRM} | 5.8 | 8.3 | Α | | Maximum Reverse Recovery Charge ($V_R = 400 \text{ V}, I_F = 8.0 \text{ A}, \text{ di/dt} = 200 \text{ A/}\mu\text{s}$) | Q _{RR} | 350 | 700 | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 1. Pulse Test: Pulse Width \leq 380 μ s, Duty Cycle \leq 2% - 2. $T_{\mbox{\footnotesize{RR}}\mbox{\footnotesize{MRM}}}$ measured projecting from 25% of $I_{\mbox{\footnotesize{RRM}}}$ to zero current # TYPICAL ELECTRICAL CHARACTERISTICS # TYPICAL ELECTRICAL CHARACTERISTICS Figure 4. Current Derating, Ambient Figure 5. Power Dissipation Figure 6. Typical Reverse Recovery Time Figure 7. Typical Reverse Recovery Time Figure 8. Typical Peak Reverse Recovery Current Figure 9. Typical Peak Reverse Recovery Current # TYPICAL ELECTRICAL CHARACTERISTICS 900 QRR, REVERSE RECOVERY CHARGE (nC) 800 I_F = 16 A 700 600 500 8 A 400 300 200 $T_J=125^{\circ}C$ 100 V_R = 400 V 100 200 300 500 dI_F/dt (A/ μ S) Figure 10. Typical Reverse Recovery Charge Figure 11. Typical Reverse Recovery Charge Figure 12. Typical Switching Off Losses Figure 13. Typical Switching Off Losses Figure 14. Thermal Response (MSR860) Figure 15. Thermal Response, (MSRF860) Junction-to-Case (R_{θJC}) Figure 16. Thermal Response, (MSRF860) Junction-to-Ambient (R_{0,JA}) # PACKAGE DIMENSIONS # TO-220 TWO-LEAD CASE 221B-04 **ISSUE F** - DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIN | IETERS | |-----|--------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.595 | 0.620 | 15.11 | 15.75 | | В | 0.380 | 0.405 | 9.65 | 10.29 | | С | 0.160 | 0.190 | 4.06 | 4.82 | | D | 0.025 | 0.039 | 0.64 | 1.00 | | F | 0.142 | 0.161 | 3.61 | 4.09 | | G | 0.190 | 0.210 | 4.83 | 5.33 | | Н | 0.110 | 0.130 | 2.79 | 3.30 | | J | 0.014 | 0.025 | 0.36 | 0.64 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.14 | 1.52 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.14 | 1.39 | | Т | 0.235 | 0.255 | 5.97 | 6.48 | | U | 0.000 | 0.050 | 0.000 | 1.27 | STYLE 1: PIN 1. CATHODE 2. N/A 3. ANODE 4. CATHODE # TO-220 FULLPAK, 2-LEAD CASE 221AG **ISSUE A** - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - CONTOUR UNCONTROLLED IN THIS AREA. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY. DIMENSION 62 DOES NOT INCLUDE DAMBAR - PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00. | | MILLIMETERS | | | |-----|-------------|-------|--| | DIM | MIN | MAX | | | Α | 4.30 | 4.70 | | | A1 | 2.50 | 2.90 | | | A2 | 2.50 | 2.90 | | | b | 0.54 | 0.84 | | | b2 | 1.10 | 1.40 | | | C | 0.49 | 0.79 | | | D | 14.22 | 15.88 | | | Е | 9.65 | 10.67 | | | е | 2.54 BSC | | | | e1 | 5.08 BSC | | | | H1 | 5.97 | 6.48 | | | L | 12.70 | 14.73 | | | L1 | | 2.80 | | | Р | 3.00 | 3.40 | | | Q | 2.80 | 3.20 | | ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any licenses under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all Claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative